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Abstract

We consider metric graph Gaussian free field (GFF) defined on polygons of δZ2 with
alternating boundary data. The crossing probabilities for level-set percolation of
metric graph GFF have scaling limits. When the boundary data is well-chosen, the
scaling limits of crossing probabilities can be explicitly constructed as “fusion" of
multiple SLE4 pure partition functions.
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1 Introduction

This article concerns crossing probability of level-set percolation of Gaussian free
field (GFF) on the square lattice Z2. For L > 0, consider the rectangle

RL = {z : 0 < <z < L, 0 < =z < 1}.

Let y1, y2, y3, y4 be its four corners, listed in counterclockwise order with y2 = 0. For
δ > 0, let Vδ = RL∩δZ2 and let yδ1, y

δ
2, y

δ
3, y

δ
4 be its four corners, listed in counterclockwise

order such that yδ2 is closest to y2. For two vertices u, v ∈ ∂Vδ, we denote by (uv) the arc
of ∂Vδ from u to v in counterclockwise order. Let Γδ be a discrete GFF (see Section 5.1)
on Vδ with alternating boundary data:

µ on (yδ1y
δ
2) ∪ (yδ3y

δ
4), −µ on (yδ2y

δ
3) ∪ (yδ4y

δ
1),

where µ > 0 is a positive constant. Let Γ̃δ be the GFF on the metric graph Ṽδ (see
Section 5.1) with the same boundary data. We are interested in the event that there
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Crossing probabilities in metric graph GFF

exists a path in Vδ (resp. Ṽδ) from (yδ1y
δ
2) to (yδ3y

δ
4) such that Γδ (resp. Γ̃δ) is non-negative

on this path. We denote this event by{
(yδ1y

δ
2)

Γδ≥0←→ (yδ3y
δ
4)

}
and

{
(yδ1y

δ
2)

Γ̃δ≥0←→ (yδ3y
δ
4)

}
for Γδ and Γ̃δ respectively. Although, both discrete GFF Γδ and metric graph GFF Γ̃δ

converge as distributions to the continuum GFF as δ → 0, the probabilities for such
crossing events have distinct scaling limits, as proved in [DWW20, Theorem 1.2]. It is
then natural to ask whether we are able to give explicit formula for scaling limits of such
crossing probabilities.

The answer to this question relies on Schramm-Sheffield’s famous work on level lines
of GFF. We call (Ω;x, y) a Dobrushin domain if Ω ( C is non-empty simply connected
and x, y are distinct boundary points. In [SS09], the authors prove that there exists
λ = λ(Z2) > 0 such that the zero level line of discrete GFF on Dobrushin domains of δZ2

with boundary data ±λ converges in distribution to Schramm-Loewner Evolution (SLE4,
see Section 2.3). Based on this result, one is able to show that [DWW20, Theorem 1.3],
when µ = λ,

lim
δ→0

P

[
(yδ1y

δ
2)

Γδ≥0←→ (yδ3y
δ
4)

]
= q, (1.1)

where q is the cross-ratio of the rectangle: let ϕ be any conformal map from RL onto the
upper-half plane H with ϕ(y1) < ϕ(y2) < ϕ(y3) < ϕ(y4), then

q =
(ϕ(y2)− ϕ(y1))(ϕ(y4)− ϕ(y3))

(ϕ(y3)− ϕ(y1))(ϕ(y4)− ϕ(y2))
. (1.2)

This gives answer to the case of discrete GFF. The authors in [DWW20] derive (1.1)
by showing that the scaling limit of the crossing probability in discrete GFF is the
same as the one for continuum GFF whose crossing probability is calculated in [PW19,
Theorem 1.4]. Such probability is also calculated in [KW11]. It remains to answer the
question for the case of metric graph GFF.

The goal of this article is to derive explicit formula for scaling limits of crossing
probability in metric graph GFF. We will show that, when µ = 2λ,

lim
δ→0

P

[
(yδ1y

δ
2)

Γ̃δ≥0←→ (yδ3y
δ
4)

]
= q4, (1.3)

where q is the cross-ratio of the rectangle as in (1.2). In fact, we are able to give answer
in a more general setting: we can calculate the scaling limits of crossing probabilities
for the metric graph GFF with alternating boundary data on a polygon with 2N marked
points on the boundary. To state our main result, we first introduce some notations about
planar link patterns.

For p ∈ Z>0, we call (Ω;x1, . . . , xp) a polygon if Ω * C is non-empty simply connected
and x1, . . . , xp are p boundary points in counterclockwise order lying on locally connected
boundary segments. We first introduce planar pair partitions. Suppose p = 2N is
even and suppose there are N non-intersecting simple curves in Ω connecting the 2N

boundary points pairwise. These N curves form a planar pair partition that we denote
by α = {{a1, b1}, . . . {aN , bN}} with {a1, b1, . . . , aN , bN} = {1, 2, . . . , 2N}. We call the pairs
{a, b} in α links. We denote by PPN the set of planar pair partitions with 2N points and
set PP =

⊔
N≥0 PPN.

Next, we introduce general planar link patterns. The planar pair partitions then arise
as a special case. Suppose (Ω;x1, . . . , xp) is a polygon. Fix a multiindex ς = (s1, . . . , sp) ∈
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Crossing probabilities in metric graph GFF

Z
p
>0 such that

∑p
i=1 si is even and denote by

` =
1

2

p∑
i=1

si ∈ Z>0.

Suppose there are ` simple curves in Ω connecting the p boundary points pairwise
such that they do not intersect except at their common end points. These ` curves
form a planar link pattern that we call planar `-link patterns of p points. Precisely, we
call planar `-link patterns of p points with index valences ς = (s1, . . . , sp) as collections
ω = {{a1, b1}, . . . , {a`, b`}} of `-links {a, b} which connect a pair of distinct indices a, b ∈
{1, 2, . . . , p} such that, for any i ∈ {1, 2, . . . , p}, the index i is an endpoint of exactly si
links and that none of the links intersect except at their common endpoints. We denote
the collection of `-link patterns of p points with index valences ς by LPς . With such
definition, when p = 2N is even, the planar N -link pattern of 2N points with index
valences ς = (1, . . . , 1) is a planar pair partition and LP(1,...,1) = PPN.

In this article, we are interested in planar 2N -link patterns of 2N points with index
valences ς = (2, . . . , 2), see Figure 1 for N = 2. With the above definition, the collection
of such planar link patterns is denoted by LP(2,...,2) where the index has length 2N .

y2 y3

y4y1

−2λ

−2λ

2λ2λ

y2 y3

y4y1

−2λ

−2λ

2λ2λ

y2 y3

y4y1

−2λ

−2λ

2λ2λ

Figure 1: Consider metric graph GFF in rectangle with alternating boundary data when
µ = 2λ. Consider the positive first passage sets attached to (yδ1y

δ
2) and to (yδ3y

δ
4) and

consider the negative first passage sets attached to (yδ2y
δ
3) and to (yδ4y

δ
1). Their frontier

form a planar 4-link pattern of 4 points with index valences ς = (2, 2, 2, 2). There are
three possibilities as indicated in the figure. In the right panel, there is negative vertical
crossing of the metric graph GFF. In the middle panel, there is positive horizontal
crossing. In the left panel, there is neither positive horizontal crossing nor negative
vertical crossing. As δ → 0, the frontier converges to level lines of continuum GFF with
the same boundary data and the four level lines are as follows: there are two level lines
starting from y1 (resp. from y3), one has height −λ and the other one has height λ.

Fix a polygon (Ω; y1, . . . , y2N ) such that Ω ⊂ [−C,C]2 for some C > 0. Suppose
{
(
Ωδ; yδ1, . . . , y

δ
2N

)
}δ>0 are polygons such that Ωδ ⊂ [−C,C]2 for all δ > 0. Suppose(

Ωδ; yδ1, . . . , y
δ
2N

)
converges to (Ω; y1, . . . , y2N ) as δ → 0 in the following sense:

[−C,C]2 \ Ωδ converges to [−C,C]2 \ Ω in Hausdorff metric

and yδi → yi for each 1 ≤ i ≤ 2N. (1.4)

Consider metric graph GFF Γ̃δ in (Ωδ; yδ1, . . . , y
δ
2N ) with alternating boundary data:

2λ on (yδ2j−1y
δ
2j), and − 2λ on (yδ2jy

δ
2j+1), for j ∈ {1, . . . , N}, (1.5)

where y2N+1 = y1 by convention. Consider positive first passage set (see Section 5.2)
of Γ̃δ attached to the boundary segments (yδ2j−1y

δ
2j), and negative first passage set

attached to the boundary segments (yδ2jy
δ
2j+1), for j ∈ {1, . . . , N}. The frontier of these
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first passage sets is a collection of 2N curves connecting the 2N boundary points so
that their end points form a planar 2N -link pattern of 2N points with index valences
ς = (2, 2, . . . , 2). See Figure 1. We denote the link pattern by Aδ. Our main result is the
following.

Theorem 1.1. Fix N ≥ 1 and the index valences ς = (2, . . . , 2) of length 2N . Consider
the frontier of first passage sets of metric graph GFF in Ωδ with alternating boundary
data (1.5). The frontier is a collection of 2N curves connecting the 2N boundary points
whose end points form a planar link pattern Aδ ∈ LPς . We have

lim
δ→0

P[Aδ = α̂] =Mω,τ(α̂)
Zα̂(Ω; y1, . . . , y2N )

Z(N)
mGFF(Ω; y1, . . . , y2N )

, for all α̂ ∈ LPς ,

where the coefficient Mω,τ(α̂) is given by Lemma 5.9, the function Zα̂ is given by
Proposition 5.6 and Corollary 5.8, and

Z(N)
mGFF(Ω; y1, . . . , y2N ) =

∑
α̂∈LPς

Mω,τ(α̂)Zα̂(Ω; y1, . . . , y2N ).

The definition forMω,τ(α̂) and Zα̂ is quite involved, and we omit it from the introduc-
tion. Nevertheless, let us mention in the introduction nice properties that Zα̂ enjoys.
First of all, they are conformally covariant: for any polygon (Ω; y1, . . . , y2N ) such that
y1, . . . , y2N lie on sufficiently regular segments of ∂Ω (e.g. C1+ε for some ε > 0) and any
conformal map ϕ on Ω, we have

Zα̂(Ω; y1, . . . , y2N ) =

2N∏
i=1

ϕ′(yi)×Zα̂(ϕ(Ω);ϕ(y1), . . . , ϕ(y2N )). (1.6)

When Ω = H and y1 < · · · < y2N , we write

Zα̂(y1, . . . , y2N ) = Zα̂(H; y1, . . . , y2N ), Z(N)
mGFF(y1, . . . , y2N ) = Z(N)

mGFF(H; y1, . . . , y2N ).

Then, we have

Z(N)
mGFF(y1, . . . , y2N ) =

∏
1≤i<j≤2N

(yj − yi)2(−1)j−i . (1.7)

Proposition 1.2. Fix N ≥ 1 and the index valences ς = (2, . . . , 2) of length 2N . For
any α̂ ∈ LPς , the function Zα̂ : X2N → R>0 given by Proposition 5.6 and Corollary 5.8
satisfies the following PDE system: for all j ∈ {1, . . . , 2N},[

∂3

∂y3
j

− 4L(j)
−2

∂

∂yj
+ 2L(j)

−3

]
Zα̂(y1, . . . , y2N ) = 0, (1.8)

where L(j)
−2 :=

∑
i 6=j

(
1

(yi − yj)2
− 1

yi − yj
∂

∂yi

)
,

L(j)
−3 :=

∑
i 6=j

(
2

(yi − yj)3
− 1

(yi − yj)2

∂

∂yi

)
.

In Section 2, we will give preliminaries on planar link patterns and SLEs. In Section 3,
we will introduce multiple SLE partition functions and prove a preliminary result about
“fusion” of partition functions—Proposition 3.1. In Section 4, we will introduce continuum
GFF and prove a result on connection probabilities—Theorem 4.1. In Section 5, we will
introduce metric graph GFF and complete the proof of Theorem 1.1 and (1.6), (1.7)
and (1.8) by combining the results from preceding sections.
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The proof for Theorem 1.1 relies on the following three ingredients: a). Aru-Lupu-
Sepúlveda’s work on the convergence of first passage sets of metric graph GFF [ALS20],
see Sections 5.2 and 5.3. b). A generalization of Peltola and the second author’s
work [PW19] on crossing probabilities in continuum GFF, see Theorem 4.1. c). Analysis
on the asymptotics of multiple SLE4 partition functions, see Proposition 5.6. With these
three at hand, let us briefly describe how we derive Theorem 1.1 with N = 2 which
gives (1.3). The proof for general N uses a similar idea. Our strategy is as follows: First,
we use a) to show that the frontiers of first passage set of metric graph GFF converge to
level lines of continuum GFF with boundary data (−2λ, 2λ,−2λ, 2λ) and proper heights,
see Figure 1. Second, we use b) to calculate the crossing probabilities in continuum GFF
with boundary data (−2λ, 0, 2λ, 0,−2λ, 0, 2λ, 0), see Figure 5. Finally, in Figure 5, we let
x1, x2 → y1, and x3, x4 → y2 and x5, x6 → y3 and x7, x8 → y4, then the four level lines in
Figure 5 become the level lines in Figure 1 and, due to c), the crossing probabilities
calculated in the second step admit limits which give the desired probability in (1.3).
See Corollary 5.10.

The proof for Proposition 1.2 relies on Proposition 3.1. Note that the third order
PDEs are not surprising. SLE partition functions are solutions to 2nd order PDEs (3.2)
and they can be understood as certain correlation functions in terms of conformal field
theory (CFT). Then the third order PDEs can be obtained by specific fusion channel,
see [BB03, BB04, BBK05, FK04, Dub15, KP16, Pel20, Pel19]. See also discussion after
Proposition 3.1. The 2nd order PDEs (3.2) arise from stochastic differentials of certain
local martingales and SLE partition functions are related to crossing probabilities for the
critical statistical physics models, see [FSKZ17, KKP20, PW19, PW18]. However, there
seems no known direct probabilistic interpretation of higher order PDEs of CFT before.
In this sense, our work provides an example that gives a probabilistic interpretation to
higher order PDEs of CFT.

2 Preliminaries

2.1 Planar pair partitions and Dyck paths

In this section, we will give a one-to-one correspondence between planar pair par-
titions and Dyck paths. A Dyck path is a walk on Z≥0 with steps of length one, start-
ing and ending at zero: α : {0, 1, . . . , 2N} → Z≥0 such that α(0) = α(2N) = 0, and
|α(k)− α(k − 1)| = 1 for all k ∈ {1, 2, . . . , 2N}. For N ≥ 1, we denote the set of all Dyck
paths of 2N steps by DPN. There is a natural partial order on Dyck paths:

α � β if and only if α(k) ≤ β(k), for all k ∈ {0, 1, . . . , 2N}. (2.1)

We set DP =
⊔

N≥0 DPN.
To each planar pair partition α ∈ PPN, we write it as

α = {{a1, b1}, . . . , {aN , bN}}, (2.2)

where a1 < a2 < · · · < aN and aj < bj , for all j ∈ {1, . . . , N}.

We associate it with a Dyck path, also denoted by α ∈ DPN, as follows. We set α(0) = 0

and, for all k ∈ {1, . . . , 2N}, we set

α(k) =

{
α(k − 1) + 1, if k ∈ {a1, a2, . . . , aN},
α(k − 1)− 1, if k ∈ {b1, b2, . . . , bN}.

(2.3)

One may check, this defines a Dyck path α ∈ DPN. Conversely, for any Dyck path
α : {0, 1, . . . , 2N} → Z≥0, we associate a planar pair partition α by giving to each up-step
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(i.e., step away from zero) an index ar, for r = 1, 2, . . . , N , and to each down-step (i.e., step
towards zero) an index bs, for s = 1, 2, . . . , N , and setting α := {{a1, b1}, . . . , {aN , bN}}.
These two mappings define a bijection between PPN and DPN. We thus identify the
elements α of these two sets and use the indistinguishable notation α ∈ PPN and
α ∈ DPN for both. See Figure 2.

Figure 2: Illustration of the bijection PPN ↔ DPN, identifying planar pair partition and
Dyck path for α = {{1, 8}, {2, 3}, {4, 7}, {5, 6}}.

For a Dyck path α ∈ DPN, we say that α has a local maximum at j if α(j)−α(j−1) = 1

and α(j + 1)− α(j) = −1, and we denote ∧j ∈ α; we say that α has a local minimum at j
if α(j)− α(j − 1) = −1 and α(j + 1)− α(j) = 1, and we denote ∨j ∈ α; we say that α has
a slope at j if otherwise, and we denote ×j ∈ α. We say that α has a local extremum at j
if α has a local minimum or maximum at j, and we denote ♦j ∈ α.

If a planar pair partition α ∈ PPN has a link {j, j+1} ∈ α, then ∧j ∈ α. Let α/{j, j+1}
denote the planar pair partition by removing from α the link {j, j+ 1} and relabelling the
remaining indices by 1, 2, . . . , 2N − 2. In terms of Dyck path, we denote this operation
by α/∧j ∈ DPN−1. We define operation α/∨j ∈ DPN−1 analogously when α has a local
minimum at j. When α has a local extremum at j, we denote such operation by α/♦j . If
α has a local minimum at j, we associate α with another Dyck path by converting the
local minimum at j to local maximum, and denote this operation by α ↑ ♦j .

2.2 From planar link pattern to planar pair partition

Fix an index valences ς = (s1, . . . , sp) ∈ Zp>0 such that
∑p
i=1 si is even and we denote

this even number by 2`. Recall that LPς is the collection of all planar `-link patterns of p
points with index valences ς. We define a natural map which associates to each planar
link pattern a planar pair partition. This map, denoted by

τ : LPς → PP`, α̂ 7→ τ(α̂),

is defined as following: in α̂, for each j ∈ {1, 2, . . . , p}, we split the jth point to sj distinct
points and attach the sj links of α̂ ending there to these new sj points so that each of
them has valence one. See Figure 3.

τ

Figure 3: In this figure, we have a planar link pattern with index valences ς = (2, 3, 1, 2).
It is associated to a planar pair partition by splitting the four points into eight points
according to the valences and attaching the corresponding links.

In this article, we are interested in planar link patterns with index valences ς =

(2, . . . , 2). Fix N ≥ 1 and the index valences ς = (2, . . . , 2) of length 2N . Then τ introduces
a bijection between LPς and the collection {β ∈ PP2N : ∧2j−1 6∈ β, for all 1 ≤ j ≤ 2N}.
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2.3 Loewner chain and SLE

We call a compact subset K of H an H-hull if H \K is simply connected. Riemann’s
mapping theorem implies that there exists a unique conformal map gK from H \K onto
H with the property that limz→∞ |gK(z)− z| = 0. We say that gK is normalized at∞.

Consider families of conformal maps (gt, t ≥ 0) obtained by solving the Loewner
equation: for each z ∈ H,

∂tgt(z) =
2

gt(z)−Wt
, g0(z) = z,

where (Wt, t ≥ 0) is a real-valued continuous function, which we call the driving function.
Let Tz be the swallowing time of z defined as sup{t ≥ 0: infs∈[0,t] |gs(z) − Ws| > 0}.
Denote Kt := {z ∈ H : Tz ≤ t}. Then, gt is the unique conformal map from Ht := H \Kt

onto H normalized at∞. The collection of H-hulls (Kt, t ≥ 0) associated with such maps
is called a Loewner chain.

Fix κ > 0. The Schramm-Loewner Evolution SLEκ in H from 0 to ∞ is the random
Loewner chain (Kt, t ≥ 0) driven by Wt =

√
κBt, where (Bt, t ≥ 0) is the standard

one-dimensional Brownian motion. Rohde-Schramm prove in [RS05] that (Kt, t ≥ 0) is
almost surely generated by a continuous transient curve, i.e., there almost surely exists
a continuous curve η such that for each t ≥ 0, Ht is the unbounded connected component
of H \ η[0, t] and limt→∞ |η(t)| = ∞. This random curve is called the SLEκ trace in H
from 0 to ∞. When κ ∈ (0, 4], the SLEκ curves are simple; when κ ∈ (4, 8), they have
self-touchings; when κ ≥ 8, they are space-filling. In this article, we focus on κ = 4 as
SLE4 is the level line of Gaussian free field, see Section 4.

3 Partition functions for multiple SLEs

At the beginning of this section, we will give a summary on “pure partition functions”.
As it is more convenient to see the connection to previous works, we write the summary
for general κ. Fix

κ ∈ (0, 6], h =
6− κ

2κ
, H =

8− κ
κ

. (3.1)

Pure partition functions for multiple SLEκ is a collection of smooth functions

Zα : X2N → R

defined on the configuration space X2N := {(x1, . . . , x2N ) ∈ R2N : x1 < · · · < x2N} and
indexed by planar pair partitions α ∈ PPN and satisfying the normalization Z∅ = 1 and
the following properties:

• Partial differential equations of second order (PDE): for all j ∈ {1, . . . , 2N},κ
2

∂2

∂x2
j

+
∑
i 6=j

(
2

xi − xj
∂

∂xi
− 2h

(xi − xj)2

)Z(x1, . . . , x2N ) = 0. (3.2)

• Möbius covariance (COV): For all Möbius maps ϕ of H such that ϕ(x1) < · · · <
ϕ(x2N ),

Z(x1, . . . , x2N ) =

2N∏
i=1

ϕ′(xi)
h ×Z(ϕ(x1), . . . , ϕ(x2N )). (3.3)
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• Asymptotics (ASY): For all α ∈ PPN and for all j ∈ {1, . . . , 2N − 1} and ξ ∈
(xj−1, xj+2), we have

lim
xj ,xj+1→ξ

Zα(x1, . . . , x2N )

(xj+1 − xj)−2h
(3.4)

=

{
0, if {j, j + 1} /∈ α,
Zα/{j,j+1}(x1, . . . , xj−1, xj+2, . . . , x2N ), if {j, j + 1} ∈ α,

where α/{j, j + 1} ∈ PPN−1 denotes the link pattern obtained from α by removing
the link {j, j+1} and relabelling the remaining indices by 1, 2, . . . , 2N−2, as defined
in Section 2.1.

• Power law bound: For all α = {{a1, b1}, . . . , {aN , bN}} ∈ PPN,

0 < Zα(x1, . . . , x2N ) ≤
N∏
i=1

|xbi − xai |−2h. (3.5)

The uniqueness of such collection of smooth functions was proved in [FK15]1 and the
existence of such collection was proved in [Wu20] for κ ≤ 6. See [Dub06], [Dub07],
[BBK05], [KP16], and [PW19] for earlier works on partition functions.

In (3.4), we see that, if {j, j + 1} ∈ α, we normalize the function Zα by (xj+1 − xj)−2h

and we obtain the limiting function Zα/{j,j+1}. The goal of this section is to investigate
the correct normalization of Zα when {j, j + 1} 6∈ α and to analyze the limiting function.

Proposition 3.1. Fix κ = 4. For α ∈ PPN and for j ∈ {1, 2, . . . , 2N − 1}, we assume
{j, j + 1} 6∈ α. For all ξ ∈ (xj−1, xj+2), the following limit exists:

Zα/qj (x1, . . . , xj−1, ξ, xj+2, . . . , x2N ) := lim
xj ,xj+1→ξ

Zα(x1, . . . , x2N )

(xj+1 − xj)2/κ
. (3.6)

Furthermore, the limiting function Zα/qj satisfies the following system of (2N − 1) PDEs
2 and the conformal covariance with κ = 4.

• Partial differential equations of second order (PDE): for n ∈ {1, . . . , 2N} \ {j, j + 1},
we have[

∂2

∂x2
n

− 4

κ
L(n)
−2

]
Zα/qj (x1, . . . , xj , xj+2, . . . , x2N ) = 0, (3.7)

where L(n)
−2 =

∑
1≤i≤2N,
i 6=j,j+1,n

(
h

(xi − xn)2
− 1

xi − xn
∂

∂xi

)
+

(
H

(xj − xn)2
− 1

xj − xn
∂

∂xj

)
.

1In fact, [FK15, Lemma 1] proves a much stronger uniqueness, and such stronger uniqueness plays essential
role in deriving (3.12). As we will not need this stronger uniqueness directly in the current article, we do not
include the precise statement and refer interested readers to [FK15, Lemma 1] and [PW19].

2Note that, the operators L(j)
−2 and L(j)

−3 in Proposition 3.1 are distinct from the ones in Proposition 1.2. In
fact, this kind of operators also depends on the index valences of planar link patterns. To simplify notations,
we omit the dependence.
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• Partial differential equation of third order (PDE):[
∂3

∂x3
j

− 16

κ
L(j)
−2

∂

∂xj
+

8(8− κ)

κ2
L(j)
−3

]
Zα/qj (x1, . . . , xj , xj+2, . . . , x2N ) = 0,

where L(j)
−2 =

∑
1≤i≤2N,
i 6=j,j+1

(
h

(xi − xj)2
− 1

(xi − xj)
∂

∂xi

)
, (3.8)

L(j)
−3 =

∑
1≤i≤2N,
i 6=j,j+1

(
2h

(xi − xj)3
− 1

(xi − xj)2

∂

∂xi

)
.

• Möbius covariance (COV): For all Möbius maps ϕ of H such that ϕ(x1) < · · · <
ϕ(x2N ),

Zα/qj (x1, . . . , xj , xj+2, . . . , x2N ) (3.9)

=
∏
i

ϕ′(xi)
∆i ×Zα/qj (ϕ(x1), . . . , ϕ(xj), ϕ(xj+2), . . . , ϕ(x2N )),

where ∆i = h for i ∈ {1, . . . , j − 1, j + 2, . . . , 2N} and ∆j = H.

The connection of SLEκ with conformal field theory (CFT) is now well-known [BB03,
BB04, BBK05, FK04]. In that sense, solutions to PDE (3.2) correspond to correlation
functions in CFT with central charge c = (3κ−8)(6−κ)/2κ. Then PDE (3.7) and (3.8) come
as specific fusion channel of correlation functions in terms of CFT [BBK05, Dub15, KP16].
Note that the parameters h,H in (3.1) coincide with the Kac conformal weights h1,2 and
h1,3. In fact, Peltola proves in [Pel20] a more general conclusion for κ ∈ (0, 8) \Q. From
there, all conclusions in Proposition 3.1 hold for κ ∈ (0, 8) \Q. Our results indicate that a
similar conclusion as in [Pel20] also holds for κ = 4. Our method is straight forward but
is specific for κ = 4, as our proof uses the explicit formulae for SLE4 partition functions
constructed in [PW19]. The explicit formulae involve “conformal block functions” which
we will introduce in Section 3.1.

Finally, let us describe the connection between the 2nd order PDE (3.2) and the
third order PDE (1.8). Consider y1 < . . . < y2N and x1 < x2 < · · · < x4N−1 < x4N .
Fix α ∈ PP2N and suppose Zα(x1, . . . , x4N ) satisfies the 2nd order PDE (3.2). We take
limits x2n−1, x2n → yn for all n ∈ {1, 2, . . . , 2N} and normalize Zα(x1, . . . , x4N ) properly.
From (3.6), we see that the proper normalization should be

∏
1≤n≤2N (x2n − x2n−1)2/κ.

We will show in Proposition 5.6 that the function Zα(x1, x2, . . . , x4N−1, x4N ) normalized
by
∏

1≤n≤2N (x2n − x2n−1)2/κ admits a limit and then show that the limit satisfies the
third order PDE (1.8). To check the third order PDE (1.8), we will use PDE (3.8). See
Proof of Proposition 1.2 in Section 5.4. Again, our proof is specific for κ = 4. The same
conclusion holds for κ ∈ (0, 8) \Q due to [Pel20].

In the rest of the article, we fix κ = 4.

3.1 Conformal block functions

For α = {{a1, b1}, . . . , {aN , bN}} ∈ DPN ordered as in (2.2), we define conformal block
function Uα : X2N → R>0 as follows:

Uα(x1, . . . , x2N ) :=
∏

1≤i<j≤2N

(xj − xi)
1
2ϑα(i,j), (3.10)

where ϑα(i, j) :=

{
+1, if i, j ∈ {a1, a2, . . . , aN}, or i, j ∈ {b1, b2, . . . , bN},
−1, otherwise.
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The function Uα satisfies the second order PDEs (3.2), see [PW19, Lemma 6.4]. These
functions appear in CFT as “conformal blocks”. In particular, there are analog of such
functions for κ ∈ (0, 8) \Q discussed in [KKP19] in terms of CFT.

Next, we give the relation between the two collections {Zα : α ∈ PPN} and {Uα :

α ∈ DPN}: they are related by a linear transformation. To give the transformation, we

introduce a binary relation
()←−. Let α = {{a1, b1}, . . . , {aN , bN}} ∈ PPN be ordered as

in (2.2). Let β ∈ PPN. Then, α
()←− β if and only if there exists a permutation σ ∈ SN

such that
β = {{a1, bσ(1)}, . . . , {aN , bσ(N)}}.

Note that the right-hand side in the above expression may not be ordered as in (2.2). We
denote byM = (Mα,β) the CN × CN incidence matrix of this relation:

Mα,β =

{
1, if α

()←− β;

0, if else.
(3.11)

We collect some properties ofM in the following lemma. Recall from Section 2.1 that
each planar pair partition α ∈ PPN is associated with a Dyck path which we also denote
by α ∈ DPN.

Lemma 3.2. The matrixM is invertible and we denote its inverse byM−1 = (M−1
α,β).

The entryM−1
α,β is non-zero if and only if α � β as in (2.1). Furthermore, we have the

following properties ofM−1. Suppose α, β ∈ DPN.

• Suppose ∧j 6∈ α and ∨j ∈ β. Then α � β if and only if α � β ↑ ♦j .
• Suppose ∧j 6∈ α, ∨j ∈ β and α � β. ThenM−1

α,β = −M−1
α,β↑♦j .

Proof. See [PW19, Proposition 2.9 and Lemma 2.10].

Now, we are ready to state the linear transformation between the two collections
{Zα : α ∈ PPN} and {Uα : α ∈ DPN}: (see [PW19, Theorem 1.5]){

Uα(x1, . . . , x2N ) =
∑
β∈PPN

Mα,βZβ(x1, . . . , x2N ),

Zα(x1, . . . , x2N ) =
∑
β∈DPN

M−1
α,βUβ(x1, . . . , x2N ).

(3.12)

3.2 Asymptotics of partition functions

In this section, we will analyze the asymptotics of pure partition functions and
conformal block functions as xj , xj+1 → ξ. Note that, we will use the following basic
facts about ϑα through calculation without notice: for distinct i, s, t ∈ {1, 2, . . . , 2N}, we
have

ϑα(t, s)2 = 1, ϑα(t, i)ϑα(s, i) = ϑα(t, s).

Lemma 3.3. The collection {Uα : α ∈ DP} of conformal block functions satisfy the
following asymptotic property: for any j ∈ {1, . . . , 2N − 1} and x1 < x2 < · · · < xj−1 <

ξ < xj+2 < · · · < x2N ,

lim
x̃j ,x̃j+1→ξ,

x̃i→xi for i 6=j,j+1

Uα(x̃1, . . . , x̃2N )

(x̃j+1 − x̃j)−1/2
=

{
Uα/∧j (x1, . . . , xj−1, xj+2, . . . , x2N ), if ∧j ∈ α,
Uα/∨j (x1, . . . , xj−1, xj+2, . . . , x2N ), if ∨j ∈ α,

(3.13)

lim
x̃j ,x̃j+1→ξ,

x̃i→xi for i 6=j,j+1

Uα(x̃1, . . . , x̃2N )

(x̃j+1 − x̃j)1/2
=Uα/×j (x1, . . . , xj−1, ξ, xj+2, . . . , x2N ), if ×j ∈ α,

(3.14)
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where

Uα/×j (x1, . . . , xj−1, ξ, xj+2, . . . , x2N ) :=
∏

1≤t<s≤2N
t,s6=j,j+1

(xs − xt)
1
2ϑα(t,s)

∏
1≤i≤2N
i6=j,j+1

|xi − ξ|ϑα(i,j).

(3.15)

Proof. The asymptotics in (3.13) is proved in [PW19, Lemma 6.6]. It remains to
show (3.14). By definition,

Uα(x̃1, . . . , x̃2N )

(x̃j+1 − x̃j)1/2
=

∏
1≤t<s≤2N
t,s6=j,j+1

(x̃s−x̃t)
1
2ϑα(t,s)

∏
1≤i≤2N
i 6=j,j+1

|x̃i−x̃j |
1
2ϑα(i,j)

∏
1≤i≤2N
i6=j,j+1

|x̃i−x̃j+1|
1
2ϑα(i,j+1).

Since ×j ∈ α, we have ϑα(i, j) = ϑα(i, j + 1). By taking limit, we obtain (3.14).

Lemma 3.4. The collection {Zα : α ∈ PP} of pure partition functions satisfy the follow-
ing asymptotic property: for any j ∈ {1, . . . , 2N − 1} and x1 < x2 < · · · < xj−1 < ξ <

xj+2 < · · · < x2N ,

lim
x̃j ,x̃j+1→ξ,

x̃i→xi for i6=j,j+1

Zα(x̃1, . . . , x̃2N )

(x̃j+1 − x̃j)−1/2
= Zα/∧j (x1, . . . , xj−1, xj+2, . . . , x2N ), if {j, j + 1} ∈ α,

(3.16)

lim
x̃j ,x̃j+1→ξ,

x̃i→xi for i6=j,j+1

Zα(x̃1, . . . , x̃2N )

(x̃j+1 − x̃j)1/2
= Zα/qj (x1, . . . , xj−1, ξ, xj+2, . . . , x2N ), if {j, j + 1} 6∈ α,

(3.17)

where

Zα/qj :=
∑
∨j∈β

M−1
α,βVβ/∨j +

∑
×j∈β

M−1
α,βUβ/×j , (3.18)

Vβ/∨j (x1, . . . , xj−1, ξ, xj+2, . . . , x2N ) :=
∏

1≤t<s≤2N
t,s6=j,j+1

(xs − xt)
1
2ϑβ(t,s)

∑
1≤i≤2N
i 6=j,j+1

ϑβ(i, j)

xi − ξ
.

Proof. The asymptotics in (3.16) is proved in [PW19, Lemma 6.7]. It remains to
show (3.17). In the following, we assume {j, j + 1} 6∈ α. From Lemma 3.2 and (3.12), we
have

Zα(x̃1, . . . , x̃2N ) (3.19)

=
∑
α�β
∨j∈β

M−1
α,βUβ(x̃1, . . . , x̃2N ) +

∑
α�β
∧j∈β

M−1
α,βUβ(x̃1, . . . , x̃2N ) +

∑
α�β
×j∈β

M−1
α,βUβ(x̃1, . . . , x̃2N ).

From Lemma 3.2, for every β ∈ DPN with ∨j ∈ β, we have α � β if and only if α � β ↑ ♦j .
In such case, we have further thatM−1

α,β = −M−1
α,β↑♦j . For the first two sums in the right

hand side of (3.19), we have∑
α�β
∨j∈β

M−1
α,βUβ(x̃1, . . . , x̃2N ) +

∑
α�β
∧j∈β

M−1
α,βUβ(x̃1, . . . , x̃2N )

=
∑
α�β
∨j∈β

M−1
α,β(Uβ − Uβ↑♦j )(x̃1, . . . , x̃2N ).
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Fix β such that α � β and ∨j ∈ β, we have

(Uβ − Uβ↑♦j )(x̃1, . . . , x̃2N )

=(x̃j+1 − x̃j)−
1
2 ×

 ∏
i6=j,j+1

(
x̃i − x̃j
x̃i − x̃j+1

) 1
2ϑβ(i,j)

−
∏

i6=j,j+1

(
x̃i − x̃j+1

x̃i − x̃j

) 1
2ϑβ(i,j)


×

∏
1≤t<s≤2N
t,s6=j,j+1

(x̃s − x̃t)
1
2ϑβ(t,s).

Dividing by (x̃j+1 − x̃j)1/2, we have

lim
x̃j ,x̃j+1→ξ,

x̃i→xi for i 6=j,j+1

(Uβ − Uβ↑♦j )(x̃1, . . . , x̃2N )

(x̃j+1 − x̃j)
1
2

=
∏

1≤t<s≤2N
t,s6=j,j+1

(xs − xt)
1
2ϑβ(t,s)

∑
1≤i≤2N
i 6=j,j+1

ϑβ(i, j)

xi − ξ
.

(3.20)
For the third sum in the right hand side of (3.19), by (3.14), we have

lim
x̃j ,x̃j+1→ξ,

x̃i→xi for i6=j,j+1

Uβ(x̃1, . . . , x̃2N )

(x̃j+1 − x̃j)1/2
= Uβ/×j (x1, . . . , xj−1, ξ, xj+2, . . . , x2N ). (3.21)

Plugging (3.20) and (3.21) into (3.19), we obtain (3.17).

Note that, we use the notation α/qj in (3.18). It can be understood as a general link
pattern. For a planar pair partition α ∈ PPN, suppose ×j ∈ α or ∨j ∈ α, we define α/qj
to be the N -link pattern of (2N − 1) points with index valences ς = (1, . . . , 1, 2, 1, . . . , 1)

obtained from α by merging the points j and j+ 1 and relabelling the remaining (2N − 1)

indices so that they are the first (2N − 1) integers.

3.3 Fusion of partition functions

In this section, we will show that the functions defined in (3.15) and (3.18) satisfy the
system of (2N − 1) PDEs in (3.7) and (3.8), and complete the proof of Proposition 3.1.

Lemma 3.5. The function Uα/×j defined in (3.15) satisfies the second order PDE (3.7)
with κ = 4 for n ∈ {1, . . . , 2N} \ {j, j + 1}.

Proof. Without loss of generality, we assume j = 1. Note that h = 1/4 and H = 1 when
κ = 4. The second order PDE (3.7) becomes the following: for n ∈ {3, 4, . . . , 2N},[

∂2

∂x2
n

− L(n)
−2

]
F (x1, x3, . . . , x2N ) = 0, (3.22)

where L(n)
−2 =

∑
3≤i≤2N,
i6=n

( 1
4

(xi − xn)2
− 1

xi − xn
∂

∂xi

)
+

(
1

(x1 − xn)2
− 1

x1 − xn
∂

∂x1

)
.

The function in (3.15) with j = 1 becomes

Uα/×1
(x1, x3, . . . , x2N ) :=

∏
3≤t<s≤2N

(xs − xt)
1
2ϑα(t,s)

∏
3≤i≤2N

(xi − x1)ϑα(i,1). (3.23)

It suffices to show that the function in (3.23) solves the second order PDE (3.22).
We write x = (x1, x3, . . . , x2N ). We have, for i ∈ {3, 4, . . . , 2N},

∂
∂xi
Uα/×1

(x)

Uα/×1
(x)

=
∑

3≤s≤2N,
s6=i

1
2ϑα(s, i)

xi − xs
+
ϑα(i, 1)

xi − x1
;

∂
∂x1
Uα/×1

(x)

Uα/×1
(x)

=
∑

3≤s≤2N

−ϑα(s, 1)

xs − x1
.
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Then, we have

L(n)
−2Uα/×1

(x)

Uα/×1
(x)

=
∑

3≤i≤2N,
i6=n

1
4 −

1
2ϑα(n, i)

(xn − xi)2
+

1− ϑα(n, 1)

(xn − x1)2

+
∑

3≤t<s≤2N,
t,s6=n

1
2ϑα(t, s)

(xn − xt)(xn − xs)
+

∑
3≤i≤2N,
i 6=n

ϑα(i, 1)

(xn − xi)(xn − x1)
;

∂2

∂x2
n
Uα/×1

(x)

Uα/×1
(x)

=
∑

3≤i≤2N,
i6=n

1
4 −

1
2ϑα(n, i)

(xn − xi)2
+

1− ϑα(n, 1)

(xn − x1)2

+
∑

3≤t<s≤2N,
t,s6=n

1
2ϑα(s, t)

(xn − xt)(xn − xs)
+

∑
3≤i≤2N,
i 6=n

ϑα(i, 1)

(xn − xi)(xn − x1)
.

These give
[
∂2

∂x2
n
− L(n)

−2

]
Uα/×1

= 0 as desired.

Lemma 3.6. The function Uα/×j defined in (3.15) satisfies the third order PDE (3.8)
with κ = 4.

Proof. Without loss of generality, we assume j = 1. The third order PDE (3.8) becomes
the following: [

∂3

∂x3
1

− 4L(1)
−2

∂

∂x1
+ 2L(1)

−3

]
F (x1, x3, . . . , x2N ) = 0, (3.24)

where L(1)
−2 =

∑
3≤i≤2N

( 1
4

(xi − x1)2
− 1

(xi − x1)

∂

∂xi

)
,

L(1)
−3 =

∑
3≤i≤2N

( 1
2

(xi − x1)3
− 1

(xi − x1)2

∂

∂xi

)
.

It suffices to show that the function in (3.23) solves the third order PDE (3.24). We write
x = (x1, x3, . . . , x2N ). We have

2L(1)
−3Uα/×1

(x)

Uα/×1
(x)

=
∑

3≤i≤2N

1− 2ϑα(i, 1)

(xi − x1)3
+

∑
3≤t<s≤2N

ϑα(s, t)(xt − x1 + xs − x1)

(xt − x1)2(xs − x1)2
;

4L(1)
−2

∂
∂x1
Uα/×1

(x)

Uα/×1
(x)

=
∑

3≤i≤2N

4− 5ϑα(i, 1)

(xi − x1)3

+
∑

3≤t<s≤2N

4ϑα(s, t)(xt − x1 + xs − x1)− 3ϑα(t, 1)(xt − x1)− 3ϑα(s, 1)(xs − x1)

(xt − x1)2(xs − x1)2

+
∑

3≤t<s<n≤2N

(−6)ϑα(t, 1)ϑα(s, 1)ϑα(n, 1)

(xt − x1)(xs − x1)(xn − x1)
;
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∂3

∂x3
1
Uα/×1

(x)

Uα/×1
(x)

=
∑

3≤i≤2N

3− 3ϑα(i, 1)

(xi − x1)3

+
∑

3≤t<s≤2N

3(ϑα(s, t)− ϑα(t, 1))(xt − x1) + 3(ϑα(s, t)− ϑα(s, 1))(xs − x1)

(xt − x1)2(xs − x1)2

+
∑

3≤t<s<n≤2N

(−6)ϑα(t, 1)ϑα(s, 1)ϑα(n, 1)

(xt − x1)(xs − x1)(xn − x1)
.

These give
[
∂3

∂x3
1
− 4L(1)

−2
∂
∂x1

+ 2L(1)
−3

]
Uα/×1

= 0 as desired.

Lemma 3.7. The function Zα/qj defined in (3.18) satisfies the second order PDE (3.7)
with κ = 4 for n ∈ {1, . . . , 2N} \ {j, j + 1}.

Proof. Without loss of generality, we assume j = 1. The function in (3.18) with j = 1

becomes Zα/q1
=
∑
β:∨1∈βM

−1
α,βVβ/∨1

+
∑
β:×1∈βM

−1
α,βUβ/×1

where

Vβ/∨1
(x1, x3, . . . , x2N ) :=

∏
3≤t<s≤2N

(xs − xt)
1
2ϑβ(t,s)

∑
3≤i≤2N

ϑβ(i, 1)

xi − x1
. (3.25)

We will show that Zα/q1
satisfies the second order PDE (3.22). From Lemma 3.5, the

function Uβ/×1
satisfies PDE (3.22). It suffcies to show that the function Vβ/∨1

in (3.25)
satisfies PDE (3.22).

We write x = (x1, x3, . . . , x2N ) and set

σ(x) =
∑

3≤i≤2N

ϑβ(i, 1)

xi − x1
. (3.26)

We have, for i ∈ {3, 4, . . . , 2N},

∂
∂xi
Vβ/∨1

(x)

Vβ/∨1
(x)

=
∑

3≤s≤2N,
s6=i

1
2ϑβ(i, s)

xi − xs
+

−ϑβ(i, 1)

σ(x)(xi − x1)2
,

∂
∂x1
Vβ/∨1

(x)

Vβ/∨1
(x)

=
∑

3≤s≤2N

ϑβ(s, 1)

σ(x)(xs − x1)2
.

Then we obtain

L(n)
−2Vβ/∨1

(x)

Vβ/∨1
(x)

=
∑

3≤i≤2N,
i 6=n

1
4 −

1
2ϑβ(i, n)

(xn − xi)2
+

1

(xn − x1)2
+

ϑβ(n, 1)

σ(x)(xn − x1)3

+
∑

3≤t<s≤2N,
t,s6=n

1
2ϑβ(t, s)

(xn − xs)(xn − xt)
+

∑
3≤i≤2N,
i 6=n

−ϑβ(i, 1)

σ(x)(xn − xi)(xi − x1)(xn − x1)
;
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∂2

∂x2
n
Vβ/∨1

(x)

Vβ/∨1
(x)

=
∑

3≤i≤2N,
i 6=n

1
4 −

1
2ϑβ(i, n)

(xn − xi)2
+

2ϑβ(n, 1)

σ(x)(xn − x1)3

+
∑

3≤t<s≤2N,
t,s6=n

1
2ϑβ(t, s)

(xn − xs)(xn − xt)
+

∑
3≤i≤2N,
i 6=n

−ϑβ(i, 1)

σ(x)(xn − xi)(xn − x1)2
.

Taking the difference, we have

∂2

∂x2
n
Vβ/∨1

(x)

Vβ/∨1
(x)

−
L(n)
−2Vβ/∨1

(x)

Vβ/∨1
(x)

=
−1

(xn − x1)2
+

ϑβ(n, 1)

σ(x)(xn − x1)3
+

∑
3≤i≤2N,
i 6=n

−ϑβ(i, 1)

σ(x)(xn − xi)(xn − x1)2

+
∑

3≤i≤2N,
i 6=n

ϑβ(i, 1)

σ(x)(xn − xi)(xi − x1)(xn − x1)

=
−1

(xn − x1)2
+

ϑβ(n, 1)

σ(x)(xn − x1)3
+

∑
3≤i≤2N,
i 6=n

ϑβ(i, 1)

σ(x)(xi − x1)(xn − x1)2

=
−1

(xn − x1)2
+

ϑβ(n, 1)

σ(x)(xn − x1)3
+

σ(x)− ϑβ(n,1)
xn−x1

σ(x)(xn − x1)2
= 0.

This completes the proof.

Lemma 3.8. The function Zα/qj defined in (3.18) satisfies the third order PDE (3.8)
with κ = 4.

Proof. Without loss of generality, we assume j = 1. From Lemma 3.6, the function Uα/×1

satisfies PDE (3.24). It suffices to show that the function Vβ/∨1
in (3.25) satisfies the

third order PDE (3.24). We write x = (x1, x3, . . . , x2N ) and set σ(x) as in (3.26). Then we
have

2L(1)
−3Vβ/∨1

(x)

Vβ/∨1
(x)

=
∑

3≤i≤2N

1

(xi − x1)3
+

∑
3≤i≤2N

2ϑβ(i, 1)

σ(x)(xi − x1)4

+
∑

3≤t<s≤2N

ϑβ(s, t)(xt − x1 + xs − x1)

(xt − x1)2(xs − x1)2
;

4L(1)
−2

∂
∂x1
Vβ/∨1

(x)

Vβ/∨1
(x)

=
∑

3≤i≤2N

8ϑβ(i, 1)

σ(x)(xi − x1)4
+ σ(x)

∂σ(x)

∂x1
;

∂3

∂x3
1
Vβ/∨1

(x)

Vβ/∨1
(x)

=
∑

3≤i≤2N

6ϑβ(i, 1)

σ(x)(xi − x1)4
.

Therefore,

∂3

∂x3
1
Vβ/∨1

(x)

Vβ/∨1
(x)

−
4L(1)
−2

∂
∂x1
Vβ/∨1

(x)

Vβ/∨1
(x)

+
2L(1)
−3Vβ/∨1

(x)

Vβ/∨1
(x)
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=
∑

3≤i≤2N

1

(xi − x1)3
+

∑
3≤t<s≤2N

ϑβ(s, t)(xt − x1 + xs − x1)

(xt − x1)2(xs − x1)2
− σ(x)

∂σ(x)

∂x1

=

 ∑
3≤t≤2N

ϑβ(t, 1)

xt − x1

 ∑
3≤s≤2N

ϑβ(s, 1)

(xs − x1)2

− σ(x)
∂σ(x)

∂x1
= 0.

This completes the proof.

Proof of Proposition 3.1. The existence of the limit (3.6) is a consequence of (3.17). The
limiting function satisfies the PDE system due to Lemmas 3.7 and 3.8. COV (3.9) is a
consequence of COV (3.3) and the existence of the limit (3.6).

4 Connection probabilities for level lines in GFF

In this section, we first introduce continuum GFF and level lines in Section 4.1. Then
we state the main conclusion of the section—Theorem 4.1—in Section 4.2. This theorem
gives the connection probabilities for level lines of GFF in polygons with boundary data
given by Dyck paths. The proof of Theorem 4.1 involves several technical lemmas which
we find not instructive to include in the main text. We put the proof of these technical
lemmas to Appendix A.

4.1 Continuum GFF and level lines

In this section, we introduce the Gaussian free field and its level lines. We refer to the
literature [She07, SS13, MS16, WW17] for details. Let Ω ( C be a non-empty domain.
We denote by Hs(Ω) the space of real-valued smooth functions which are compactly
supported in Ω. We equip the space with Dirichlet inner product

(f, g)∇ :=
1

2π

∫
Ω

∇f(z) · ∇g(z)d2z.

We denote by H(Ω) the Hilbert space completion of Hs(Ω) with respect to the Dirichlet
inner product. A (zero-boundary) Gaussian free field (GFF) Γ is an H(Ω)-indexed linear
space of random variables, denoted by (Γ, f)∇ for each f ∈ H(Ω), such that the map
f 7→ (Γ, f)∇ is linear and each (Γ, f)∇ is a centered Gaussian with variance (f, f)∇. In
general, for any harmonic function u on Ω, we define the GFF with boundary data u by
Γ + u where Γ is the zero-boundary GFF on Ω.

Next, we introduce SLE with force points. We set

yL = (yL,l < · · · < yL,1 ≤ 0) and yR = (0 ≤ yR,1 < · · · < yR,r),

and

ρL = (ρL,l, · · · , ρL,1) and ρR = (ρR,1, · · · , ρR,r),

where ρq,i ∈ R, for q ∈ {L,R} and i ∈ Z>0. An SLEκ(ρL; ρR) process with force points
(yL; yR) is the Loewner evolution driven by Wt that solves the following system of
integrated SDEs:

Wt =
√
κBt +

∫ t

0

ρL,ids

Ws − V L,is

+

r∑
i=1

∫ t

0

ρR,ids

Ws − V R,is

,

V q,it =yq,i +

∫ t

0

2ds

V q,is −Ws

, for q ∈ {L,R} and i ∈ Z>0,

(4.1)
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where Bt is the one-dimensional Brownian motion. Note that the process V q,it is the
evolution of the point yq,i, and we may write gt(yq,i) for V q,it . We define the continuation
threshold of the SLEκ(ρL; ρR) to be the infimum of the time t for which

either
∑

i:V L,it =Wt

ρL,i ≤ −2, or
∑

i:V R,it =Wt

ρR,i ≤ −2.

By [MS16], the SLEκ(ρL; ρR) process is well-defined up to the continuation threshold, and
it is almost surely generated by a continuous curve up to and including the continuation
threshold.

Now, we are ready to introduce level lines of GFF. Let K = (Kt, t ≥ 0) be an
SLE4(ρL; ρR) process with force points (yL; yR), with W,V q,i solving the SDE system (4.1)
with κ = 4. Let (gt, t ≥ 0) be the corresponding family of conformal maps and set
ft := gt −Wt. Let u0

t be the harmonic function on H with boundary data{
−λ(1 +

∑j
i=0 ρ

L,i), if x ∈ (ft(y
L,j+1), ft(y

L,j)),

+λ(1 +
∑j
i=0 ρ

R,i), if x ∈ (ft(y
R,j), ft(y

R,j+1)),

where λ = π/2 and ρL,0 = ρR,0 = 0, yL,0 = 0−, yL,l+1 = −∞,yR,0 = 0+, and yR,r+1 =∞
by convention. Define ut(z) := u0

t (ft(z)). By [Dub09, SS13], there exists a coupling
(Γ,K), where Γ is a zero-boundary GFF on H, such that the following is true. Let τ
be any η-stopping time before the continuation threshold. Then, the conditional law
of Γ + u0 restricted to H \Kτ given Kτ is the same as the law of Γ′ ◦ fτ + uτ where Γ′

is a zero-boundary GFF. Furthermore, in this coupling, the process K is almost surely
determined by Γ. We refer to the SLE4(ρL; ρR) in this coupling as the level line of the
field Γ + u0. In general, for a ∈ R, the level line of Γ + u0 with height a is the level line of
Γ + u0 − a.

4.2 Connection probabilities

For α ∈ PPN, recall from Section 2.1 that α also denotes the corresponding Dyck
path in DPN. Let uα be the harmonic function on H with the following boundary data:
(x0 = −∞ and x2N+1 =∞ by convention)

2λ(α(k)− 1) on (xk, xk+1), for all k ∈ {0, 1, 2, . . . , N}. (4.2)

With such choice, we see that uα has boundary data −2λ on (−∞, x1) ∪ (x2N ,∞), and
has boundary data 0 on (x1, x2) ∪ (x2N−1, x2N ). Define

Hα(k) = λ(α(k − 1) + α(k)− 2), for all k ∈ {1, , 2 . . . , 2N}. (4.3)

We write α = {{a1, b1}, . . . , {aN , bN}} as ordered in (2.2). Suppose Γ is zero-boundary
GFF on H, and consider level lines of Γ + uα. Let ηai be the level line of Γ + uα starting
from xai with height Hα(ai). With such choice, the boundary data to the left side of ηai is
2λ(α(k−1)−1) and the boundary data to the right side of ηai is 2λ(α(k)−1). Then the N
curves {ηa1 , ηa2 , . . . , ηaN } are non-intersecting simple curves and their end points form
a planar pair partition of the 2N boundary points. We denote this planar pair partition
by A = A(ηa1 , . . . , ηaN ) ∈ PPN. See Figures 4–5. The goal of this section is to derive the
probabilities for P[A = β].

Theorem 4.1. Fix α ∈ PPN. Let Γ + uα be the GFF on H with boundary data given
by (4.2). Consider the planar pair partition A formed by its level lines described as
above. Then we have

P[A = β] =Mα,β
Zβ(x1, . . . , x2N )

Uα(x1, . . . , x2N )
, for all β ∈ PPN, (4.4)

EJP 26 (2021), paper 37.
Page 17/46

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP598
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Crossing probabilities in metric graph GFF
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x8x1
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−2λ

2λ2λ

0 0
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Figure 4: Illustration of the boundary data with N = 4: the planar pair partition for
boundary data is α = {{1, 4}, {2, 3}, {5, 8}, {6, 7}} as ordered in (2.2).

where {Zβ : β ∈ PPN} are pure partition functions for multiple SLE4, {Uα : α ∈ DPN}
are conformal block functions defined in (3.10), and {Mγ,β : γ, β ∈ PPN} is the incidence
matrix defined through (3.11).

Theorem 4.1 is a generalization of [PW19, Theorem 1.4] where the authors derive
the connection probabilities for α = {{1, 2}, {3, 4}, . . . , {2N − 1, 2N}}.

x3

x4 x5

x6

x7

x8x1

x2

−2λ

−2λ

2λ2λ

0 0

00

x3

x4 x5

x6

x7

x8x1

x2

−2λ

−2λ

2λ2λ

0 0

00

x3

x4 x5

x6

x7

x8x1

x2

−2λ

−2λ

2λ2λ

0 0

00

Figure 5: Figure 4 continued: the curve ηi is the level line starting from xi with height
−λ for i = 1, 5; the curve ηi is the level line starting from xi with height λ for i = 2, 6.
The four curves η1, η2, η5, η6 connect the eight boundary points. Their end points give
a planar pair partition, and there are three possibilities as indicated in the figure.
From left to right, the three planar pair partitions are β1 = {{1, 8}, {2, 3}, {5, 4}, {6, 7}},
β2 = {{1, 8}, {2, 7}, {5, 4}, {6, 3}}, β3 = {{1, 4}, {2, 3}, {5, 8}, {6, 7}}. Note that α

()←− βi for
i = 1, 2, 3.

Lemma 4.2. Let η = η1 be the level line of Γ + uα starting from x1 with height −λ, let
(Wt, t ≥ 0) be the driving function, and (gt, t ≥ 0) be the corresponding conformal maps,
and T be the continuation threshold. For a smooth function F : X2N → R, the process

Mt :=
F (Wt, gt(x2), . . . , gt(x2N ))

Uα(Wt, gt(x2), . . . , gt(x2N ))

is a local martingale if and only if F satisfies PDE (3.2) with κ = 4 and i = 1.

Proof. The level line of Γ + uα starting from x1 with height −λ is the SLE4(ρ2, . . . , ρ2N)

process with force points (x2, . . . , x2N ) and ρi = 2(α(i)− α(i− 1)). Recalling from (4.1),
its driving function Wt satisfies the following intergrated SDEs up to the continuation
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threshold T :

Wt = 2Bt + x1 +

2N∑
i=2

∫ t

0

ρids

Ws − gs(xi)
, gt(xi) = xi +

∫ t

0

2ds

gs(xi)−Ws
, for 2 ≤ i ≤ 2N.

We denote Y = (Wt, gt(x2), . . . , gt(x2N )) and Xi1 = gt(xi) −Wt for 2 ≤ i ≤ 2N . In this
proof, we write ∂i for ∂

∂xi
as there is no ambiguity. We denote the differential operator

in (3.2) with κ = 4 and i = 1 by

D(1) := 2∂2
1 +

2N∑
i=2

(
2∂i

xi − x1
− 1

2(xi − x1)2

)
.

By Itô’s formula, we have

dF (Y ) =2∂1F (Y )dBt +

(
2∂2

1 +

2N∑
i=2

(
2∂i
Xi1
− ρi∂1

Xi1

))
F (Y )dt,

=2∂1F (Y )dBt +

(
D(1) +

2N∑
i=2

(
1

2X2
i1

− ρi∂1

Xi1

))
F (Y )dt.

We also have

dUα(Y )

Uα(Y )
=−

2N∑
i=2

ϑα(1, i)

Xi1
dBt +

 2N∑
i=2

1+ϑα(1, i)ρi
2X2

i1

+
∑

2≤i6=j≤2N

1
2 (ϑα(1, j)ρi+ϑα(1, i)ρj)

2Xi1Xj1

 dt.

By definition, we have ϑα(1, i)ρi = 2 for 2 ≤ i ≤ 2N and ϑα(1, j)ρi + ϑα(1, i)ρj = 4ϑα(i, j)

for i 6= j. Thus

dUα(Y )

Uα(Y )
= −

2N∑
i=2

ϑα(1, i)

Xi1
dBt +

 2N∑
i=2

3

2X2
i1

+
∑

2≤i 6=j≤2N

ϑα(i, j)

Xi1Xj1

 dt.

Therefore, we have

dMt

Mt
=
dF (Y )

F (Y )
− dUα(Y )

Uα(Y )
+ 4

(
∂1Uα(Y )

Uα(Y )

)2

dt− 4

(
∂1Uα(Y )

Uα(Y )

)(
∂1F (Y )

F (Y )

)
dt

=

(
2∂1F (Y )

F (Y )
− 2∂1Uα(Y )

Uα(Y )

)
dBt +

D(1)F (Y )

F (Y )
dt.

Thus Mt is a local martingale if and only if F satisfies PDE (3.2) with κ = 4 and i = 1.

Proof of Theorem 4.1. We prove by induction onN . We write α = {{a1, b1}, . . . , {aN , bN}}
as ordered in (2.2). We first show the conclusion for β ∈ PPN such thatMα,β = 1. There
exists j ∈ {1, , 2 . . . , 2N − 1} such that {j, j + 1} ∈ β. In this case, we have ∧j ∈ β and
♦j ∈ α. If ∧j ∈ α, we let η = ηj be the level line of Γ + uα starting from xj with height
Hα(j). If ∨j ∈ α, we let η = ηj+1 be the level line of Γ +uα starting from xj+1 with height
Hα(j + 1). The second case can be proved in a similar way as the first case. So we only
give proof for the first case: we may assume ∧j ∈ α. Let η = ηj be the level line of Γ +uα
starting from xj with height Hα(j). Let (Wt, t ≥ 0) be the driving function, and (gt, t ≥ 0)

be the corresponding conformal maps, and T be the continuation threshold.
Define

Mt :=
Zβ(gt(x1), . . . , gt(xj−1),Wt, gt(xj+1), gt(x2N ))

Uα(gt(x1), . . . , gt(xj−1),Wt, gt(xj+1), gt(x2N ))
.
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Figure 6: Suppose α = {{1, 4}, {2, 3}, {5, 10}, {6, 9}, {7, 8}, {11, 12}} as ordered in (2.2).
We see that ∧11 ∈ α. Consider the level line η11 starting from x11 with height −λ. It may
terminate at xn with positive chance for n ∈ {4, 10, 12}. In all three cases, the boundary
data on (xn, xn+1) is the same as the boundary data on (x10, x11), and the boundary
data on (xn−1, xn) is the same as the boundary data on (x11, x12). Therefore, we have
α(n) = α(10) and α(n− 1) = α(11).

From a similar calculation as in Lemma 4.2, this is a local martingale. From (3.12), this
is a bounded martingale. Optional stopping theorem gives M0 = E[MT ]. We will analyze
the behavior of the process as t → T . Consider the level line η, it will terminate at a
point xn such that α(n− 1) = α(j) and α(n) = α(j − 1). See Figure 6.

If η(T ) = xj+1, from (3.13) and (3.16), we have, as t→ T , almost surely,

Mt =
(gt(xj+1)−Wt)

1/2Zβ(gt(x1), . . . , gt(xj−1),Wt, gt(xj+1), gt(x2N ))

(gt(xj+1)−Wt)1/2Uα(gt(x1), . . . , gt(xj−1),Wt, gt(xj+1), gt(x2N ))

→
Zβ/∧j (gT (x1), . . . , gT (xj−1), gT (xj+2), . . . , gT (x2N ))

Uα/♦j (gT (x1), . . . , gT (xj−1), gT (xj+2), . . . , gT (x2N ))
.

If η(T ) = xn with n 6= j + 1, from Lemma A.3 and (3.5), we have limt→T Mt = 0 almost
surely. In summary, we have

M0 = E[MT ] = E

[
1{η(T )=xj+1}

Zβ/∧j (gT (x1), . . . , gT (xj−1), gT (xj+2), . . . , gT (x2N ))

Uα/♦j (gT (x1), . . . , gT (xj−1), gT (xj+2), . . . , gT (x2N ))

]
.

By induction hypothesis, we have

P[A = β
∣∣ η[0, T ]] =

Zβ/∧j (gT (x1), . . . , gT (xj−1), gT (xj+2), . . . , gT (x2N ))

Uα/♦j (gT (x1), . . . , gT (xj−1), gT (xj+2), . . . , gT (x2N ))
.

Therefore, M0 = P[A = β] as desired.
The above argument gives (4.4) for β ∈ PPN such that Mα,β = 1. Since Uα =∑
βMα,βZβ , we have ∑

β:Mα,β=1

P[A = β] =
∑

β:Mα,β=1

Zβ
Uα

= 1.

This implies P[A = γ] = 0 for all γ ∈ PPN with Mα,γ = 0. This completes the proof
for (4.4).

5 Metric graph GFF and first passage sets

In this section, we first introduce discrete GFF and metric graph GFF in Section 5.1,
and then we introduce first passage set in Section 5.2. In Section 5.3, we show that
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the crossing probabilities in metric graph GFF converges to the probability of certain
connection probabilities in continuum GFF, see Proposition 5.2. This gives the first half
of the proof of Theorem 1.1. In order to calculate the desired connection probabilities in
continuum GFF, we use Theorem 4.1 and a result about asymptotics of pure partition
functions—Proposition 5.6. Section 5.4 proves Proposition 5.6 and Proposition 1.2, and
it is quite independent of the rest of the section. Finally, we complete the proof of
Theorem 1.1 in Section 5.5.

5.1 Discrete GFF and metric graph GFF

In this section, we review basic definition and properties of discrete GFF and metric
graph GFF. We refer to [SS09, ALS20] for details. Suppose G = (V,E) is a connected
planar graph, and ∂G is a given subset of V which we call the boundary of G. Let ∆ be
the discrete Laplacian on G:

(∆f)(x) =
∑
y∼x

(f(y)− f(x)), ∀x ∈ V \ ∂G.

The discrete Green’s function GG is the inverse of −∆ with zero-boundary condition on
∂G. The discrete GFF is the centered Gaussian process

(
ΓG(v) : v ∈ V

)
with covariance

given by Green’s function:

E
[
ΓG(x)ΓG(y)

]
= GG(x, y), ∀x, y ∈ V.

Suppose G = (V,E) is a connected planar graph with boundary ∂G. For each e ∈ E,
we view it as a line segment in the plane, and for every x′, y′ ∈ e, we define3

m([x′, y′]) =
|x′ − y′|
|x− y|

.

This defines a length measure dm on G. We call (G, dm) metric graph of G and we denote
it by G̃.

The metric graph GFF ΓG̃ can be constructed as follows, see [Lup16]. First, we
sample the discrete GFF

(
ΓG(v) : v ∈ V

)
. Then, conditional on

(
ΓG(v) : v ∈ V

)
, for each

e = {x, y} ∈ E, we sample an independent Brownian bridge with length m([x, y]) and two
terminal values ΓG(x) and ΓG(y). This defines the metric graph GFF with zero-boundary

condition and we denote it by
(

ΓG̃(z) : z ∈ G̃
)

. Given a function u : ∂G → R, we choose

the discrete harmonic extension of u to V \ ∂G and then extend it inside each edge
by linear interpolation. We still denote this function by u and view it as the harmonic
function on the metric graph. We call ΓG̃ + u the metric graph GFF with boundary data u.

5.2 First passage sets

In this section, we introduce first passage sets for metric graph GFF. Suppose ΓG̃ + u

is the metric graph GFF with boundary data u. For every a ∈ R, the first passage set
above −a is defined by

Ãu−a := {x ∈ G̃ | ∃ a continous path γ from x to ∂G in G̃ such that ΓG̃ + u ≥ −a along γ}.

Note that, conditional on Ãu−a, the closure of G̃ \ Ãu−a is also a metric graph with length
measure inherited from G̃. According to [ALS20, Proposition 2.1], metric graph GFF
satisfies the following space Markov property:

ΓG̃ = ΓG̃
Ãu−a

+ ΓG̃,Ã
u
−a ,

3Here we use the normalization in [ALS20] which is distinct from the one in [Lup16].
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where ΓG̃,Ã
u
−a is the metric graph GFF with zero-boundary condition on the closure of

G̃ \ Ãu−a conditional on Ãu−a, and ΓG̃
Ãu−a

is defined as follows: it is ΓG̃ on Ãu−a and it is the

harmonic function with boundary value given by ΓG̃ on G̃ \ Ãu−a.
We also need the following description of first passage set by clusters of loops

and excursions. The Brownian loop measure and Brownian excursion measure are
conformally invariant measures on Brownian paths in the plane. In this article, we do
not need the precise definition of these measures, so we content ourselves with referring

their definition to [ALS20, Section 2.2]. We denote by µG̃loop the Brownian loop measure

on G̃. Suppose u is non-negative, and we denote by µG̃,uexc the Brownian excursion measure
on G̃ with boundary data u. We sample Poisson point process with intensity measure
1
2µ
G̃
loop, and denote it by LG̃1/2. We sample an independent Poisson point process with

intensity measure µG̃,uexc and denote it by ΞG̃u . We denote by Ã(LG̃1/2,Ξ
G̃
u) the closure of

union of clusters formed by loops and excursions that contain at least one excursion

connected to ∂G. As shown in [ALS20, Proposition 2.5], the set Ã(LG̃1/2,Ξ
G̃
u) has the same

law as the first passage set Ãu0 .
Next, we introduce the first passage set for continuum GFF. To this end, we first

introduce local set. Suppose Ω ( C is a simply connected domain and let Γ be a
continuum GFF on Ω with zero-boundary condition. We call a random closed set A ⊂ Ω

is a local set of Γ, if Γ = ΓA + ΓA, where ΓA and ΓA are two random distributions such
that ΓA is harmonic in Ω \A and, conditional on (A,ΓA), the function ΓA is the GFF with
zero-boundary condition in Ω \A. Suppose hA is defined as follows: it is ΓA on Ω \A and
it is 0 on A. Then we have the following description of the first passage set.

Theorem 5.1. Suppose Ω ( C is a simply connected domain and let Γ be a continuum
GFF on Ω with zero-boundary condition. Suppose u is a bounded harmonic function
with piecewise constant boundary data.4 The first passage set Au−a is the local set of Γ

containing ∂Ω with the following two properties:

• The function hAu−a + u is harmonic in Ω \Au−a such that it equals −a on ∂Au−a \ ∂Ω

and it equals u on ∂(Ω \Au−a) ∩ ∂Ω. Moreover, hAu−a + u ≤ −a.

• We have ΓAu−a − hAu−a ≥ 0. I.e. for any positive smooth function f with compact
support, we have (ΓAu−a − hAu−a , f) ≥ 0.

For all a ≥ 0, the first passage set Au−a exists. Moreover, the set Au−a is the unique local
set which satisfies the above two properties and is measurable with respect to Γ.

Proof. See [ALS20, Theorem 3.5].

Now, we are ready to state the convergence of the first passage set of the metric
graph GFF to the first passage set of the continuum GFF. Fix a bounded simply connected
domain Ω such that Ω ⊂ [−C,C]2 for some C > 0. Suppose {Ωδ}δ>0 is a sequence of
simply connected domains such that Ωδ ⊂ [−C,C]2 for all δ > 0. Suppose Ωδ converges
to Ω as δ → 0 in the following sense:

[−C,C]2 \ Ωδ converges to [−C,C]2 \ Ω in Hausdorff metric.

We denote by ˜δZ2 the corresponding metric graph. We define Ω̃δ to be the closure of
Ωδ ∩ ˜δZ2. It is also a metric graph with metric inherited from ˜δZ2. We define its boundary
by ∂Ω̃δ := Ω̃δ ∩ ∂Ωδ. We have the following setup for the convergence.

4Throughout the article, by piecewise constant boundary data, we mean that the boundary data is piecewise
constant and it changes only finitely many times.
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• Suppose Γ is the continuum GFF on Ω and Γ̃δ is the metric grpah GFF on Ω̃δ with
zero-boundary condition. We extend Γ to (−C,C)2 such that it is zero outside
Ω, and we still denote the extension by Γ. We define Γ̂δ on (−C,C)2 as follows:
it equals Γ̃δ on Ω̃δ and it is harmonic in (−C,C)2 \ Ω̃δ which equals zero along
∂(−C,C)2.

• Suppose u is a harmonic function on Ω with piecewise constant boundary data
and uδ is a harmonic function on Ω̃δ for every δ > 0 such that uδ converges to u
uniformly as δ → 0.

• For a ∈ R, suppose Au−a is the first passage set of Γ on Ω and Ãu
δ

−a is the first
passage set of Γ̃δ on Ω̃δ. We extend ΓAu−a to (−C,C)2 such that it is zero outside Ω,

and we still denote the extension by ΓAu−a . We define Γ̂δ
Ãu

δ
−a

on (−C,C)2 as follows:

it equals Γ̃δ
Ãu

δ
−a

on Ω̃δ and it is harmonic in (−C,C)2 \ Ω̃δ which equals zero along

∂(−C,C)2.

Proposition 5.2. We have the following convergence in law:(
Γ̂δ, Γ̂δ

Ãu
δ
−a
, Ãu

δ

−a

)
→
(

Γ,ΓAu−a ,A
u
−a ∩ Ω

)
, as δ → 0.

Furthermore, if we couple {Γ̂δ}δ>0 and Γ together such that Γ̂δ → Γ in probability as

distributions on [−C,C]2, then (Γ̂δ, Ãu
δ

−a)→ (Γ,Au−a ∩ Ω) in probability.

Proof. See [ALS20, Proposition 4.7 and Lemma 4.9].

5.3 Convergence of the connection probability

Fix a bounded polygon (Ω; y1, . . . , y2N ) and suppose
(
Ωδ; yδ1, . . . , y

δ
2N

)
converges to

(Ω; y1, . . . , y2N ) as δ → 0 in the sense of (1.4). We have the following setup.

• Suppose Γ̃δ is the zero-boundary metric graph GFF on Ω̃δ and let uδ be the harmonic
function with boundary data (1.5). Suppose Γ is zero-boundary GFF on Ω and let u
be the harmonic function with the same boundary data.

• We call the first passage set above 0 of Γ̃δ + uδ the positive first passage set and
we denote it by Ãδ. We call the first passage set above 0 of −(Γ̃δ + uδ) the negative

first passage set and we denote it by ˜Aδ. Similarly, we can also define the positive
first passage set and the negative first passage set for the continuum GFF in Ω,
and we denote them by A and

A

respectively.

Note that the frontier of these first passage sets is a collection of 2N curves connecting
the 2N boundary points so that their end points form a planar 2N -link pattern of 2N

points with index valences ς = (2, . . . , 2), see Figure 1. We denote the link pattern by Aδ
for metric graph GFF and by A for cotinuum GFF. The goal of this section is to prove the
following convergence.

Proposition 5.3. Fix N ≥ 1 and ς = (2, . . . , 2) of length 2N . For all α̂ ∈ LPς , we have

lim
δ→0

P[Aδ = α̂] = P[A = α̂].

To prove Proposition 5.3, we will give an explicit construction of A and

A

in
Lemma 5.4. This construction indicates that the frontier of A and of

A

forms a planar
link pattern in LPς . Then, we prove Lemma 5.5 which indicates that for any subsequence

δn → 0 as n → ∞, there exists a coupling such that the frontier of Ãδn and of ˜Aδn

converges to the frontier of A and of

A

almost surely in Hausdorff metric. This indicates
the proposition.
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Lemma 5.4. The frontier of A is the union of level lines of the continuum GFF Γ + u

starting from y2j−1 with height λ for 1 ≤ j ≤ N , the frontier of

A

is the union of level
lines of Γ + u starting from y2j−1 with height −λ for 1 ≤ j ≤ N .

Proof. We will prove the conclusion for A, and the proof for

A

is similar. We will
argue that the first passage set A can be constructed as follows. Let ηj be the level
line of Γ + u starting from y2j−1 with height λ for 1 ≤ j ≤ N . Suppose S1, . . . , Sr
are the different connected components of Ω \ (∪1≤j≤Nηj) which have (y2j−1, y2j) on
their boundary for some 1 ≤ j ≤ N . Note that (Γ + u)|Si has boundary data 2λ along
∂Si. Conditional on ∪1≤j≤Nηj , we sample the first passage set above zero of (Γ + u)|Si
in each Si, and we denote it by A2λ

0,i for 1 ≤ i ≤ r. We will show that the union
A := (∪1≤j≤Nηj) ∪ (∪1≤i≤rA

2λ
0,i) ∪ ∂Ω has the same law as A.

First, we prove that A is a local set. By construction,

Γ =Γ∪1≤j≤Nηj + Γ∪1≤j≤Nηj

=Γ∪1≤j≤Nηj +

r∑
i=1

Γ∪1≤j≤Nηj |Si

=Γ∪1≤j≤Nηj +

r∑
i=1

(Γ∪1≤j≤Nηj |Si)A2λ
0,i

+

r∑
i=1

(Γ∪1≤j≤Nηj |Si)
A2λ

0,i .

Note that ΓA := Γ∪1≤j≤Nηj +
∑r
i=1 (Γ∪1≤j≤Nηj |Si)A2λ

0,i
is harmonic in Ω \ A. Conditional

on (A,ΓA), the function ΓA =
∑r
i=1 (Γ∪1≤j≤Nηj |Si)

A2λ
0,i is the continuum GFF with zero-

boundary condition in Ω \A. This implies that A is a local set.
Next, we check the two properties in Theorem 5.1. The first one is obvious by

construction. For the second one, suppose f is a positive smooth function with compact
support in Ω, it suffices to prove

(Γ∪1≤j≤Nηj , f) = (h∪1≤j≤Nηj , f) (5.1)

and (
(Γ∪1≤j≤Nηj |Si)A2λ

0,i
+ 2λ1Si , f

)
≥ 0. (5.2)

Eq. (5.1) is a consequence of properties of level lines of GFF. For (5.2), consider the
metric graph S̃δi = Si ∩ δZ̃2, we denote by Γ̃δ|S̃δi the metric graph GFF with zero-

boundary condition on S̃δi . Then by Proposition 5.2, we can couple

{(
Γ̂δ|S̃δi

)
Ã2λ

0

}
δ>0

and

(Γ∪1≤j≤Nηj |Si)A2λ
0,i

together such that(
(Γ∪1≤j≤Nηj |Si)A2λ

0,i
+ 2λ1Si , f

)
=
(

(Γ∪1≤j≤Nηj |Si)A2λ
0,i

+ 2λ1Si , f1Si
)

= lim
δ→0

((
Γ̂δ|S̃δi

)
Ã2λ

0

+ 2λ1Si , f1Si

)
≥ 0.

This gives (5.2). Combining with (5.1) and Theorem 5.1, we see that A has the same law
as A, and this completes the proof.

Lemma 5.5. Suppose δn → 0 as n→∞.

• Suppose (A1, . . . ,Ar) are different connected components ofA ∩ Ω and (yi,1 . . . , yi,ki)

are the marked points on the boundary of Ai for each 1 ≤ i ≤ r; and suppose
(

A

1, . . . ,

A

s) are different connected components of

A

∩ Ω and
(
yj,1, . . . , yj,lj

)
are

the marked points on the boundary of

A

j for each 1 ≤ j ≤ s.
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• Suppose
(
Ãδn1 , . . . , Ãδnrn

)
are the connected components of

Ãδn ∪
(
∪1≤l≤N

(
yδn2l−1, y

δn
2l

))
;

and suppose
(

˜Aδn
1 , . . . , ˜Aδn

sn

)
are the connected components of

˜Aδn ∪
(
∪1≤l≤N

(
yδn2l , y

δn
2l+1

))
.

Then there exists a coupling of {(Ãδn , ˜Aδn)}n≥1 and (A,

A

) such that the following holds
almost surely.

• For n large enough, we have rn = r and sn = s.

• Moreover, we can reorder
(
Ãδn1 , . . . , Ãδnr

)
and we still denote them by

(
Ãδn1 , . . . , Ãδnr

)
,

such that
(
yδni,1, . . . , y

δn
i,ki

)
are the marked points on the boundary of Ãδni for 1 ≤

i ≤ r. Similarly, we can reorder
(

˜Aδn
1 , . . . , ˜Aδn

s

)
and we still denote them by(

˜Aδn
1 , . . . , ˜Aδn

s

)
such that

(
yδnj,1, . . . , y

δn
j,lj

)
are the marked points on the boundary of

˜Aδn
j for 1 ≤ j ≤ s.

• Furthermore, we have that Ãδni converges to Ai for each 1 ≤ i ≤ r and ˜Aδn
j

converges to

A

j for each 1 ≤ j ≤ s in Hausdorff metric.

y2 y3

y4y1

−2λ

−2λ

2λ2λ

yδ2 yδ3

yδ4yδ1

−2λ

−2λ

2λ2λ

Figure 7: Suppose N = 2. The frontier of the first passage sets A and

A

is a collection
of 4 curves connecting the four points y1, y2, y3, y4. There are three possibilities for the
connectivity patterns as indicated in Figure 1. In this figure, in the left panel, we have
the first possibility. The two red curves are frontiers of A1 and A2 and the two blue
curves are frontiers of

A

1 and

A

2. In the right panel, we are in metric graph and the
two red curves are frontiers of Aδn1 and Aδn2 and the two blue curves are frontiers of

Aδn
1

and

Aδn
2 . Lemma 5.5 guarantees that there exists a coupling such that, when δn → 0, the

red curves in the right panel converges to the red curves in the left panel and the blue
curves in the right panel converges to the blue curves in the left panel respectively.

Proof. We denote by R̃δni the connected component of Ãδn ∪
(
∪1≤l≤N

(
yδn2l−1, y

δn
2l

))
which

contains
(
yδn2i−1, y

δn
2i

)
on its boundary for 1 ≤ i ≤ N ; and we denote by S̃δni the connected

component of ˜Aδn ∪
(
∪1≤l≤N

(
yδn2l , y

δn
2l+1

))
which contains (yδn2i , y

δn
2i+1) on its boundary

for 1 ≤ i ≤ N . Note that the sequence{(
R̃δn1 , . . . , R̃δnN , Ã

δn , S̃δn1 , . . . , S̃δnN , ˜Aδn
)}

n≥1
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is tight. Thus, it suffices to prove that Lemma 5.5 holds for any convergent subsequence.
Given any convergent subsequence, we still denote it by{(

R̃δn1 , . . . , R̃δnN , Ã
δn , S̃δn1 , . . . , S̃δnN , ˜Aδn

)}
n≥1

.

By Skorokhod representation theorem, we can couple them on the same probability
space such that there is almost sure convergence. We denote the probability measure of
this coupling by P, and we denote its limit by (R1, . . . , RN , R, S1, . . . , SN , S).

By Proposition 5.2, we know that R = A ∩ Ω and S =

A

∩ Ω. We will prove that Ri
is the connected component of A which contains (y2i−1, y2i) on its boundary and Si is
the connected component of

A

which contains (y2i, y2i+1) on its boundary. Moreover, we
will show that Lemma 5.5 holds in this coupling. We only give proof for the positive first
passage set, as the proof for the negative first passage set is similar. The proof is divided
into two steps. First, suppose (yi1 , . . . , yik) are the marked points on the boundary of

Ri. We will prove that
(
yδni1 , . . . , y

δn
ik

)
are the marked points on the boundary of R̃δni for

n large enough. Then we will prove that Ri is the connected component of R which
contains (y2i−1, y2i) on its boundary for each 1 ≤ i ≤ N . See Figure 7.

For the first step, it is clear that if yj /∈ Ri for some 1 ≤ j ≤ 2N , we have yδnj /∈ R̃δni
for n large enough by the almost sure convergence. For 1 ≤ j ≤ 2N , we define the event

Fj :=
{
yj ∈ Ri, but yδnj /∈ R̃δni except for finitely many n

}
.

It suffices to prove P[Fj ] = 0. By Lemma 5.4, we have S ∩ (y2i−1, y2i) = ∅ for 1 ≤ i ≤ N .
We denote by Di the connected component of Ω \ S which contains (y2i−1, y2i) and we

denote by Dδn
i the connected component of Ωδn \ ˜Aδn which contains

(
yδn2i−1, y

δn
2i

)
. By

Carathéodory kernel theorem, the domain Dδn
i converges to Di in Carathéodory topology

as n → ∞. Note that Ãδn ∩ D̃δn
i is the first passage set Ãv

δn

0 of the metric graph GFF
on D̃δn

i with boundary data given by vδn which is defined as follows: vδn equals 0 on
˜Aδn ∩ ∂D̃δn

i and vδn equals 2λ on ∂Ω̃δn ∩ ∂D̃δn
i . We may assume j is odd. On the event Fj ,

we have (yj , yj+1) ⊂ ∂Di. Thus for n large enough, we have (yδnj , y
δn
j+1) ⊂ ∂Dδn

i . In such

case, we define the harmonic function vδn1 on D̃δn
i as follows: it equals 0 on

(
yδnj , y

δn
j+1

)
and it equals vδn on ∂D̃δn

i \
(
yδnj , y

δn
j+1

)
. Then, in the construction of Ãv

δn

0 by loops and

excursions, we can divide the excursions into two independent parts: the excursions

connecting to
(
yδnj , y

δn
j+1

)
and the excursions which do not intersect

(
yδnj , y

δn
j+1

)
. Note

that the excursions connecting to
(
yδnj , y

δn
j+1

)
correspond to the Poisson point process

with intensity measure µ
D̃δni ,vδn

exc −µD̃
δn
i ,vδn1

exc and that the excursions which do not intersect(
yδnj , y

δn
j+1

)
correspond to the Poisson point process with intensity measure µ

D̃δni ,vδn1
exc .

Thus, we have R̃δni ⊂ Ã
(
LD̃

δn
i

1/2 ,Ξ
D̃δni
vδn1

)
if yδnj /∈ R̃δni . Note that Ã

vδn1
0 has the same law as

Ã
(
LD̃

δn
i

1/2 ,Ξ
D̃δni
vδn1

)
. According to [ALS20, Corollary 4.12], the limit of Ã

vδn1
0 ∩Di does not

intersect (yj , yj+1) almost surely. This implies P[Fj ] = 0.
For the second step, we define the event Fi,k := {Ri 6= Rk, but Ri ∩ Rk 6= ∅} for

1 ≤ i < k ≤ N . It suffices to prove that P[Fi,k] = 0. Note that on the event Fi,k, we
have (y2k−1, y2k) ⊂ Di,k. This implies (yδn2k−1, y

δn
2k) ⊂ Dδn

i,k for n large enough. Moreover,

we have R̃δni ∩ R̃
δn
k = ∅ for n large enough. This implies R̃δni ∩ (yδn2k−1, y

δn
2k) = ∅. We

denote by Di,k the connected component of Di \ Ri with (y2k−1, y2k) on its boundary

and we denote by Dδn
i,k the connected component of Dδn

i \ R̃
δn
i with

(
yδn2k−1, y

δn
2k

)
on its
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boundary. Then by Carathéodory kernel theorem, the domain Dδn
i,k converges to Di,k as

n → ∞ in Carathéodory topology. Note that Ãδn ∩ D̃δn
i,k is the first passage set of the

metric graph GFF with boundary data wδn on D̃δn
i,k, where wδn is defined as follows: wδn

equals 0 on
(

˜Aδn ∪Rδni
)
∩∂D̃δn

i,k and wδn equals 2λ on ∂Ω̃δn∩ ∂D̃δn
i,k. According to [ALS20,

Corollary 4.12], the limit of Ãw
δn

0 ∩Di,k does not intersect (y2i−2, y2i−1)∪∂Ri∪(y2i, y2i+1).
This implies P[Fi,k] = 0. It completes the proof.

5.4 Asymptotics of partition functions and proof of Proposition 1.2

In this subsection, we will give the following asymptotics of pure partition functions:
Proposition 5.6. The purpose of this proposition will be clear in the proof of Theorem 1.1.

Proposition 5.6. Fix κ = 4. Fix N ≥ 1 and the index valences ς = (2, . . . , 2) of length
2N . For each α̂ ∈ LPς , let α := τ(α̂) ∈ PP2N be the associated planar pair partition as
defined in Section 2.2, and Zα be the pure partition function associated to α. Then, the
following limit exists: for y1 < · · · < y2N and x1 < · · · < x4N ,

Zα̂(y1, . . . , y2N ) := lim
x2j−1,x2j→yj ,
∀1≤j≤2N

Zα(x1, . . . , x4N )∏2N
j=1(x2j − x2j−1)1/2

. (5.3)

We will show Proposition 5.6 by the explicit expression for Zα from (3.12):

Zα(x1, . . . , x4N ) =
∑

β∈DP2N

M−1
α,βUβ(x1, . . . , x4N ).

For β ∈ DP2N such that ×2j−1 ∈ β for all 1 ≤ j ≤ 2N , it is easy to see that Uβ admits
a limit when normalized by

∏
j(x2j − x2j−1)1/2, see Lemma 5.7. However, for other β,

the conformal block Uβ explodes when normalized by
∏
j(x2j − x2j−1)1/2. In order to

derive the existence of the limit, we need to group distinct β’s properly so that the
explosion cancels. The proof of Proposition 5.6 involves heavy notation which we find
unavoidable. As the proof is lengthy and not instructive to include in the main text, we
put it in Appendix B. We suggest readers to first read the proof of Corollary 5.10 where
we give the proof for Proposition 5.6 when N = 2.

Lemma 5.7. Fix κ = 4. Fix N ≥ 1. Given a Dyck path β ∈ DP2N of length 4N such that
×2j−1 ∈ β for all 1 ≤ j ≤ 2N , define (β)2 ∈ DPN by

(β)2(k) =
1

2
β(2k), 1 ≤ k ≤ 2N.

One may check that this is a well-defined Dyck path of length 2N . Then, for y1 < · · · < y2N

and x1 < · · · < x4N , we have

lim
x2j−1,x2j→yj ,
∀1≤j≤2N

Uβ(x1, . . . , x4N )∏2N
j=1(x2j − x2j−1)1/2

= U4
(β)2

(y1, . . . , y2N ). (5.4)

Proof. By the definition (3.10), we have

Uβ(x1, . . . , x4N )∏2N
j=1(x2j − x2j−1)1/2

=
∏

1≤s<t≤2N

((x2t − x2s)(x2t − x2s−1)(x2t−1 − x2s)(x2t−1 − x2s−1))
1
2ϑβ(2s,2t)

.

Thus

lim
x2j−1,x2j→yj ,
∀1≤j≤2N

Uβ(x1, . . . , x4N )∏2N
j=1(x2j − x2j−1)1/2

=
∏

1≤s<t≤2N

(yt − ys)2ϑβ(2t,2s) = U4
(β)2

(y1, . . . , y2N ).
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Assuming Proposition 5.6 holds, we will extend definition of Zα̂ via conformal covari-
ance.

Corollary 5.8. Assume the same notations as in Proposition 5.6. The function Zα̂
satisfies the following conformal covariance: for all Möbius maps ϕ of H such that
ϕ(y1) < · · · < ϕ(y2N ), we have

Zα̂(y1, . . . , y2N ) =

2N∏
i=1

ϕ′(yi)×Zα̂(ϕ(y1), . . . , ϕ(y2N )). (5.5)

For general polygon (Ω; y1, . . . , y2N ), we define

Zα̂(Ω; y1, . . . , y2N ) :=

2N∏
i=1

ϕ′(yi)×Zα̂(ϕ(y1), . . . , ϕ(y2N )), (5.6)

where ϕ is any conformal map from Ω onto H such that ϕ(y1) < . . . < ϕ(y2N ).

Proof. The conformal covariance (5.5) is a consequence of (3.3) and the existence of
the limit (5.3). From (5.5), we see that (5.6) is well-defined: suppose ϕ1 and ϕ2 are
conformal maps on Ω with ϕn(y1) < · · · < ϕn(y2N ) for n = 1, 2. From (5.5), we have

2N∏
i=1

ϕ′1(yi)×Zα̂(ϕ1(y1), . . . , ϕ1(y2N )) =

2N∏
i=1

ϕ′2(yi)×Zα̂(ϕ2(y1), . . . , ϕ2(y2N )).

Assuming Proposition 5.6 holds, we are able to complete the proof of (1.6) and (1.8).

Proof of (1.6). This is immediate from Corollary 5.8.

Proof of Proposition 1.2. We will show (1.8) with j = 1, and the other cases can be
proved similarly. For y1 < · · · < y2N , we denote ykl = yk−yl for k 6= l. For x1 < · · · < x4N ,
we denote xkl = xk − xl for k 6= l.

Fix N ≥ 1 and the index valences ς = (2, . . . , 2) of length 2N . Fix α̂ ∈ LPς and let
α = τ(α̂) ∈ PP2N be the associated planar pair partition as defined in Section 2.2. We
set F0(x1, . . . , x4N ) = Zα(x1, . . . , x4N ) for x1 < · · · < x4N . We define Fj by induction on j.
Fix j ∈ {1, 2, . . . , 2N} and suppose Fj−1 is defined. For y1 < · · · < yj < x2j+1 < · · · < x4N

and yj−1 < x2j−1 < x2j < x2j+1, we define

Fj(y1, . . . , yj , x2j+1, . . . , x4N ) := lim
x2j−1,x2j→yj

Fj−1(y1, . . . , yj−1, x2j−1, x2j , . . . , x4N )

(x2j − x2j−1)1/2
.

From Proposition 5.6, we see that F1, . . . , F2N are well-defined and F2N = Zα̂. We will
show the following PDE by induction on j ∈ {1, 2, . . . , 2N}:

DjFj(y1, . . . , yj , x2j+1, . . . , x4N ) = 0, (5.7)

where

Dj =
∂3

∂y3
1

− 4

 ∑
2≤i≤j

(
1

y2
i1

− 1

yi1

∂

∂yi

)
+

∑
2j+1≤i≤4N

(
1/4

(xi − y1)2
− 1

(xi − y1)

∂

∂xi

) ∂

∂y1

+ 2

 ∑
2≤i≤j

(
2

y3
i1

− 1

y2
i1

∂

∂yi

)
+

∑
2j+1≤i≤4N

(
1/2

(xi − y1)3
− 1

(xi − y1)2

∂

∂xi

) .
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When j = 1, PDE (5.7) holds due to (3.8) with j = 1. For j ≥ 2, suppose (5.7) holds
for j− 1, and we will show it for j. Comparing the two operators Dj−1 and Dj , we denote
their overlap by

Oj−1 =
∂3

∂y3
1

− 4

 ∑
2≤i≤j−1

(
1

y2
i1

− 1

yi1

∂

∂yi

)
+

∑
2j+1≤i≤4N

(
1/4

(xi − y1)2
− 1

(xi − y1)

∂

∂xi

) ∂

∂y1

+ 2

 ∑
2≤i≤j−1

(
2

y3
i1

− 1

y2
i1

∂

∂yi

)
+

∑
2j+1≤i≤4N

(
1/2

(xi − y1)3
− 1

(xi − y1)2

∂

∂xi

) .

Then, we have

Dj−1 = Oj−1 +

(
−1

(x2j−1 − y1)2
+

4

(x2j−1 − y1)

∂

∂x2j−1

)
∂

∂y1

+

(
−1

(x2j − y1)2
+

4

(x2j − y1)

∂

∂x2j

)
∂

∂y1

+

(
1

(x2j−1 − y1)3
+

−2

(x2j−1 − y1)2

∂

∂x2j−1

)
+

(
1

(x2j − y1)3
+

−2

(x2j − y1)2

∂

∂x2j

)
Dj = Oj−1 +

(
−4

y2
j1

+
4

yj1

∂

∂yj

)
∂

∂y1
+

(
4

y3
j1

+
−2

y2
j1

∂

∂yj

)
.

We set Gj−1 = (x2j − x2j−1)−1/2Fj−1. From Dj−1Fj−1 = 0, we have

0 =Oj−1Gj−1 +

(
−1

(x2j−1 − y1)2
+

−1

(x2j − y1)2
+

−2

(x2j−1 − y1)(x2j − y1)

)
∂

∂y1
Gj−1

+

(
1

(x2j−1 − y1)3
+

1

(x2j − y1)3
+

(x2j − x2j−1) + 2(x2j−1 − y1)

(x2j−1 − y1)2(x2j − y1)2

)
Gj−1

+

(
4

(x2j−1 − y1)

∂

∂y1
+

−2

(x2j−1 − y1)2

)
∂

∂x2j−1
Gj−1

+

(
4

(x2j − y1)

∂

∂y1
+

−2

(x2j − y1)2

)
∂

∂x2j
Gj−1. (5.8)

We will argue that

KGj−1(y1, . . . , yj−1, x2j−1, . . . , x4N )→ KFj(y1, . . . , yj , x2j+1, . . . , x4N ), as x2j−1, x2j → yj ,

(5.9)

where

K ∈
{

1,
∂

∂y1
,
∂3

∂y3
1

}
∪
{
∂

∂yi
,

∂2

∂yi∂y1
: 2 ≤ i ≤ j − 1

}
∪
{

∂

∂xn
,

∂2

∂xn∂y1
: 2j + 1 ≤ n ≤ 4N

}
;

and that(
1

(x2j−1 − y1)2

∂

∂x2j−1
+

1

(x2j − y1)2

∂

∂x2j

)
Gj−1(y1, . . . , yj−1, x2j−1, . . . , x4N )

→ 1

y2
j1

∂

∂yj
Fj(y1, . . . , yj , x2j+1, . . . , x4N ), as x2j−1, x2j → yj , (5.10)(

1

(x2j−1 − y1)

∂

∂x2j−1
+

1

(x2j − y1)

∂

∂x2j

)
∂

∂y1
Gj−1(y1, . . . , yj−1, x2j−1, . . . , x4N )

→ 1

yj1

∂2

∂yj∂y1
Fj(y1, . . . , yj , x2j+1, . . . , x4N ), as x2j−1, x2j → yj . (5.11)
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From the proof of Proposition 5.6, Eq. (5.9) holds for K = 1. Furthermore, as Gj−1 is
a finite linear combination of terms of the form∏

(xa − xb)±1/2 ×
∏

(yk − yl)±2 ×
∏

(xn − ym)±1,

we viewGj−1 as a function on distinct complex variables (y1, . . . , yj−1, x2j−1, x2j , . . . , x4N ).
We fix arbitrarily distinct complex points (y1, . . . , yj−1, x2j+1, . . . , x4N ) and denote y =

(y1, . . . , yj−1) and x = (x2j+1, . . . , x4N ). Then Gj−1 is a meromorphic function of ε =

x2j − x2j−1 and its Laurent series can be written as:

Hj−1(y, x2j−1, ε,x) :=Gj−1(y, x2j−1, x2j−1 + ε,x)

=Fj(y, x2j−1,x) +
∑
n≥1

Kn(y, x2j−1,x)εn,

where Kn is a finite linear combination of terms of the form∏
(xa − xb)p/2 ×

∏
(yk − yl)±2 ×

∏
(xn − ym)q

with p, q ∈ Z.
Now, we prove (5.10). We have(

1

(x2j−1 − y1)2

∂

∂x2j−1
+

1

(x2j − y1)2

∂

∂x2j

)
Gj−1(y, x2j−1, x2j ,x)

=

(
1

(x2j−1 − y1)2

∂

∂x2j−1
+

(
1

(x2j − y1)2
− 1

(x2j−1 − y1)2

)
∂

∂ε

)
Hj−1(y, x2j−1, ε,x).

Thus, it suffices to prove, as x2j−1 → yj , ε→ 0,

∂

∂x2j−1
Hj−1(y, x2j−1, ε,x)→ ∂

∂yj
Fj(y, yj ,x),

∂

∂ε
Hj−1(y, x2j−1, ε,x)→ K1(y, yj ,x).

(5.12)

We define δ0 = min{x2j+1−yj
4 ,

yj−yj−1

4 } and Hj−1(y, x2j−1, 0,x) := Fj(y, x2j−1,x).
Then, the function (x2j−1, ε) 7→ Hj−1(y, x2j−1, ε,x) is continuous on [yj − δ0, yj + δ0] ×
B(0, δ0) where B(0, δ0) := {z ∈ C : d(z, 0) < δ0}. Moreover, for every x2j−1 ∈ [yj −
δ0, yj + δ0], the function ε 7→ Hj−1(y, x2j−1, ε,x) is holomorphic in B(0, δ0) \ {0}. Thus,
the function ε 7→ Hj−1(y, x2j−1, ε,x) is holomorphic in B(0, δ0). Then, we have

Kn(y, x2j−1,x) =
1

2πi

∫
∂B(0,δ0)

Hj−1(y, x2j−1, z,x)

zn+1
dz.

Note that, there exists M = M(y,x, yj) > 0 such that, for all x2j−1 ∈ [yj − δ0, yj + δ0]

and z ∈ B(0, 2δ0) \B(0, δ02 ),

|Hj−1(y, x2j−1, z,x)| ≤M, and

∣∣∣∣ ∂

∂x2j−1
Hj−1(y, x2j−1, z,x)

∣∣∣∣ ≤M.

Thus, we have

|Kn(y, x2j−1,x)| ≤ M

δn0
,

and ∣∣∣∣ ∂

∂x2j−1
Kn(y, x2j−1,x)

∣∣∣∣ =

∣∣∣∣∣ 1

2πi

∫
∂B(0,δ0)

∂
∂x2j−1

Hj−1(y, x2j−1, z,x)

zn+1
dz

∣∣∣∣∣ ≤ M

δn0
.
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These imply that, for every x2j−1 ∈ [yj − δ0, yj + δ0] and ε ∈ B(0, δ02 ),

∂

∂x2j−1
Hj−1(y, x2j−1, ε,x) =

∂

∂x2j−1
Fj(y, x2j−1,x) +

∑
n≥1

∂

∂x2j−1
Kn(y, x2j−1,x)εn,

and

∂

∂ε
Hj−1(y, x2j−1, ε, x2j+1 . . . , x4N ) =

∑
n≥1

nKn(y, x2j−1,x)εn−1.

These give (5.12), and complete the proof of (5.10). Eq. (5.9) and (5.11) can be proved
in a similar way.

Plugging (5.9)-(5.11) into (5.8), and letting x2j−1, x2j → yj , we obtain DjFj = 0. This
completes the proof of (5.7). Taking j = 2N in (5.7), we obtain the third order PDE (1.8)
as desired. This completes the proof.

5.5 Proof of Theorem 1.1

In this section, we complete the proof of Theorem 1.1. Before that, we first address
the coefficientMω,τ(α̂) in the theorem.

Lemma 5.9. Fix N ≥ 1 and the index valences ς = (2, . . . , 2) of length 2N . Define
ω ∈ DP2N to be: ∀j ∈ {0, 1, . . . , N − 1},

ω(4j) = 0, ω(4j + 1) = 1, ω(4j + 2) = 2, ω(4j + 3) = 1, ω(4j + 4) = 0.

For any α̂ ∈ LPς , let τ(α̂) ∈ PP2N be the associated planar pair partition as defined in
Section 2.2. Recall the definition of the incidence matrixM from (3.11). Then

Mω,β = 1 implies β = τ(α̂) for some α̂ ∈ LPς . (5.13)

However, the converse does not hold in general.

Proof. Recall from Section 2.2 that τ introduces a bijection between LPς and the collec-
tion {β ∈ PP2N : ∧2j−1 6∈ β, for all 1 ≤ j ≤ 2N}. Thus, it suffices to prove that ∧2j−1 /∈ β
for every 1 ≤ j ≤ 2N . By definition,

ω = {{4j + 1, 4j + 4}, {4j + 2, 4j + 3} : 1 ≤ j ≤ N − 1}.

Note thatMω,β = 1 implies there exists a σ which is a permutation of {4j + 3, 4j + 4 :

0 ≤ j ≤ N − 1} such that

β = {{4j + 1, σ(4j + 4)}, {4j + 2, σ(4j + 3)} : 0 ≤ j ≤ N − 1}.

This implies ∧2j−1 /∈ β for every 1 ≤ j ≤ 2N .

Proof of Theorem 1.1 and (1.7). We use the same notations as in Section 5.3. By confor-
mal invariance, we may assume Ω = H and y1 < · · · < y2N . Suppose Γ is zero-boundary
GFF on H and let u be the harmonic function with the boundary data (1.5). From
Proposition 5.3, we have

lim
δ→0

P[Aδ = α̂] = P[A = α̂].

Let η2j−1 be the level line of the continuum GFF Γ + u starting from y2j−1 with height λ
for 1 ≤ j ≤ N ; and let η2j be the level line of −(Γ + u) starting from y2j with height λ
for 1 ≤ j ≤ N . Note that the collection {η2, η4, . . . , η2N} coincides with the collection of
level lines Γ + u starting from y2j−1 with height −λ for 1 ≤ j ≤ N . See Figure 8. From
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ε
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η4[0, T
ε
4 ]

y2 y3

y4y1

2λ2λ

−2λ

−2λ

2λ

−2λ

0

0
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Figure 8: Consider continuum GFF Γ + u in rectangle with alternating boundary data.
In the left panel, we have four level lines: Let η1 (resp. η3) be the level line of Γ + u

starting from y1 (resp. from y3) with height λ. These two curves are in black.Let η2 (resp.
η4) be the level line of −(Γ + u) starting from y2 (resp. from y4) with height λ. These
two curves are in red. The middle panel indicates the domain Hε which is obtained by
removing from H the four pieces ηi[0, T εi ] with i = 1, 2, 3, 4. In the right panel, we see
that the boundary data of Γ + u in Hε is piecewise constant: 0, 2λ, 0,−2λ, 0, 2λ, 0,−2λ.

Lemma 5.4, the frontier of A and of

A

has the same law as ∪1≤j≤2Nηj . It suffices to
prove

P [{η1, . . . , η2N} forms the planar link pattern α̂] =Mω,τ(α̂)
Zα̂(y1, . . . , y2N )

Z(N)
mGFF(y1, . . . , y2N )

,

where ω andMω,τ(α̂) are defined in Lemma 5.9.
For 1 ≤ j ≤ 2N and ε > 0 small, we denote T εj = inf{t > 0 : d(ηj(t), yj) = ε}. We take

φε to be the conformal map from

Hε := H \
(
∪1≤j≤2Nηj [0, T

ε
j ]
)

onto H normalized at∞. Then, we see that, given Hε, the event

{{η1, . . . , η2N} forms the planar link pattern α̂}

is the same as

{{φε(η1), . . . , φε(η2N )} forms the planar link pattern τ(α̂)}

where τ(α̂) is defined in Section 2.2.
Now, let us consider the collection {φε(η1), . . . , φε(η2N )}. The conditional law of Γ + u

given Hε is a GFF in Hε with the following boundary data: for 1 ≤ j ≤ 2N ,

2λ on (y+
2j−1, y

−
2j), 0 along the left side of η2j [0, T

ε
2j ],

−2λ along the right side of η2j [0, T
ε
2j ],

−2λ on (y+
2j , y

−
2j+1), 0 along the left side of η2j+1[0, T ε2j+1],

2λ along the right side of η2j+1[0, T ε2j+1].

See Figure 8. Then, we have

P [{η1, . . . , η2N} forms the planar link pattern α̂]

=E
[
P
[
{η1, . . . , η2N} forms the planar link pattern α̂

∣∣Hε

]]
=E

[
P
[
{φε(η1), . . . , φε(η2N )} forms the planar link pattern τ(α̂)

∣∣Hε

]]
=E

[
Mω,τ(α̂)

Zτ(α̂)(φ
ε(y−1 ), φε(η1(T ε1 )), φε(y−2 ), φε(η2(T ε2 )), . . . , φε(y+

2N ), φε(η2N (T ε2N )))

Uω(φε(y−1 ), φε(η1(T ε1 )), φε(y−2 ), φε(η2(T ε2 )), . . . , φε(y+
2N ), φε(η2N (T ε2N )))

]

=Mω,τ(α̂)
Zα̂(y1, . . . , y2N )

U4
(ω)2

(y1, . . . , y2N )
,
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where (ω)2 is defined as in Lemma 5.7. In the second last equal sign, we use Theo-
rem 4.1: consider the GFF in Hε, the collection {φε(η2), φε(η4), . . . , φε(η2N )} coincides
with the collection of level lines starting from y2j−1 with height −λ. Therefore, the
connection probability is given byMω,τ(α̂)Zτ(α̂)/Uω. In the last equal sign, we let ε→ 0.
Combining Proposition 5.6, Lemma 5.7, and dominated convergence theorem, we obtain
the conclusion.

Finally, from the above analysis, we have

lim
δ→0

P[Aδ = α̂] = P[A = α̂] =Mω,τ(α̂)
Zα̂(y1, . . . , y2N )

U4
(ω)2

(y1, . . . , y2N )
, for all α̂ ∈ LPς .

Furthermore, from (3.12) and (5.13), we have∑
α̂∈LPς

Mω,τ(α̂)
Zα̂(y1, . . . , y2N )

U4
(ω)2

(y1, . . . , y2N )
= 1.

Thus

Z(N)
mGFF(y1, . . . , y2N ) :=

∑
α̂∈LPς

Mω,τ(α̂)Zα̂(y1, . . . , y2N ) = U4
(ω)2

(y1, . . . , y2N ).

This completes the proof of (1.7).

Figure 9: There are six Dyck paths in this figure: in the first row, from left to right, we
denote them by α1, α2, α3 respectively; in the second row, from left to right, we denote
them by α4, α5, α6 respectively. We see that α1 � α2 � α3, α4 � α5 � α6.

Corollary 5.10. The conclusion in (1.3) holds.

Proof. We define β1, β2, β3 as in Figure 5 and we define α1, . . . , α6 as in Figure 9.
From (3.12), we have

Zβ1
=Uα2

− Uα3
− Uα4

+ Uα5
− 2Uα6

,

Zβ2
=Uα6

,

Zβ3
=Uα1

− Uα2
+ Uα3

+ Uα4
− Uα5

+ Uα6
.

(5.14)

Suppose y1 < y2 < y3 < y4 and we need to derive the limits as

x1, x2 → y1; x3, x4 → y2; x5, x6 → y3; x7, x8 → y4.

We denote xji = xj −xi for 1 ≤ i < j ≤ 8 and yji = yj − yi for 1 ≤ i < j ≤ 4. Furthermore,
we denote the cross-ratio by q = (y21y43)/(y31y42).
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First, for α1 and α6, we have

lim
x1,x2→y1;x3,x4→y2;
x5,x6→y3;x7,x8→y4

Uα1
(x1, . . . , x8)

√
x21x43x65x87

=

(
y31y42

y21y41y32y43

)2

=
1

q2(1− q)2y2
31y

2
42

, (5.15)

lim
x1,x2→y1;x3,x4→y2;
x5,x6→y3;x7,x8→y4

Uα6
(x1, . . . , x8)

√
x21x43x65x87

=

(
y21y43

y31y41y32y42

)2

=
q2

(1− q)2y2
31y

2
42

. (5.16)

Second, for n = 2, 3, 4, 5, we have

lim
x1,x2→y1;
x7,x8→y4

Uαn(x1, . . . , x8)
√
x21x87

= y−2
41 ×

∏
3≤i≤6

(xi − y1)ϑαn (i,1)(y4 − xi)ϑαn (i,7) ×
∏

3≤i<j≤6

x
1
2ϑαn (i,j)
ji .

Taking the difference between Uα2
and Uα3

and the difference between Uα4
and Uα5

, we
have

lim
x1,x2→y1;x3,x4→y2;

x7,x8→y4

(Uα2 − Uα3)(x1, . . . , x8)
√
x21x43x87

=y−2
41 ×

(x6 − y1)

(x5 − y1)

(y4 − x5)

(y4 − x6)
×
( √

x65

(x5 − y2)(x6 − y2)
+

2y41

y21y42
√
x65

)
,

lim
x1,x2→y1;x3,x4→y2;

x7,x8→y4

(Uα4 − Uα5)(x1, . . . , x8)
√
x21x43x87

=y−2
41 ×

(x5 − y1)(y4 − x6)

(x6 − y1)(y4 − x5)
×
(

−√x65

(x5 − y2)(x6 − y2)
+

2y41

y21y42
√
x65

)
.

Taking the difference between these two, we have

lim
x1,x2→y1;x3,x4→y2;
x5,x6→y3;x7,x8→y4

(Uα2
− Uα3

− Uα4
+ Uα5

)(x1, . . . , x8)
√
x21x43x65x87

=
2

y2
41y

2
32

+
4

y21y31y42y43
=

(
2

(1− q)2
+

4

q

)
1

y2
31y

2
42

. (5.17)

Plugging (5.15), (5.16) and (5.17) into (5.14), we have

lim
x1,x2→y1;x3,x4→y2;
x5,x6→y3;x7,x8→y4

Zβ1
(x1, . . . , x8)

Uα1
(x1, . . . , x8)

=2q(1− q)(2− q + q2),

lim
x1,x2→y1;x3,x4→y2;
x5,x6→y3;x7,x8→y4

Zβ2
(x1, . . . , x8)

Uα1(x1, . . . , x8)
=q4,

lim
x1,x2→y1;x3,x4→y2;
x5,x6→y3;x7,x8→y4

Zβ3
(x1, . . . , x8)

Uα1
(x1, . . . , x8)

=(1− q)4.

The scaling limit of the crossing probability in (1.3) corresponds to the limit of Zβ2
/Uα1

,
see Figure 1 and Figure 5. This completes the proof.

A Technical lemmas

The following three lemmas are technical. Lemmas A.1 and A.2 are needed in the
proof of Lemma A.3 which is essential in the proof of Theorem 4.1.

Lemma A.1. Let x1 < x2 < x3 < x4. Suppose η is a continuous simple curve inH starting
from x1 and terminating at x4 at time T . Assume η hits R only at its two end points. Let
(Wt, 0 ≤ t ≤ T ) be its driving function and (gt, 0 ≤ t ≤ T ) be the corresponding family of
conformal maps. Then

lim
t→T

(gt(x3)− gt(x2))(gt(x4)−Wt)

(gt(x3)−Wt)(gt(x4)− gt(x2))
= 0.
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Proof. See [PW19, Lemma B.2].

Lemma A.2. Let x0 < x1 < x2 < x3 < x4. Suppose η is a continuous simple curve
in H starting from x0 and terminating at x4 at time T . Assume η hits R only at its
two end points. Let (Wt, 0 ≤ t ≤ T ) be its driving function and (gt, 0 ≤ t ≤ T ) be the
corresponding family of conformal maps. Then there exist C1, C2 > 0, which depend on
η[0, T ], such that for all t ∈ [0, T ],

C1 ≤
∣∣∣∣ (gt(x2)− gt(x1))(gt(x3)−Wt)

(gt(x2)−Wt)(gt(x3)− gt(x1))

∣∣∣∣ ≤ C2.

Proof. To prove the conclusion, we will show the following two estimates: First, we will
show that there exist C1, C2 > 0, which only depend on η[0, T ], such that for all t ∈ [0, T ],

C1 ≤
gt(x2)− gt(x1)

gt(x3)− gt(x1)
≤ C2. (A.1)

Second, we will show

lim
t→T

gt(x3)−Wt

gt(x2)−Wt
= 1 + lim

t→T

gt(x3)− gt(x2)

gt(x2)−Wt
= 1. (A.2)

In this proof, we use � to simplify notations: for two functions f and g, the notation
f � g means that there exists a constant C > 0 which only depends on η[0, T ] such that
C−1 ≤ f/g ≤ C.

We first show (A.1). Note that for an interval [a, b], we have

b− a = lim
y→∞

πyPiy [BM hits ∂H in [a, b]] ,

where BM is the Brownian motion starts from iy. By conformal invariance of the
Brownian motion, we have

b− a = lim
y→∞

πyPg
−1
t (iy)

[
BM hits ∂ (H \ η[0, t]) in g−1

t ([a, b])
]
.

We choose δ0 small enough, such that the δ0-neighborhood of the interval [x1, x3]

does not intersect η[0, T ]. We denote the boundary of this neighborhood in H by γ, this is
a simple curve. For the Brownian motion starting from g−1

t (iy), let τ be the first time
the Brownian motion hits γ. Consider the connected component V of H \ η[0, T ] which
contains x1 on its boundary and choose a point z ∈ V . Suppose U is the unit disk, and
φt : H \ η[0, t]→ U is the conformal map with φt(z) = 0, φ′t(z) > 0. Suppose φT : V → U

is the conformal map with the same normalization. Then, for any compact set K ⊂ V

which does not intersect η[0, T ], the conformal map φt converges to φT uniformly on K.
Note that

Pg
−1
t (iy) [BM hits ∂ (H \ η[0, t]) in [x1, x2]]

=Pg
−1
t (iy)

[
1{τ<∞}P

Bτ [BM hits ∂ (H \ η[0, t]) in [x1, x2]]
]
.

We will compare

PBτ [BM hits ∂ (H \ η[0, t]) in [x1, x2]] and PBτ [BM hits ∂ (H \ η[0, t]) in [x1, x3]] .

In fact we can replace Bτ by a deterministic point on γ. For every w ∈ γ, we have

Pw [BM hits ∂ (H \ η[0, t]) in [x1, x2]] = Pφt(w) [BM hits ∂U in [φt(x1), φt(x2)]] ,
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where [φt(x1), φt(x2)] is the conformal image of [x1, x2]. By direct computation, the right
hand-side equals

1

2π

(
arg

φt(x2)− φt(w)

1− φt(w)φt(x2)
− arg

φt(x1)− φt(w)

1− φt(w)φt(x1)

)
,

where arg is the argument principal which takes value in [0, 2π). Note that there exists
ε0 > 0 such that

1

2π

(
arg

φt(x2)− φt(w)

1− φt(w)φt(x2)
− arg

φt(x1)− φt(w)

1− φt(w)φt(x1)

)
≤ 1− ε0,

because γ is bounded away from [x1, x3]. Thus,

Pφt(w) [BM hits ∂U in [φt(x1), φt(x2)]] �

∣∣∣∣∣ φt(x2)− φt(w)

1− φt(w)φt(x2)
− φt(x1)− φt(w)

1− φt(w)φt(x1)

∣∣∣∣∣
=

(1− |φt(w)|2)|φt(x2)− φt(x1)|
|1− φt(w)φt(x2)||1− φt(w)φt(x1)|

.

Similarly, we have

Pφt(w) [BM hits ∂U in [φt(x1), φt(x3)]] � (1− |φt(w)|2)|φt(x3)− φt(x1)|
|1− φt(w)φt(x3)||1− φt(w)φt(x1)|

.

Therefore,

Pφt(w) [BM hits ∂U in [φt(x1), φt(x2)]]

Pφt(w) [BM hits ∂U in [φt(x1), φt(x3)]]
� |φt(x2)− φt(x1)|
|φt(x3)− φt(x1)|

|φt(x3)− φt(w)|
|φt(x2)− φt(w)|

� 1.

The last � is because of the uniform convergence of φt. Thus, we have

PBτ [BM hits ∂ (H \ η[0, t]) in [x1, x2]] � PBτ [BM hits ∂ (H \ η[0, t]) in [x1, x3]] .

This implies (A.1).

Next, we show (A.2). Consider the Brownian motion starting from g−1
t (iy). We define

C(x4, δ) := {z ∈ H : d(z, x4) = δ}. Let τδ be the first time that it hits the connected
component of half circle C(x4, δ) ∩H \ η[0, t] which contains x4 − δ on its boundary and
we denote this connected component by Cδ. Then we have

Pg
−1
t (iy) [BM hits ∂ (H \ η[0, t]) in the right side of η[0, t] ∪ [x0, x2]]

≥Pg
−1
t (iy)

[
1{τδ<∞}P

Bτδ [BM hits ∂ (H \ η[0, t]) in the right side of η[0, t] ∪ [x0, x2]]
]
,

and

Pg
−1
t (iy) [BM hits ∂ (H \ η[0, t]) in [x2, x3]]

=Pg
−1
t (iy)

[
1{τδ<∞}P

Bτδ [BM hits ∂ (H \ η[0, t]) in [x2, x3]]
]
.

By conformal invariance of the Brownian motion, we have

PBτδ [BM hits ∂ (H \ η[0, t]) in the right side of η[0, t] ∪ [x0, x2]]

=Pφt(Bτδ ) [BM hits ∂U in [φt(η(t)), φt(x2)]] ,
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where [φt(η(t)), φt(x2)] is the conformal image of the right side of η[0, t] ∪ [x0, x2]. More-
over

PBτδ [BM hits ∂ (H \ η[0, t]) in [x2, x3]]

=Pφt(Bτδ ) [BM hits ∂U in [φt(x2), φt(x3)]] ,

where [φt(x2), φt(x3)] is the conformal image of [x2, x3]. We replace Bτδ by a deterministic
point on Cδ for the same reason as in the proof of (A.1). For every w ∈ Cδ, by Beurling
estimate and conformal invariance, there exists C > 0 such that

Pφt(w) [BM hits ∂U in [φt(x2), φt(x3)]] ≤ C
(

δ

x4 − x3

) 1
2

.

This implies that there exists ε0 > 0 such that

Pφt(w) [BM hits ∂U in [φt(x2), φt(x3)]] ≤ 1− ε0.

Thus, by the same method as in the proof of (A.1), we have

Pφt(w) [BM hits ∂U in [φt(x2), φt(x3)]] � (1− |φt(w)|2)|φt(x3)− φt(x2)|
|1− φt(w)φt(x3)||1− φt(w)φt(x2)|

.

Moreover,

Pφt(w) [BM hits ∂U in [φt(η(t)), φt(x2)]]

=
1

2π

(
arg

φt(x2)− φt(w)

1− φt(w)φt(x2)
− arg

φt(η(t))− φt(w)

1− φt(w)φt(η(t))

)

≥ 1

2π

∣∣∣∣∣ φt(x2)− φt(w)

1− φt(w)φt(x2)
− φt(η(t))− φt(w)

1− φt(w)φt(η(t))

∣∣∣∣∣
=

1

2π

(1− |φt(w)|2)|φt(η(t))− φt(x2)|
|1− φt(w)φt(η(t))||1− φt(w)φt(x2)|

.

Combining these two together, there exists C > 0 such that

Pφt(w) [BM hits ∂U in [φt(η(t)), φt(x2)]]

Pφt(w) [BM hits ∂U in [φt(x2), φt(x3)]]
≥ C |φt(η(t))− φt(x2)|

|φt(x3)− φt(x2)|
|φt(x3)− φt(w)|
|φt(η(t))− φt(w)|

.

We denote the connected component of H \ (η[0, t] ∪ Cδ) which contains∞ by A. By the
relation between diameter and harmonic measure, there exists C1 > 0, such that

1

C1
diam (φt(A)) ≤ P0[BM hits φt(Cδ) before ∂U] =Pz[BM hits Cδ before ∂(H \ η[0, t])]

≤Pz[BM hits Cδ before ∂H]

≤C1δ.

Thus, we have
|φt(η(t))− φt(w)| ≤ C2

1δ.

For |φt(η(t))− φt(x2)| and |φt(x3)− φt(w)|, we have

|φt(η(t))− φt(x2)| ≥min

{∣∣∣∣φt(x4 + x3

2

)
− φt(x2)

∣∣∣∣ , ∣∣∣∣φt(x1 + x0

2

)
− φt(x2)

∣∣∣∣} ,
|φt(w)− φt(x3)| ≥|φt(η(t))− φt(x3)| − |φt(η(t))− φt(w)|

≥min

{∣∣∣∣φt(x4 + x3

2

)
− φt(x3)

∣∣∣∣ , ∣∣∣∣φt(x1 + x0

2

)
− φt(x3)

∣∣∣∣}− C2
1δ.
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Thus, by the uniform convergence, there exists C2 > 0 such that

|φt(η(t))− φt(x2)||φt(x3)− φt(w)|
|φt(x3)− φt(x2)|

≥ C2.

This implies that there exists C > 0 such that

Pφt(w) [BM hits ∂U in [φt(η(t)), φt(x2)]]

Pφt(w) [BM hits ∂U in [φt(x2), φt(x3)]]
≥ C 1

δ
.

Therefore, we have (A.2). Combining (A.1) and (A.2), we obtain the conclusion.

We set B∅ = 1, and for α, β ∈ PPN and x1 < · · · < x2N , we define

Bβ(x1, . . . , x2N ) :=
∏
{a,b}∈β

|xa − xb|−1, Fα,β(x1, . . . , x2N ) :=
Bβ(x1, . . . , x2N )

Uα(x1, . . . , x2N )2
.

Lemma A.3. Fix α, β ∈ PPN such that α
()←− β. Fix j ∈ {1, 2, . . . , 2N − 1}, we assume

that ∧j ∈ α and ∧j ∈ β. Fix n ∈ {1, . . . , j − 1, j + 2, . . . , 2N} such that α(n− 1) = α(j) and
α(n) = α(j−1). Fix x1 < · · · < x2N . Suppose η is a continuous simple curve in H starting
from xj and terminating at xn at time T . Assume η hits R only at its two end points. Let
(Wt, 0 ≤ t ≤ T ) be its driving function and (gt, 0 ≤ t ≤ T ) be the corresponding family of
conformal maps. Then

lim
t→T

Fα,β(gt(x1), . . . , gt(xj−1),Wt, gt(xj+1), gt(x2N )) = 0.

Proof. We may assume j + 1 < n. The other case can be proved similarly. By definition,
we have

Fα,β(x1, . . . , x2N ) =
∏

1≤i≤2N
i 6=j,j+1

∣∣∣∣xi − xj+1

xi − xj

∣∣∣∣ϑα(i,j)

Fα/∧j ,β/∧j (x1, . . . , xj−1, xj+2, . . . , x2N ).

To get the conclusion, we will prove the following two estimates:

lim
t→T

∏
1≤i≤2N
i6=j,j+1

∣∣∣∣gt(xi)− gt(xj+1)

gt(xi)−Wt

∣∣∣∣ϑα(i,j)

= 0, (A.3)

and

sup
0≤t≤T

Fα/∧j ,β/∧j (gt(x1), . . . , gt(xj−1), gt(xj+2), . . . , gt(x2N )) <∞. (A.4)

Suppose α = {{a1, b1}, . . . , {aN , bN}} is ordered as in (2.2). The number of elements
in two sets of indexes A = {i : j + 1 < i ≤ n, i ∈ {a1, . . . , aN}} and B = {i : j + 1 <

i ≤ n, i ∈ {b1, . . . , bN}} are equal. Note that n ∈ B. We choose the increasing bijection
ξ : A→ B and suppose ξ(i0) = n.

We first show (A.3). We write∏
1≤i≤2N
i 6=j,j+1

∣∣∣∣gt(xi)− gt(xj+1)

gt(xi)−Wt

∣∣∣∣ϑα(i,j)

=
∏

i<j or i>n

∣∣∣∣gt(xi)− gt(xj+1)

gt(xi)−Wt

∣∣∣∣ϑα(i,j)

×
∏
i∈A
i 6=i0

(∣∣∣∣gt(xi)− gt(xj+1)

gt(xi)−Wt

∣∣∣∣ ∣∣∣∣ gt(xξ(i))−Wt

gt(xξ(i))− gt(xj+1)

∣∣∣∣)

×
∣∣∣∣gt(xi0)− gt(xj+1)

gt(xi0)−Wt

∣∣∣∣ ∣∣∣∣ gt(xn)−Wt

gt(xn)− gt(xj+1)

∣∣∣∣
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By Lemma A.1, we have

lim
t→T

∣∣∣∣gt(xi0)− gt(xj+1)

gt(xi0)−Wt

∣∣∣∣ ∣∣∣∣ gt(xn)−Wt

gt(xn)− gt(xj+1)

∣∣∣∣ = 0. (A.5)

By Lemma A.2, there exist C1,C2 > 0, which only depend on η[0, T ], such that for any
i ∈ A with ξ(i) 6= n, we have for all t ∈ [0, T ],

C1 ≤
∣∣∣∣gt(xi)− gt(xj+1)

gt(xi)−Wt

∣∣∣∣ ∣∣∣∣ gt(xξ(i))−Wt

gt(xξ(i))− gt(xj+1)

∣∣∣∣ ≤ C2. (A.6)

For i /∈ A ∪B,

lim
t→T

gt(xi)− gt(xj+1)

gt(xi)−Wt
=
gT (xi)− gT (xj+1)

gT (xi)−WT
.

Combining with (A.6) and (A.5), we obtain (A.3).
Next, we prove (A.4). We write

Fα/∧j ,β/∧j (gt(x1), . . . , gt(xj−1), gt(xj+2), . . . , gt(x2N ))

=

∏
{ai,bi}∈β/∧j
ai /∈A or bi /∈B

(gt(xbi)− gt(xai))
−1

∏
i/∈A∪B

or k/∈A∪B
|gt(xk)− gt(xi)|ϑα(i,k)

× St,

where

St =

∏
{ai,bi}∈β/∧j
ai∈A and bi∈B

(gt(xbi)− gt(xai))
−1

∏
i∈A∪B\{n}

and k∈A∪B\{n}
|gt(xk)− gt(xi)|ϑα(i,k)

∏
i∈A∪B\{n}

|gt(xn)− gt(xi)|ϑα(i,n)
.

In this decomposition, we have∏
{ai,bi}∈β/∧j
ai /∈A or bi /∈B

(gt(xbi)− gt(xai))
−1

∏
i/∈A∪B

or k/∈A∪B
|gt(xk)− gt(xi)|ϑα(i,k)

� 1,

because both the numerator and the denominator converge to a bounded and nonzero
quantity as t → T . Here the notation � is defined in the same way as in the proof of
Lemma A.2. By (A.1), for distinct i, k ∈ A ∪B \ {n}, we have

|gt(xk)− gt(xi)| � gt(xj+2)− gt(xj+1).

By the same method as in the proof of (A.2), for i ∈ A ∪B \ {n}, we have

lim
t→T

gt(xn)− gt(xi)
gt(xn)− gt(xn−1)

= 1.

Thus we have

St �
∏

{ai,bi}∈β/∧j
ai∈A and bi∈B

(gt(xbi)− gt(xai))
−1

(gt(xj+2)− gt(xj+1))#A−1(gt(xn)− gt(xn−1)).

When there is a ∈ A such that {a, n} ∈ β/∧j , and #A− 1 pairs {ai, bi} ∈ β/∧j such that
ai ∈ A and bi ∈ B, we have St � 1. Otherwise, we have limt→T St = 0. This gives (A.4)
and completes the proof.
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B Proof of Proposition 5.6

Proof of Proposition 5.6. From (3.12), we have

Zα(x1, . . . , x4N ) =
∑

β∈DP2N

M−1
α,βUβ(x1, . . . , x4N ).

For β ∈ DP2N, there exists J ⊂ {1, 2, . . . , 2N} such that

♦2j−1 ∈ β for all j ∈ J, and ×2j−1 ∈ β for all j ∈ {1, . . . , 2N} \ J.

Then, from the definition (3.10), the following limit exists:

lim
x2j−1,x2j→yj ,

∀j 6∈J

Uβ(x1, . . . , x4N )∏
j 6∈J(x2j − x2j−1)1/2

.

To obtain the desired limit, we need to group distinct β’s according to the location of
their local extremes.

Let J be any subset of {1, 2, . . . , 2N}, and define

PαJ = {β ∈ DP2N : β � α,♦2j−1 ∈ β for all j ∈ J,×2j−1 ∈ β for all j ∈ {1, 2, . . . , 2N} \ J} .

It suffices to show that the following limit exists for all possible J :

lim
x2j−1,x2j→yj ,

∀j∈J

∑
β∈PαJ

M−1
α,βUβ(x1, . . . , x4N )∏

j∈J(x2j − x2j−1)1/2
.

Suppose n = #J ≥ 1. For some β0 ∈ PαJ such that ∨2j−1 ∈ β0 for all j ∈ J , we define

Pα,β0

J = {β ∈ DP2N : ∃{i1, . . . , ik} ⊂ J such that β = β0 ↑ ♦2i1−1 · · · ↑ ♦2ik−1}.

It is clear that #Pα,β0

J = 2n. Furthermore, for distinct β0, β
′
0 ∈ PαJ such that ∨2j−1 ∈ β0

and ∨2j−1 ∈ β′0 for all j ∈ J , we see that Pα,β0

J ∩ Pα,β
′
0

J = ∅. Thus {Pα,β0

J : β0 ∈
PαJ with ∨2j−1 ∈ β0 ∀ j ∈ J} gives a disjoint partition of PαJ . Therefore, it suffices to show
that the following limit exists for each such β0:

lim
x2j−1,x2j→yj ,

∀j∈J

∑
β∈Pα,β0J

M−1
α,βUβ(x1, . . . , x4N )∏

j∈J(x2j − x2j−1)1/2
. (B.1)

To derive (B.1), we will show a more general conclusion. Suppose K ⊂ J and suppose
γ0 ∈ PαJ such that ∨2j−1 ∈ γ0 for all j ∈ K. We define

Pα,γ0J,K = {γ ∈ DP2N : ∃{i1, . . . , ik} ⊂ K such that γ = γ0 ↑ ♦2i1−1 · · · ↑ ♦2ik−1}.

We denote RK := {2j − 1, 2j : j ∈ K}, and we denote

ZγK,j :=
∑
l/∈RK

ϑγ(l, 2j − 1)

xl − yj
.

We denote by Sn the set of permutations of {1, 2, . . . , n}. Suppose K = {j1, . . . , jn}. For
any γ0 ∈ PαJ such that ∨2j−1 ∈ γ0 for all j ∈ K, we claim that

lim
x2j−1,x2j→yj ,
∀j∈K

∑
γ∈Pα,γ0J,K

M−1
α,γUγ(x1, . . . , x4N )∏

j∈K(x2j − x2j−1)1/2
(B.2)

=M−1
α,γ0

∏
1≤t<s≤4N
t,s/∈RK

(xs − xt)
1
2ϑγ0 (t,s) ×

 bn2 c∑
m=0

∑
σ∈Jmn

2mZγ0K,jσ2m+1
· · ·Zγ0K,jσn

(yjσ1 − yjσ2 )2 × · · · × (yjσ2m−1
− yjσ2m )2

 ,
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where Jmn is a subset of Sn:

Jmn ={σ ∈ Sn : σ1 < σ3 < · · · < σ2m−1, and σ2j−1 < σ2j for j ≤ m, and σ2m+1 < · · · < σn}.

Fix α and J , we will show (B.2) by induction on n = #K. It is true for K = ∅ as it is
the same as the definition of Uγ0 . Suppose (B.2) holds for #K = i. We need to show it
for #K = i+ 1. Suppose K = {j1, . . . , ji+1}. We will take the limit in the left hand side
of (B.2) in a particular order: we first let x2j−1, x2j → yj with j ∈ K \ {ji+1} and then
let x2ji+1−1, x2ji+1 → yji+1 . It will be clear from the calculation that the limit in (B.2) for
#K = i+ 1 does not depend on the order of taking limits.

For any γ0 ∈ PαJ such that ∨2j1−1, . . . ,∨2ji+1−1 ∈ γ0, we have the decomposition

Pα,γ0J,K = Pα,γ0J,K\{ji+1}

⊔
P
α,γ0↑♦2ji+1−1

J,K\{ji+1} .

Denote by γ1 = γ0 ↑ ♦2ji+1−1 and K1 = {j1, . . . , ji} = K \ {ji+1}. Then we have

lim
x2j−1,x2j→yj,

∀j∈K

∑
γ∈Pα,γ0

J,K

M−1
α,γUγ (x1, . . . , x4N )

∏
j∈K (x2j − x2j−1)1/2

(B.3)

= lim
x2ji+1−1,x2ji+1

→yji+1

1

(x2ji+1
− x2ji+1−1)1/2

×

 lim
x2j−1,x2j→yj
∀j∈K1

∑
γ∈Pα,γ0

J,K1

M−1
α,γUγ (x1, . . . , x4N )

∏
j∈K1

(x2j − x2j−1)1/2
+ lim
x2j−1,x2j→yj
∀j∈K1

∑
γ∈Pα,γ1

J,K1

M−1
α,γUγ (x1, . . . , x4N )

∏
j∈K1

(x2j − x2j−1)1/2

 .

By the induction hypothesis, we have

lim
x2j−1,x2j→yj
∀j∈K1

∑
γ∈Pα,γ0J,K1

M−1
α,γUγ(x1, . . . , x4N )∏

j∈K1
(x2j − x2j−1)1/2

=M−1
α,γ0

∏
1≤t<s≤4N
t,s6∈RK1

(xs − xt)
1
2ϑγ0 (t,s) × S0,

lim
x2j−1,x2j→yj
∀j∈K1

∑
γ∈Pα,γ1J,K1

M−1
α,γUγ(x1, . . . , x4N )∏

j∈K1
(x2j − x2j−1)1/2

=M−1
α,γ1

∏
1≤t<s≤4N
t,s6∈RK1

(xs − xt)
1
2ϑγ1 (t,s) × S1,

where

Su =

b i2 c∑
m=0

∑
σ∈Jmi

2mZγuK1,jσ2m+1
· · ·ZγuK1,jσi

(yjσ1 − yjσ2 )2 × · · · × (yjσ2m−1
− yjσ2m )2

, for u = 0, 1.

Comparing the two expressions in the right hand side, we haveM−1
α,γ1 = −M−1

α,γ0 , and∏
1≤t<s≤4N
t,s6∈RK1

(xs − xt)
1
2ϑγ0 (t,s)

=
∏

1≤t<s≤4N
t,s6∈RK

(xs − xt)
1
2ϑγ0 (t,s)×

∏
1≤n≤4N
n6∈RK

∣∣∣∣xn − x2ji+1−1

xn − x2ji+1

∣∣∣∣ 12ϑγ0 (n,2ji+1−1)

×(x2ji+1 − x2ji+1−1)−
1
2 ;

∏
1≤t<s≤4N
t,s6∈RK1

(xs − xt)
1
2ϑγ1 (t,s)

=
∏

1≤t<s≤4N
t,s6∈RK

(xs − xt)
1
2ϑγ0 (t,s)×

∏
1≤n≤4N
n6∈RK

∣∣∣∣xn − x2ji+1−1

xn − x2ji+1

∣∣∣∣− 1
2ϑγ0 (n,2ji+1−1)

×(x2ji+1
− x2ji+1−1)−

1
2 .
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Plugging into (B.3) and denoting δ = x2ji+1
− x2ji+1−1, we have

lim
x2j−1,x2j→yj ,
∀j∈K

∑
γ∈Pα,γ0J,K

M−1
α,γUγ(x1, . . . , x4N )∏

j∈K(x2j − x2j−1)1/2
(B.4)

=M−1
α,γ0

∏
1≤t<s≤4N
t,s6∈RK

(xs − xt)
1
2ϑγ0 (t,s)

× lim
δ→0

x2ji+1−1→yji+1

1

δ


 ∏

1≤n≤4N
n 6∈RK

∣∣∣∣xn − x2ji+1−1

xn − x2ji+1

∣∣∣∣ϑγ0 (n,2ji+1−1)

− 1

× S0 + S0 − S1

 .

Note that

Zγ0K1,jσ2m+1
· · ·Zγ0K1,jσi

=

Zγ0K,jσ2m+1
+

δ(
x2ji+1−1 − yjσ2m+1

)(
x2ji+1

− yjσ2m+1

)


× · · · ×

(
Zγ0K,jσi

+
δ(

x2ji+1−1 − yji
) (
x2ji+1

− yji
)) ;

Zγ1K1,jσ2m+1
· · ·Zγ1K1,jσi

=

Zγ0K,jσ2m+1
− δ(

x2ji+1−1 − yjσ2m+1

)(
x2ji+1 − yjσ2m+1

)


× · · · ×

(
Zγ0K,jσi

− δ(
x2ji+1−1 − yji

) (
x2ji+1 − yji

)) .

Plugging into S0 and S1, we have

lim
δ→0

x2ji+1−1→yji+1

1

δ

 ∏
1≤n≤4N
n 6∈RK

∣∣∣∣xn − x2ji+1−1

xn − x2ji+1

∣∣∣∣ϑγ0 (n,2ji+1−1)

− 1

× S0

=Zγ0K,ji+1

 b i2 c∑
m=0

∑
σ∈Jmi

2mZγ0K,jσ2m+1
· · ·Zγ0K,jσi

(yjσ1 − yjσ2 )2 × · · · × (yjσ2m−1
− yjσ2m )2

 ;

lim
δ→0

x2ji+1−1→yji+1

1

δ
(S0 − S1)

=

b i2 c∑
m=0

∑
σ∈Jmi

i∑
r=2m+1

2m+1Zγ0K,jσ2m+1
· · ·Zγ0K,jσr−1

Zγ0K,jσr+1
· · ·Zγ0K,jσi

(yjσ1 − yjσ2 )2 × · · · × (yjσ2m−1
− yjσ2m )2 × (yji+1

− yjσr )2
.
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Plugging into (B.4), we see that it remains to show

b i+1
2 c∑

m=0

∑
τ∈Jmi+1

2mZγ0K,jτ2m+1
· · ·Zγ0K,jτi+1

(yjτ1 − yjτ2 )2 × · · · × (yjτ2m−1
− yjτ2m )2

(B.5)

=

b i2 c∑
m=0

∑
σ∈Jmi

(
i∑

r=2m+1

2m+1Zγ0K,jσ2m+1
· · ·Zγ0K,jσr−1

Zγ0K,jσr+1
· · ·Zγ0K,jσi

(yjσ1 − yjσ2 )2 × · · · × (yjσ2m−1
− yjσ2m )2 × (yji+1 − yjσr )2

)

+

b i2 c∑
m=0

∑
σ∈Jmi

(
2mZγ0K,jσ2m+1

· · ·Zγ0K,jσiZ
γ0
K,ji+1

(yjσ1 − yjσ2 )2 × · · · × (yjσ2m−1
− yjσ2m )2

)
.

For τ ∈ Jmi+1, let us consider the location of i+ 1 in τ . If τi+1 = i+ 1, we define σj = τj
for 1 ≤ j ≤ i, then σ ∈ Jmi . Thus, for 0 ≤ m ≤ b i2c, we have

∑
τ∈Jmi+1:
τi+1=i+1

2mZγ0K,jτ2m+1
· · ·Zγ0K,jτi+1

(yjτ1 − yjτ2 )2 × · · · × (yjτ2m−1
− yjτ2m )2

(B.6)

=
∑
σ∈Jmi

2mZγ0K,jσ2m+1
· · ·Zγ0K,jσiZ

γ0
K,ji+1

(yjσ1 − yjσ2 )2 × · · · × (yjσ2m−1
− yjσ2m )2

.

If τi+1 < i+ 1, we define a mapping for each m ∈ {1, 2, . . . , b i2c}:

Tm : {τ ∈ Jmi+1 : τi+1 < i+ 1} −→ Jm−1
i × {2m− 1, . . . , i}, τ 7→ (σ, r)

in the following way. For τ ∈ Jmi+1 and τi+1 < i + 1, we must have τ2k = i + 1 for some
1 ≤ k ≤ m. We set σj = τj , for j ≤ 2k − 2; we set σj = τj+2, for 2k − 1 ≤ j ≤ 2m− 2; and
we set {σ2m−1, . . . , σi} = {τ2k−1, τ2m+1, . . . , τi+1} such that σ2m−1 < . . . < σi. Suppose
σr = τ2k−1 for some r ∈ {2m − 1, . . . , i}. This defines the map Tm(τ) = (σ, r). We
argue that Tm is a bijection. For any (σ, r) ∈ Jm−1

i × {2m − 1, . . . , i}, we can define τ
as follows: {{τ1, τ2}, . . . , {τ2m−1, τ2m}} = {{σ1, σ2}, . . . , {σ2m−3, σ2m−2}, {σr, i + 1}} and
{τ2m+1, . . . , τi+1} = {σ2m−1, . . . , σr−1, σr+1, . . . , σi}, such that τ1 < τ3 < · · · < τ2m−1,
τ2j−1 < τ2j for j ≤ m and τ2m+1 < · · · < τi+1. Then we have τ ∈ Jmi+1 and τi+1 < i + 1.
This implies Tm is a bijection. Thus, we have

b i2 c∑
m=1

∑
τ∈Jmi+1:
τi+1<i+1

2mZγ0K,jτ2m+1
· · ·Zγ0K,jτi+1

(yjτ1 − yjτ2 )2 × · · · × (yjτ2m−1
− yjτ2m )2

(B.7)

=

b i2 c∑
m=1

∑
σ∈Jm−1

i

i∑
r=2m−1

2mZγ0K,jσ2m−1
· · ·Zγ0K,jσr−1

Zγ0K,jσr+1
· · ·Zγ0K,jσi

(yjσ1 − yjσ2 )2 × · · · × (yjσ2m−3
− yjσ2m−2

)2 × (yji+1 − yjσr )2

=

b i2 c−1∑
m=0

∑
σ∈Jmi

i∑
r=2m+1

2m+1Zγ0K,jσ2m+1
· · ·Zγ0K,jσr−1

Zγ0K,jσr+1
· · ·Zγ0K,jσi

(yjσ1 − yjσ2 )2 × · · · × (yjσ2m−1
− yjσ2m )2 × (yji+1

− yjσr )2
.

Combining (B.6) and (B.7), we obtain (B.5) for even i. Next, suppose i is odd and denote
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` = i+1
2 . By (B.6) and (B.7), we have

∑̀
m=0

∑
τ∈Jmi+1:
τi+1=i+1

2mZγ0K,jτ2m+1
· · ·Zγ0K,jτi+1

(yjτ1 − yjτ2 )2 × · · · × (yjτ2m−1
− yjτ2m )2

=

b i2 c∑
m=0

∑
σ∈Jmi

2mZγ0K,jσ2m+1
· · ·Zγ0K,jσiZ

γ0
K,ji+1

(yjσ1 − yjσ2 )2 × · · · × (yjσ2m−1
− yjσ2m )2

+
∑

τ∈J`i+1:
τi+1=i+1

2`

(yjτ1 − yjτ2 )2 × · · · × (yjτi − yjτi+1
)2

;

∑̀
m=0

∑
τ∈Jmi+1:
τi+1<i+1

2mZγ0K,jτ2m+1
· · ·Zγ0K,jτi+1

(yjτ1 − yjτ2 )2 × · · · × (yjτ2m−1
− yjτ2m )2

=

b i2 c∑
m=1

∑
τ∈Jmi+1:
τi+1<i+1

2mZγ0K,jτ2m+1
· · ·Zγ0K,jτi+1

(yjτ1 − yjτ2 )2 × · · · × (yjτ2m−1
− yjτ2m )2

+
∑

τ∈J`i+1:
τi+1<i+1

2`

(yjτ1 − yjτ2 )2 × · · · × (yjτi − yjτi+1
)2

=

b i2 c−1∑
m=0

∑
σ∈Jmi

i∑
r=2m+1

2m+1Zγ0K,jσ2m+1
· · ·Zγ0K,jσr−1

Zγ0K,jσr+1
· · ·Zγ0K,jσi

(yjσ1 − yjσ2 )2 × · · · × (yjσ2m−1
− yjσ2m )2 × (yji+1 − yjσr )2

+
∑

τ∈J`i+1:
τi+1<i+1

2`

(yjτ1 − yjτ2 )2 × · · · × (yjτi − yjτi+1
)2
.

Combining these two, in order to get (B.5), it remains to show∑
τ∈J`i+1

2`

(yjτ1 − yjτ2 )2 × · · · × (yjτi − yjτi+1
)2

(B.8)

=
∑

σ∈J`−1
i

2`

(yjσ1 − yjσ2 )2 × · · · × (yjσi−2
− yjσi−1

)2 × (yji+1
− yjσi )

2
.

To derive (B.8), we define T : J`i+1 −→ J`−1
i in the following way. For τ ∈ J`i+1,

we must have τ2k = i + 1 for some 1 ≤ k ≤ `. We set σj = τj , for j ≤ 2k − 2; we
set σj = τj+2, for 2k − 1 ≤ j ≤ 2` − 2; and we set σi = τ2k−1. This defines the
map T (τ) = σ. We argue that T is a bijection. For any σ ∈ J`−1

i , we can define τ

as follows: {{τ1, τ2}, . . . , {τi, τi+1}} = {{σ1, σ2}, . . . , {σi−2, σi−1}, {σi, i + 1}} such that
τ1 < τ3 < · · · < τi, τ2j−1 < τ2j for j ≤ `. Then we have τ ∈ J`i+1. This implies T is a
bijection, and gives (B.8). Hence, we complete the proof of (B.5) for odd i, and complete
the proof of (B.5).

Eq. (B.5) gives (B.2) for #K = i + 1 and completes the induction. Hence, Eq. (B.2)
holds for all K ⊂ J . Taking K = J in (B.2), we obtain (B.1). This completes the proof.
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