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Abstract

We consider metric graph Gaussian free field (GFF) defined on polygons of 672 with
alternating boundary data. The crossing probabilities for level-set percolation of
metric graph GFF have scaling limits. When the boundary data is well-chosen, the
scaling limits of crossing probabilities can be explicitly constructed as “fusion" of
multiple SLE, pure partition functions.
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1 Introduction

This article concerns crossing probability of level-set percolation of Gaussian free
field (GFF) on the square lattice Z2. For L > 0, consider the rectangle

Rr={2:0<Rz< L,0<Vz<1}.

Let y1,¥y2,ys, ys be its four corners, listed in counterclockwise order with y» = 0. For
§>0,let Vs = R,N6Z? and let 4, 3,43, 43 be its four corners, listed in counterclockwise
order such that y3 is closest to y2. For two vertices u,v € 9V, we denote by (uv) the arc
of 9V; from u to v in counterclockwise order. Let I'? be a discrete GFF (see Section 5.1)
on Vs with alternating boundary data:

peon (yyd) U (y3ys), —pon (y3y3) U (y5ys),

where ;1 > 0 is a positive constant. Let 'Y be the GFF on the metric graph V; (see
Section 5.1) with the same boundary data. We are interested in the event that there
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Crossing probabilities in metric graph GFF

exists a path in Vj (resp. V) from (y2y3) to (y3y3) such that I’ (resp. T’) is non-negative

on this path. We denote this event by
>0 >0
{(y?yg) = (ygyi)} and {(y?yg) = (ygyﬁ)}

for I’ and I'’ respectively. Although, both discrete GFF I'’ and metric graph GFF I
converge as distributions to the continuum GFF as § — 0, the probabilities for such
crossing events have distinct scaling limits, as proved in [DWW20, Theorem 1.2]. It is
then natural to ask whether we are able to give explicit formula for scaling limits of such
crossing probabilities.

The answer to this question relies on Schramm-Sheffield’s famous work on level lines
of GFF. We call (Q;z,y) a Dobrushin domain if Q C C is non-empty simply connected
and z,y are distinct boundary points. In [SS09], the authors prove that there exists
A = A\(Z?) > 0 such that the zero level line of discrete GFF on Dobrushin domains of 672
with boundary data +\ converges in distribution to Schramm-Loewner Evolution (SLE,,
see Section 2.3). Based on this result, one is able to show that [DWW20, Theorem 1.3],
when p = A,

5
lim P | (y793) <= (390 | = a. (1.1)
where ¢ is the cross-ratio of the rectangle: let ¢ be any conformal map from R; onto the
upper-half plane H with ¢(y1) < ¢(y2) < ¢(y3) < ¢(y4), then

g (p(y2) — o(y1))(e(ys) — ©(ys))
((y3) — p(y1))(p(ya) — @(yz)).

(1.2)

This gives answer to the case of discrete GFF. The authors in [DWW20] derive (1.1)
by showing that the scaling limit of the crossing probability in discrete GFF is the
same as the one for continuum GFF whose crossing probability is calculated in [PW19,
Theorem 1.4]. Such probability is also calculated in [KW11]. It remains to answer the
question for the case of metric graph GFF.

The goal of this article is to derive explicit formula for scaling limits of crossing
probability in metric graph GFF. We will show that, when p = 2),

. >0
lim P | (y193) <= (v5v4) | = g*, (1.3)

where q is the cross-ratio of the rectangle as in (1.2). In fact, we are able to give answer
in a more general setting: we can calculate the scaling limits of crossing probabilities
for the metric graph GFF with alternating boundary data on a polygon with 2N marked
points on the boundary. To state our main result, we first introduce some notations about
planar link patterns.

For p € Z~o, we call (Q;21,...,x,) a polygon if Q@ ¢ C is non-empty simply connected
and z1,...,7, are p boundary points in counterclockwise order lying on locally connected
boundary segments. We first introduce planar pair partitions. Suppose p = 2N is
even and suppose there are N non-intersecting simple curves in 2 connecting the 2NV
boundary points pairwise. These N curves form a planar pair partition that we denote
by a = {{a1,b1},... {an,bn}} with {a1,b1,...,an,bn} = {1,2,...,2N}. We call the pairs
{a,b} in « links. We denote by PPy the set of planar pair partitions with 2V points and
set PP = | |\~ PPn.

Next, we introduce general planar link patterns. The planar pair partitions then arise
as a special case. Suppose (Q;z1,...,x,) is a polygon. Fix a multiindex ¢ = (s1,...,s,) €
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7 , such that % _| s; is even and denote by

1 p

Suppose there are ¢ simple curves in 2 connecting the p boundary points pairwise
such that they do not intersect except at their common end points. These ¢ curves
form a planar link pattern that we call planar /-link patterns of p points. Precisely, we
call planar ¢-link patterns of p points with index valences ¢ = (s1,...,s,) as collections
w={{a1,b1},...,{as,be}} of ¢-links {a, b} which connect a pair of distinct indices a,b €
{1,2,...,p} such that, for any i € {1,2,...,p}, the index i is an endpoint of exactly s;
links and that none of the links intersect except at their common endpoints. We denote
the collection of /¢-link patterns of p points with index valences ¢ by LP.. With such
definition, when p = 2N is even, the planar N-link pattern of 2N points with index

valences ¢ = (1,...,1) is a planar pair partition and LP(; ;) = PPx.
In this article, we are interested in planar 2/N-link patterns of 2NV points with index
valences ¢ = (2,...,2), see Figure 1 for N = 2. With the above definition, the collection

of such planar link patterns is denoted by LP (5, . ») where the index has length 2.

Y1 Ys Y1 Ya Y1 Ya
-2\ -2\ —2)

2) 2) 2\ 2 2\ 22

-2\ -2 -2\
Y2 Ys Y2 Y3 Y2 Y3

Figure 1: Consider metric graph GFF in rectangle with alternating boundary data when
p = 2\. Consider the positive first passage sets attached to (y{y3) and to (yJy3) and
consider the negative first passage sets attached to (y3y3) and to (yjy?). Their frontier
form a planar 4-link pattern of 4 points with index valences ¢ = (2,2,2,2). There are
three possibilities as indicated in the figure. In the right panel, there is negative vertical
crossing of the metric graph GFF. In the middle panel, there is positive horizontal
crossing. In the left panel, there is neither positive horizontal crossing nor negative
vertical crossing. As § — 0, the frontier converges to level lines of continuum GFF with
the same boundary data and the four level lines are as follows: there are two level lines
starting from y; (resp. from y3), one has height —\ and the other one has height A.

Fix a polygon (9;¥i,...,y2n) such that Q C [~C,C]? for some C' > 0. Suppose
{(92%93,...,y5x) }s>0 are polygons such that Q° C [~C,C]? for all § > 0. Suppose
(Q%ys,...,y5x) converges to (Q;y1,...,y2n) as & — 0 in the following sense:

[—C, C)? \ Q° converges to [—C, C]? \  in Hausdorff metric
and yf — y;foreach 1 <¢ < 2N. (1.4)
Consider metric graph GFF IV in (Q%;¢?,...,y3,) with alternating boundary data:
2X on (ygj—lygj)v and —2X\on (ygjygj+1)a forj e {1,...,N}, (1.5)

where y2n+1 = y1 by convention. Consider positive first passage set (see Section 5.2)
of I attached to the boundary segments (ygjflygj), and negative first passage set
attached to the boundary segments (y3,45;,,), for j € {1,..., N}. The frontier of these
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first passage sets is a collection of 2N curves connecting the 2N boundary points so
that their end points form a planar 2N-link pattern of 2N points with index valences
s =1(2,2,...,2). See Figure 1. We denote the link pattern by .4°. Our main result is the
following.

Theorem 1.1. Fix N > 1 and the index valences ¢ = (2,...,2) of length 2N. Consider
the frontier of first passage sets of metric graph GFF in ° with alternating boundary
data (1.5). The frontier is a collection of 2N curves connecting the 2N boundary points
whose end points form a planar link pattern A° € LP.. We have

Za(Qy1,...,92N)
Z;I\QFF(Q; Yiye-- 71/2N)

lim IP[.A5 =4 = M r(a)

for all & € LP,
6—0

where the coefficient M, -(4) is given by Lemma 5.9, the function Z, is given by
Proposition 5.6 and Corollary 5.8, and

N
Zr(nGr)FF<Q;y17--'7y2N) = E Mw,T(&)Zd(Q;ylw"ayZN)-
&ELP,

The definition for M., ;) and Z; is quite involved, and we omit it from the introduc-
tion. Nevertheless, let us mention in the introduction nice properties that Z; enjoys.
First of all, they are conformally covariant: for any polygon (£;y;,...,y2n) such that
Y1,...,y2n lie on sufficiently regular segments of 912 (e.g. C'*¢ for some ¢ > 0) and any
conformal map ¢ on {2, we have

2N
Za(Q591,-- -, 02n) = H@Q/(yi) X Za(p(Q); (1), -+, 0(yan))- (1.6)

When @ =Hand y; < --- < yon, We write

N N
Zayr, - yonv) = ZaMly1, ..., yan), Zr(n(;)pp(yh.--,yzjv) = ZI(HG)FF(H§Z/17~~-,y2N)~

Then, we have o
Z00ee W1, yan) = H (y; —ua)? V" (1.7)
1<i<j<2N
Proposition 1.2. Fix N > 1 and the index valences ¢ = (2,...,2) of length 2N. For
any & € LP, the function Z; : Xon — R~ given by Proposition 5.6 and Corollary 5.8
satisfies the following PDE system: forall j € {1,...,2N},

93 Gy 0 ,
Y sy Vo OO} I~ NN =0 1.8
8y;3 -2 ayj -3 (y1’ 792N) ) ( )
i 1 1 0
where E(j) = E < _ > ,
2 2 (Wi —yi)?  yi—y; 0y
i#]
i 2 1 0
£9) =Y ( __ ) .
’ oy (i —y;)*  (yi —y;)* Oui

In Section 2, we will give preliminaries on planar link patterns and SLEs. In Section 3,
we will introduce multiple SLE partition functions and prove a preliminary result about
“fusion” of partition functions—Proposition 3.1. In Section 4, we will introduce continuum
GFF and prove a result on connection probabilities—Theorem 4.1. In Section 5, we will
introduce metric graph GFF and complete the proof of Theorem 1.1 and (1.6), (1.7)
and (1.8) by combining the results from preceding sections.
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The proof for Theorem 1.1 relies on the following three ingredients: a). Aru-Lupu-
Sepulveda’s work on the convergence of first passage sets of metric graph GFF [ALS20],
see Sections 5.2 and 5.3. b). A generalization of Peltola and the second author’s
work [PW19] on crossing probabilities in continuum GFF, see Theorem 4.1. c). Analysis
on the asymptotics of multiple SLE, partition functions, see Proposition 5.6. With these
three at hand, let us briefly describe how we derive Theorem 1.1 with N = 2 which
gives (1.3). The proof for general IV uses a similar idea. Our strategy is as follows: First,
we use a) to show that the frontiers of first passage set of metric graph GFF converge to
level lines of continuum GFF with boundary data (—2X,2), —2A,2)) and proper heights,
see Figure 1. Second, we use b) to calculate the crossing probabilities in continuum GFF
with boundary data (—2A,0,2X,0,—2X,0,2),0), see Figure 5. Finally, in Figure 5, we let
x1,T9 — y1, and x3,x4 — Y2 and x5, r¢ — ys and x7, xs — y4, then the four level lines in
Figure 5 become the level lines in Figure 1 and, due to c), the crossing probabilities
calculated in the second step admit limits which give the desired probability in (1.3).
See Corollary 5.10.

The proof for Proposition 1.2 relies on Proposition 3.1. Note that the third order
PDESs are not surprising. SLE partition functions are solutions to 2nd order PDEs (3.2)
and they can be understood as certain correlation functions in terms of conformal field
theory (CFT). Then the third order PDEs can be obtained by specific fusion channel,
see [BB03, BB04, BBKO05, FK04, Dub15, KP16, Pel20, Pel19]. See also discussion after
Proposition 3.1. The 2nd order PDEs (3.2) arise from stochastic differentials of certain
local martingales and SLE partition functions are related to crossing probabilities for the
critical statistical physics models, see [FSKZ17, KKP20, PW19, PW18]. However, there
seems no known direct probabilistic interpretation of higher order PDEs of CFT before.
In this sense, our work provides an example that gives a probabilistic interpretation to
higher order PDEs of CFT.

2 Preliminaries

2.1 Planar pair partitions and Dyck paths

In this section, we will give a one-to-one correspondence between planar pair par-
titions and Dyck paths. A Dyck path is a walk on Z3(, with steps of length one, start-
ing and ending at zero: « : {0,1,...,2N} — Z>( such that a(0) = «(2N) = 0, and
|a(k) —a(k—1)|=1forall k € {1,2,...,2N}. For N > 1, we denote the set of all Dyck
paths of 2N steps by DPy. There is a natural partial order on Dyck paths:

a =@ ifandonlyif «(k) <pg(k), forall k € {0,1,...,2N}. (2.1)

We set DP = | |~ DPx.
To each planar pair partition o € PPy, we write it as

o= {{alvbl}v"'a{aNabN}}v (22)
where a1 < as < --- < ayn andaj <bj7 forall j € {1,...,N}.

We associate it with a Dyck path, also denoted by o € DPy, as follows. We set a(0) =0
and, forall k € {1,...,2N}, we set

alk) = {a(k—l)—i—l, ifk € {ay,aq9,...,an}, (2.3)

Oé(k‘—l)—l, ifk e {bl,bg,...,bN}.

One may check, this defines a Dyck path a € DPy. Conversely, for any Dyck path
a:{0,1,...,2N} — Z>,, we associate a planar pair partition « by giving to each up-step
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(i.e., step away from zero) an index a,., forr = 1,2,..., N, and to each down-step (i.e., step
towards zero) an index by, for s = 1,2,..., N, and setting « := {{a1,b1},...,{an,bn}}.
These two mappings define a bijection between PPy and DPy. We thus identify the
elements a of these two sets and use the indistinguishable notation o € PPy and
«a € DPy for both. See Figure 2.

LN

Figure 2: Illustration of the bijection PPy <+ DPy;, identifying planar pair partition and
Dyck path for a = {{1,8},{2,3},{4, 7}, {5,6}}.

For a Dyck path a € DPy, we say that « has a local maximum at j if a(j) —a(j—1) =1
and a(j + 1) — a(j) = —1, and we denote A\’ € a; we say that o has a local minimum at j
ifa(j) —a(j —1) =—1and a(j + 1) — a(j) = 1, and we denote V; € a; we say that « has
a slope at j if otherwise, and we denote x; € a. We say that « has a local extremum at j
if o has a local minimum or maximum at j, and we denote ¢; € a.

If a planar pair partition o« € PPy has alink {j,7+1} € o, then A7 € . Let o/{j,j+1}
denote the planar pair partition by removing from « the link {7, j + 1} and relabelling the
remaining indices by 1,2,...,2N — 2. In terms of Dyck path, we denote this operation
by a/AJ € DPy_;. We define operation a/V; € DPy_; analogously when « has a local
minimum at j. When « has a local extremum at j, we denote such operation by «/¢;. If
« has a local minimum at j, we associate a with another Dyck path by converting the
local minimum at j to local maximum, and denote this operation by « 1 ;.

2.2 From planar link pattern to planar pair partition

Fix an index valences ¢ = (s1,...,s,) € Z2 such that >_"_| s; is even and we denote
this even number by 2/. Recall that LP. is the collection of all planar /-link patterns of p
points with index valences ¢. We define a natural map which associates to each planar
link pattern a planar pair partition. This map, denoted by

7:LP. — PPy, 4w 7(4),

is defined as following: in &, for each j € {1,2,...,p}, we split the jth point to s; distinct
points and attach the s; links of & ending there to these new s; points so that each of
them has valence one. See Figure 3.

LN A

Figure 3: In this figure, we have a planar link pattern with index valences ¢ = (2,3, 1, 2).
It is associated to a planar pair partition by splitting the four points into eight points
according to the valences and attaching the corresponding links.

In this article, we are interested in planar link patterns with index valences ¢ =
(2,...,2). Fix N > 1 and the index valences ¢ = (2, ...,2) of length 2N. Then 7 introduces
a bijection between LP. and the collection {3 € PPax : Agj—1 € 3, forall 1 <j < 2N}.

EJP 26 (2021), paper 37. https://www.imstat.org/ejp
Page 6/46


https://doi.org/10.1214/21-EJP598
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Crossing probabilities in metric graph GFF

2.3 Loewner chain and SLE

We call a compact subset K of H an H-hull if H\ K is simply connected. Riemann’s
mapping theorem implies that there exists a unique conformal map gy from H \ K onto
H with the property that lim,_, |9k (z) — 2| = 0. We say that gk is normalized at occ.

Consider families of conformal maps (g;,¢ > 0) obtained by solving the Loewner
equation: for each z € H,

Orgi(2) = 9o(2) = 2,

gi(z) =Wy’
where (W;,t > 0) is a real-valued continuous function, which we call the driving function.
Let T. be the swallowing time of » defined as sup{t > 0: inf,cp,|gs(2) — Ws| > 0}.
Denote K; := {z € H: T, <t}. Then, g; is the unique conformal map from H; := H\ K;
onto H normalized at co. The collection of H-hulls (K;,t > 0) associated with such maps
is called a Loewner chain.

Fix k > 0. The Schramm-Loewner Evolution SLE,, in H from 0 to cc is the random
Loewner chain (K;,t > 0) driven by W; = /kB;, where (B;,t > 0) is the standard
one-dimensional Brownian motion. Rohde-Schramm prove in [RS05] that (K, ¢ > 0) is
almost surely generated by a continuous transient curve, i.e., there almost surely exists
a continuous curve n such that for each ¢ > 0, H; is the unbounded connected component
of H \ 7[0,¢] and lim;_,~ |7(t)| = co. This random curve is called the SLE, trace in H
from 0 to co. When k € (0,4], the SLE, curves are simple; when k € (4,8), they have
self-touchings; when k > 8, they are space-filling. In this article, we focus on x = 4 as
SLE, is the level line of Gaussian free field, see Section 4.

3 Partition functions for multiple SLEs

At the beginning of this section, we will give a summary on “pure partition functions”.
As it is more convenient to see the connection to previous works, we write the summary
for general x. Fix
6—r 88—k

h = H= . 3.1
K€ (076]7 %% ) p ( )

Pure partition functions for multiple SLE, is a collection of smooth functions
ZQ : %QN — R

defined on the configuration space Xoy := {(71,...,2on) € R*V: 2y < --- < 29x} and
indexed by planar pair partitions a € PPy and satisfying the normalization Zy = 1 and
the following properties:

* Partial differential equations of second order (PDE): for all j € {1,...,2N},

2
"0 +Z< : 0 - 2 ) Z(x1,...,22n) = 0. (3.2)

9 9.2 .
2 ij 7 \Ti 2 ox; (z; —xj)?

» Mobius covariance (COV): For all Mdbius maps ¢ of H such that p(z1) < -+ <
e(zan),

2N
Z(21,...,22N) = wa(xi)h x Z(p(x1), ..., 0(xan)). (3.3)
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» Asymptotics (ASY): For all « € PPy and for all j € {1,...,2N — 1} and £ €
(xj—1,$j+2), we have

Zo (21, ...,
i Zel@L- - 2an) (3.4)
Tj,xip1—E ($j+1 7$j)7
Zoz/{j;j-’rl}(xh ey Lj—1, Lj42, - - ,IQN), if {j?] + 1} €a,

where «/{j,j + 1} € PPN_1 denotes the link pattern obtained from « by removing
the link {4, j+1} and relabelling the remaining indices by 1,2, ...,2N —2, as defined
in Section 2.1.

» Power law bound: For all & = {{a1,b1},...,{an,bn}} € PPy,

N

0< Za(wr, ... w2n) < [ low, — 2,72 (3.5)
=1

The uniqueness of such collection of smooth functions was proved in [FK15]' and the
existence of such collection was proved in [Wu20] for k < 6. See [Dub06], [Dub07],
[BBKO5], [KP16], and [PW19] for earlier works on partition functions.

In (3.4), we see that, if {j,7 + 1} € a, we normalize the function 2, by (z;11 — z;)~2"
and we obtain the limiting function Z,,; ;11;. The goal of this section is to investigate
the correct normalization of Z, when {j,j + 1} ¢ o and to analyze the limiting function.

Proposition 3.1. Fix k = 4. For o € PPy and for j € {1,2,...,2N — 1}, we assume
{j,j+1} € a. Forall§ € (xj_1,x;12), the following limit exists:

. Z (!,Cl ng)
Za/LIj (xla cee 71']'7175)‘%]'4*27 s 7$2N) = . g}l_fﬁﬁg (Z’_HL—x’)Q/“
3:%j J J

(3.6)

Furthermore, the limiting function Z, 11, satisfies the following system of (2N —1) PDEs
2 and the conformal covariance with x = 4.

« Partial differential equations of second order (PDE): forn € {1,...,2N}\ {j,5 + 1},

we have
0? 4
[89@2 - Hﬁ(g} Zayuy (@1, Ty Tjga, o Tan) = 0, 3.7
here £") = - - ox; )’
where L5 1<iz<:2N <(-Tz — LL’n)2 T — I, (933‘1) + ((l‘] — mn)2 Tj— Tn (9.%])
i#j.j+1n

'In fact, [FK15, Lemma 1] proves a much stronger uniqueness, and such stronger uniqueness plays essential
role in deriving (3.12). As we will not need this stronger uniqueness directly in the current article, we do not
include the precise statement and refer interested readers to [FK15, Lemma 1] and [PW19].

2Note that, the operators L(_J% and L(_J% in Proposition 3.1 are distinct from the ones in Proposition 1.2. In

fact, this kind of operators also depends on the index valences of planar link patterns. To simplify notations,
we omit the dependence.
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 Partial differential equation of third order (PDE):

o? 16 ;) O 88—k i
E(j)7+(72)£(_];) Za/uj(xl,...,xj,a:j+2,...,sz):0,

(4) h ! i

h = > B |

where E_Q e <(xz — .’L'])2 (:EZ — gj]) axz) ’ 3 8)
i#5,0+1

G) _ 2h _ 1 i
£5= 2 ((ﬂfz‘%‘)3 (x5 —x;)? Owi )

1<i<2N,
1#7,J+1

e MOoébius covariance (COV): For all Mébius maps ¢ of H such that (1) < -+ <
e(z2n),

Zo, (T1y -, X5, Tjya, ..o, Tan) (3.9)

= H ()2 X Zoyi, (p(21), -5 0(25), 0(T542), -5 p(22n)),

where A; =hforie{l,...,7—1,7+2,...,2N}and A; = H.

The connection of SLE,. with conformal field theory (CFT) is now well-known [BB03,
BB04, BBKO05, FK04]. In that sense, solutions to PDE (3.2) correspond to correlation
functions in CFT with central charge ¢ = (3x—8)(6—+)/2x. Then PDE (3.7) and (3.8) come
as specific fusion channel of correlation functions in terms of CFT [BBK05, Dub15, KP16].
Note that the parameters h, I in (3.1) coincide with the Kac conformal weights h » and
h1,3. In fact, Peltola proves in [Pel20] a more general conclusion for x € (0,8) \ Q. From
there, all conclusions in Proposition 3.1 hold for x € (0, 8) \ Q. Our results indicate that a
similar conclusion as in [Pel20] also holds for x = 4. Our method is straight forward but
is specific for k = 4, as our proof uses the explicit formulae for SLE, partition functions
constructed in [PW19]. The explicit formulae involve “conformal block functions” which
we will introduce in Section 3.1.

Finally, let us describe the connection between the 2nd order PDE (3.2) and the
third order PDE (1.8). Consider y; < ... < yony and 1 < a2 < -+ < Tyn_1 < T4N-
Fix a € PPoy and suppose Z,(z1,...,2z4n) satisfies the 2nd order PDE (3.2). We take
limits xo9,—1, 2, — y, foralln € {1,2,...,2N} and normalize Z,(z1,...,z4n) properly.
From (3.6), we see that the proper normalization should be [, <oy (Z2n — Ton_1)%/".
We will show in Proposition 5.6 that the function Z,(z1, z2,. ..  TAN—1, x4n) normalized
by [, <,,<on(2n — $2n_1)2/ % admits a limit and then show that the limit satisfies the
third order PDE (1.8). To check the third order PDE (1.8), we will use PDE (3.8). See
Proof of Proposition 1.2 in Section 5.4. Again, our proof is specific for x = 4. The same
conclusion holds for « € (0, 8) \ Q due to [Pel20].

In the rest of the article, we fix kK = 4.

3.1 Conformal block functions

For a = {{a1,b1},...,{an,bn}} € DPy ordered as in (2.2), we define conformal block
function U,, : X2y — R~ as follows:
Un (1, ..., ToN) = H (xj—zi)%ﬁa(i’j), (3.10)
1<i<j<2N

+1, lfl,j S {al,ag,...,aN}, ori,j € {bl,bg,...,bN},

where 9,(i, j) := {_1 otherwise

EJP 26 (2021), paper 37. https://www.imstat.org/ejp
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The function U/, satisfies the second order PDEs (3.2), see [PW19, Lemma 6.4]. These
functions appear in CFT as “conformal blocks”. In particular, there are analog of such
functions for s € (0,8) \ Q discussed in [KKP19] in terms of CFT.

Next, we give the relation between the two collections {Z, : « € PPy} and {U,, :
a € DPy}: they are related by a linear transformation. To give the transformation, we

introduce a binary relation A Leta= {{a1,b1},...,{an,bn}} € PPy be ordered as
in (2.2). Let B € PPy. Then, « <(—) B if and only if there exists a permutation o € Gy
such that

B = {{ala ba(l)}a EERE) {aN7 ba(N)}}-
Note that the right-hand side in the above expression may not be ordered as in (2.2). We
denote by M = (M, g) the Cx x Cy incidence matrix of this relation:

. 0 5.
Mo = 1, ifa+— f; (3.11)
0, if else.

We collect some properties of M in the following lemma. Recall from Section 2.1 that
each planar pair partition o € PPy is associated with a Dyck path which we also denote
by a € DPy.

Lemma 3.2. The matrix M is invertible and we denote its inverse by M~ = (M;lﬁ)
The entry M;-,lﬂ is non-zero if and only if « < 3 as in (2.1). Furthermore, we have the

following properties of M~'. Suppose «, 3 € DPy.

* Suppose NV € o and V; € 3. Then o < B if and only if « < 31 ;.
* Suppose NV ¢ a, V; € B and o < 3. Then M;} = —M;}BTQJ,

Proof. See [PW19, Proposition 2.9 and Lemma 2.10]. O

Now, we are ready to state the linear transformation between the two collections
{Z,:a € PPy} and {U, : « € DPyx}: (see [PW19, Theorem 1.5])

{Ua(l‘l, e ,J,‘QN) = ZﬁePPN M(X,Bzﬂ(xla . ’JjQN),

" (3.12)
Za(:cl, N ,IQN) = ZBEDPN Maiguﬁ(ftl, e ,IQN).

3.2 Asymptotics of partition functions

In this section, we will analyze the asymptotics of pure partition functions and
conformal block functions as z;, ;41 — £. Note that, we will use the following basic
facts about 9, through calculation without notice: for distinct i,s,t € {1,2,...,2N}, we
have

Dot s)2 =1, Do(t,i)0(s,1) = V4(t, s).

Lemma 3.3. The collection {U, : o« € DP} of conformal block functions satisfy the
following asymptotic property: for any j € {1,...,2N —1} and z1 < 3 < --- < zj_1 <
< xjpo < < TN,

lim ua([i'l,...,.%gj\]) _{Ua//\_;’($17...,$j1,l‘j+2,...,.’L‘2N), ifN € a,
oy & _ 5 \-1/2 T .
;85418 Tj41 — Uyiv (1,0 T 1,Ti09,...,T ifV, €
ii_};:i ;0Fi¢j,j+1( Jjt+ J) 04/\/]( 1 s Lj—1, L4542, ) 2N)7 g )
(3.13)
. Un(T1,. .., T2N) )
N ~hm ~—~1/2:ua/xj(xla'"7mj717§7wj+27"'7x2]\7)u lij € q,
Tj,&j41—E, (Tj41 — &) :
T;—x; fori#j,j+1
(3.14)
EJP 26 (2021), paper 37. https://www.imstat.org/ejp
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where
o 19a(t,s Vo (1,5
u@/xj(l'l,~~~,xj—1,£7xj+2,u~,x2N) = H (xs_xtt)2 () H ‘xl_f‘ ( J)~
1<t<s<2N 1<i<2N
t,s#5,5+1 i#5,j+1

(3.15)

Proof. The asymptotics in (3.13) is proved in [PW19, Lemma 6.6]. It remains to
show (3.14). By definition,

Ua(ih...,i”zzv): H (i,s_jt)%ﬁa(t,s) H |J~Ci_i,j|%19a(i,j) H ‘ji_jjﬂﬁﬂa(i,jﬂ).

5 = \1/2
(x-7+1 xﬂ) / 1<t<s<2N 1<i<2N 1<i<2N
t,s#£5,5+1 i#£5,j+1 1#5,5+1

Since x; € a, we have 9,(i,j) = J,(4,j + 1). By taking limit, we obtain (3.14). O

Lemma 3.4. The collection {Z,, : « € PP} of pure partition functions satisfy the follow-
ing asymptotic property: for any j € {1,...,2N — 1} andx1 < 32 < --- < zj_1 < £ <
Tjy2 < --- < T2n,

Zo(T1,...,7
~11H'l oz(xlv axQN)

.’i’j,l‘j+1—)f7 (‘%j+1 _‘%j)_l/2
Z,—x; fori#j,j+1

= Za//\j (xla sy L1, T 42, - - - 7x2N)a 1f{,77.7 + 1} €,

(3.16)
. Zo(Z1,...,7 e
- ~11H1 .,(1—,,12/1\[2):Za/Hj('rh"'7xj—17£3zj+27"'71‘2N)? 1f{]7]+1}€a7
ot (T4 — I5)
Z,—x; fori#j,j+1
(3.17)
where
Zom, = Y MWV, + Y M LU (3.18)
\/jE,B XjEB
1 s 95(i,j
Vﬁ/v_i(mlw"7‘rj717€7xj+27"‘7x2N) = H (:L's_xif)zﬁﬁ(t7 ) Z IB(_?
1<t<s<2N 1<i<2N Ti
ts#£7,J+1 i#g,j+1

Proof. The asymptotics in (3.16) is proved in [PW19, Lemma 6.7]. It remains to
show (3.17). In the following, we assume {j,j + 1} € a. From Lemma 3.2 and (3.12), we
have

Zo(F1,...,Fan) (3.19)
=3 MLU(E, . Fan) + Y MU (. Ban) Y M U (E, . Fan).

a=p a=p a=xp

V;€EB N;EB X;€p

From Lemma 3.2, for every 8 € DPy with V; € 5, we have o < fifand only if o < 8 1 0;.
In such case, we have further that M;}ﬁ = —M;}moj. For the first two sums in the right
hand side of (3.19), we have '

Z M;}ﬁuﬁ(ilv“w‘%QN) + Z M;71[3Uﬁ(i'1,...,(f21\[)

azp a=p
Vi ep Aj cB
—1 ~ ~
=D M MUs —~Usto,) (@1, Fa)-
a=p
V;EB
EJP 26 (2021), paper 37. https://www.imstat.org/ejp
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Fix 8 such that o < § and V; € 5, we have

Up —Upro,)(T1, - -, T2N)

L = s\ 398(09)
=@ —3) x| ] (”5 o ) _

~ ~ 1y (2,7)
A2V
T; — LL']'+1 2
T — 2

i — 4,
iAj g1 N T i#4,j+1
~ ~ 1
X H (ajs — xt) Qﬂﬁ(tvs).
1<t<s<2N
f577.54+1

Dividing by (#;41 — 7;)'/2, we have

(Up —Upro,) (@1, .., Tan) I (w3 Up(i, )

~ lim — —— = Y
A AL (Zj1 = 75)> 1<t<s<2N (o T E
Z;—x; for i#£j,j+1 t_s;éj ]—_+1 i;zj_jJrl
(3.20)

For the third sum in the right hand side of (3.19), by (3.14), we have

Us(Z1,...,TaN)

li = . R iro, ... . 21
A, G s s o). 2D

Z,—x; fori#j,j+1
Plugging (3.20) and (3.21) into (3.19), we obtain (3.17). O

Note that, we use the notation «/ II; in (3.18). It can be understood as a general link
pattern. For a planar pair partition a € PPy, suppose x; € aor V; € a, we define «/I1;
to be the N-link pattern of (2N — 1) points with index valences ¢ = (1,...,1,2,1,...,1)
obtained from « by merging the points j and j + 1 and relabelling the remaining (2N — 1)
indices so that they are the first (2N — 1) integers.

3.3 Fusion of partition functions
In this section, we will show that the functions defined in (3.15) and (3.18) satisfy the
system of (2N — 1) PDEs in (3.7) and (3.8), and complete the proof of Proposition 3.1.

Lemma 3.5. The function Z/la/xj defined in (3.15) satisfies the second order PDE (3.7)
withk =4 forn e {1,...,2N}\ {j,7 + 1}.

Proof. Without loss of generality, we assume j = 1. Note that h = 1/4 and H = 1 when
k = 4. The second order PDE (3.7) becomes the following: for n € {3,4,...,2N},

62
1
(n) 4 1 0 : : ’
h = - - day )
whnere £_2 3<;N ((xl 7 xn)Q Ti— T axl) + ((I’l - In>2 T1 — T 81}1
_i;é_n '

The function in (3.15) with j = 1 becomes
1 ; i
Un)se, (T1,23,. .., 12N) i= H (x5 —xt)fﬂ“(t’é) H (z; —xl)ﬁ"‘( 1), (3.23)
3<t<s<2N 3<i<2N

It suffices to show that the function in (3.23) solves the second order PDE (3.22).
We write = (21, 23,...,22n). We have, fori € {3,4,...,2N},

g Uafx () 5 $Ya(59) | Yal(i])  gelosx (@) _ 5 alsl)
Z/{Q/X1<CL‘) 3<s<2N. Ti — Ts .’L'i—l'l’ Z/[a/xl(w) Ts — X1
<

3<s<2N

EJP 26 (2021), paper 37. https://www.imstat.org/ejp
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Then, we have

£(1L2)u0//>ﬁ(x) _ i - %ﬂa(nﬂ/) + 1— ﬁa(n, ].)
Z’{C‘¢/><1 (.’1}) 3<i<2N, (xn - xi)Q (‘rn - x1)2
30a(t,s) Da(i,1)
+ 2 ? + al\ls :
3<t<zs:<2N’ (Tn — o) (20 — T5) 3<;2N7 (2, — x3) (20 — 21)
_t,s;ﬁ_n _i;Zn
2
;T%ua/xl(w) B 1 - 19,(n,i) N 1 —94(n, 1)
Z/la/><1 (:13) 3<i<aN (In - xi)Q (xn - 351)2
i<2N,
+ Z %ﬁa(&t) + ﬁa(za 1)
serinton, @n = @)(@n =) = (@0 — @) (20 — 21)
T t,s#En Ti#n
These give [3‘122 — ES"Q)} Uy/x, = 0 as desired. O

Lemma 3.6. The function Z/{a/xj defined in (3.15) satisfies the third order PDE (3.8)
with k = 4.

Proof. Without loss of generality, we assume j = 1. The third order PDE (3.8) becomes
the following:

o a 9 (1)
98~ agy, T2 Flonas, . oan) = 3.24
|:8xf £—2 61,'1 + £3:| (x17x37 ,xQN) 07 ( )
1 1 9
where £) = ( 1 B > 7
- Bgzzgjzzv (i —21)* (2 —21) O
1 1 o
£9) = ( 3 > |
- 39‘23:21\7 (v; —21)® (25 —21)? Oy

It suffices to show that the function in (3.23) solves the third order PDE (3.24). We write
x = (z1,23,...,T2n). We have

2L MU, ()
ua/><1(w)
_ Z 1—219a(i,1)+ Z Vo (s,t) (s — 21 + 5 — 21)

(z; —x1)? (21 —21)* (s —21)?

3<i<2N
4&;%% s (@)
uOé/><1 (1:)
5 4 —594(i,1)

(z; —x1)?

3<t<s<2N

3<i<2N
N Z 494 (s, t)(xy — 1 + 25 — 1) — 300 (¢, 1) (2 — x1) — 390(s, 1) (x5 — 1)
(¢ — 21)* (25 — 21)?

3<t<s<2N

+ Z (_6)19a(t7 1)19a(57 1)1904(”71),

(zp — x1) (25 — 21) (20 — 1)

3<t<s<n<2N

EJP 26 (2021), paper 37. https://www.imstat.org/ejp
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63

airif a/Xl(w)
ua/xl($)
_ Z 3 — 39,1, 1)

3<i<2N (i —a1)

n Z 3(Wa(s,t) — Fa(t, 1)) (@ — 21) + 3(Fal(s,t) — Fa(s, 1)) (xs — x1)
3<t<s<2N (@ —21)%(2s — 21)?

N (—6)00(t, 1)94(s, 1)V (n, 1).
3<t<s<n<2N (2 — 1) (@5 — 1) (20 — 21)

These give {8‘9—; - 46(71%3%1 + 2£9§} Uy /x, = 0 as desired. O

Lemma 3.7. The function Za/uj defined in (3.18) satisfies the second order PDE (3.7)
withk =4 forn e {1,...,2N}\ {4,7 + 1}.

Proof. Without loss of generality, we assume j = 1. The function in (3.18) with j =1
becomes Z, /11, = 5.,¢5 M;}BV[;’/VI + 2 5.x:e8 M;lﬁl/lg/xl where

o 95(i,1
Vs v, (1,3, ..., TaN) = H (xs—xt)fﬂf’(t’é) Z M (3.25)

3<t<s<2N 3<i<on i L1
We will show that Za/Hl satisfies the second order PDE (3.22). From Lemma 3.5, the
function L{,[g/Xl satisfies PDE (3.22). It suffcies to show that the function VB/vl in (3.25)
satisfies PDE (3.22).

We write = (z1, 23, ..., 2oy) and set

olx)= Y Ipi 1) (3.26)

We have, fori € {3,4,...,2N},

€T x g

Vs /va () _3§s§2N, P s () (2 — 21)%’
s#1
eV (®) _ v el
= .
Vi, (@) A (@) (e — o)
Then we obtain
EYLQ)VB/\/l (.’I))
Vﬁ/\/l 3:)
_ i~ 395(i,n) 1 95(n,1)
= 2 Gy T n? T e@ e e
3<i<2N n ? n 1 n 1
1 .
=95(t, s —95(i,1
+ (z —zxﬁ)((a? )—a: ) + Z o(x)(x —x)(i(—o)c Wy — 1)’
3<t<s<2N, " s/ t 3<i<2N, n i)\Lq 1)(Tn 1
t,s#n i#n
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02
BdTivﬁ/Vl (CI:)

vﬂ/\/l (CC)
-y I 39s(in) | 205(n,1)
3<i<2N, (zn — i) o(x)(zy, —x1)3
Is(t, s) —9s(i, 1)
+ 2 L
39;321\/, (@n = @) (@n — 21) 3925:21\/ (2)(zn — 2)(Tn — 21)2
t,s#n iZn

Taking the difference, we have

2
%%V,B/vl (z) _ L(:LZ) Vs/vs (z)

Vﬁ/\/l((l?) VB/\/1(w)
—1 ?9[3(77,,1) *ﬂﬁ(i,l)
(v, —x1)2 + o(x)(xy — x1)? + N o(x)(x, — 2;) (2 — 21)2
195(i, 1)
+
_ -1 95(n,1) 95(i,1)
_(an —x1)? + o(x)(xy, —x1)3 + 3g§N7 o(x)(z; — x1)(zy — 21)?
iF#EN
-1 Us(n, 1) o(x) — 9p(n,1)

(@ —71)? | 0@ (@ —31)° | o(@) (2 ?;32 =0

This completes the proof.

O

Lemma 3.8. The function ZQ/HJ defined in (3.18) satisfies the third order PDE (3.8)

with k = 4.

Proof. Without loss of generality, we assume j = 1. From Lemma 3.6, the function U,/
satisfies PDE (3.24). It suffices to show that the function Vg, in (3.25) satisfies the
third order PDE (3.24). We write = (21,23, ...,22y) and set o(x) as in (3.26). Then we

have
iVora@) g~ L g D)
Vﬂ/Vl (CL‘) 3<i<2N (wi - 371)3 3<icaN O'(CL')(SL‘Z‘ — $1)4
Ip(s,t)(xe — o1 + 25 — 1)
* Z (x — 1) (s —11)%2
3<t<s<2N t 1 s 1
1 .
45(—%87(21]}5/\/1 (m) _ Z 8?95(’6, ].) i O'(a:) 80’(:12) .
VB/VI (w) 3S7/S2N U(w)(‘xl - ‘/El)4 8‘7"1 ’
L AL 71
Vara (@) 2 @) — o)
Therefore,

FxVera(x) 4L 2y (2) +2£(_1)V5/v1(w)
Vﬁ/\/l(w) Vﬁ/Vl(w) Vﬁ/Vl(w)
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B Z 1 - Z Us(s,t)(xe — o1+ 25 —a1) G(w)ao(:ﬂ)

3<i<2N (5 — 21) 3<t<s<2N (@ — 21)*(2s — 21)? Oz
va(t, 1) Ys(s,1) do(x)
- Z Ty —x Z (x5 —x1)? —o(@) Ox =0
3<¢<an 't 1 3<s<2N V8 1 L
This completes the proof. O

Proof of Proposition 3.1. The existence of the limit (3.6) is a consequence of (3.17). The
limiting function satisfies the PDE system due to Lemmas 3.7 and 3.8. COV (3.9) is a
consequence of COV (3.3) and the existence of the limit (3.6). O

4 Connection probabilities for level lines in GFF

In this section, we first introduce continuum GFF and level lines in Section 4.1. Then
we state the main conclusion of the section—Theorem 4.1—in Section 4.2. This theorem
gives the connection probabilities for level lines of GFF in polygons with boundary data
given by Dyck paths. The proof of Theorem 4.1 involves several technical lemmas which
we find not instructive to include in the main text. We put the proof of these technical
lemmas to Appendix A.

4.1 Continuum GFF and level lines

In this section, we introduce the Gaussian free field and its level lines. We refer to the
literature [She07, SS13, MS16, WW17] for details. Let 2 C C be a non-empty domain.
We denote by H,(Q2) the space of real-valued smooth functions which are compactly
supported in 2. We equip the space with Dirichlet inner product

(f,9)v = % /Q Vf(z)-Vg(z)d?z.

We denote by H() the Hilbert space completion of H,(2) with respect to the Dirichlet
inner product. A (zero-boundary) Gaussian free field (GFF) I' is an H(Q))-indexed linear
space of random variables, denoted by (T, f)v for each f € H(Q2), such that the map
f = (T, f)v is linear and each (T, f)v is a centered Gaussian with variance (f, f)v. In
general, for any harmonic function u on €2, we define the GFF with boundary data u by
I' + u where T is the zero-boundary GFF on (2.

Next, we introduce SLE with force points. We set

yo=(y < oo<yPl<0) and yf=(0<yt < <y,

and

L

p"=(p r

and p* = (p

) R1 ... Ry

Y4

where p?' € R, for ¢ € {L, R} and i € Z~o. An SLE, (p"; p®) process with force points

(yL;g ) is the Loewner evolution driven by W, that solves the following system of
integrated SDESs:
t Lyig r t Riig
W, —/RB, + / _prds _pds
0 WS - ‘/S ’ i=1 0 Ws - ‘/S ’
\ o (4.1)
. . S .
‘/tqyl :y‘bz —|—/0 m7 for qc {L,R} and 1 € Z>0,
EJP 26 (2021), paper 37. https://www.imstat.org/ejp
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where B; is the one-dimensional Brownian motion. Note that the process th’i is the
evolution of the point y%%, and we may write g;(y??) for V,7*. We define the continuation
threshold of the SLE, (p"; p®) to be the infimum of the time ¢ for which

either Z pL’i < -2, or Z pR’i < -2
wvEi=w, V=W,

By [MS16], the SLEK(BL; BR) process is well-defined up to the continuation threshold, and
it is almost surely generated by a continuous curve up to and including the continuation
threshold.

Now, we are ready to introduce level lines of GFF. Let K = (K;,t > 0) be an
SLE4(p"; p*) process with force points (y“; y%), with W, V% solving the SDE system (4.1)

with k = 4. Let (g:,t > 0) be the corresponding family of conformal maps and set
ft == g: — W;. Let u) be the harmonic function on H with boundary data

MU SR, i € (B, fily™),
AL+ o), ifx e (f(y™), filyRIHY),

where \ = 7/2 and pi0 = p?0 =0, y*0 =0~, yHH = —00,y®0 = 0F, and y*"+! =
by convention. Define u;(z) := u?(f;(z)). By [Dub09, SS13], there exists a coupling
(T, K), where T is a zero-boundary GFF on H, such that the following is true. Let 7
be any 7n-stopping time before the continuation threshold. Then, the conditional law
of I + ug restricted to H\ K, given K is the same as the law of I o f, + u, where I
is a zero-boundary GFF. Furthermore, in this coupling, the process K is almost surely
determined by I'. We refer to the SLE4(p"; p?) in this coupling as the level line of the
field I' 4+ ug. In general, for a € R, the level line of I" + ug with height a is the level line of
I'+ug —a.

4.2 Connection probabilities

For a € PPy, recall from Section 2.1 that a also denotes the corresponding Dyck
path in DPy. Let u, be the harmonic function on H with the following boundary data:
(zg = —oo and zan4+1 = oo by convention)

2X(a(k) — 1) on (xg, xgs1), forallk e€{0,1,2,...,N}. (4.2)

With such choice, we see that u, has boundary data —2X on (—oo, 1) U (z2n,o0), and
has boundary data 0 on (21, z2) U (zan—1, 22xn). Define

Ho(k) = AMa(k —1) + a(k) —2), forallke {1,,2...,2N}. (4.3)

We write o = {{a1,b1},...,{an,bn}} as ordered in (2.2). Suppose I is zero-boundary
GFF on M, and consider level lines of I' 4 u,,. Let n,, be the level line of I' + u,, starting
from z,, with height #, (a;). With such choice, the boundary data to the left side of 7,, is
2A(a(k —1) —1) and the boundary data to the right side of 7,, is 2A(«(k) — 1). Then the N
curves {Na,, Mass - - -, Nay } @re non-intersecting simple curves and their end points form
a planar pair partition of the 2N boundary points. We denote this planar pair partition
by A= AMay,---,Man) € PPx. See Figures 4-5. The goal of this section is to derive the
probabilities for P[A = j].

Theorem 4.1. Fix « € PPy. Let T + u, be the GFF on H with boundary data given
by (4.2). Consider the planar pair partition A formed by its level lines described as
above. Then we have

Zﬁ(xl, e ,ng)
Q’Bua(l’l, .. .,IQN)’

P[A =4 =M for all B € PPy, (4.4)
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Figure 4: Illustration of the boundary data with N = 4: the planar pair partition for
boundary data is @ = {{1,4},{2, 3},{5,8},{6,7}} as ordered in (2.2).

where {Z3 : 8 € PPy} are pure partition functions for multiple SLE,, {U, : o € DPx}
are conformal block functions defined in (3.10), and {M%@ : v, 8 € PPN} is the incidence
matrix defined through (3.11).

Theorem 4.1 is a generalization of [PW19, Theorem 1.4] where the authors derive
the connection probabilities for o = {{1,2},{3,4},...,{2N — 1,2N}}.

T g T T T xrs
T2 7 T2 L7 T2 L7
T3 L6 T3 L6 xs3 X6
Ty L5 Ty Ts Ty Ts

Figure 5: Figure 4 continued: the curve 7, is the level line starting from x; with height
—A for i = 1,5; the curve 7; is the level line starting from x; with height \ for ¢ = 2,6.
The four curves 11,12, 15, 7¢ connect the eight boundary points. Their end points give
a planar pair partition, and there are three possibilities as indicated in the figure.
From left to right, the three planar pair partitions are 5, = {{1,8},{2,3},{5,4},{6,7}},

B2 = {{1,8},{2,7},{5,4},{6,3}}, B3 = {{1,4},{2,3},{5,8},{6,7}}. Note that « & 3; for
i=1,2,3.

Lemma 4.2. Let n = n; be the level line of I + u,, starting from x; with height — ), let
(Wi, t > 0) be the driving function, and (g;,t > 0) be the corresponding conformal maps,
and T be the continuation threshold. For a smooth function F : Xon5 — R, the process

F(Wy, gi(w2), - -, gt(x2n))
ua(Wt,gt(l'Q), s ,gt($2N))

Mt =
is a local martingale if and only if F' satisfies PDE (3.2) with k =4 and i = 1.
Proof. The level line of T" + u,, starting from z; with height —\ is the SLE4(p2, . . ., pan)

process with force points (zs,...,zon) and p; = 2(«a(i) — a(i — 1)). Recalling from (4.1),
its driving function W; satisfies the following intergrated SDEs up to the continuation
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threshold 7'

t
pids 2ds .
Wt—2Bt+fE1+Z/ W géxz’ gt(xi):xi—k/o 795(931')—“/57 for2 <i < 2N.

We denote Y = (Wi, g¢(x2),...,9:(zan)) and X1 = g¢(x;) — Wy for 2 < ¢ < 2N. In this

proof, we write 0; for a as there is no ambiguity. We denote the differential operator
1n(32)w1th/<;—4andz—1by

1
DU .= 29?2 .
o +Z( ;= T (Cﬂz‘fﬂl)z)

By Itd’s formula, we have

dF(Y) :281F(Y)dBt+< +Z< p7al>>F(Y)dt,

1 pi01
=20, F(Y)dB; + D<1>+§ ( = ) F(Y)dt.
1 t ( Pt 2X%  Xa

We also have

oY) O Da(l,0) o 1+ (1,7)pi 1(Wa(1,5)pi+0a(1,4)p;)
(V) => e dB+ [ Y oxz XX dt.
o i=2 v i=2 il 2<i#£j<2N et

By definition, we have 9, (1,i)p; = 2 for 2 < i < 2N and V(1, j)p; + Va(l,i)p; = 4944, j)
for i # j. Thus

2N 2N

Ue¥) _ = Fall,) 3 Jalisj)
= - dB; + Z 5 + Z dt.
U (Y) = Xi s 2X?2 piiTtan XnXj

Therefore, we have

dM; dF(Y)  dUa(Y) | (0U(Y)\ [ 0lUa(Y) [(DF(Y)
My, " F(Y)  Ua(Y) +4< Un(Y) ) « 4( Un(Y) )( F(Y) )‘“
_(201F(Y) 201U (Y) DWF(Y)
‘( FY) U (Y) ) Bt R

Thus M; is a local martingale if and only if F’ satisfies PDE (3.2) withk =4and:=1. O

Proof of Theorem 4.1. We prove by induction on N. We write o« = {{a1,b1},...,{an,bn}}
as ordered in (2.2). We first show the conclusion for 5 € PPy such that M, g = 1. There
exists j € {1,,2...,2N — 1} such that {j,5 + 1} € . In this case, we have A/ € 3 and
Oj € a. If NV € a, we let n = n; be the level line of I' + u,, starting from x; with height
Haol(j). IfV; € a, we let n = 1,41 be the level line of I + u,, starting from x;,, with height
Ha(j+ 1). The second case can be proved in a similar way as the first case. So we only
give proof for the first case: we may assume A’ € a. Let ) = n; be the level line of I" + u,
starting from z; with height H,(j). Let (W}, ¢ > 0) be the driving function, and (g;,¢ > 0)
be the corresponding conformal maps, and 7T be the continuation threshold.

Define
Zﬁ(gt(xl)a e agt(xj—l)a Wy, gt(xj+1),gt(Z2N))
Ua(ge(x1), -, ge(xj=1), Wi, 9e(x41), 9t (w2n))
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Figure 6: Suppose o = {{1,4},{2,3},{5,10},{6,9},{7,8},{11,12}} as ordered in (2.2).
We see that A'! € . Consider the level line 7;; starting from z,; with height —\. It may
terminate at z,, with positive chance for n € {4,10,12}. In all three cases, the boundary
data on (x,,x,+1) is the same as the boundary data on (z19,211), and the boundary
data on (x,_1,%,) is the same as the boundary data on (x11,x12). Therefore, we have
a(n) = «(10) and a(n — 1) = «(11).

From a similar calculation as in Lemma 4.2, this is a local martingale. From (3.12), this
is a bounded martingale. Optional stopping theorem gives My = E[M7]. We will analyze
the behavior of the process as t — T'. Consider the level line 7, it will terminate at a
point x,, such that a(n — 1) = a(j) and a(n) = «(j — 1). See Figure 6.

If n(T) = xj4+1, from (3.13) and (3.16), we have, as t — T, almost surely,

o 29 @i) = W)V Z(g1 (@), - 9@ 1), We gu(@41), e (w2n)

" (ge(@i1) — W) PUG(ge (1), ge(wi—1), W, ge(541), g2 (w2n))
Zg/n, (g7 (1), 5 97(Tj-1), 97(Tj42), - - -, g7 (T2N))
Ueyo, (gr(1), 97 (5-1), 97(T)402), - - - g7 (T2N))

If n(T) = x, with n # j + 1, from Lemma A.3 and (3.5), we have lim;_,7 M; = 0 almost
surely. In summary, we have

Zg/n, (97 (21), -+ 97 (T5-1), 97 (Tj42), - - -, g7 (T2N))
}Ua/oj (gr(x1)s -5 97(%5-1), 97 (%5 42), - - -, g7 (T2N))

My = E[MT} =E ]]-{n(T)zxj+1

By induction hypothesis, we have

Zgin (gr(21)s -y 97 (5-1), 97 (Tj42), - - -, g7 (22N))
uﬂt/oj‘ (gT(.TJl), o agT<xj*1)a gT(‘T:j+2>7 v 7gT(x2N))
Therefore, My = P[A = ] as desired.

The above argument gives (4.4) for § € PPy such that M, 3 = 1. Since U, =
> s Ma,sZs, we have

P[A =3 |n[0,T]] =

> oPU=g= Y o

B:Ma p=1 BiMg, =1
This implies P[A = v] = 0 for all v € PPy with M, , = 0. This completes the proof
for (4.4). O
5 Metric graph GFF and first passage sets

In this section, we first introduce discrete GFF and metric graph GFF in Section 5.1,
and then we introduce first passage set in Section 5.2. In Section 5.3, we show that
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the crossing probabilities in metric graph GFF converges to the probability of certain
connection probabilities in continuum GFF, see Proposition 5.2. This gives the first half
of the proof of Theorem 1.1. In order to calculate the desired connection probabilities in
continuum GFF, we use Theorem 4.1 and a result about asymptotics of pure partition
functions—Proposition 5.6. Section 5.4 proves Proposition 5.6 and Proposition 1.2, and
it is quite independent of the rest of the section. Finally, we complete the proof of
Theorem 1.1 in Section 5.5.

5.1 Discrete GFF and metric graph GFF

In this section, we review basic definition and properties of discrete GFF and metric
graph GFF. We refer to [SS09, ALS20] for details. Suppose G = (V, E) is a connected
planar graph, and 90¢G is a given subset of V' which we call the boundary of G. Let A be
the discrete Laplacian on G:

(Af)(@) =D _(F(y) = f(2)), Vo € V\ 0G.
Yy~T
The discrete Green’s function G is the inverse of —A with zero-boundary condition on
0G. The discrete GFF is the centered Gaussian process (Fg(v) 1U € V) with covariance
given by Green'’s function:

E[I@)9W)] = Gola.y). Vr.yeV.

Suppose G = (V, E) is a connected planar graph with boundary 9G. For each e € E,
we view it as a line segment in the plane, and for every 2,y € e, we define3

/o |I/ — y/|
m(la' ) =
This defines a length measure dm on G. We call (G, dm) metric graph of G and we denote
it by _C'; . .

The metric graph GFF I'Y can be constructed as follows, see [Lup16]. First, we
sample the discrete GFF (I'Y(v) : v € V). Then, conditional on ('Y (v) : v € V), for each
e ={z,y} € E, we sample an independent Brownian bridge with length m([z,y]) and two
terminal values I'Y () and I'Y(y). This defines the metric graph GFF with zero-boundary
condition and we denote it by (Fg(z) iz € Q~) Given a function v : 9G — R, we choose
the discrete harmonic extension of u to V' \ 9G and then extend it inside each edge
by linear interpolation. We still denote this function by v and view it as the harmonic
function on the metric graph. We call I'Y + u the metric graph GFF with boundary data u.

5.2 First passage sets

In this section, we introduce first passage sets for metric graph GFF. Suppose r9 +u
is the metric graph GFF with boundary data u. For every a € R, the first passage set
above —a is defined by

f&i‘a ={x € g | 3 a continous path v from z to 9§ in G such that 19 +u > —a along v}.

Note that, conditional on {&Ea, the closure of G \ A*ﬁa is also a metric graph with length
measure inherited from G. According to [ALS20, Proposition 2.1], metric graph GFF
satisfies the following space Markov property:

. -
[9=rf, +I9%%

3Here we use the normalization in [ALS20] which is distinct from the one in [Lup16].
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where T'9A% is the metric graph GFF with zero-boundary condition on the closure of
G\ A", conditional on A“ , and Y, is defined as follows: it is I'9 on A“, and it is the

—a’ Av
harmonic function with boundary value given by I'Y on G \ [&’ia.

We also need the following description of first passage set by clusters of loops
and excursions. The Brownian loop measure and Brownian excursion measure are
conformally invariant measures on Brownian paths in the plane. In this article, we do
not need the precise definition of these measures, so we content ourselves with referring
their definition to [ALS20, Section 2.2]. We denote by ngoop the Brownian loop measure

on G. Suppose u is non-negative, and we denote by ug{g the Brownian excursion measure
on § with boundary data u. We sample Poisson point process with intensity measure

% p’lgoop' and denote it~by Ef /2 We sample an independent Poisson point process with

intensity measure ug,;é‘ and denote it by =9. We denote by j(ﬁf/z, Z9) the closure of
union of clusters formed by loops and excursions that contain at least one excursion
connected to 9G. As shown in [ALS20, Proposition 2.5], the set A(Ef/w Z9) has the same
law as the first passage set Ag.

Next, we introduce the first passage set for continuum GFF. To this end, we first
introduce local set. Suppose 2 C C is a simply connected domain and let I' be a
continuum GFF on ) with zero-boundary condition. We call a random closed set A C Q
is a local set of T, if ' = I'y + I'4, where I'4 and I'4 are two random distributions such
that I" 4 is harmonic in Q \ A and, conditional on (4,T 4), the function I'* is the GFF with
zero-boundary condition in 2\ A. Suppose h 4 is defined as follows: itis 'y on 2\ A and
itis 0 on A. Then we have the following description of the first passage set.

Theorem 5.1. Suppose €2 C C is a simply connected domain and let I" be a continuum
GFF on () with zero-boundary condition. Suppose u is a bounded harmonic function
with piecewise constant boundary data.* The first passage set A", is the local set of I
containing 0f) with the following two properties:

* The function hy« + u is harmonic in 2\ A" such that it equals —a on A", \ 09
and it equals u on (2 \ A" ) N 0Q. Moreover, hy« +u < —a.

* We have FAEa — hA?ia > 0. Le. for any positive smooth function f with compact
support, we have (I'y« — hax , f) > 0.

For all a > 0, the first passage set A" , exists. Moreover, the set A" , is the unique local
set which satisfies the above two properties and is measurable with respect to I'.

Proof. See [ALS20, Theorem 3.5]. O

Now, we are ready to state the convergence of the first passage set of the metric
graph GFF to the first passage set of the continuum GFF. Fix a bounded simply connected
domain Q such that Q c [~C, C]? for some C > 0. Suppose {Q2°}s-( is a sequence of
simply connected domains such that Q° ¢ [~C, )2 for all § > 0. Suppose Q9 converges
to Q as § — 0 in the following sense:

[—C, )%\ Q° converges to [-C, C]? \ Q in Hausdorff metric.

We denote by 572 the corresponding metric graph. We define Q9 to be the closure of
Q9N 6Z2. 1t is also a metric graph with metric inherited from §Z2. We define its boundary
by 9Q° := Q% N 90°. We have the following setup for the convergence.

4Throughout the article, by piecewise constant boundary data, we mean that the boundary data is piecewise
constant and it changes only finitely many times.
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« Suppose I is the continuum GFF on 2 and I'? is the metric grpah GFF on ° with
zero-boundary condition. We extend T to (—C,(C)? such that it is zero outside
Q, and we still denote the extension by I'. We define I'% on (—C, C)? as follows:
it equals T on Q° and it is harmonic in (—C,C)? \ Q° which equals zero along
o(—C,0)2.

e Suppose u is a harmonic function on 2 with piecewise constant boundary data
and v° is a harmonic function on ¢ for every § > 0 such that u® converges to u
uniformly as § — 0.

* For a € R, suppose A", is the first passage set of I on (2 and f&fa is the first

passage set of 'Y on 2%, We extend Faw  to (—C, C)? such that it is zero outside €,

and we still denote the extension by 'y« . We define f%ﬁ on (—C,C)? as follows:
it equals f‘j&u& on 9 and it is harmonic in (—C,0)%\ Q% which equals zero along
o(-C,C)>.

Proposition 5.2. We have the following convergence in law:
(f‘5’ f%ug 7[&“5&) — (]_—‘71—‘&71(17&%(1 N Q) , asdé—0.

Furthermore, if we couple {I'*}5-¢ and I together such that I'* — I in probability as
distributions on [~C, C?, then (I, Afa) — (I, A" , N Q) in probability.

Proof. See [ALS20, Proposition 4.7 and Lemma 4.9]. O

5.3 Convergence of the connection probability

Fix a bounded polygon (Q;y1,...,y2n) and suppose (Q%y¢,...,y5y) converges to
(Qy1,...,y2n) as 6 — 0 in the sense of (1.4). We have the following setup.

e Suppose 'Y is the zero-boundary metric graph GFF on Q9 and let u® be the harmonic
function with boundary data (1.5). Suppose I is zero-boundary GFF on 2 and let u
be the harmonic function with the same boundary data.

* We call the first passage set above 0 of % + uf the positive first passage set and
we denote it by A°. We call the first passage set above 0 of —(I'’ + %) the negative

-5
first passage set and we denote it by V . Similarly, we can also define the positive
first passage set and the negative first passage set for the continuum GFF in (),
and we denote them by A and V respectively.

Note that the frontier of these first passage sets is a collection of 2N curves connecting
the 2N boundary points so that their end points form a planar 2N-link pattern of 2V
points with index valences ¢ = (2,...,2), see Figure 1. We denote the link pattern by A’
for metric graph GFF and by A for cotinuum GFF. The goal of this section is to prove the
following convergence.

Proposition 5.3. Fix N > 1 and ¢ = (2, ...,2) oflength 2N. For all & € LP., we have

lim P[A° = 4] = P[A = d].
6—0
To prove Proposition 5.3, we will give an explicit construction of A and V in

Lemma 5.4. This construction indicates that the frontier of A and of V forms a planar
link pattern in LP.. Then, we prove Lemma 5.5 which indicates that for any subsequence
8, — 0 as n — oo, there exists a coupling such that the frontier of A% and of \3’6"
converges to the frontier of A and of V almost surely in Hausdorff metric. This indicates
the proposition.
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Lemma 5.4. The frontier of A is the union of level lines of the continuum GFF I" + u
starting from y»;_1 with height A for 1 < j < N, the frontier of V is the union of level
lines of T + u starting from yo;_; with height —X for1 < j < N.

Proof. We will prove the conclusion for A, and the proof for V is similar. We will
argue that the first passage set A can be constructed as follows. Let 7; be the level
line of I + u starting from y,;_; with height A for 1 < j < N. Suppose 5i,...,5;
are the different connected components of Q\ (Ui<;<nn;) which have (y2;_1,y2;) on
their boundary for some 1 < j < N. Note that (I + u)|s, has boundary data 2\ along
05;. Conditional on U;<;<n7;, we sample the first passage set above zero of (I + u)|g,
in each S;, and we denote it by A%’\l for 1 < ¢ < r. We will show that the union
A= (UlgjgNnj) U (Ulgigrl&gﬁi) U 0f2 has the same law as A.
First, we prove that A is a local set. By construction,

r :FU1<j<N77j + L=

,
— Ui<i<NMj
_FU1§j§N77j + § :F == 7|Si

1=1
T T
Ui<i<NMy Ui<i<Nmy Agxi
=Tujenm; + E (I-rsi= |Si)1&g>‘i + E (Ir=is s;)
1=1 i=1

Note that T'g := Tu,_,_yy, + Doy (TP1<i<N |Si)Ag_§ is harmonic in 2 \ A. Conditional

on (A,T'4), the function T4 = Y7 (IVisisnmi |Si)Ag~A’~' is the continuum GFF with zero-
boundary condition in 2 \ A. This implies that A is a local set.

Next, we check the two properties in Theorem 5.1. The first one is obvious by
construction. For the second one, suppose f is a positive smooth function with compact

support in €2, it suffices to prove

(Fulgsz\rm’f) = (hulgszvm?f) (5.1)
and
<(Fulggw ) az, + 2715, f) > 0. (5.2)

Eq. (5.1) is a consequence of properties of level lines of GFF. For (5.2), consider the
metric graph S) = S; N §Z2%, we denote by I gs the metric graph GFF with zero-

boundary condition on 52‘5. Then by Proposition 5.2, we can couple { (f‘5\§§> A2 } and
A7) s>0
(TYr<si<Nm |51)Ag>‘. together such that

((FUlSjSNm ‘Si)AgX + 2)‘15’L7f) = ((FUISjSNnj |Si)Al2)>‘. + 2)\ﬂ5,i,fﬂ5'i)

N o]
_%1_1% <<F |SE)A%/\ + 2)\]].51.,.]0151.) > 0.
This gives (5.2). Combining with (5.1) and Theorem 5.1, we see that A has the same law
as A, and this completes the proof. O

Lemma 5.5. Suppose §,, — 0 as n — oo.

e Suppose (A4, ..., A,) are different connected components of AN and (Yi1 .- -, Yik;)
are the marked points on the boundary of A; for each 1 < i < r; and suppose
(Vi,...,V,) are different connected components of VN Q and (y;1,...,y;.,) are
the marked points on the boundary of V; for each 1 < j < s.
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e Suppose (&‘15", .. ,&fz) are the connected components of
A%y (UlélSN (yg?_pygi‘D ;

- 5n, ~ 5
and suppose (Wl ey Wsn) are the connected components of

’*677/
V"u (U1§ng (yg%ygﬁl)) :

Then there exists a coupling of{(&‘sn,'\{fé")}nzl and (A, V) such that the following holds
almost surely.

e Forn large enough, we have r,, = r and s,, = s.
 Moreover, we can reorder (A\ff", e Afﬂ) and we still denote them by (A\ff”, .. ,Afﬂ),
such that (yf_’”i, ey yf’,;i) are the marked points on the boundary of [&f" for1l <

. . = 0n = 6n
¢ < r. Similarly, we can reorder (Vl ooy, ¥V

S

) and we still denote them by
< 517, g 671 .

(Vl yee, Vo ) such that (3/?,"17 . ,y?j;j) are the marked points on the boundary of

= 0n .

Wj for1 <j <s.

~ ~ O
e Furthermore, we have that Af” converges to A; for each 1 < i < r and Vj
converges to V; for each 1 < j < s in Hausdorff metric.

7 —2A TR —2) Y4

T

2\ 222X 2\

s ’_,_l_\_l_u—u_\_l_l_\_‘ s

Y2 o Y3 Y2 —o\ Y3

Figure 7: Suppose N = 2. The frontier of the first passage sets A and V is a collection
of 4 curves connecting the four points y;, ¥, 3, y4. There are three possibilities for the
connectivity patterns as indicated in Figure 1. In this figure, in the left panel, we have
the first possibility. The two red curves are frontiers of A; and A, and the two blue
curves are frontiers of V; and V5. In the right panel, we are in metric graph and the
two red curves are frontiers of A‘f"’ and A\g" and the two blue curves are frontiers of V‘i”
and Wg". Lemma 5.5 guarantees that there exists a coupling such that, when é,, — 0, the
red curves in the right panel converges to the red curves in the left panel and the blue
curves in the right panel converges to the blue curves in the left panel respectively.

Proof. We denote by R’ the connected component of A’» U (Ulglg N (ygf_ 1 yS;)) which

contains (ygy’_ 1 yg;) on its boundary for 1 < i < N; and we denote by 5’?" the connected
= 0n . . .

component of V =~ U (UlglgN (ygf,ygf+1)) which contains (ygy, yﬁ;@l) on its boundary

for 1 <¢ < N. Note that the sequence

PO PO R On &On &8, wron
{(R1 s RO A% S0 G0 )}n>1
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is tight. Thus, it suffices to prove that Lemma 5.5 holds for any convergent subsequence.
Given any convergent subsequence, we still denote it by

{(fzfn,...,é%,gén,gfn,...,gfvn,\%)}m.
By Skorokhod representation theorem, we can couple them on the same probability
space such that there is almost sure convergence. We denote the probability measure of
this coupling by P, and we denote its limit by (Rs,...,Rn, R, S1,...,5N,5).

By Proposition 5.2, we know that R = AN and S = VN . We will prove that R;
is the connected component of A which contains (y2;—1, y2;) on its boundary and S; is
the connected component of WV which contains (y2;, y2;+1) on its boundary. Moreover, we
will show that Lemma 5.5 holds in this coupling. We only give proof for the positive first
passage set, as the proof for the negative first passage set is similar. The proof is divided

into two steps. First, suppose (v;,,-..,¥:, ) are the marked points on the boundary of

5
H

R;. We will prove that (y . ,yf;‘) are the marked points on the boundary of Rf for

n large enough. Then we will prove that R; is the connected component of R which
contains (y2;-1, y2;) on its boundary for each 1 <i < N. See Figure 7.

For the first step, it is clear that if y; ¢ R; for some 1 < j < 2N, we have y?” ¢ Rf"
for n large enough by the almost sure convergence. For 1 < j < 2N, we define the event

F; = {yj € R;, but y;?" ¢ Rf" except for finitely many n} .

It suffices to prove P[F;] = 0. By Lemma 5.4, we have S N (y2;—1,y2;) = 0 for 1 <i < N.
We denote by D, the connected component of 2 \ S which contains (y2;—1,¥y2;) and we

- 5n, . .
denote by D,f” the connected component of Q% \ V' " which contains (ygy_l, ygf) By

Carathéodory kernel theorem, the domain Df" converges to D; in Carathéodory topology
as n — co. Note that A% 1 D is the first passage set Aj" of the metric graph GFF
on Df” with boundary data given by v which is defined as follows: v°* equals 0 on
g 6"1 = ~ = ..

Y 'n (’)Df” and v’ equals 2\ on 9% N 8Df". We may assume j is odd. On the event F},
we have (y;,y;+1) C 0D;. Thus for n large enough, we have (yg", yjﬁrl) C 8D,‘f". In such

case, we define the harmonic function vf” on Df” as follows: it equals 0 on (yj”, y;-s11>

and it equals v°* on 8Df "\ (y?”, y?j‘rl). Then, in the construction of Aga” by loops and
excursions, we can divide the excursions into two independent parts: the excursions
connecting to (yf", 31511) and the excursions which do not intersect (y?",y?il). Note

. . Sn  On . .
that the excursions connecting to (yj’ ,yj;l) correspond to the Poisson point process
D‘;n vén

o
with intensity measure piex: ¢

LF
n 3
SN T

- ,uerb and that the excursions which do not intersect
Hon Lo
(yf”,y?il) correspond to the Poisson point process with intensity measure uggg R

pin _pin

~ ~ ~ ~ fsn
Thus, we have R’" C A (ﬁl /2 22 om > if y?" ¢ RX". Note that A;' has the same law as
1

- =on =6 ~n
A <£?/2 ,ED,;'n > According to [ALS20, Corollary 4.12], the limit of Agl N D; does not
V1

intersect (y;, y;+1) almost surely. This implies P[F};] = 0.

For the second step, we define the event F; := {R; # Ry, but R; N Ry, # 0} for
1 <i < k < N. It suffices to prove that P[F; ;] = 0. Note that on the event F; ;, we
have (y2x—1,¥y2r) C D; . This implies (yggfl,ygg) C ij,; for n large enough. Moreover,
we have R" N R)" = () for n large enough. This implies k" N (y;_,,%5:) = 0. We
denote by D, ;, the connected component of D; \ R; with (y2x_1,¥2r) on its boundary
and we denote by fo;c the connected component of D{" \ RS" with (yggfl, ySg) on its
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boundary. Then by Carathéodory kernel theorem, the domain D;ST,‘€ converges to D; j as
n — oo in Carathéodory topology. Note that A% N Df% is the first passage set of the

metric graph GFF with boundary data w’" on D, where w’" is defined as follows: w’"

< 671, ™ ) ~ .
equals 0 on (V U Rf") NOD% and w'* equals 2\ on 9Q°» N 9D}, According to [ALS20,

Corollary 4.12], the limit of f%”‘s” N D, j, does not intersect (y2;—2, Y2i—1) YOR; U(y2i, Y2i+1)-
This implies P[F; ] = 0. It completes the proof. O

5.4 Asymptotics of partition functions and proof of Proposition 1.2

In this subsection, we will give the following asymptotics of pure partition functions:
Proposition 5.6. The purpose of this proposition will be clear in the proof of Theorem 1.1.

Proposition 5.6. Fix k = 4. Fix N > 1 and the index valences ¢ = (2,...,2) of length
2N. For each & € LP, let a := 7(&) € PPan be the associated planar pair partition as
defined in Section 2.2, and Z, be the pure partition function associated to «. Then, the
following limit exists: fory; < --- < yony and x1 < --- < X4n,

3 z (331,.-.7374]\/‘)
Za(y - yen) = lim 2N@ . (5.3)
AN = (25 — Toj_q1)'/?

We will show Proposition 5.6 by the explicit expression for Z, from (3.12):

Za(xl, . ,.7;4]\]) = Z M;’lﬁulg(xl, . ,a:4N).
BEDP2N

For 8 € DPyy such that xp;_; € Bforall 1 < j < 2N, it is easy to see that Uz admits
a limit when normalized by [, (22, — z9;_1)'/?, see Lemma 5.7. However, for other 3,
the conformal block s explodes when normalized by [];(z2; — z9;-1)'/2. In order to
derive the existence of the limit, we need to group distinct 8’s properly so that the
explosion cancels. The proof of Proposition 5.6 involves heavy notation which we find
unavoidable. As the proof is lengthy and not instructive to include in the main text, we
put it in Appendix B. We suggest readers to first read the proof of Corollary 5.10 where
we give the proof for Proposition 5.6 when N = 2.

Lemma 5.7. Fix k = 4. Fix N > 1. Given a Dyck path $ € DPyy of length 4N such that
Xgj_1 € B foralll < j < 2N, define (8), € DPy by

1
(B)2(k) = 55(2747), 1<k <2N.
One may check that this is a well-defined Dyck path of length 2N . Then, fory; < --- < yan
and 1 < --- < x4y, We have
Ug(l‘l, ‘e ,.1741\/)

lim
T25—1,L25Yj, 2N R .
V1<j<aN Hj:1(x2y T2j-1)

Proof. By the definition (3.10), we have

1/2 :U(Liﬂh(yl,...,yg]v). (54)

Uﬂ(xl, e ,x4N)
H3£1(372j — Toj_1)1/2

= (w2 — was)(war — Tos—1)(@2t—1 — T2s)(@T2t—1 — Tas—1

))%ﬂg(?S,?f) )

1<s<t<2N
Thus
U5($1,...,$4N) 29
— — . 3(2t,2s) — u4
¥2i-1,%25 Y5 HQ-N (w95 — woj—1)1/2 H (e = v) (B)Q(yl’ Y2n)
V1<j<2N J=1\"2j J 1<s<t<2N

O
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Assuming Proposition 5.6 holds, we will extend definition of Z4 via conformal covari-
ance.
Corollary 5.8. Assume the same notations as in Proposition 5.6. The function Z
satisfies the following conformal covariance: for all Mébius maps ¢ of H such that
p(y1) < -+ < p(y2n), we have

2N
Za(yr, -y ven) = [ [ €' ) x Zalen), .. (yan)). (5.5)
=1

For general polygon (Q;y1,...,yan), we define

2N
Za(Q Y1,y y2n) = H@/(yi) X Za(p(y1)s- - p(y2n)), (5.6)
i=1

where ¢ is any conformal map from 2 onto H such that ¢(y1) < ... < p(yan)-

Proof. The conformal covariance (5.5) is a consequence of (3.3) and the existence of
the limit (5.3). From (5.5), we see that (5.6) is well-defined: suppose ¢; and ¢, are
conformal maps on 2 with ¢, (y1) < -+ < vn(yan) for n = 1,2. From (5.5), we have

2N 2N

[1# i) x Zaler(n), - o1 (wan) = [[ 05 (wi) % Zal@2(mn), - pa2(yon)). O
i=1 =1

Assuming Proposition 5.6 holds, we are able to complete the proof of (1.6) and (1.8).
Proof of (1.6). This is immediate from Corollary 5.8. O

Proof of Proposition 1.2. We will show (1.8) with j = 1, and the other cases can be
proved similarly. For y; < - -+ < yon, we denote yy; = yp —y; for k # 1. Forzy < -+ < xy4p,
we denote xy; = zp — x; for k # [.

Fix N > 1 and the index valences ¢ = (2,...,2) of length 2N. Fix & € LP. and let
a = 7(&) € PPox be the associated planar pair partition as defined in Section 2.2. We
set Fy(z1,...,2an) = Za(x1,...,24n) for 21 < --- < z4n. We define F; by induction on j.
Fix j € {1,2,...,2N} and suppose F}_; is defined. For y; < --- < y; < Z2j41 < -+ < Tun
and Yj—1 < Toj—1 < T2j < Tgjt1, WE define

. Fi_1(y1s- - Yj—1,T2j—1, %25, ..., T4N)
F; o Yiy T2ia s e X = lim J CRREE YAt Ak ? S L R/ LR
J(ylv yYjr T2j+1 ) 4N) B2 —1,E2 Y5 (ij — xzj_1)1/2
From Proposition 5.6, we see that Fi,..., Fon are well-defined and Fony = Z45. We will

show the following PDE by induction on j € {1,2,...,2N}:

D;iFi(y1,- -, Yj> T2j41,-- -, Tan) = 0, (5.7)
where
o? 1 190 1/4 1 9 )
Pa 2 Grman) 2 e men) o
Y1 2<i<j Y1 Yi1 OYq 2j+1<i<AN 7 1 % U1 7 Y1
2 1 9 1/2 1 d
(2 k), 5 et
2§§j y?l %:21 0y; 2j+§§41\, ($i—y1)3 (xi_yl)ani
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When j = 1, PDE (5.7) holds due to (3.8) with j = 1. For j > 2, suppose (5.7) holds
for j — 1, and we will show it for j. Comparing the two operators D;_; and D;, we denote
their overlap by

9 1 1 8 1/4 1 a> B
O =2 4 I - Z
T oy 2 <y?1 Yi1 8%) 2 <(wi—y1)2 (zi — 1) O ) | Oy

2<i<j—1 2j+1<i<4N

2 1 1/2 1
SRR —
<i<j 2 i1 9Yi 2j+1<i<AN

T — y1)3 (331‘ - 91)2 (9731

1, 0 )a
(x2j-1 —y1)?  (T25-1 —y1) 0251 ) Oy

1 n —2 0 >
(5623‘71 - y1)3 (5523‘71 - 91)2 a952;‘71

+

(

i ((fﬂzj_—lyl)z " (9023‘4— Y1) 8»’?2]‘) 3%1
(
(

1 L =2 ) >
(w25 —y1)® (225 — y1)? Oxay

Do, 4ty A2 0)0 (4 20
TN Typoy ) oy \wh T vh oy )

We set Gj_l = (xzj — Izj_l)il/QFj_l. From Dj_le_l =0, we have

-1 -1 -2 0
0=0;_1Gj_ + + + 50 G-
g <($2j—1 —y1)? (w25 —v1)? (w251 —y1) (225 — Z/l)) ay,
1 1 (22 — x2j—1) + 2(z25-1 _yl))
+ + + Gj-
<($2j—1 —y)?  (z25 —y1)3 (zoj—1 — y1)* (w25 — 11)? =

+ ( 10 2 > o .
(m2j*1 - yl) ayl (ijfl - yl)2 8x2j,1 J-1

4 0 -2 0
+ |/ + Gi_1. (5.8)
<($2j —y1) Oy (w25 — y1)2> oy
We will argue that

KGi-1(y1s - ¥j—1,22j-1,- -, Tan) = KF;(y1,. .., ¥j, 2541, - -, Tan), @S Taj—1,L25 — Yj,
(5.9)
where

o o 5 o
Leyd - e 12<i< j 1 U o, e 12+ 1 <n < 4N
e{7ay1’3y§} {ayi,ayiayl == }{axn’axnayl J+lsns< }»

and that

( 1 1o} n 1 0 )G ( )
i—1\Y1y - Yj—1,L25—1,-. -5 T4N
(w2j—1 —y1)2 0xgj—1 (w25 —y1)2 Oz ) B gl ‘
1 0
TaiFj(y17~-'ayja$2j+lv . T4N), @S Toj_1,Taj — Yj, (5.10)
Y51 9Y;
1 0 1 0 0
+ —G,_ e s Yim1, T2y, T
((x2j—1y1)ax2j—1 ($2jy1)3$2j) o ’ l(yl Yi-1, %21 4N)
— L Fy( ), as — (5.11)
— ————Fi (Y1, -y Yj, T2ia1s - - TAN ), Toi_1,T9; . .
Uit ayjayl i\ Yjr L2541 4N 2j—1, 25 Y
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From the proof of Proposition 5.6, Eq. (5.9) holds for K = 1. Furthermore, as G;_; is
a finite linear combination of terms of the form

H(xa - xb)il/Q X H(yk - yl):l:2 X H(xn - ym)ila

we view G;_1 as a function on distinct complex variables (y1,...,¥j—1,%2j—1,%2j, .- ., TaN).
We fix arbitrarily distinct complex points (y1,...,y;j—1,%2j+1,...,2Z4n) and denote y =
(y1,-..,yj—1) and @ = (x2j41,...,%an). Then G;_; is a meromorphic function of ¢ =

T9; — x2;—1 and its Laurent series can be written as:

H;_1(y,x25-1,€6, ) :=Gj_1(y,T2j-1,T25—1 + €,)

:F](ya 251, (13) + Z Kn(y7x2j—1a m)€n7
n>1

where K, is a finite linear combination of terms of the form

[T(a = 2)?% x 1wk = 90)** x T [ (@0 — ym)"

with p, q € Z.
Now, we prove (5.10). We have

1 ) 1 9
( + )Gj1(97332j1,$2j7$)
(225

1= y1)? 0251 (w25 —y1)? Oxg;

( 1 3] N ( 1 1 ) 3] ) Hi (g z)
= - a_ ) — ) i—15 €, .
($2j—1 - y1)2 3332j—1 (172j - y1)2 (1?2j—1 - yl)Q Oe -1, #2451

Thus, it suffices to prove, as xg;_1 — y;,€ — 0,

0 0 0
aij_lijl(ywerfhe,w) — Ty]Fj(y7y]7w>7 aijl(yv‘erfhe?w) — Kl (y’yjaw)
(5.12)
We define §, = mln{w,%} and Hj_l(y,l‘gj_l,o,ﬂﬁ) = Fj(y,xgj_l,ac).

Then, the function (z2;_1,€) = H;_1(y,2z2j_1,€, @) is continuous on [y; — do,y; + do] X
B(0,d9) where B(0,6p) := {z € C : d(2,0) < dp}. Moreover, for every xs;_1 € [y; —
d0,y; + do], the function ¢ — H,;_1(y,z2;_1,¢,x) is holomorphic in B(0,dy) \ {0}. Thus,
the function € — H;_1(y,z2j_1,€, ) is holomorphic in B(0, Jy). Then, we have

1 H',l(y,.’I}Q‘,],Z,w)
Kn(y,v2j-1,T) = 27Ti/6’B(06 : : ZnJrjl dz.
100

Note that, there exists M = M (y, z,y;) > 0 such that, for all 5;_1 € [y; — o, y; + o]
and z € B(0,24) \ B(0, 5?0)'

|Hj71(y7$2jflaz7w)| < Ma and ’8.’£2 1Hj*1(y7$2j71az7w) < M.
j—
Thus, we have
M
|K’n(yax2j717w)‘ S 577
0
and
1o}
0 K ( ) 1 612,'_1Hj71(y’x2j71’z’w)d < M
P T2j-1,%)| = |7— ] Iyt
al'gj_l Y 21 271 33(0750) ZnJrl 53
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These imply that, for every xq;_1 € [y; — do,y; + do] and € € B(0, %")

0 0 7]

—H. X25j—1,€ &) = Fi(y,z0,_1,x) + — K Toiq, X)€",
Dy 1 i-1(Y, 22j-1,€6,T) 972j_1 (Y, 2j-1, @) ;3$2j_1 n(Y, Toj—1, )€
and
0 H — E K n—1
& j*l(yvl'ijl,E,l'ijLl ,CC4N) = n n(y7$2j71,(l7)6 .

n>1

These give (5.12), and complete the proof of (5.10). Eq. (5.9) and (5.11) can be proved
in a similar way.

Plugging (5.9)-(5.11) into (5.8), and letting x2;_1,x2; — y;, we obtain D;F; = 0. This
completes the proof of (5.7). Taking 7 = 2N in (5.7), we obtain the third order PDE (1.8)
as desired. This completes the proof. O

5.5 Proof of Theorem 1.1
In this section, we complete the proof of Theorem 1.1. Before that, we first address
the coefficient M,, - (4) in the theorem.

Lemma 5.9. Fix N > 1 and the index valences ¢ = (2,...,2) of length 2N. Define
w € DPoy to be: Vj € {0,1,...,N — 1},

w(dj) =0, wdj+1) =1, wdj+2)=2, wdj+3)=1, w(4j+4)=0.

For any & € LP, let 7(&) € PPan be the associated planar pair partition as defined in
Section 2.2. Recall the definition of the incidence matrix M from (3.11). Then

My =1 Iimplies [ = T1(&) for some & € LP.. (5.13)
However, the converse does not hold in general.

Proof. Recall from Section 2.2 that 7 introduces a bijection between LP. and the collec-
tion { € PPan : Agj—1 € 8, forall 1 <j < 2N}. Thus, it suffices to prove that Aq;_1 ¢ 3
for every 1 < j < 2N. By definition,

w={{4j+1,4j+4}, {47 +2,4j+3}:1<j <N -1}

Note that M,, 3 = 1 implies there exists a ¢ which is a permutation of {4j + 3,45 + 4 :
0 <j < N — 1} such that

B={{4j+1,0(4j +4)},{4j +2,0(4j +3)} :0<j < N — 1},

This implies Ay;_1 ¢ 3 for every 1 < j < 2N. O

Proof of Theorem 1.1 and (1.7). We use the same notations as in Section 5.3. By confor-
mal invariance, we may assume 2 = H and y; < --- < yan. Suppose I is zero-boundary
GFF on H and let u be the harmonic function with the boundary data (1.5). From
Proposition 5.3, we have

lim P[A° = 4] = P[A = d].
6—0

Let 121 be the level line of the continuum GFF I' + u starting from y»;_; with height A
for 1 < j < N; and let 19; be the level line of —(I' + u) starting from y,; with height A
for 1 < j < N. Note that the collection {72, 74, ...,7m2n} coincides with the collection of
level lines I' + u starting from yo;_; with height —X for 1 < j < N. See Figure 8. From
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Y1 Ya Y1 Y4 Y1 Ya
€ 0 — —2X
—2X m [Ole} 22 2A 0
14 n4[0, T%]
2N T N3 2\ 2A 22X
2 n2[0, T5]
€ 0 Al
2\ 13[0, T . 2\ o~
Y2 Y3 Y2 Y3 Y2 Y3

Figure 8: Consider continuum GFF I" + u in rectangle with alternating boundary data.
In the left panel, we have four level lines: Let 7; (resp. n3) be the level line of I" + u
starting from y; (resp. from y3) with height A\. These two curves are in black.Let 75 (resp.
n4) be the level line of —(I" 4 u) starting from ys (resp. from y,) with height A\. These
two curves are in red. The middle panel indicates the domain H,. which is obtained by
removing from H the four pieces 7;[0,7f] with i = 1,2, 3,4. In the right panel, we see
that the boundary data of I' + u in H. is piecewise constant: 0,2\, 0, —2X,0,2X,0, —2\.

Lemma 5.4, the frontier of A and of V has the same law as U;<;<an7;. It suffices to
prove

Zalyi, ...,
P [{n,...,m2n} forms the planar link pattern &] = M, (4) ™ (1 yan) ,
ZmGFF(yla .. ay2N)

where w and M,, ;(4) are defined in Lemma 5.9.
For 1 < j < 2N and € > 0 small, we denote 7} = inf{t > 0: d(n;(t),y;) = €}. We take
¢° to be the conformal map from

He:=H\ (Ui<j<ann;[0,T5])
onto H normalized at co. Then, we see that, given H,, the event
{{m,...,n2n} forms the planar link pattern &}

is the same as

{6 (m),- .., ¢ (n2n)} forms the planar link pattern 7(&)}

where 7(&) is defined in Section 2.2.
Now, let us consider the collection {¢¢(71),...,¢°(n2n5)}. The conditional law of " + u
given H. is a GFF in H. with the following boundary data: for 1 < j < 2N,

2X on (y3;_1,v4;), 0 along the left side of 1[0, T5,],
—2) along the right side of 7,0, 75;],
—2X on (y3;,¥5;41), 0 along the left side of 1;41(0, T5; ],
2 along the right side of 72;11[0, 75, ]-
See Figure 8. Then, we have

P [{n,...,n2n} forms the planar link pattern &|
=E [P [{n1,...,n2n} forms the planar link pattern & | H.|]
=E [P [{¢°(m),--.,¢"(n2n)} forms the planar link pattern 7(&) | H|]

T(a)(ﬁbé(yf), O (m(TY)), 9°(y3 ), ¢ (12(T5)), . . ., 6 (Y3 ) ¢ (m2n (Tsy)))
U (0°(y1 ), 0 (m(T5)), ¢ (y3 ), 0 (m2(T5)), - - - ¢ (yay ) & (m2n (Tsx )
Za(y1,- -, Y2N)

Mw‘roc ’
( )[/{(‘lw)Q(yh. C O Y2N)

=E Mw,T(&)
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where (w); is defined as in Lemma 5.7. In the second last equal sign, we use Theo-
rem 4.1: consider the GFF in H,, the collection {¢(12), ¢¢(n4), ..., ¢%(n2n)} coincides
with the collection of level lines starting from y;_; with height —\. Therefore, the
connection probability is given by M,, -(4)Z-(a)/U.. In the last equal sign, we let ¢ — 0.
Combining Proposition 5.6, Lemma 5.7, and dominated convergence theorem, we obtain
the conclusion.

Finally, from the above analysis, we have

lim P[A° = 4] = P[A = &4] = M Za(Y1,- -+, y2N)

w (& , forall& € LP..
§—0 o )Uglw)z(yl,...,ygN) °

Furthermore, from (3.12) and (5.13), we have

Za(y1,- -, Y2N)
Mo mia — 1
Z ) (a)uglw)z(yl’ e YoN)

ACLP.
Thus
N
ZI(nG)FF(yla RN yQN) = Z Mw,r(d)Z&(yla ce 7y2N) = u(4w)2(y17 s ayQN)'
A€LP.
This completes the proof of (1.7). O

Figure 9: There are six Dyck paths in this figure: in the first row, from left to right, we
denote them by a1, as, as respectively; in the second row, from left to right, we denote
them by a4, as, ag respectively. We see that a1 < as < ag, a4 <X a5 <X ag.

Corollary 5.10. The conclusion in (1.3) holds.

Proof. We define [y, 32,33 as in Figure 5 and we define «y,...,a6 as in Figure 9.
From (3.12), we have

Zg, =Uny — Uy — Uy + Uny — sy,
Zp, =Uaqy, (5.14)
Zp, =Upy — Uny + Uny + Uey — Uny + U

Suppose y; < y2 < y3 < y4 and we need to derive the limits as
T1,T2 — Y15 T3,T4 — Y25 T5,%T6 — Y35 T7,T8 — Y4

We denote zj; = x; —z; for1 <i < j <8andy;; =y; —y; for 1 <i < j < 4. Furthermore,
we denote the cross-ratio by ¢ = (y21v43)/(y31y42)-
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First, for oy and ag, we have

i Uay (1, -, 78) _ < Y31Y42 >2 _ (5.15)
‘ggﬁ%j%gﬁ;%jﬁ v/ T21243L65287 Y21Y41Y32Y43 (1 - Q)nglyiz’ .
im Uo 71, 38) _ ( Y21V43 ) = a . (5.16)
GLTRTYLITS TA TN \/T21T43T65T87 Y31Y41Y32Y42 (1= @)2y3,05s
Second, for n = 2, 3,4,5, we have
. . 1 ;4
L w =yi’x I @i—y)? O (g =)’ 00 5 ] xff“" (3,
T7,T8 Y4 3<i<6 3<i<j<6

Taking the difference between U, and U, and the difference between U/,, and U,,, we
have

. Z/{a —Z/la Ti1,...,T8
- *}yhlgl sy ( 2 3)( ? ) )
1,72 1;23,T4 25
T e Sy V221743787

o (w6 —wy1) (ya —x5) NETT 2ya
=Ya1 X X + )
($5 - y1) Yg — 556 555 - yz)(%‘ y2) Y21Y42+/T65
lim ( —U )(xl,...,xg)
rum;;?ié;swg,;f%ym \/T21X43287

o (x5 —y1)(ya — w6) ( —/Te5 2y41 )
=Y41 X X + .
(6 —y1)(ya — @s5) (r5s —y2)(T6 — y2)  Y21Ya21/T65
Taking the difference between these two, we have

(UM —Z/las —UM +Z/la5)(x1, N 71‘8)

lim .
maay oo Vit
2 4 2 4 1
-2y ( 2+>“. (5.17)
Y11Y32  Y21Y31Y42Y43 (1—-q) q) Y31Yio

Plugging (5.15), (5.16) and (5.17) into (5.14), we have

ZBI ($1, ) 2
im ——2q(1—q)(2—q+q)
SRS Y (01, ) ’
im Zgz(xl,...,xg) q4,
WH AR Yo (21 28)
Z .
1m Ps (Il’ ) (1 - Q)
T1,T2=Y1;T3,84 Y25 [ (xh ce xs)

T5,T6—Y3;L7,T8 Y4

The scaling limit of the crossing probability in (1.3) corresponds to the limit of Z3, /U,,,
see Figure 1 and Figure 5. This completes the proof. O

A Technical lemmas

The following three lemmas are technical. Lemmas A.1 and A.2 are needed in the
proof of Lemma A.3 which is essential in the proof of Theorem 4.1.

Lemma A.1. Letz; < x5 < x3 < x4. Suppose 0 is a continuous simple curve in H starting
from z, and terminating at z, at time T'. Assume n hits R only at its two end points. Let

(Wy,0 <t <T) be its driving function and (g;,0 < ¢t < T) be the corresponding family of
conformal maps. Then

lim (9t(x3) — gi(x2))(ge(za) — Wi)
t=T (gi(z3) — Wi)(ge(xa) — gi(22))

=0.
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Proof. See [PW19, Lemma B.2]. O

Lemma A.2. Let 79 < 21 < 23 < x3 < x4. Suppose n is a continuous simple curve
in H starting from x, and terminating at x4 at time T. Assume 7 hits R only at its
two end points. Let (W;,0 < ¢t < T) be its driving function and (g;,0 < t < T) be the
corresponding family of conformal maps. Then there exist C,C5 > 0, which depend on
n[0, T, such that for all t € [0,T],

(90(r2) — gi()) (ges) — W)
= | (gulaa) = W) (grlas) — o)) | =

Proof. To prove the conclusion, we will show the following two estimates: First, we will
show that there exist C7, Cy > 0, which only depend on [0, 7], such that for all ¢ € [0, 7],

o < 9@2) —gz) _ o (A.1)
gi(x3) — ge(21)

Second, we will show

gulws) = We oy, 9e(73) = 9u(2)

=1. (A.2)
t—T gt(l‘g) — Wt t—T gt(.l'g) — Wt

In this proof, we use < to simplify notations: for two functions f and g, the notation
f =< g means that there exists a constant C' > 0 which only depends on 5[0, 7| such that
cl<flg=cC.

We first show (A.1). Note that for an interval [a, b], we have

b—a= lim 7yP" [BM hits 0Hin [a, ],
y—»00
where BM is the Brownian motion starts from iy. By conformal invariance of the
Brownian motion, we have
b—a= lim myP% (%) [BM hits & (H \ 1[0, ]) in g; *([a, b])] -
Y—>00

We choose §yp small enough, such that the §p-neighborhood of the interval [z1, 3]
does not intersect 1[0, T']. We denote the boundary of this neighborhood in H by +, this is
a simple curve. For the Brownian motion starting from g, 1(zy) let 7 be the first time
the Brownian motion hits 4. Consider the connected component V of H \ 5[0, 7] which
contains x; on its boundary and choose a point z € V. Suppose U is the unit disk, and
¢¢ - H\ 1]0,¢] — U is the conformal map with ¢;(z) =0, ¢;(z) > 0. Suppose ¢ : V — U
is the conformal map with the same normalization. Then, for any compact set K C V'
which does not intersect 1[0, 7], the conformal map ¢; converges to ¢ uniformly on K.

Note that

P9 (%) [BMhits 0 (H \ 5[0, #]) in [z1, 23]
—P9 ) [1, oy PP [BMhits @ (H \ [0, ]) in [z, 25]]] .

We will compare
P57 [BM hits 0 (H \ 5[0, t]) in [z1,2»]] and P57 [BMhits 0 (H \ 7[0,¢])in [z, z3]] .
In fact we can replace B, by a deterministic point on ~. For every w € v, we have

P* [BM hits @ (H \ 9]0, ¢])in [z1, x2]] = P?*(“) [BM hits 9U in [¢;(z1), d¢(22)]] ,

EJP 26 (2021), paper 37. https://www.imstat.org/ejp
Page 35/46


https://doi.org/10.1214/21-EJP598
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Crossing probabilities in metric graph GFF

where [¢;(21), ¢¢(z2)] is the conformal image of [z, x3]. By direct computation, the right
hand-side equals

L= d@)on(ma)  C1— g (w)de(ar)

1 < oi(x2) — Pr(w) _ bi(71) — Pr(w) )
5 | w8 ar )

where arg is the argument principal which takes value in [0, 27). Note that there exists
€0 > 0 such that

o — —arg ————

1<Mg@@a—@mo @@n—@wo><l_m
L=d(w)on(ms) 1= d(wignan) )~

because v is bounded away from [z, z3]. Thus,

Gi(x2) — dr(w) — Pr(x1) — Pi(w)
L= i(w)dir(z2) 1= du(w)gu(1)
(1 — le(w)*)d1(w2) — P (a1)]

T = o) (@)1 — de(w)be(z1)|

Ppo(w) [BM hits U in [¢;(x1), ¢¢(2)]]

X

Similarly, we have

P69 (BM hits AU in (6, (1), 6001 == L |8e@)DNn(x) — du(ar)]
[BMits DU [6een), onlws = 1 g o)1t = autw)onle)

Therefore,

P¢(“) [BM hits AU in [¢y (1), di(w2)]] _ 18u(2) = du(@1)| [du(23) — P (w)]
P#:(w) [BM hits U in [y (1), ¢ (23)] ~ |¢e(3) — @e(1)] [d1(22) — de(w)]

= 1.

The last =< is because of the uniform convergence of ¢;. Thus, we have
P8+ [BM hits 0 (H \ 1[0, t]) in [z1, z]] < PB [BMhits 0 (H \ [0, ])in [z, z3]] .

This implies (A.1).

Next, we show (A.2). Consider the Brownian motion starting from g, * (iy). We define
C(x4,9) := {#z € H : d(z,24) = ¢}. Let 75 be the first time that it hits the connected
component of half circle C(z4,0) NH \ 5[0, ¢] which contains z4 — J on its boundary and
we denote this connected component by Cs. Then we have

P9 (%) [BM hits 0 (H \ 5[0, ¢]) in the right side of 5[0, ] U [zo, 22]|

>P9 @) 1., PP [BMhits (I \ [0, ¢]) in the right side of 5[0, ] U [z, z]]] ,
and
P9 () [BM hits 9 (H \ 5[0, 4]) in [x2, 3]
— P99 [1,, ooy PP7s [BMhits @ (H \ [0, #]) in [, 23]]] -
By conformal invariance of the Brownian motion, we have

PP [BM hits 0 (H \ [0, t]) in the right side of [0, ] U [xo, z2]]
=P (5 [BM hits OU in [¢,(1(t)), ¢ (2)]],
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where [¢:(1(t)), ¢+ (x2)] is the conformal image of the right side of 5[0, {] U [zq, z2]. More-
over

PP [BM hits 9 (H \ [0, t]) in [z, 23]]
=P?(B=) [BM hits dU in [¢y(z2), ¢¢(x3)]] ,
where [¢:(z2), ¢+(23)] is the conformal image of [z2, 23]. We replace B, by a deterministic

point on Cj for the same reason as in the proof of (A.1). For every w € Cj, by Beurling
estimate and conformal invariance, there exists C' > 0 such that

P%(*) [BM hits U in [¢y(22), ¢¢(23)]] < C ( ° )2 '

Ty — I3
This implies that there exists ¢y > 0 such that
P () [BM hits U in [y (x2), ¢ (23)]] < 1 — €.

Thus, by the same method as in the proof of (A.1), we have

PO ) (BM hits OU n [6(2). dy(za)]] = L0 N01(s) — Su(wa)]
[BM hits in [¢¢(22), de(z3)]] T — g0 ()2 (23)|[1 — B (@) e (2)]

Moreover,
Pew) [BM hits OUin [¢:(n(t)), d(x2)]]
:i (ar Gi(12) — dr(w) o de(n(t)) — de(w) )
2w

& 1 — ¢ (w)pe(w2) & 1 —oe(w)de(n(t))

o1 @) —di(w) () — dr(w)
T2 |1 = gy(w)p(wa) 1 — d(w)de(n(t))
_ 1 (A —le)P)lge(n(t)) — ¢e(x2)l

2 1= Gu(w)ge ()11 — Ge(w)gi(a2)|
Combining these two together, there exists C' > 0 such that
P¢:(*) [BM hits 9U in [¢(n(1)), ds(w2)]] o 19t(12) = de(22)| 164(23) — $r(w)]
P#:(w) [BM hits U in [¢4(x2), ¢¢(23)]] —  |pe(w3) — de(w2)| [6e(n(t)) — pr(w)|’

We denote the connected component of H \ ([0, ¢] U Cs) which contains co by A. By the
relation between diameter and harmonic measure, there exists C; > 0, such that

Cidiam (6:(A)) < PO°[BM hits ¢, (Cs) before U] =IP*[BM hits C; before 9(H \ 1[0, t])]
1

<P?[BM hits C;s before 0H]
<C4é.

Thus, we have
|61 (n(t)) = 64 (w)| < CF6.
For [¢;(n(t)) — ¢¢(x2)| and |¢;(x3) — ¢¢(w)|, we have
oulate) — énaa)| Zmin { o (P52 ) = ot fou (5 ) - outoa)
6u(w) — 6uls)| ZIon(n(0) — 61(z3)] ~ lon(a (1) — 61(a)
>nin {|o0 (P55 ) — outea)| Jon (U570 ) - )| - 2.
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Thus, by the uniform convergence, there exists Cs > 0 such that

[¢e(n(t)) — d(w2)[d1(x3) — ¢r(w)]
|¢(3) — de(a2)]
This implies that there exists C' > 0 such that
PO () [BM hits dUin [¢,(n(t)), ¢ (x2)]] ol
P#«(w) [BM hits OU in [¢(z2), d¢(23)]] — 6

Therefore, we have (A.2). Combining (A.1) and (A.2), we obtain the conclusion. O

> Chs.

We set By =1, and for o, § € PPy and 1 < -+ < 2oy, we define

Bﬂ(&tl, .. .,JJQN)
Ua(xl, e ,xQN)Z.

Ba(z1,...,Ton) == H |xa—xb|71, Fop(ze,...,z0n) =
{a,b}ep

Lemma A.3. Fix o, 8 € PPy such that « <— B. Fixj € {1,2,...,2N — 1}, we assume
that A € « and NV € B. Fixn € {l,...,5—1,7+2,...,2N} such thata(n—l) = «a(j) and
a(n) =a(j—1). Fixxy < - - < xon. Suppose 1 is a contmuous simple curve in H starting
from z; and terminating at x,, at time T'. Assume 7 hits R only at its two end points. Let
(W:,0 <t <T) be its driving function and (g;,0 <t < T') be the corresponding family of
conformal maps. Then

}L%Fa,ﬁ(gt(xl)v v ge(wi 1), Wi, ge(2541), ge(22n)) = 0.

Proof. We may assume j + 1 < n. The other case can be proved similarly. By definition,
we have

2i— 2y [P0
— ? J
Fa,ﬁ(xlv"wmQN) - H Ti — s Fa//\j,,B//\j(xla"'axj—laxj+27"'7x2N)-
1<i<2N v J
i#5,5+1

To get the conclusion, we will prove the following two estimates:

1 H (IJ+1) Yo (i,5) 0 (A3)
im, =0, .
T Gdon ge(wi) = We
i#4,j+1
and
sup Fa//\],ﬂ//\] (gt(xl) . 7gt(zj—1)7gt(xj+2)a s 7gt($2N)) < Q. (A.4)
0<t<T
Suppose a = {{a1,b1},...,{an,bn}} is ordered as in (2.2). The number of elements
in two sets of indexes A = {i : j+1 < i <m,i € {a1,...,an}}and B={i:j+1<
i <n,i €{by,...,by}} are equal. Note that n € B. We choose the increasing bijection
¢ : A — B and suppose &(ig) = n.
We first show (A.3). We write
o (i
11 gi(xi) = gi(ajp) 707
1<i<2N ge(wi) = Wy
iZ5,j+1
Vo (i,
_ H gt(xi) — gt (xj+1) (9 % H ( 9t(2j+1) ge(ze@) — Wi )
i<jori>n gi(i) =W, ieA - Wi 9¢(@ei)) — ge(Tj41)
i#ig
gt(xiy) — ge(xj41) gt(zn) — Wi
9e(wiy) — Wy gi(xp) — 9t($j+1)
EJP 26 (2021), paper 37. https://www.imstat.org/ejp
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By Lemma A.1, we have

gt(xn) - W
9t(Tn) — ge(Tj41)

9t(wiy) — ge(Tj41)
gi(xi,) — W,

lim =0. (A.5)

t—T

By Lemma A.2, there exist Cy,Cy > 0, which only depend on 1[0, 7], such that for any
i € Awith £(i) # n, we have forall ¢t € [0,T],

gt (335(1')) - W
9t(Te(y) — ge(wj41)

ge(xi) — g¢(vj41)

C; <
T () - W

< Ca. (A.6)

Fori ¢ AUB,

lim gt(fﬂi) - gt(fﬂjﬂ) _ gT(xi) - 9T(33j+1).
=1 gi(xi) — W, gr(z;) — Wr
Combining with (A.6) and (A.5), we obtain (A.3).
Next, we prove (A.4). We write

Fa/Ajﬁ/Aj (9e(21),. .. ,gt(ﬁﬁj—l),gt(fﬁz), s ge(zan))

[Tas biyes/n, (9e(xn,) = ge(2a;))
_ GLQA or blgB
= X St,

[T i¢avs |g¢(zn) — ge(as)[PaliR)
or k¢ AUB

where

-1
H {ai,bi}EB/N; (gt(xbi) - gt(xai))
St _ a;€A and b;€B

[I icavminy lge(an) — ge(z)|7=CR T lge(wn) = ge(ai)[P= )
and k€ AUB\{n} i€ AUB\{n}

In this decomposition, we have

-1
H{ambi}eﬁ//\j (gt(xbi) - gt(xai))
a7¢A or b7¢B

I1 i¢AUB |g(wk) — ge(4)
or k¢ AUB

s =L

because both the numerator and the denominator converge to a bounded and nonzero
quantity as ¢ —+ 7. Here the notation x is defined in the same way as in the proof of
Lemma A.2. By (A.1), for distinct i,k € AU B\ {n}, we have

|9¢(zk) = ge(2i)| < ge(242) — ge(xj41)-
By the same method as in the proof of (A.2), fori € AU B\ {n}, we have

gi(xn) — ge()
t=T ge(zn) — gt(Tn—1)

=1

Thus we have

St < II (@) = 9(za) ™" (ge(@j2) = ge(m00)FA (ge(wn) — ge(wn1)).
{ai,biYeB/N;
a;€A and b;€B
When there is a € A such that {a,n} € 5/A;, and #A — 1 pairs {a;,b;} € 5/A; such that
a; € A and b; € B, we have S; < 1. Otherwise, we have lim;_,r .S; = 0. This gives (A.4)
and completes the proof. O
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B Proof of Proposition 5.6

Proof of Proposition 5.6. From (3.12), we have

Za(ajl,...,l‘4N)= Z M;’lﬁug(xl,...,m]\;).
BEDP2aN

For 3 € DPqy, there exists J C {1,2,...,2N} such that
Qgj—1 € Bforall j € J, and xo;_; € fforall j € {1,...,2N}\ J.
Then, from the definition (3.10), the following limit exists:
Us(x1,...,z4n)

1 .
Toj_1,T2;—Yj, ) Toi — Toi 1)1/2
VigT H]gJ( 25 2j 1)

To obtain the desired limit, we need to group distinct 3’s according to the location of
their local extremes.
Let J be any subset of {1,2,...,2N}, and define

P? = {B € DPon: B = a,ng,1 € Bforallje ], X2j—1 € B forallje {172,...,2N}\J}.
It suffices to show that the following limit exists for all possible J:

ZBE’P? M;,}guﬁ(xl, e ,x4N)

1m
251,25 Vs A xoi — @i 1)1/2
s Lo, — 1)

Suppose n = #J > 1. For some §y € P§ such that Vy;_; € By forall j € J, we define
733«,30 = {,8 S DPQN . 3{11, e ,ik} C J such that ,6 = /80 T 0211,1 e T <>21k,1}.

It is clear that #P?’BD = 2", Furthermore, for distinct fy, 5 € P§ such that Va;_1 € (o
and Vy;_1 € ) for all j € J, we see that 7?3"’80 N P?’ﬁ(’ = (. Thus {733"60 : fo €
PG with Vo;_1 € By Vj € J} gives a disjoint partition of P§. Therefore, it suffices to show

that the following limit exists for each such fy:

Z,BGP?'BO M;}ﬁug(l'l, P ,$4N)

1m
T2j—1,T2;—Yj, . Toi — Toi_1)1/2
v [[jes(woj — 225-1)

(B.1)

To derive (B.1), we will show a more general conclusion. Suppose K C J and suppose
Yo € P§ such that Vy;_1 € 7 for all j € K. We define
P;%O = {’y € DPox : H{il, ey ik} C K such that Y =" T <>211—1 cee T <>2ik—1}'
We denote Ry := {25 — 1,25 : j € K}, and we denote

9,(1,2§ — 1)
A RASS)
Zicj = D "oy
I¢Rx J

We denote by &,, the set of permutations of {1,2,...,n}. Suppose K = {ji,...,jn}. For
any o € P§ such that V,;_; € v for all j € K, we claim that

-1
Zyepff}o Ma,'yu’y (.’IIl, s ,$4N) (Bz)

1m
T2j—1,T25—Yj, . To: — Toi_ 1/2
viek HJGK( 2j 25 1)

15 om 770 AL
Kjogmi1 K.jo,

(yj,,l - yj02)2 X X (yj"zm—l - yj"2m)2

—M-1L H (xs _ QTt)%ﬁ’yo(t’s) «

@570
1<t<s<4N m=0oceJm
t,s¢ Rk

?
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where J7" is a subset of G,,:
Jnm:{O' €601 <03< - <09m,_1, and 02j—1 < 024 fOl"j <m, and Oom41 < - < O'n}.

Fix o and J, we will show (B.2) by induction on n = #K. It is true for K = () as it is
the same as the definition of /,,. Suppose (B.2) holds for #K = i. We need to show it
for #K =i+ 1. Suppose K = {j1,..., ji+1}. We will take the limit in the left hand side
of (B.2) in a particular order: we first let x;_1,22; — y; with j € K \ {j;11} and then
let woj,,,—1,%T25,,, — Yji4,- It Will be clear from the calculation that the limit in (B.2) for
#K =i+ 1 does not depend on the order of taking limits.

For any ~ € P§ such that Vo;, _1,...,Vaj,,,—1 € Y0, we have the decomposition

PpEY — prY0 O"'YOTO‘?-UH—l
JK JE\{ji+1} JE\{ji+1}

Denote by v1 =70 T O2j,.,—1 and K1 = {j1,...,ji} = K \ {jit+1}. Then we have

ZWEP(}“;{’O MGLUy(wy, oy N)
o lim — (B.3)
LT Mjer (waj — waj_1)1/2
1i !
= 1m
P21 = T2 T Vi (2,4 - 12]'7:4-1*1)1/2
_1 1 ,
. ZWEP?}C; My Uy (@1, TAN) . . 2767,;,%11 MG LUy (1, 2y N)
LTV Tljer (va; — w2i-0)1/? ALV ek (2~ w2-0?
By the induction hypothesis, we have
-1
Z’YEPQY’YO ./\/laﬂl/ly(xl, ‘e 7.564]\[) .
1. J,Kq _ -1 _ 51970 (t,s) S
im (2, — 2) x S0
T25—-1,L25 >Y; H (z2. _I2,_1)1/2 ;70 ’
ViEK, JEKL TSI J 1<t<s<4N
t,SQRKI
-1
Z'yepa'ﬂ Ma VZ/[,y(afl,...,l‘4]\[) .
. K1 ' =M1 301 (£:5)
m (x5 —x)2om x Sp
T25—1,L25 —Y; H (332. _ x2/,_1)1/2 ;Y1 ?
VieK, JEK 4] 7 1<t<s<4N
t7S€RK1
where
L$] om 7 Vu LTV
S — Ki1.jogmy1 Ki,jo, f —0.1
u = ( _ _)2>< X(' — )2, oru=2=u,l1.
m=0ceJ™" Yo, Yios Yionm—1 Yioom
Comparing the two expressions in the right hand side, we have M;lvl = —M;{m, and

H (xs _ xt)%ﬂa,o (t,s)

1<t<s<4N
t,SgRKl
_ H (2o — xt)%ﬁwo(t,s) % H Tn — L2411
Tp — L2454
1<t<s<AN 1<n<4N it
t,s¢ Rk n¢ R
1
I (ot
1<t<s<4N
t,ngKl
Tp — T245 —
= H (:L'g — It)%ﬁ’vo(tﬁ) % H n 2Jit1 =1
) Tp — L2545,
1<t<s<4N 1<n<4N it
t,s¢Ry n¢ Rk
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2940 (n,25i41—1)

X ($2ji+1 - x2ji+171) 5

(NI

=39+ (1,245 41—1)

ol

X (z21i+1 - 932j1,+1—1)
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Plugging into (B.3) and denoting § = xaj,,, — ¥2j,,, 1, we have

—1
ZWE’PQ’W Ma Vl/lv(xl, e ,.%4]\])
J K ’
im 0 ( )1/2 (B.4)
25 —1,T25 Y3, . Xo: — Losi_
VieK JER\"2) 2j-1
a1 300 (t,5)
=Mg 5 H (25 — @)=
1<t<s<4N
t,s€RK
Vg (0,255 41—1)
. 1 Ty — X5, —1| 0
X lim - H LR LS — 11 xSp+Sy— 51
6—0 ) Tp — X254,
T2, 10 —1Yj; 41 1Sglﬁ%4N
nZRy
Note that
Yo . .. 77 )
Ki,jogmi1 Ki1,jo,
Yo 6
K7j<72m+1
(x2ji+1*1 - yjcr2m+1) (iji+1 - yja2m+1)
1)
Yo .
X oo X ZK,jgi ‘ ‘ A ‘ ;
(mQJiH*l - yJi) (w2ji+1 - yﬂi)
ar 400
Ki1.Jog,m i1 Ki,jo,
— Yo g
- Kjo‘2
Joom 41
(iji+1_1 - ijm_H) (x2ji+l - yj02m+1)
1)

Yo
N ZK _

o ($2ji+1_1 - yji) (x2j'i+1 - y37)

Plugging into Sy and .S, we have

Vg (0,25541—1)

. 1 Ty — L2j5,,,-1
lim - H on TAdigr T —1] xS
6—0 1) Tp — X254,
T2 -1Yj; 01 1%;§4N
K
L%] m 70 el
—Z 2 ZK,Jazm+1 K.,jo, )
T YK jita s )2 ... ) oy 2 |
m=0o€eJ" (nyH y]02) X X (yjasz1 ijQm,)
1
lim = So - Sl
6—0 (5( )

L2541 -17"Y541

m~+1 7770 ... 7700 7o ... 7700
2" IR Goin L RoGor DR oy DK o,

[iJ 7
P IPIEDD Yio, = Ying )2 X X Wiy = Yy, )2 X Whis — Y5, )%

m=0 G‘GJ;”’ r=2m-+1
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Plugging into (B.4), we see that it remains to show

L”—IJ m .. 700
i 2 ZK,JTMJrl Kjriq (B.5)
= G Wi =Y )2 X gy, Y, )
L4] - +1 7Y fl 7Y
B i 3 i 2 ZKJUZ 2R PR, LR,
ws0oeTm \reoma Yior = Yioy )2 X X Y Yoy, )2 X Whis — Y3, )?
Yo ... 77 Yo
i Z Z 2mZK’Jazm+1 ZK,jai ZK’jz‘+1
m=0c€J" y]"l o yj,,2) X (yjf’mel o yj‘72m )2

For 7 € 3} |, let us consider the location of i +1in 7. If ;11 = i + 1, we define o; = 7;
for 1 < j <4, then o € Ji". Thus, for 0 <m < | 5], we have

2m Yo ... 77 )
Z KJT2er1 Kyjriq (B.6)
.y . . - 2 :
TEIT (yjrl yJTZ) (Z‘/JTM,l yyrm)
Tit1=1t+1
2mz’¥0 . ... 770 0
_ Z Kjogmi1 Kjo, “K,jit+1

oeg;" (yjf’l - yjff2)2 Koo X (ijQnL—l - yjazm)zl
If 7,41 < i+ 1, we define a mapping for each m € {1,2,..., [%]}:
AT eI T <it+ 1} — I x 2m—1,...,0), T (0,7)

in the following way. For 7 € J} ; and 7341 < ¢+ 1, we must have 75 = 7 + 1 for some
1<k<m. Weseto; =Ty, for j <2k —2; we set 0; = 7j40, for 2k —1 < j <2m — 2; and
we set {oom_1,...,0:} = {T2k—1, Tom+1,-- -, Ti+1} such that o9,,_1 < ... < 0;. Suppose
o, = Top—1 for some r € {2m — 1,...,i¢}. This defines the map 7,,(7) = (o,7). We
argue that 7, is a bijection. For any (o,7) € 3" x {2m — 1,...,i}, we can define 7
as follows: {{7’177'2}7 ey {Tgmfl, Tgm}} = {{0’170'2}, ey {O’meg,(fgmfg}, {O’T,i + 1}} and
{T2om+1s-+ s Tit1} = {O2m-1,-++,0p-1,0741,...,0;}, such that 1y < 73 < -+ < Topm_1,
T2j—1 < T2j for j < m and Tom4+1 < o < Tig1. Then we have 7 € :‘Z—Jrl and Tiv1 < ¢+ 1.
This implies 7, is a bijection. Thus, we have

L%J om 770 A
KaJT2m+1 K7]7‘i+1
- (B.7)
m=1 7.63111: (yJTl - y]TQ) o (y.772m71 - y]72m)
Ti+1<’i+1
L5] gm 770 .70 7z g
Z K. jogm_1 Kjo,_ 1 “Kjo,. 14 K.jo,

— . .. . . 2 . . 2
m=1 e gm—1 r=2m-1 yjal :‘/JGQ) (yjaz,n,g yjozm,g) X (Yjii Yo, )
[4]-1 om+1 770 AL 7700 ... 700

Z Z K.jogpmmi Ko, " Kjo, 4 K.jo;
. . . . 2 . — 2°
m=0 oI r=2m+1 yJ“l y3“2) (y]“2m,—1 yj(fzm) X (yJHl yjcfr)

Combining (B.6) and (B.7), we obtain (B.5) for even ¢. Next, suppose 7 is odd and denote
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¢ =1 By (B.6) and (B.7), we have

2mz’70 .. Z’YO

L ) .
K jrgm i Kjriiq
Z Z . 2

2o G Wi — )2 X Wiy~ Vi)

Tit1=1+1
L5] m 7Y .70 Yo
. 2 ZK,Jongrl K jo, “K,ji+1
- . —a. 2 . . . 2
m=0ocam (yagl y]o2) X X (yJogm,l ngzm)

+ > 2

T )2 X T 2’
~ Wi, —Yin,)? X x (Y., yjriﬂ)
TEJ 41°
Tit1=i+1
Vi QmZ’Yo ... 77

Z Z K jrgm i1 Kjritq

s )2 . . 2
"z AT Yjry = Yim)> X X Wiy |~ Yy )

Ti+1 <i+1

L3] 9m 770 ... 770
K jrgmi1 Kjritq

Wjry = Ui )2 XX Wiy = Yy )?

m=1 7eJ7,:
Tir1<i+1

2£
_|_
; Wi, — Y, )2 X X Wh, — Y, )P
TES ;41"

i
Tit1<i+1

[£]-1 i gm+1 7% .70 Yo S g

_ Z Z Z Kajdg.m,_*_l ’ K7j”r—1 K,ng+1 va(r,;
o s )2 % ... . _ o 2 . )2
Yier = Yjoy, )% X X (yyum,l Yjoom )2 X (Yjiir — Yio, )

m=0 oeJ" r=2m+1
2£
+ 2 -
2 2
Yiry = Yiny)? X X (Y5e, = Yo,
o T ) (TSN

i
Ti4+1 <i+1

Combining these two, in order to get (B.5), it remains to show

2@
Z ( (B.8)

.. 2 . Ly 2
T€3f+1 y]rl y]Tg) X X (y]n y]r,;+1 )

2E
Yjoy = Yjon)2 X X Yo,y = Yo )2 X Whin =Yg, )?

063571

To derive (B.8), we define T : ﬁfH — Jffl in the following way. For 7 € 3f+1,
we must have 7, = i+ 1 for some 1 < k < (. We set 0; = 75, for j < 2k — 2; we
set 0; = Tj40, for 2k —1 < j < 20 — 2; and we set 0; = 7To,_1. This defines the
map T(7) = 0. We argue that T is a bijection. For any o € 35‘1, we can define 7
as follows: {{Tl,TQ}, ey {Ti,TiJrl}} = {{01, 0'2}, ey {0i727 0'7;,1}, {0'7;7i + 1}} such that
T <73 < - < Ty, Toj—1 < Tg; for j < 4. Then we have 7 ¢ ijﬂ. This implies T is a
bijection, and gives (B.8). Hence, we complete the proof of (B.5) for odd ¢, and complete
the proof of (B.5).

Eq. (B.5) gives (B.2) for # K = i + 1 and completes the induction. Hence, Eq. (B.2)

holds for all K C J. Taking K = J in (B.2), we obtain (B.1). This completes the proof. [
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