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Abstract

We obtain an integral formula for the distribution of the first hitting time of the origin
for one-dimensional α-stable processes Xt, where α ∈ (1, 2). We also find a spectral-
type integral formula for the transition operators PR\{0}

t of Xt killed upon hitting the
origin. Both expressions involve exponentially growing oscillating functions, which
play a role of generalised eigenfunctions for PR\{0}

t .
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1 Introduction

The main purpose of this article is to extend the results of [23], where a large class
of symmetric Lévy processes was considered, to non-symmetric stable Lévy processes.
For such a process Xt, we study the hitting time of the origin, and transition operators
of the process Xt killed upon hitting the origin. We construct appropriate ‘generalised
eigenfunctions’ F+(sx) and F−(sx), and we provide expressions similar to those of [23].
In our case, however, the functions F+ and F− are no longer bounded; in fact, they
grow exponentially fast, and thus the methods of [23] need to be substantially modified.
Our approach is similar to that of [21], where similar problems for hitting a half-line are
studied. However, we avoid the use of special functions. Instead, we consider integral-
type expressions, related to some extend to [25]; see also the prelimiary version [24] of
that article.

Hitting times for Markov processes are one of the fundamental objects in probabilistic
potential theory, with numerous applications to other areas of mathematics. Various
results for the Brownian motion are collected in [5], Appendix 1. Hitting times for
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Spectral theory for stable processes

symmetric stable Lévy processes have already been studied in 1960s, see, for example,
[3]. In [10] a formula for the density of the hitting time of the origin was obtained
for spectrally positive Lévy processes. The theory was further developed in [32], and
in [34] a series expansion of the density of the hitting time of the origin was found for
stable processes with no negative jumps. Further results for completely asymmetric
stable processes were presented in [43], where series representations for the density are
presented, and in Section 46 of [41]. The Mellin transform for the hitting time of zero
is given in [20]. Additionally, in [43], hitting times of points are proved to be unimodal
when α 6 3/2. Later, in [28], unimodality was proven for α ∈ (1, 2]. More general results
about unimodality of hitting times for Markov processes can be found in [40]. Asymptotic
analysis of the hitting times of points can also be found in [17, 35, 46]. Estimates for
hitting times of points for more general symmetric Lévy processes were obtained under
some mild regularity assumptions in [14].

Obviously, hitting times and distributions for stable processes have been studied also
for more general sets. These results are, however, of much different nature, and we
only mention some examples that are at least remotely related to our work. Hitting
distributions of the interval [−1, 1] or its complement R \ (−1, 1) have been found in [27]
and [38], respectively; see also [36] for further discussion and references. Hitting times
of half-lines, called first passage times, are of particular interest, being the main subject
of fluctuation theory for Lévy processes; we mention here [13, 19, 21].

As mentioned above, spectral theory of symmetric Lévy processes killed upon hitting
{0} is developed in [23]. Further work in this area can be found in [16], where a
narrower class of symmetric Lévy processes with completely monotone jumps is studied.
Similar work for symmetric processes in half-line can be found in [22] and [26], which
extend the former work [18] on the Cauchy process. Non-symmetric stable processes
in half-line have been studied in a similar way in [21]; see also [24, 25] for preliminary
results for more general non-symmetric Lévy processes with completely monotone jumps.
We note that spectral theory of non-symmetric Markov processes on the half-line was
also studied in [29] (one-dimensional diffusion processes), [31] (branching processes)
and [33] (non-self-adjoint Markov semigroups).

Our main goal is to extend the results from [23] to the class of non-symmetric α-stable
processes, α ∈ (1, 2). The symmetric case is much easier, mainly because in this case
the characteristic exponent of the process is real-valued. This property is crucial for the
method developed in [23]. However, the tools developed in [21] allow us to follow some
of the arguments from [23], after appropriate deformation of the contour of integration
to the line along which characteristic exponent takes real values.

Let us briefly motivate the form of our main result, Theorem 1.1. If τ is the hitting
time of the complement of a compact set D for a sufficiently regular symmetric Markov
process Xt, then the transition operators PDt of the process Xt killed at τ are compact
operators on L2(D), and it is easy to find spectral expansion of Px(τ > t): we have

Px(τ > t) =

∞∑
n=1

e−λntϕn(x)

∫
D

ϕn(y)dy,

where (ϕn : n = 1, 2, . . .) is a complete orthonormal system of eigenfunctions of PDt ,
with corresponding eigenvalues e−λnt. We refer to [12] for a rigorous discussion of an
analogous description of the transition density (the kernel of PDt ). When D is unbounded
and PDt fail to be compact operators, one can expect that a continuous variant of the
above expansion holds:

Px(τ > t) =

∫
S

e−λ(s)tϕs(x)

(∫
D

ϕs(y)dy

)
m(ds),
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Spectral theory for stable processes

where ϕs are generalised eigenfunctions (or resonanses) of PDt with generalised eigen-
values λ(s). Here S is some parameter set, and m is an appropriate meusure on S;
again we refer to [12] for a rigorous discussion of such expansion for transition densities.
Similar problem for non-symmetric processes are generally much harder. However, in
certain cases one can hope for similar expansions. In the compact case, if PDt admit a
complete system of eigenfunctions ϕ−n and co-eigenfunctions ϕ+

n , then it is expected that

Px(τ > t) =

∞∑
n=1

e−λntϕ−n (x)

∫
D

ϕ+
n (y)dy.

Similar expressions are possible in the non-compact case, of the form

Px(τ > t) =

∫
S

e−λ(s)tϕ−s (x)

(∫
D

ϕ+
s (y)dy

)
m(ds).

The article [21] derives a formula of the form given above for the first exit time from
(0,∞) for non-symmetric α-stable processes. Here we prove an analogous result for
the hitting time of 0. In either case the generalised eigenfunctions ϕ−s (x) = F (sx)

have exponential growth; namely, we (roughly) have F (x) = eax sin(bx+ c)−G(x) for a
reasonably small remainder term G. As we shall see below, this rapid growth of F is a
constant source of problems in applications of Fubini’s theorem, invertions of Laplace
transforms etc.

Much of the inspiration for the present work also came from the theory of Rogers
functions ([24, 25]). The characteristic exponent of a stable process is a particularly
simple example of a Rogers function. Many of the results presented below seem to
extend to more general Rogers functions, which suggests that our main results can
possibly be extended to more general Lévy processes with completely monotone jumps.

Distribution of hitting times of the points, as mentioned above, is widely studied and
useful in many applications. For example, in [20] it is used (in different form) to study
stable processes conditioned to avoid zero. Such objects appear also in the proofs in
excursion theory ([7, 20]), potential theory ([4]) and local times (Second Ray-Knight
theorem, [30]), not to mention financial mathematics ([47]). Our formula may help
with describing the asymptotics of hitting times (as in [16]). Our results concerning
generalised eigenfunctions, on the other hand, may provide even more interesting
applications. Such objects invariant under operator of rather standard form seem to be
commonly desired.

1.1 Main results

Let Xt be the α-stable process with index α ∈ (1, 2) and positivity parameter ρ ∈
[1− 1

α ,
1
α ]. We assume that Xt is normalised in such a way that if ψ is the characteristic

exponent of Xt, then |ψ(1)| = 1. Let

θ = (1− 2ρ)π2 ,

so that ψ(ξ) = e−iαθ|ξ|α for ξ > 0 and ψ(ξ) = eiαθ|ξ|α for ξ < 0. We remark that our
assumption α ∈ (1, 2) is not restrictive: if α 6 1, then, with probability one, Xt never hits
0.

Define the functions G+ and G− by the formulas

G+(x) = G−(−x) =
α sin π

α

π

∫ ∞
0

tα sin(α(π2 − θ))
t2α − 2tα cos(α(π2 − θ)) + 1

e−txdt,

G+(−x) = G−(x) =
α sin π

α

π

∫ ∞
0

tα sin(α(π2 + θ))

t2α − 2tα cos(α(π2 + θ)) + 1
e−txdt

(1.1)
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Spectral theory for stable processes

for x > 0. Define furthermore

F+(x) = F−(−x) = e−x sin θ sin
(
|x| cos θ + θ signx+ π

α −
π
2

)
−G+(x)

for x ∈ R \ {0} with F+(0) = 0. Note that G− and F− are given by the same expressions
as G+ and F+, with ρ replaced by 1− ρ (that is, with θ changed to −θ). By Px and Ex we
denote the probability and expectation corresponding to the process Xt started at x. The
following theorem is the first main result of the paper. Note also that F+ is continuous
(cf . Lemma 3.1).

Theorem 1.1. Let τ0 be the first hitting time of {0} for the process Xt. Then

Px(τ0 > t) =
1

π cos θ

∫ ∞
0

e−s
αt

s
F−(sx)ds. (1.2)

for x 6= 0 and t > 0.

The functions F+, F− can be seen as generalised eigenfunctions of transition opera-
tors of Xt killed upon hitting {0}. These operators are defined by the formula

P
R\{0}
t f(x) = Ex(f(Xt); t < τ0), (1.3)

for t > 0, x ∈ R \ {0}, and they act on L p(R \ {0}) for arbitrary p ∈ [1,∞]. Although

P
R\{0}
t F− is not well-defined (the expectation does not converge), we have the following

spectral-type representation of PR\{0}t . This is our second main result.

Theorem 1.2. There is a class of functions H, dense in L 2(R \ {0}), with the following
property. If f, g ∈ H, then∫ ∞
−∞

P
R\{0}
t f(x)g(x)dx =

∫ ∞
0

e−s
αt

cos θ

(∫ ∞
−∞

F+(sx)f(x)dx

)(∫ ∞
−∞

F−(sy)g(y)dy

)
ds

+

∫ ∞
0

e−s
αt

cos θ

(∫ ∞
−∞

e−sx sin θ sin(sx cos θ)f(x)dx

)(∫ ∞
−∞

esy sin θ sin(sy cos θ)g(y)dy

)
ds.

The classH is discussed in detail in Section 2.2. Theorem 1.2 provides a spectral-type
representation of P 0

t : the parenthesised integrals can be thought of as Fourier-type
transforms of f and g, which diagonalise the action of P 0

t . This is the reason we call F+

and F− generalised eigenfunctions of P 0
t . We stress, however, that due to exponential

growth at infinity, P 0
t F

+ is not defined unless the process Xt is symmetric, that is, θ = 0.
For the same reason we cannot write∫ ∞

−∞
P
R\{0}
t f(x)F+(sx)dx = e−s

αt

∫ ∞
−∞

f(x)F+(sx)dx,

t > 0, s > 0, even for f ∈ H. The left-hand side is usually not well-defined.
We mention here one property of the functions G+ and G−. For further information,

see Section 3.

Proposition 1.3. The functions G+ and G− are bounded, integrable, and their Fourier
transform is given by

FG+(ξ) = FG−(−ξ) = sin π
α

(
α

ψ(ξ)− 1
− 1

e−iθξ − 1
+

1

eiθξ + 1

)
, ξ ∈ R;

Furthermore, the functions G+(x) = G−(−x) and G+(−x) = G−(x) are completely
monotone on (0,∞).
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Spectral theory for stable processes

Remark 1.4. For θ = 0, i.e. the symmetric case, we reproduce the result of Example 5.1
in [23]. In this case function G+ = G− takes form

G+(sx) =
αsα−1 sin πα

2 sin π
α

π

∫ ∞
0

tα

1− 2tα cos(πα) + t2α
e−s|x|tdt, (1.4)

F+ = F− and

F+(sx) = sin
(
|sx|+ π

α
− π

2

)
−G+(sx). (1.5)

1.2 Structure of the article

The remainning part of the paper is divided into four sections. In Preliminaries we
recall basic definitions and state auxiliary lemmas. In particular, we introduce a suitable
family of test functions H, and we discuss Nevanlinna class of functions and Cauchy’s
integral formula. In Section 3 we prove a handful of technical lemmas in order to derive
a formula for the generalised eigenfunctions F+, F−. The properties of functions G+

and G− are studied here, and the proof of Proposition 1.3 is given. Section 4 is dedicated
to the proof of the Theorem 1.2 and, finally, Theorem 1.1 is proved in Section 5.

In our proof, we deform the contour of integration a number of times. Here is a rough
sketch of the argument.

• We begin with the triple integral I(λ) of e−λtp0
t (x, y)f(x)g(y).

• We use Plancherel’s theorem to rewrite I(λ) as a triple integral with respect to t, ξ,
η, where ξ and η are the Fourier variables corresponding to x and y (Lemma 4.1).

• Next, we deform the contour of integration in ξ and η to (−e−iθ∞, 0) ∪ (0, eiθ∞).

• By doing so, we obtain an expression for I(λ), which is a Cauchy–Stieltjes transform
φ4(λ) of some function of a new variable r (Lemma 4.2).

• Since the Cauchy–Stieltjes transform (r 7→ λ) is the Laplace transform (t 7→ λ) of
the Laplace transform (r 7→ t), the above leads to an expression for the double
integral J(t) of p0

t (x, y)f(x)g(y) (with respect to x and y) as a Laplace transform of
what will be denoted by − Imφ4(−r) (Theorem 4.7).

• In order to prove Theorem 1.2, we now identify the expression for − Imφ4(−r)
(which is given in terms of integrals of Laplace transforms of f and g) with an
appropriate integral transform of f and g. This involves deforming back the contour
of integration with respect to ξ and η to R, and an application of Plancherel’s
formula. It is here convenient to replace r with sα.

• Theorem 1.1 is proved in a similar way, with an additional step at the end of the
proof: we change the order of the integrals with respect to s and x, and by a density
argument, we are able to remove the integral with respect to x. Changing the
order of integration, however, is not straightforward: it requires an appropriated
deformation of the contour of integration, so that Fubini’s theorem can be applied.

2 Preliminaries

We denote by L p(R) the space of real-valued functions f on R such that |f(x)|p is
integrable. We use L f to denote the two-sided Laplace transform of f :

L f(ξ) =

∫ ∞
−∞

f(x)e−ξxdx
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Spectral theory for stable processes

whenever the integral converges absolutely. If f ∈ L 1(R), then Ff(ξ) = L f(iξ)

(with ξ ∈ R) is the Fourier transform of f . The Fourier transformation F is extended
continuously to L 2(R).

2.1 Stable Lévy processes

By Xt we denote a one-dimensional α-stable Lévy process with index of stability
α ∈ (1, 2). We assume that α > 1 in order that Xt is point-recurrent (i.e. it hits single
points with positive probability). The case α = 2 is well-studied and much simpler, so we
require that α 6= 2.

A one-dimensional stable Lévy process is completely characterised by α, the positivity
parameter ρ = P0(X1 > 0), and the scale parameter k > 0. For α ∈ (1, 2), we have
ρ ∈ [1− 1

α ,
1
α ]. We denote by ψ the characteristic exponent of Xt:

E0eiξXt = e−tψ(ξ), t > 0, ξ ∈ R. (2.1)

In our case

ψ(ξ) = (k|ξ|)α
(

1− i tan
(

(2ρ− 1)
απ

2

)
sign ξ

)
, ξ ∈ R.

Our results do not depend on the scale parameter k in any essential way. For this reason,
we choose k in such a way that |ψ(ξ)| = |ξ|α for every ξ ∈ R. Thus, if we set

θ =
(2ρ− 1)π

2
,

then we have |θ| 6 π
α −

π
2 and

ψ(ξ) =

{
(e−iθξ)α if ξ > 0,

(eiθ(−ξ))α if ξ < 0

(all complex powers are principal branches). Note that if we replace conditions ξ > 0,
ξ < 0 by Re ξ > 0, Re ξ < 0, respectively, then the above expression defines a analytic
extension of ψ to C \ iR. Throughout the text, the symbol ψ denotes this extension, and
the fact that ψ(reiθ) ∈ (0,∞) for r ∈ (0,∞) will play an important role.

Remark 2.1. Apparently, the results of the present article can be extended to some
Lévy processes with completely monotone jumps, introduced in [37] and studied recently
in [25]. For symmetric Lévy processes this was already done in [23]. In the non-
symmetric case, one clearly has to assume that 1/(1 + ψ(ξ)) is absolutely integrable,
so that Xt is point-recurrent, and points are regular for Xt (see [41], Theorem 43.3).
However, a number of further technical conditions will have to be imposed.

Probability and expectation of the process starting from x ∈ R are denoted by Px and
Ex. We define the transition operators Pt of Xt by

Ptf(x) = Exf(Xt) =

∫
R

f(y)Px(Xt ∈ dy), t > 0, x ∈ R.

The operators Pt are convolution operators, and the corresponding convolution ker-
nels pt(x) are known as transition densities. More formally, pt is such that Ptf(x) =∫
R
f(y)pt(x− y)dy. The operators Pt form a strongly continuous semigroup of operators

on L 2(R), and their action is diagonalised by the Fourier transformation.
Let D ⊆ R be an open set and let

τD = inf{t > 0 : Xt /∈ D}
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be the first exit time of the process Xt from the set D. The process Xt killed upon leaving
D is formally defined to be equal to Xt until its life-time τD. We are more interested in
the corresponding transition operators PDt , given by

PDt f(x) = Ex(f(Xt)χt<τD ) =

∫
D

f(y)Px(Xt ∈ dy; t < τD), t > 0, x ∈ D.

The corresponding kernel function pDt (x, y), the transition density of the killed process,
is given by so called Dynkin-Hunt formula (we use the name from [8]; it is a consequence
of strong Markov property and it was used in similar context in [45]; the proof for the
Brownian motion case can be found in [1], Section II.4, and in [9], Section 2.2, however
these proofs are general and can be used in our case)

pDt (x, y) = pt(y − x)− Ex(pt−τD (y −XτD )χt>τD ), t > 0, x, y ∈ D.

In particular, 0 6 pDt (x, y) 6 pt(y − x). We consider D = R \ {0}, and for simplicity we

denote τ0 = τR\{0}, P
0
t = P

R\{0}
t and p0

t (x, y) = p
R\{0}
t (x, y).

Recall that the λ-potential kernel of the process Xt is defined as

uλ(x) =

∫ ∞
0

e−λtpt(x)dt, λ > 0, x ∈ R.

By (2.1) and Fubini’s theorem, we have

Fpt(ξ) = e−tψ(−ξ), Fuλ(ξ) =
1

ψ(−ξ) + λ
, ξ ∈ R.

In a similar way, the λ-potential kernel of the killed process is given by

u0
λ(x, y) =

∫ ∞
0

e−λtp0
t (x, y)dt, λ > 0, x, y ∈ R.

We have

u0
λ(x, y) = uλ(y − x)− uλ(−x)uλ(y)

uλ(0)
. (2.2)

This well-known identity follows from Dynkin-Hunt formula by integration, as follows.
Observe that:

u0
λ(x, y) =

∫ ∞
0

e−λtp0
t (x, y)dt =

∫ ∞
0

e−λtpt(x, y)dt− Ex
∫ ∞
τ0

e−λtpt−τ0(y −Xτ0)dt

= uλ(y − x)− Ex
∫ ∞

0

e−λs−λτ0ps(y − 0)ds = uλ(y − x)− Exe−λτ0uλ(y).

(2.3)

By Theorem 43.3 (4) in [41],

Exe−λτ0 =
uλ(−x)

uλ(0)
, (2.4)

and (2.2) follows.
Our ultimate goal is to find integral expressions for the distribution of τ0 with respect

to Px. Our starting points are (2.2) and (2.4), which describe the Laplace transforms
(with respect to t) of p0

t (x, y) and Px(τ0 ∈ dt) in terms of uλ. The function uλ is in turn
the inverse Fourier transform of 1/(λ + ψ(−ξ)). These expressions, however, are not
suitable for standard inversion formulas. For this reason, we will first multiply the above
expressions by appropriately regular test functions, and only then consider Fourier
transforms in x and y.
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2.2 Test functions

Just as in the symmetric case studied in [23], our representation of p0
t (x, y) and

Px(τ0 > t) involves generalised eigenfunctions F+ and F−. In the symmetric case,
F+ = F− is a bounded function; here F+ and F− have exponential growth at infinity.
This nuisance makes the use of the Laplace transform problematic. To overcome this
difficulty, we introduce a particular class of test functions, following [21] (where stable
processes in a half-line were studied).

Definition 2.2. By H+ denote the class of all functions g : R→ R such that

1. g(x) = 0 for x < 0;

2. g extends to an analytic function in the sector | arg(z)| < π/2;

3. for every ε ∈ (0, π/2) there exists δ = δ(ε) > 0 such that |g(z)| = O(|z|−δ|z|) when
|z| → ∞, and |g(z)| = O(1) when |z| → 0, uniformly in the sector | arg(z)| < π/2− ε.

We say that g ∈ H− if g(−z) belongs to H+. Finally, g ∈ H if g : R→ R, and g = g+ + g−
for some g+ ∈ H+ and g− ∈ H−.

We note that the classes H+, H−, H are non-empty and non-trivial, e.g. g(z) =

e−s|z| log |z+e| is in H for every s > 0. It was observed in [21] that, on one hand, H+ is
sufficiently rich, while on the other one, the Laplace–Fourier transform of a function
g ∈ H+ is a suitably decaying analytical function in the sector |Arg(z)| < π − ε for every
ε > 0. We rephrase these results for the class H.

Lemma 2.3 ([21], p. 19, Lemma 2.14). Let g ∈ H. Then L g(z) is an entire function and
for every ε ∈ (0, π2 ) there exists a constant C such that

|L g(z)| 6 C min{1, |z|−1}, |arg(iz)| 6 π
2 − ε or |arg(−iz)| 6 π

2 − ε.

A similar argument leads to the following estimate of the derivative of L g; we omit
the proof.

Lemma 2.4. Let g ∈ H. Then for every ε ∈ (0, π2 ) there exists a constant C such that

|(L g)′(z)| 6 C min{1, |z|−2}, |arg(iz)| 6 π
2 − ε or |arg(−iz)| 6 π

2 − ε.

Lemma 2.5. The class H is dense in the following sense: if f is a Borel-measurable
function and ∫ ∞

−∞
f(x)g(x)dx = 0 for every g ∈ H,

with the integral absolutely convergent, then f(x) = 0 for almost every x ∈ R.

Proof. Let ρ(x) = x log(x + e) and consider g(x) = e−sρ(x)χ(0,∞)(x) for some s > 0. As
we already remarked above, g ∈ H: it extends to an analytic function in the sector
| arg(z)| < π

2 , and we have |g(z)| = |z+ e|−s|z| = O(|z|−s|z|/2) as |z| → ∞ and |g(z)| = O(1)

as |z| → 0, uniformly in the sector | arg z| 6 π
2 − ε for every ε > 0. Note that ρ′(x) > 0 and,

by substitution y = ρ(x), we get

0 =

∫ ∞
−∞

f(x)g(x)dx =

∫ ∞
0

e−syf(ρ−1(y))(ρ−1)′(y)dy (2.5)

for every s > 0. This means that the Laplace transform of f(ρ−1(y))(ρ−1)′(y) vanishes
for every s > 0, and hence f(ρ−1(y))(ρ−1)′(y) = 0 for almost every y > 0. It follows that
f(x) = 0 for almost every x > 0. A very similar argument shows that f(x) = 0 for almost
every x < 0, and the proof is complete.
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2.3 Stieltjes functions and Cauchy’s integral formula for the upper half-plane

One of the key steps in the proof of our main result involves Stieltjes-type repre-
sentation of analytic functions in C \ (−∞, 0). We deduce this result from Cauchy’s
integral formula for functions from the Hardy space H p in the upper complex half-plane
H+ = {z ∈ C : Im z > 0}. We begin with a number of standard definitions.

Definition 2.6. A function f : (0,∞)→ R is a Stieltjes function if

f(x) =
c1
x

+ c2 +
1

π

∫ ∞
0

m(ds)

x+ s
, x > 0, (2.6)

where c1, c2 > 0 and m is a non-negative Radon measure on (0,∞) which satisfies the
integrability condition

∫∞
0

min{1, s−1}m(ds) <∞.

Definition 2.7. For p ∈ (1,∞), by H p we denote the space of functions f analytic
in H+ such that |f(x + iy)|p is integrable with respect to x ∈ R for each y > 0, and∫
R
|f(x+ iy)|pdx is a bounded function of y > 0.

Definition 2.8. A function f analytic in H+ is an outer function if

log |f(x+ iy)| = 1

π

∫ ∞
−∞

y

(x− s)2 + y2
log |f(s)|ds (2.7)

for every x ∈ R and y > 0. Here for s ∈ R the symbol f(s) denotes the limit limt→0+ f(s+

it), which necessarily exists for almost every s ∈ R.

Definition 2.9. The Nevanlinna class N + is the set of functions f analytic in H+, which
can be represented as f = f1/f2, where f1 and f2 are analytic and bounded in H+, and
f2 is outer.

The class of outer functions on the unit disk, and the Nevanlinna class N + on the
unit disk, are defined in a similar way. Note that composition with a conformal map
between the unit disk and the upper complex half-plane defines a bijection between
the corresponding classes of outer functions, as well as between the corresponding
Nevanlinna classes N +. We refer to [6, 39] for further details.

We will use the following standard properties of Stieltjes functions, Hardy space H p,
and the Nevanlinna class N +.

Lemma 2.10 ([23], Proposition 2.1(b)). A function f : (0,∞)→ R is a Stieltjes function
if and only if f(z) > 0 for z > 0 and either f is constant, or f extends to a analytic
function in C \ (−∞, 0], which swaps the upper and the lower complex half-planes, i.e. if
Im z > 0, then Im f(z) < 0 and if Im z < 0, then Im f(z) > 0.

Lemma 2.11 ([39], Theorem 4.29). If f is an analytic function in the unit disk with
non-negative real part and f is not 0 everywhere, then f is an outer function.

Lemma 2.12. If f is an analytic function inH+, Re f > 0 inH+ and f is not 0 everywhere,
then f is an outer function. If f is a Stieltjes function, then (the analytic extension of) f
is an outer function.

Proof. Suppose that Re f > 0 in H+, and consider the conformal map w(z) = −i(z −
1)/(z + 1) from the unit disk {z ∈ C : |z| < 1} onto the upper complex half-plane H+.
If g(z) = f(w(z)) for z ∈ B1, then g is an analytic function in the unit disk, with non-
negative real part. By Lemma 2.11, g is an outer function on the unit disk. It follows that
f(z) = −ig(w−1(z)) is an outer function in the upper complex half-plane H+.

If f is the analytic extension to the upper complex half-plane H+ of a Stieltjes function,
then, by Lemma 2.10, Re(if(z)) > 0 for every z ∈ H+. By the first part of the proof, if is
outer, and hence also f is outer.
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Lemma 2.13 ([39], 5.14(iv)). The sum of functions from N + is in N +. The product of
functions from N + is in N +. The ratio of a function in N + and an outer function is in
N +.

Lemma 2.14. The function f(z) =
√
z is outer.

Proof. The function 1/f(z) = 1/
√
z is a Stieltjes function. Hence, 1/f is outer, and it

follows that f is outer, too.

Recall that for x ∈ R limit limz→x f(z) = a is said to exist non-tangentially if
limn→∞ f(zn) = a whenever limn→∞ zn = x and there is a constant c > 0 such that
|Re(zn − x)| 6 c Im zn for all n ∈ N.

Lemma 2.15 ([39], Theorems 5.6 and 5.23(i)). Let f be in the Nevanlinna class N +.
Then the boundary limit f(x) = limz→x f(z) exists non-tangentially for almost every
x ∈ R. Furthermore, if ∫

R

|f(x)|pdx <∞ (2.8)

for some p ∈ (1,∞), then f ∈H p.

Theorem 2.16 ([11], Theorem 11.8). Let f be in H p for some p ∈ (1,∞). Then

f(z) =
1

2πi

∫
R

f(t)

t− z
dt (2.9)

when Im z > 0 and

0 =
1

2πi

∫
R

f(t)

t− z
dt (2.10)

when Im z < 0.

Corollary 2.17. Let f be an analytic function in C \ (−∞, 0], which is real-valued on
(0,∞), and such that f(−ξ2) belongs to the Nevanlinna class N + in the upper complex
half-plane. For s > 0 denote by f(−s) the boundary limit limt→0+ f(−s+ it) (which exists
for almost every s). Suppose that

∫∞
0
|f(−s2)|pds <∞ for some p ∈ (1,∞). Then

f(z) = − 1

π

∫ ∞
0

Im f(−s)
s+ z

ds =
1

π

∫ ∞
0

√
z√
s

Re f(−s)
s+ z

ds, z ∈ C \ (−∞, 0]. (2.11)

Proof. We define an auxiliary function g(ξ) = f((−iξ)2) in the upper complex half-plane
Im ξ > 0, and we verify that g satisfies the assumptions of Theorem 2.16. By assumption,
g is in the Nevanlinna class N +, so g has a non-tangential boundary limit almost
everywhere.

Fix s > 0. Let H(t) = i
√
−s+ it for t > 0. Then H ′(t) = −1/(2

√
−s+ it), and hence

H ′(0) = −1/(2
√
−s) = i/(2

√
s) is purely imaginary. This implies that H(t) approaches

z(0) = i
√
−s = −

√
s non-tangentially in the upper complex half-plane. As a consequence

(since f(−s+ it) = g(i
√
−s+ it)), we have:

f(−s) := lim
t→0+

f(−s+ it) = lim
t→0+

g(i
√
−s+ it) = g(−

√
s)

for almost all s > 0. Since f(z) = f(z), we find that g(−z) = f((iz)2) = f(−z2) =

f(−z2) = f((−iz)2) = g(z) for z ∈ {z ∈ C : Im z > 0} and hence g(s) = g(−s) = f(−s2)

for almost all s > 0.
By Lemma 2.15 and the assumption

∫∞
0
|f(−s2)|pds <∞, g is in the Hardy space H p.

Therefore, by Theorem 2.16, for z ∈ C \ (−∞, 0] we have

f(z) = g(i
√
z) =

1

2πi

∫ ∞
−∞

g(t)

t− i
√
z
dt =

1

2πi

∫ ∞
0

f(−t2)

t− i
√
z
dt− 1

2πi

∫ ∞
0

f(−t2)

t+ i
√
z
dt,
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and, similarly,

0 =
1

2πi

∫ ∞
−∞

g(t)

t+ i
√
z
dt =

1

2πi

∫ ∞
0

f(−t2)

t+ i
√
z
dt− 1

2πi

∫ ∞
0

f(−t2)

t− i
√
z
dt.

Adding the corresponding sides of these identities, we find that

f(z) =
1

2πi

∫ ∞
0

(f(−t2)− f(−t2))

(
1

t− i
√
z

+
1

t+ i
√
z

)
dt

=
1

2πi

∫ ∞
0

(−2i Im f(−t2))
2t

t2 + z
dt = − 1

π

∫ ∞
0

Im f(−s)
s+ z

ds.

as desired. Similarly, subtracting the corresponding sides rather than adding them, we
obtain

f(z) =
1

2πi

∫ ∞
0

(f(−t2) + f(−t2))

(
1

t− i
√
z
− 1

t+ i
√
z

)
dt

=
1

2πi

∫ ∞
0

(2 Re f(−t2))
2i
√
z

t2 + z
dt =

1

π

∫ ∞
0

√
z√
s

Re f(−s)
s+ z

ds,

as desired.

2.4 Auxiliary lemmas

We need the following simple corollary of the residue theorem.

Lemma 2.18 ([21], p. 11, Lemma 2.5). Let f be an analytic function in the sector
−ε < Arg(z) < b + ε (b − ε < Arg z < ε) for some ε > 0 and b > 0 (resp. b < 0), except
for a finite number of poles at points z = zj lying in the sector 0 < Arg(z) < b (resp.
0 > Arg(z) > b). Assume also that for some δ > 0 we have f(z) = O(|z|−1+δ) as |z| → 0+

and f(z) = O(|z|−1−δ) as |z| → +∞, uniformly in the sector 0 6 Arg(z) 6 b (resp.
0 > Arg(z) > b). Then∫ ∞

0

f(z)dz = eib
∫ ∞

0

f(eibz)dz + 2πi
∑
j

Res(f(zj))

(resp.
∫∞

0
f(z)dz = eib

∫∞
0
f(eibz)dz − 2πi

∑
j Res(f(zj)) for the case b < 0).

We will need the following technical estimate.

Lemma 2.19. Suppose that α ∈ (1, 2) and h : (0,∞)→ R satisfies |h(r)| 6 c1 min{1, r−1}
and |h′(r)| 6 c2 min{1, r−2} if r > 0. Let

K(s) = p.v.

∫ ∞
0

h(r)

rα − sα
dr, s > 0.

Then there is a constant C (which depends only on α, c1 and c2) such that

|K(s)| 6

{
Cs1−α if 0 < s < 1,

Cs−α log(1 + s) if s > 1.
(2.12)

Proof. Fix s > 0. Since |rα − sα| > rα − ( 1
2r)

α > 1
2r
α if r > 2s, we have

|K(s)| 6
∣∣∣∣∫ 2s

0

h(r)− h(s)

rα − sα
dr

∣∣∣∣+

∣∣∣∣h(s) p.v.

∫ 2s

0

1

rα − sα
dr

∣∣∣∣+ 2

∫ ∞
2s

|h(r)|
rα

dr. (2.13)

The third integral in the right-hand side is easy to estimate: if 2s > 1, we have∫ ∞
2s

|h(r)|
rα

dr 6 c1

∫ ∞
2s

1

rα+1
dr =

c1
α(2s)α

, (2.14)
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while if 0 < 2s < 1, ∫ ∞
2s

|h(r)|
rα

dr 6 c1

∫ ∞
2s

1

rα
dr =

c1
(α− 1)(2s)α−1

. (2.15)

The middle integral in (2.13) also shows no difficulties:∣∣∣∣h(s) p.v.

∫ 2s

0

1

rα − sα
dr

∣∣∣∣ 6 c1 min{1, s−1} × s1−α
∣∣∣∣p.v.∫ 2

0

1

tα − 1
dt

∣∣∣∣. (2.16)

We will show that the principal value p.v.
∫ 2

0
1

tα−1 dt is well-defined. Write

1

tα − 1
=

1

α

1

t− 1
+
α(t− 1)− (tα − 1)

α(t− 1)(tα − 1)
.

The first term does not cause any problems and the second term extends continuously
at 1 by l’Hôspital’s rule applied twice:

lim
t→1

α(t− 1)− (tα − 1)

α(t− 1)(tα − 1)
= lim
t→1

1− tα−1

α(t− 1)tα−1 + tα − 1
= lim
t→1

(1− α)tα−2

2αtα−1
=

1− α
2α

.

The estimate of the first integral in (2.13) requires more work. Since

|h′(t)| 6 c2 min{1, t−2} 6 2c2(1 + t)−2,

we have

|h(r)− h(s)| =
∣∣∣∣∫ r

s

h′(t)dt

∣∣∣∣ 6 2c2

∣∣∣∣ 1

1 + s
− 1

1 + r

∣∣∣∣ =
2c2|r − s|

(1 + r)(1 + s)
.

Therefore, ∣∣∣∣∫ 2s

0

h(r)− h(s)

rα − sα
dr

∣∣∣∣ 6 2c2

∫ 2s

0

r − s
rα − sα

1

(1 + r)(1 + s)
dr.

Since (t− 1)/(tα − 1) 6 1 for all t > 0, we have

r − s
rα − sα

=
1

sα−1

(r/s)− 1

(r/s)α − 1
6

1

sα−1
.

It follows that∣∣∣∣∫ 2s

0

h(r)− h(s)

rα − sα
dr

∣∣∣∣ 6 2c2
sα−1

∫ 2s

0

1

(1 + r)(1 + s)
dr =

2c2 log(1 + 2s)

sα−1(1 + s)
.

Combining the above estimates, we conclude that

K(s) 6
C1 log(1 + 2s)

sα−1(1 + s)
+ C2s

1−α min{1, s−1}+ C3 min{s−α, s1−α}

for some constants C1, C2, C3. The desired result follows.

The following identity is quite elementary.

Lemma 2.20 ([23], equation (4.1)). For every a, b, c ∈ C, Im c 6= 0, we have

Im

(
ab

c

)
=

Im a Im b

Im c
+

Im(a/c) Im(b/c)

Im(1/c)
.

We need one more technical result.
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Lemma 2.21. Let t > 0 and

Φ(z) =

∫ ∞
0

e−s
αt 1− e−sz

s
ds

for z ∈ C. Then Φ is an entire function, and for every ε > 0 there is C > 0 such that∣∣∣∣∫ ∞
0

e−s
αt e

−sz2 − e−sz1
s

ds

∣∣∣∣ = |Φ(z1)− Φ(z2)| 6 C

whenever |z1| = |z2| and both z1 and z2 are in the sector |Arg z| 6 π
2 + π

2α − ε.

Proof. By Lemma 2.14 in [21] applied to the function exp(−sαt), the function

Ψ(z) =

∫ ∞
0

e−s
αte−szds

is entire, and for every ε > 0 there is C > 0 such that if |Arg z| 6 π
2 + π

2α − ε, then
|Ψ(z)| 6 C min{1, |z|−1}. Integrating Ψ over [0, z] and using Fubini’s theorem, we find
that ∫

[0,z]

Ψ(w)dw =

∫ ∞
0

e−s
αt

∫
[0,z]

e−swdwds =

∫ ∞
0

e−s
αt e

−sz − 1

−s
ds = Φ(z);

the use of Fubini’s theorem is justified by the estimate |e−sαte−sw| 6 e−s
αtes|z|. Therefore,

Φ is indeed an entire function.
Suppose that ε > 0, r > 0 and that z1 = reis1 and z2 = reis2 are in the sector

|Arg z| 6 π
2 + π

2α − ε. Integrating over the arc Γ of the circle |z| = r with endpoints z1

and z2, we find that

|Φ(z2)− Φ(z1)| =
∣∣∣∣∫

Γ

Ψ(w)dw

∣∣∣∣ 6 ∫ s2

s1

|Ψ(reis)|rds 6 2πr × C min{1, r−1},

which completes the proof.

3 Properties of the function G+

Recall that the characteristic exponent of Xt is given by ψ(ξ) = (e−iθξ)α when ξ > 0

and ψ(ξ) = (−eiθξ)α when ξ < 0, and these expressions extend analytically to Re ξ > 0

and Re ξ < 0, respectively.

Proof of Proposition 1.3. In terms of the characteristic exponent ψ, we need to prove
that

FG+(ξ) = sin π
α

(
α

ψ(ξ)− 1
− 1

e−iθξ − 1
+

1

eiθξ + 1

)
, ξ ∈ R. (3.1)

One way to prove the above identity is to simply evaluate the left-hand side using the
definition (1.1) of G+. We take a different approach: we apply the inverse Fourier
transform to the right-hand side of (3.1) and in this way we derive (1.1).

We denote the right-hand side of (3.1) by Φ(iξ). Note that |Φ(iξ)| 6 C min{1, |ξ|−1}.
In particular, Φ(iξ) is square integrable, and hence Φ(iξ) indeed is the Fourier transform
of a function G ∈ L 2(R). Observe that Φ(−iξ) = Φ(iξ) for ξ ∈ R, and hence G is
real-valued.

By definition, Φ(iξ) given by right-hand side of (3.1), and hence Φ extends to an
analytic function in the upper complex half-plane, continuous on the boundary, given by
the formula

Φ(ξ) = sin π
α

(
α

(−ie−iθξ)α − 1
− eiθ

−iξ − eiθ
+

e−iθ

−iξ + e−iθ

)
, Im ξ > 0.
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Indeed: the pole of α/((−ie−iθξ)α − 1) is cancelled by eiθ/(−iξ − eiθ). Furthermore, the
estimate |Φ(ξ)| 6 C min{1, |ξ|−1} holds in the upper complex half-plane, so that Φ is in
the Hardy space H 2 in the upper complex half-plane. Hence, by Theorem 2.16, for ξ > 0

we have

FG(ξ) = Φ(iξ) =
1

2πi

∫ ∞
−∞

Φ(t)

t− iξ
dt, 0 =

1

2πi

∫ ∞
−∞

Φ(t)

t+ iξ
dt. (3.2)

It follows that

FG(ξ) = Φ(iξ) + 0 =
1

2πi

∫ ∞
−∞

Φ(t)− Φ(t)

t− iξ
dt

=
1

π

∫ ∞
−∞

Im Φ(t)

t− iξ
dt = − 1

π

∫ ∞
0

Im Φ(−t)
t+ iξ

dt+
1

π

∫ ∞
0

Im Φ(t)

t− iξ
dt

(3.3)

(here we added the sides of the first equality in (3.2) and complex conjugates of the
corresponding sides of the other equality in (3.2)). By a straightforward calculation, for
t > 0 we have

Im Φ(t) = sin π
α Im

(
α

e−iα(π/2+θ)tα − 1
− 1

e−i(π/2+θ)t− 1
− 1

ei(π/2+θ)t− 1

)
= sin π

α ×
αtα sin(α(π2 + θ))

t2α − 2tα cos(α(π2 + θ)) + 1
.

Similarly, for t > 0,

Im Φ(−t) = − sin π
α ×

αtα sin(α(π2 − θ))
t2α − 2tα cos(α(π2 − θ)) + 1

.

In particular, Im Φ(t) is integrable over t ∈ R.
Observe that for t > 0, the functions ξ 7→ 1/(t−iξ) and ξ 7→ 1/(t+iξ) are Fourier trans-

forms of x 7→ etxχ(−∞,0)(x) and x 7→ e−txχ(0,∞)(x), respectively. By Fubini’s theorem,
(1.1) and (3.3), the Fourier transform of the function

G+(x) = − 1

π

∫ ∞
0

Im Φ(−t)e−txχ(0,∞)(x)dt+
1

π

∫ ∞
0

Im Φ(t)etxχ(−∞,0)(x)dt

coincides with FG on (0,∞). Since both G+ and G are real-valued, we conclude that
FG+ = FG on R, and consequently G+ and G are equal almost everywhere.

Finally, for x > 0 the functions G+(x) = G−(−x) and G+(−x) = G−(x) are Laplace
transforms of nonnegative functions (see (1.1)), and hence they are completely monotone.

We will later see that

G+(0+) = sin(θ + π
α −

π
2 ), G+(0−) = sin(−θ + π

α −
π
2 ).

In particular,
G+(0+)−G+(0−) = 2 sin π

α sin θ.

We will need the following regularity result.

Lemma 3.1. The function G+ is Hölder continuous with exponent α− 1, save for a jump
at x = 0. More precisely, the function

g(x) = G+(x)χR\{0}(x)−G+(0+)χ(0,∞) −G+(0−)χ(−∞,0)

is Hölder continuous: there exists a constant C such that

|g(x)− g(y)| 6 C|x− y|α−1, x, y ∈ R. (3.4)
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Proof. We consider first an auxiliary function f(x) = G+(x)− ce−xχ(0,∞)(x), where

c = 2 sin π
α sin θ = −i sin π

α (eiθ − e−iθ).

Note that f is continuous on R \ {0}, and

Ff(ξ) = sin π
α

(
α

ψ(ξ)− 1
− eiθ

ξ − eiθ
+

e−iθ

ξ + e−iθ

)
+

ci

ξ − i

= sin π
α

(
α

ψ(ξ)− 1
− eiθ

(
α

1

ξ − eiθ
− 1

ξ − i

)
+ e−iθ

(
1

ξ + e−iθ
− 1

ξ − i

))
.

It follows that Ff(ξ) = O(|ξ|−α) + O(|ξ|−2) = O(|ξ|−α) as |ξ| → ∞, and therefore
|Ff(ξ)| 6 C1/(1 + |ξ|α) for ξ ∈ R. In particular, Ff is integrable, and hence f , modified
appropriately at 0, is a continuous function. Furthermore, for x, y ∈ R,

|f(x)− f(y)| =
∣∣∣∣∫ ∞
−∞

(eiξx − eiξy)Ff(ξ)dξ

∣∣∣∣ 6 ∫ ∞
−∞

min{2, |x− y||ξ|} C1

|ξ|α
dξ

= |x− y|α−1

∫ ∞
−∞

min{2, |t|} C1

|t|α
dt = C2|x− y|α−1;

(3.5)

we used a substitution ξ = |x−y|−1t in the penultimate step. Thus, f is Hölder continuous
with exponent α− 1.

It remains to observe that g − f (modified appropriately at zero) is bounded and
Lipschitz continuous. Indeed, by definition, for some constants c1, c2, c3, c4 we have
g(x)− f(x) = (c1 + c2e

−x)χ(0,∞)(x) + (c3 + c4e
x)χ(−∞,0)(x) when x 6= 0. Since both f and

g are continuous at zero, we necessarily have c1 + c2 = c3 + c4, and consequently g− f is
Lipschitz continuous.

4 Spectral expansion of transition operators P 0
t

In this section we estabilish a generalised eigenfunction expansion for the transition
operators P 0

t .

4.1 Multiplication by test functions

Recall that the Laplace transform of the transition density p0
t (x, y) with respect to t

is equal to the potential kernel u0
λ(x, y). Our first goal is to apply (2.2) to express the

Laplace transform of
∫∞
−∞

∫∞
−∞ f(x)g(y)p0

t (x, y)dxdy with respect to t in terms of Fourier
transforms of f and g, where f and g are suitable test functions.

Lemma 4.1. If f and g are in both L 1(R) and L 2(R), then∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

e−λtf(x)g(y)p0
t (x, y)dxdydt

=
1

2π

∫ ∞
−∞

Ff(−ξ)Fg(ξ)

λ+ ψ(ξ)
dξ

− 1

uλ(0)

(
1

2π

∫ ∞
−∞

Ff(−ξ)
λ+ ψ(ξ)

dξ

)(
1

2π

∫ ∞
−∞

Fg(η)

λ+ ψ(η)
dη

) (4.1)

for all λ > 0.

Proof. Recall that p0
t (x, y) > 0 and

∫∞
0
e−λtp0

t (x, y)dt = u0
λ(x, y) 6 uλ(y − x) 6 uλ(0).

Thus, if f and g are integrable functions, then e−λtf(x)g(y)p0
t (x, y) is integrable with
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respect to t > 0 and x, y ∈ R. By Fubini’s theorem and (2.2),∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

e−λtf(x)g(y)p0
t (x, y)dxdydt

=

∫ ∞
−∞

∫ ∞
−∞

f(x)g(y)u0
t (x, y)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

f(x)g(y)

(
uλ(y − x)− uλ(−x)uλ(y)

uλ(0)

)
dxdy.

Suppose additionally that f, g ∈ L 2(R). Since Fuλ(ξ) = 1/(λ+ ψ(−ξ)) is in L 2(R), we
have uλ ∈ L 2(R) and, by Plancherel’s theorem,∫ ∞

−∞
f(x)uλ(y − x)dx =

1

2π

∫ ∞
−∞

eiξyFf(ξ)Fuλ(ξ)dξ,∫ ∞
−∞

g(y)uλ(y)dy =
1

2π

∫ ∞
−∞

Fg(η)Fuλ(−η)dη.

It follows that∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

e−λtf(x)g(y)p0
t (x, y)dxdydt

=
1

2π

∫ ∞
−∞

(∫ ∞
−∞

Ff(ξ)eiξyg(y)Fuλ(ξ)dξ

)
dy

− 1

uλ(0)

(
1

2π

∫ ∞
−∞

Ff(ξ)Fuλ(ξ)dξ

)(
1

2π

∫ ∞
−∞

Fg(η)Fuλ(−η)dη

)
.

Since Ff(ξ)Fuλ(ξ) and g(y) are integrable, once again applying Fubini’s theorem, we
eventually find that∫ ∞

0

∫ ∞
−∞

∫ ∞
−∞

e−λtf(x)g(y)p0
t (x, y)dxdydt

=
1

2π

∫ ∞
−∞

Ff(ξ)Fg(−ξ)Fuλ(ξ)dξ

− 1

uλ(0)

(
1

2π

∫ ∞
−∞

Ff(ξ)Fuλ(ξ)dξ

)(
1

2π

∫ ∞
−∞

Fg(η)Fuλ(−η)dη

)
.

The desired result follows from Fuλ(ξ) = 1/(λ+ ψ(−ξ)) after substituting ξ for −ξ.

In [23], the process Xt is assumed to be symmetric, and so ψ is real-valued. In this
case inversion of the Laplace transform in t in (4.1) is possible by extending analytically
the right-hand side to λ ∈ C \ (−∞, 0], and writing down a Stieltjes-like representation
in terms of boundary values along (−∞, 0). In the non-symmetric case this approach is
problematic: the right-hand side of (4.1) no longer automatically extends to an analytic
function in C\ (−∞, 0]. A way around if found by considering more regular test functions,
and deforming the contour of integration in ξ and η so that ψ(ξ) and ψ(η) are again
real-valued.

4.2 Contour deformation

Throughout this section, we fix f, g ∈ H. Recall that f and g are real-valued, and their
Laplace transforms are entire functions such that L f(ξ) = L f(ξ), L g(ξ) = L g(ξ). By
Lemma 2.3, |L f(ξ)| and |L g(ξ)| are bounded by C min{1, |ξ|−1} in every closed sector
which contains neither (0,∞) nor (−∞, 0).
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We will constantly use the following notation. For r > 0 we let

h0(r) = cos θ,

h1(r) = Re(eiθL f(−ireiθ)),
h2(r) = Re(eiθL g(ireiθ)),

h3(r) = Re(eiθL f(−ireiθ)L g(ireiθ)).

For j = 0, 1, 2, 3 we define

φj(λ) =
1

π

∫ ∞
0

hj(r)

rα + λ
dr, λ ∈ C \ (−∞, 0].

Note that

φ0(λ) =
cos θ

π

1

λ1−1/α

∫ ∞
0

1

tα + 1
dt =

cos θ

α sin π
α

1

λ1−1/α

∫ ∞
0

1

tα + 1
dt.

Observe also that if f(x) = g(−x), then h2(r) = h1(r). Finally, we set

φ4(λ) = φ3(λ)− φ1(λ)φ2(λ)

φ0(λ)
, λ ∈ C \ (−∞, 0],

and for later needs we extend the above definitions to (−∞, 0) by the formula

φj(−λ) := lim
ε→0+

φj(−λ+ iε), λ > 0.

The following result is a variant of Lemma 4.1 after appropriate contour deformation.

Lemma 4.2. With the above assumptions and notation, we have∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

e−λtf(x)g(y)p0
t (x, y)dxdydt = φ4(λ), λ > 0. (4.2)

Proof. To simplify the notation, we consider only θ > 0. The remaining case θ < 0

is completely analogous. Fix λ > 0 and denote the left-hand side of (4.2) by I. By
Lemma 4.1,

I =
1

2π

∫ ∞
−∞

L f(−iξ)L g(iξ)

λ+ ψ(ξ)
dξ

− 1

uλ(0)

(
1

2π

∫ ∞
−∞

L f(−iξ)
λ+ ψ(ξ)

dξ

)(
1

2π

∫ ∞
−∞

L g(iη)

λ+ ψ(η)
dη

)
.

(4.3)

Now we deform the contour of integration R to (−e−iθ∞, 0) ∪ (0, eiθ∞) in each of the
three integrals in the right-hand side.

Recall that ψ(eiθr) = ψ(−e−iθr) = rα. Observe that if |Arg ξ| 6 |θ|, then

|Argψ(ξ)| = |Arg(e−iθξ)α| = | − αθ + αArg ξ| 6 2αθ

6 2α
(π
α
− π

2

)
= (2− α)π,

(4.4)

and hence

|λ+ ψ(ξ)|2 = λ2 + |ψ(ξ)|2 + 2λReψ(ξ) > λ2 + |ψ(ξ)|2 + 2λ|ψ(ξ)| cos((2− α)π)

> c(α)(λ+ |ψ(ξ)|)2 > c(α, λ)(1 + |ψ(ξ)|)2.
(4.5)
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Since |ψ(ξ)| = |ξ|α, we conclude that

|λ+ ψ(ξ)| > c(α, λ)(1 + |ξ|α). (4.6)

Now we use Lemma 2.18: the function L f(−iξ)L g(iξ)/(λ+ ψ(ξ)) is analytic in {ξ ∈ C :

Re ξ > 0}, and by Lemma 2.3 and (4.6) we have:

|L f(−iξ)| 6 C min(1, |ξ|−1), |L g(iξ)| 6 C min(1, |ξ|−1),

1

|λ+ ψ(ξ)|
6 C(α, λ) min{1, |ξ|−α}

in the sector {ξ ∈ C : 0 6 arg(ξ) 6 θ}. Therefore, by Lemma 2.3),

1

2π

∫
(0,∞)

L f(−iξ)L g(iξ)

λ+ ψ(ξ)
dξ =

1

2π

∫
(0,eiθ∞)

L f(−iξ)L g(iξ)

λ+ ψ(ξ)
dξ

=
1

2π

∫ ∞
0

eiθL f(−ieiθr)L g(ieiθr)

λ+ rα
dr.

In a similar way,

1

2π

∫
(−∞,0)

L f(−iξ)L g(iξ)

λ+ ψ(ξ)
dξ =

1

2π

∫
(−e−iθ∞,0)

L f(−iξ)L g(iξ)

λ+ ψ(ξ)
dξ

=
1

2π

∫ ∞
0

e−iθL f(ie−iθr)L g(−ie−iθr)
λ+ rα

dr.

Now, we combine the above two identities: since

eiθL f(−ieiθr)L g(ieiθr) = e−iθL f(ie−iθr)L g(−ie−iθr),

we find that

1

2π

∫ ∞
−∞

L f(−iξ)L g(iξ)

λ+ ψ(ξ)
dξ

=
1

2π

∫
(0,∞)

L f(−iξ)L g(iξ)

λ+ ψ(ξ)
dξ +

1

2π

∫
(−∞,0)

L f(−iξ)L g(iξ)

λ+ ψ(ξ)
dξ

=
1

2π

∫ ∞
0

e−iθL f(ie−iθr)L g(−ie−iθr) + eiθL f(−ieiθr)L g(ieiθr)

λ+ rα
dr

=
1

π

∫ ∞
0

Re(e−iθL f(ie−iθr)L g(−ie−iθr))
λ+ rα

dr = φ3(λ).

The same argument applies to the other two integrals in the right-hand side of (4.3),
which are found to be equal to φ1(λ) and φ2(λ), respectively. Finally, again by the same
argument,

uλ(0) =
1

2π

∫ ∞
−∞

1

λ+ ψ(−η)
dη =

1

2π

∫ ∞
0

eiθ + e−iθ

λ+ rα
dr = φ0(λ). (4.7)

We conclude that

I = φ3(λ)− φ1(λ)φ2(λ)

φ0(λ)
= φ4(λ), λ > 0, (4.8)

and the proof is complete.
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4.3 Application of the Cauchy’s integral formula

We consider f, g ∈ H, and we continue to use the notation introduced in the previous
section. We now use Cauchy’s integral formula given in Theorem 2.16 for the function√
ξφ4(ξ). The following set of lemmas justify the application of this result. First we check

that φ4 ∈ N +.

Lemma 4.3. The function λφ4(−λ2) is in the Nevanlinna class N +.

Proof. Recall that for j = 0, 1, 2, 3 and λ ∈ C \ (−∞, 0], we have

φj(λ) =
1

π

∫ ∞
0

hj(r)

rα + λ
dr =

1

απ

∫ ∞
0

s1/α−1hj(s
1/α)

s+ λ
ds.

Therefore, if Imλ > 0, then

λφj(−λ2) =
1

απ

∫ ∞
0

λs1/α−1hj(s
1/α)

s− λ2
ds

=
1

2απ

∫ ∞
0

s1/α−1hj(s
1/α)

s− λ
ds− 1

2απ

∫ ∞
0

s1/α−1hj(s
1/α)

s+ λ
ds.

(4.9)

Writing hj(r) = max{hj(r), 0} − max{−hj(r), 0}, we see that λφj(−λ2λ) = φj,1(−λ) −
φj,2(−λ) − φj,3(λ) + φj,4(λ) for appropriate Stieltjes functions φj,1, φj,2, φj,3, φj,4. By
Lemmas 2.12 and 2.13, λφj(−λ2) is in the Nevanlinna class N +.

Similarly, we show that λφ0(−λ2) is an outer function. We have h0(s1/α) > 0 in (4.9),
and hence Im(λφ0(−λ2)) > 0 whenever Imλ > 0. By Lemma 2.12, −iλφ0(−λ2) is an
outer function, and hence also λφ0(−λ2) is an outer function.

Lemma 2.13 implies now that the function φ4 = φ3 − φ1φ2/φ0 is in the Nevanlinna
class N +.

Next, we study the boundary values of φ4. This will involve the following pricipal
value integrals:

Kj(s) =
1

π
p.v.

∫ ∞
0

hj(r)dr

rα − sα
, s > 0,

where j = 0, 1, 2, 3. Note that since h0(r) = cos θ, we have

K0(s) = −
cot πα cos θ

αsα−1
, s > 0;

see, for example, [23], Example 5.1. For j = 0, 1, 2, 3, define also

Lj(s) =
hj(s)

αsα−1
, s > 0.

In particular,

L0(s) =
cos θ

αsα−1
, s > 0.

Lemma 4.4. With the above notation, φ4 extends to a continuous function in the closed
upper complex half-plane, except possibly at 0. If this extension is denoted by the same
symbol φ4, then we have

Imφ4(−sα) = −L3(s) +
L1(s)L2(s)

L0(s)

−
(

Im
1

K0(s)− iL0(s)

)−1

Im
K1(s)− iL1(s)

K0(s)− iL0(s)
Im

K2(s)− iL2(s)

K0(s)− iL0(s)
.

(4.10)
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Proof. Since for f ∈ H the function L f is an entire function, the functions hj , j =

0, 1, 2, 3, are continuously differentiable on (0,∞). Thus, φj , j = 0, 1, 2, 3, extend to
continuous functions in the upper complex half-plane, except possibly at 0; we denote

these extensions again by φj . Now, by Sokhozki’s formula (note that hj(t
1/α)

αt1−1/α are also
continuously differentiable near t = sα), for j = 0, 1, 2, 3 and s > 0 we have

φj(−sα) = lim
ε→0+

φj(−sα + iε) = lim
ε→0+

1

π

∫ ∞
0

hj(r)

rα − sα + iε
dr

= lim
ε→0+

1

π

∫ ∞
0

hj(t
1
α )

t− sα + iε

dt

αt1−
1
α

=

= lim
ε→0+

1

π

∫ ∞
0

t− sα

(t− sα)2 + ε2

hj(t
1
α )

αt1−
1
α

dt− lim
ε→0+

1

π

∫ ∞
0

iε

(t− sα)2 + ε2

hj(t
1
α )

αt1−
1
α

dt

= p.v.

∫ ∞
0

1

t− sα
hj(t

1
α )

αt1−
1
α

dt− hj((s
α)

1
α )

α(sα)1− 1
α

=
1

π
p.v.

∫ ∞
0

hj(r)dr

rα − sα
− i

αsα−1

πhj(s)

π
= Kj(s)− iLj(s);

see [44], Section 1.8, or a similar calculation in the proof of Lemma 4.3 and Section 2.1
in [23]. Hence, we can express φ4(−sα) as

φ4(−sα) = K3(s)− iL3(s)− (K1(s)− iL1(s))(K2(s)− iL2(s))

K0(s)− iL0(s)
. (4.11)

Now, since Kj and Lj are real-valued for j = 0, 1, 2, 3, the desired result follows by
Lemma 2.20.

The following estimates will be used to prove square-integrability of sφ4(−s2) for the
application of Theorem 2.16.

Lemma 4.5. With the above notation and assumptions, there is a constant C such that
for j = 1, 2, 3 we have

|Kj(s)| 6

{
Cs1−α if 0 < s < 1,

Cs−α log(1 + s) if s > 1
(4.12)

Proof. By Lemmas 2.3 and 2.4, the functions h1 and h2 satisfy the assumptions of
Lemma 2.19, and consequently

|Kj(s)| 6

{
Cs1−α if 0 < s < 1,

Cs−α log(1 + s) if s > 1

for j = 1, 2. Similarly, again by Lemmas 2.3 and 2.4, we have |h3(r)| 6 C min{1, r−2} and
|h′3(r)| 6 C min{1, r−3}, so Lemma 2.19 applies also h3, leading to the desired bound for
K3.

Lemma 4.6. With the above notation and assumptions, there is a constant C such that

|φ4(−λ)| 6

{
Cλ1/α−1 if 0 < λ < 1,

Cλ−1(log(1 + λ))2 if λ > 1
(4.13)

Proof. For s > 0, we have

|φ4(−sα)| =
∣∣∣∣φ3(−sα)− φ1(−sα)φ2(−sα)

φ0(−sα)

∣∣∣∣
6 |K3(s)|+ |L3(s)|+ (|K1(s)|+ |L1(s)|)(|K2(s)|+ |L2(s)|)

|L0(s)|
.

EJP 26 (2021), paper 14.
Page 20/33

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP594
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Spectral theory for stable processes

Recall that L0(s) = cos θ/(αsα−1) for s > 0. By definition and Lemma 2.3, there is a
constant C1 such that if s > 0, then |Lj(s)| 6 C1s

1−α min{1, s−1} for j = 1, 2, and |L3(s)| 6
C1s

1−α min{1, s−2}. Similar estimates for Kj(s), j = 1, 2, 3, are given in Lemma 4.5. It
follows that for some constant C2 we have

|φ4(−sα)| 6 C2s
1−α, 0 < s < 1,

and

|φ4(−sα)| 6 C2s
−α(log(1 + s))2, s > 1,

as desired.

We are now ready to apply Theorem 2.16.

Theorem 4.7. Let f, g ∈ H and t > 0. Then, with the above notation,∫ ∞
−∞

∫ ∞
−∞

f(x)g(y)p0
t (x, y)dxdy = − 1

π

∫ ∞
0

e−rt Imφ4(−r)dr, (4.14)

where Imφ4 is given by Lemma 4.4.

Proof. Recall that by Lemma 4.2,∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

e−λtf(x)g(y)p0
t (x, y)dxdydt = φ4(λ), λ > 0.

We verify that the function
√
λφ4(λ) satisfies the assumptions of Corollary 2.17. By

Lemma 4.3, the function λφ4(λ2) is in the Nevanlinna class N +. By Lemma 4.4, this
function extends continuously to the closed upper complex half-plane, except possibly at
λ = 0, and, by Lemma 4.6, this extension satisfies

|
√
λφ4(−λ)| 6

{
Cλ1/α−1/2 if 0 < λ < 1,

Cλ−1/2(log(1 + λ))2 if λ > 1.

In particular,∫ ∞
0

|λφ4(−λ2)|2dλ 6 C2

∫ 1

0

λ2/α−1dλ+ C2

∫ ∞
1

λ−2(log(1 + λ2))4dλ <∞.

Therefore, the assumptions of Corollary 2.17 are satisfied.
We conclude that for λ ∈ C \ (−∞, 0],

√
λφ4(λ) =

1

π

∫ ∞
0

√
λ√
r

Re(i
√
rφ4(−r))
r + λ

dr = −
√
λ

π

∫ ∞
0

Imφ4(−r)
r + λ

dr,

which implies that for λ > 0,∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

e−λtf(x)g(y)p0
t (x, y)dxdydt = − 1

π

∫ ∞
0

∫ ∞
0

Imφ4(−r)e−rte−λrdtdr.

The desired result for almost every t > 0 follows by Fubini’s theorem and uniqueness
of Laplace transforms. Extension to all t > 0 is a consequence of continuity. Indeed,
the right-hand side of (4.14) is clearly continuous in t > 0. Continuity of the left-hand
side results from integrability of f(x)g(y) with respect to x, y ∈ R, and continuity of
t 7→ p0

t (·, ·) on (0,∞) with respect to the topology of uniform convergence.
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4.4 Generalised eigenfunction expansion of P 0
t

Our goal in this section is to express Imφ4(−λ) (see Lemma 4.4) in terms of f and g
rather than the Laplace transforms of f and g. This result, combined with Theorem 4.7,
will prove Theorem 1.2. We use the notation introduced in Sections 4.2 and 4.3.

The expression for Imφ4(−λ) in Lemma 4.4:

Imφ4(−sα) = −L3(s) +
L1(s)L2(s)

L0(s)

−
(

Im
1

K0(s)− iL0(s)

)−1

Im
K1(s)− iL1(s)

K0(s)− iL0(s)
Im

K2(s)− iL2(s)

K0(s)− iL0(s)
,

has two parts. The former one is expanded in Lemma 4.8; the latter one is more involved
and it is studied in Lemma 4.11, after a number of auxiliary results.

Lemma 4.8. With the above assumptions and notation,

L3(s)− L1(s)L2(s)

L0(s)

=
1

αsα−1 cos θ

(∫ ∞
−∞

e−sx sin θ sin(sx cos θ)f(x)dx

)(∫ ∞
−∞

esy sin θ sin(sy cos θ)g(y)dy

)
.

Proof. Recall that for j = 0, 1, 2, 3, Lj(s) = hj(s)/(αs
α−1), where

h0(s) = cos θ, h1(s) = Re(eiθL f(−iseiθ)),
h2(s) = Re(eiθL g(iseiθ)), h3(s) = Re(eiθL f(−iseiθ)L g(iseiθ)).

For a fixed s > 0, denote Re L f(−iseiθ) = a1, Im L f(−iseiθ) = b1, Re L g(iseiθ) = a2,
Im L g(iseiθ) = b2. We have

L1(s) =
Re(eiθL f(−iseiθ))

αsα−1
=
a1 cos θ − b1 sin θ

αsα−1
,

L2(s) =
Re(eiθL g(iseiθ))

αsα−1
=
a2 cos θ − b2 sin θ

αsα−1
,

L3(s) =
Re(eiθL f(−iseiθ)L g(iseiθ))

αsα−1
=

(a1a2 − b1b2) cos θ − (a1b2 + a2b1) sin θ

αsα−1
.

It follows that

L3(r)− L1(r)L2(r)

L0(r)
=

(a1a2 − b1b2) cos θ − (a1b2 + a2b1) sin θ

αsα−1

− (a1 cos θ − b1 sin θ)(a2 cos θ − b2 sin θ)

αsα−1 cos θ

= −b1b2 cos θ

αsα−1
− b1b2 sin2 θ)

αsα−1 cos θ
= − b1b2

αsα−1 cos θ
.

Since

b1 = Im L f(−iseiθ) =

∫ ∞
−∞

e−sx sin θ sin(sx cos θ)f(x)dx,

b2 = Im L g(iseiθ) = −
∫ ∞
−∞

esy sin θ sin(sy cos θ)g(y)dy,

the proof is complete.

Recall that every f ∈ H can be written as f = f+ + f−, where f+ = fχ(0,∞) ∈ H+ and
f− = fχ(−∞,0) ∈ H−. For the next result, we need the following variant of Sokhozki’s
formula.
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Lemma 4.9. If s > 0, ζ = seiθ or ζ = −se−iθ, f ∈ H and f = f+ + f− as above, then

1

2πi
p.v.

∫
(−e−iθ∞,0)∪(0,eiθ∞)

L f(−iξ)
ξ − ζ

dξ =
1

2
L f+(−iζ)− 1

2
L f−(−iζ). (4.15)

Here (−e−iθ∞, 0) ∪ (0, eiθ∞) denotes a contour that consists of two rays, Arg ξ = θ and
Arg(−ξ) = −θ, oriented in such a way that the real part increases along this contour.

Proof. Let ΓR denote the boundary of the circular sector

DR = {ξ ∈ C : |ξ| 6 R, | arg(−iξ)| 6 π
2 − θ},

oriented in a counter-clockwise manner. Since |L f+(−iξ)| 6 C min{1, |ξ|−1} in DR by
Lemma 2.3, we have

1

2πi
p.v.

∫
(−e−iθ∞,0)∪(0,eiθ∞)

L f+(−iξ)
ξ − ζ

dξ = lim
R→∞

1

2πi
p.v.

∫
ΓR

L f+(−iξ)
ξ − ζ

dξ. (4.16)

If R > s, then L f+(−iξ) is analytic in the neighbourhood of DR and ζ ∈ ΓR. Thus, by the
usual Sokhozki’s formula, the expression under the limit in the above equality is equal to
1
2L f+(−iζ).

A similar argument applies to f− rather than f+, but here we need to consider the
boundary ΓR of the circular sector

DR = {ξ ∈ C : |ξ| 6 R, | arg(iξ)| 6 π
2 + θ},

oriented in a clockwise manner. Note that |L f−(−iξ)| 6 C min{1, |ξ|−1} in DR, and so
we have a complete analogue of (4.16) for f−. However, the expression under the limit
in the right-hand side is now equal to − 1

2L f−(−iζ) (with a minus sign) due to clockwise
orientation of ΓR. The assertion of the lemma follows by combining the above results for
f+ and f−.

Observe that for f ∈ H and r > 0,

eiθL f(−iseiθ) =

∫ ∞
−∞

e−sx sin θ(cos(sx cos θ + θ) + i sin(sx cos θ + θ))f(x)dx.

Lemma 4.10. With the above assumptions and notation, for s > 0 we have

K1(s) =
1

αsα−1

∫ ∞
−∞

(
G+(sx)

sin π
α

− e−sx sin θ sin(sx cos θ + θ) signx

)
f(x)dx, (4.17a)

K2(s) =
1

αsα−1

∫ ∞
−∞

(
G+(−sx)

sin π
α

− esx sin θ sin(sx cos θ − θ) signx

)
g(x)dx. (4.17b)

Proof. Fix s > 0. By definition,

K1(s) =
1

π
p.v.

∫ ∞
0

Re(eiθL f(−ireiθ))
rα − sα

dr

=
1

2π
p.v.

∫ ∞
0

eiθL f(−ireiθ)
rα − sα

dr +
1

2π
p.v.

∫ ∞
0

e−iθL f(ire−iθ)

rα − sα
dr

=
1

2π
p.v.

∫
(−e−iθ∞,0)∪(0,eiθ∞)

L f(−iξ)
ψ(ξ)− sα

dξ.
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The function 1/(ψ(ξ)−sα) is meromorphic in C\ iR, with two simple poles at ξ = seiθ and
ξ = −se−iθ. The corresponding residues are 1/ψ′(seiθ) = eiθ/(αsα−1) and 1/ψ′(−se−iθ) =

−e−iθ/(αsα−1), respectively. Removing this poles leads to the identity

K1(s) =
1

2π

∫
(−e−iθ∞,0)∪(0,eiθ∞)

Φ(ξ)L f(−iξ)dξ

+
1

2π
p.v.

∫
(−e−iθ∞,0)∪(0,eiθ∞)

(
eiθ

αsα−1

1

ξ − seiθ
− e−iθ

αsα−1

1

ξ + se−iθ

)
L f(−iξ)dξ,

(4.18)
where

Φ(ξ) =
1

ψ(ξ)− sα
− eiθ

αsα−1

1

ξ − seiθ
+

e−iθ

αsα−1

1

ξ + se−iθ
, ξ ∈ C \ iR.

The second term in the above expression for K1(s) is given by Lemma 4.9: it is equal to

ieiθ

2αsα−1

(
L f+(−iseiθ)−L f−(−iseiθ)

)
− ie−iθ

2αsα−1

(
L f+(ise−iθ)−L f−(ise−iθ)

)
=

1

αsα−1

(
Im(eiθL f−(−iseiθ))− Im(eiθL f+(−iseiθ))

)
=

1

αsα−1

(∫ 0

−∞
esx sin θ sin(sx cos θ + θ)f(x)dx−

∫ ∞
0

esx sin θ sin(sx cos θ + θ)f(x)dx

)
(in the last step we used the fact that f+ = fχ(0,∞) and f− = fχ(−∞,0)). To identify the
first term in the right-hand side of (4.18), recall that the function G+ was defined so that

FG+(ξ) = sin π
α

(
α

ψ(ξ)− 1
− 1

e−iθξ − 1
+

1

eiθξ + 1

)
, ξ ∈ R.

Therefore, for s > 0, the Fourier transform of G+
s (x) = G+(sx) is given by

FG↑s(ξ) =
sin π

α

s

(
α

ψ(ξ/s)− 1
− 1

e−iθξ/s− 1
+

1

eiθξ/s+ 1

)
= sα−1 sin π

α

(
α

ψ(ξ)− sα
− eiθ

sα−1

1

ξ − seiθ
+

eiθ

sα−1

1

ξ + se−iθ

)
for ξ ∈ R. It follows that Φ(ξ) = FG↑s(ξ)/(αs

α−1 sin π
α ) for ξ ∈ R. Recall that Φ(ξ) is an

analytic function in C \ iR, bounded by C min{1, |ξ|−1} (see the proof of Proposition 1.3).
Similarly, L f(−iξ) is an analytic function in C \ iR, bounded by C min{1, |ξ|−1} in the
sector {ξ ∈ C : | arg ξ| 6 |θ|} (by Lemma 2.3). It follows that we can deform the contour
of integration in the first term of the right-hand side of (4.18) to R, which leads to the
integral

1

2π

∫ ∞
−∞

Φ(ξ)L f(−iξ)dξ =
1

2παsα−1 sin π
α

∫ ∞
−∞

Ff(−ξ)FG↑s(ξ)dξ

=
1

αsα−1 sin π
α

∫ ∞
−∞

f(x)G↑s(x)dx;

we used Plancherel’s theorem in the last step. The desired expression for K1(s) follows.
The expression for K2(s) is obtained from that for K1(s) by considering f(x) = g(−x).

Lemma 4.11. With the above assumptions and notation, for s > 0 we have

Im
1

K0(s)− iL0(s)
=
αsα−1 sin2 π

α

cos θ
, (4.19a)
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Im
K1(s)− iL1(s)

K0(s)− iL0(s)
=

sin π
α

cos θ

∫ ∞
−∞

(
G+(sx) + e−sx sin θ cos(sx cos θ + θ + π

α signx)
)
f(x)dx,

(4.19b)

Im
K2(s)− iL2(s)

K0(s)− iL0(s)
=

sin π
α

cos θ

∫ ∞
−∞

(
G+(−sy) + esy sin θ cos(sy cos θ − θ + π

α sign y)
)
g(y)dy.

(4.19c)

Proof. We fix s > 0. For simplicity, in this proof we write Kj and Lj rather than Kj(s)

and Lj(s). Recall that K0 = − cot πα cos θ/(αsα−1) and L0 = cos θ/(αsα−1). Thus,

K2
0 + L2

0 =

(
cos θ

αsα−1 sin π
α

)2

, Im
1

K0 − iL0
=

L0

K2
0 + L2

0

=
αsα−1 sin2 π

α

cos θ
;

formula (4.19a) follows. Furthermore,

Im
K1 − iL1

K0 − iL0
=
K1L0 −K0L1

K2
0 + L2

0

=
αsα−1 sin π

α

cos θ
(K1 sin π

α + L1 cos πα ).

The expressions for K1 is given in Lemma 4.10, while L1 is given by

L1 =
Re(eiθL f(−iseiθ))

αsα−1
=

1

αsα−1

∫ ∞
−∞

e−sx sin θ cos(sx cos θ + θ)f(x)dx.

It follows that

Im
K1 − iL1

K0 − iL0
=

sin π
α

cos θ

∫ ∞
−∞

(
G+(sx)− e−sx sin θ sin(sx cos θ + θ) sin π

α signx

+ e−sx sin θ cos(sx cos θ + θ) cos πα
)
f(x)dx.

This proves (4.19b). Formula (4.19c) follows from (4.19b) by substituting f(x) = g(−x).

By combining the above lemmas, we can finally prove Theorem 1.2.

Proof of the Theorem 1.2. Fix t > 0. By Theorem 4.7 and substitution r = sα, we have∫ ∞
−∞

∫ ∞
−∞

f(x)g(y)p0
t (x, y)dxdy = − 1

2π

∫ ∞
0

e−rt Imφ4(−r)dr

= − 1

2π

∫ ∞
0

e−s
αtαsα−1 Imφ4(−sα)ds.

Lemma 4.4 provides an expression for Imφ4(−sα). Combining it with Lemmas 4.8
and 4.11, we obtain∫ ∞
−∞

∫ ∞
−∞

f(x)g(y)p0
t (x, y)dxdy

=

∫ ∞
0

e−s
αt

cos θ

(∫ ∞
−∞

e−sx sin θ sin(sx cos θ)f(x)dx

)(∫ ∞
−∞

esy sin θ sin(sy cos θ)g(y)dy

)
ds

+

∫ ∞
0

e−s
αt

cos θ

(∫ ∞
−∞

(
G+(sx) + e−sx sin θ cos(sx cos θ + θ + π

α signx)
)
f(x)dx

)
×

×
(∫ ∞
−∞

(
G+(−sy) + esy sin θ cos(sy cos θ − θ + π

α sign y)
)
g(y)dy

)
ds.

EJP 26 (2021), paper 14.
Page 25/33

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP594
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Spectral theory for stable processes

Thus, the last two integrands in the right-hand side are equal to −F+(sx)f(x) and
−F+(−sy)g(y), respectively. Indeed, for s > 0 we have

F+(sx) = e−sx sin θ sin
(
s|x| cos θ + θ signx+ π

α −
π
2

)
−G+(sx)

= −e−sx sin θ cos
(
s|x| cos θ + θ signx+ π

α

)
−G+(sx)

= −e−sx sin θ cos
(
sx cos θ + θ + π

α signx
)
−G+(sx),

(4.20)

and a similar formula holds for F+(−sy). The proof is complete.

5 Hitting time

In this section we obtain the formula for P (τ0 > t). Our starting point is the expression
for the Laplace transform of τ0:∫ ∞

0

e−λtPx(τ0 > t)dt =
1− Exe−λτ0

λ
=

1

λ
− uλ(−x)

λuλ(0)

(see (2.4)). Our plan is as follows: with the notation of Section 4.2, we define

φ5(λ) =
L g(0)

λ
− φ2(λ)

λφ0(λ)

when λ ∈ C \ (−∞, 0], and, as usual, we let φ5(−λ) = limε→0+ φ5(−λ + iε) when λ > 0.
First, we will show that whenever g ∈ H, we have∫ ∞

0

∫
R

e−λtPx(τ0 > t)g(x)dxdt = − 1

π

∫ ∞
0

∫ ∞
0

e−λte−rt Imφ5(−r)drdt

= − 1

π cos θ

∫ ∞
0

∫ ∞
0

e−λte−s
αt

∫
R

F−(sx)

s
g(x)dxdsdt.

(5.1)

Then, we will change the order of integration. The desired result will then follow by a
density-type argument: the class of admissible functions g is dense in an appropriate
sense, and both sides of (1.2) are continuous functions of x. Note, however, that changing
the order of integration is not merely an application of Fubini’s theorem: the integral in
the right-hand side of (5.1) is not absolutely convergent. For this reason, we will first
deform the contour of integration, only then apply Fubini’s theorem, and then deform
the contour back.

Lemma 5.1. The function λφ5(−λ2) is in the Nevanlinna class N+, and it is in L p(R)

for some p > 1.

Proof. The proof of the first part of the lemma is a minor modification of the proof of
Lemma 4.3: the functions λ and λφ0(−λ2) are outer functions, λφ2(−λ2) is in N+, and
therefore λφ5(−λ2) is in N+. In order to prove the other part of the lemma, we need to
show that ∫

R

|λφ5(−λ2)|2dλ <∞. (5.2)

By Sokhozki formula (see the proof of Lemma 4.4), we have

φ5(−sα) =
L g(0)

−sα
− K2(s)− iL2(s)

−sα(K0(s)− iL0(s))

=
K2(s)− iL2(s)− (K0(s)− iL0(s))L g(0)

sα(K0(s)− iL0(s))
.

By the definition of L2(s), we have

L2(s)− L0(s)L g(0) =
Re(eiθL g(iseiθ))−L g(0) cos θ

αsα−1
=

Re(eiθ(L g(iseiθ)−L g(0)))

αsα−1
,
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and hence

|L2(s)− L0(s)L g(0)| 6 |L g(iseiθ)−L g(0)|
αsα−1

.

Using the bounds |L g(z)| 6 C min{1, |z|−1} and |L g′(z)| 6 C min{1, |z|−2} (see Lem-
mas 2.3 and 2.4), we arrive at

|L2(s)− L0(s)L g(0)| 6 C min{s, 1}
αsα−1

.

In a very similar way, by the definition of K2(s),

K2(s)−K0(s)L g(0) =
1

π
p.v.

∫ ∞
0

Re(eiθL g(ireiθ))−L g(0) cos θ

rα − sα
dr

=
1

π
p.v.

∫ ∞
0

Re(eiθ(L g(ireiθ)−L g(0)))

rα − sα
dr,

and by Lemmas 2.3 and 2.4, the function h(r) = L g(ireiθ) − L g(0) satisfies |h(r)| 6
C min{r, 1} and |h′(r)| 6 C min{1, r−2}. Repeating the proof of Lemma 2.19, with appro-
priately modified estimates (2.14), (2.15) and (2.16), we find that

|K2(s)−K0(s)L g(0)| 6 C1 log(1 + 2s)

sα−1(1 + s)
+ C2s

1−α min{s, 1}+ C3 min{s1−α, 1},

and therefore
|K2(s)−K0(s)L g(0)| 6 C min{1, s1−α}.

The above bounds and the definitions of K0(s) and L0(s) imply that

|φ5(−sα)| 6 C min{1, s1−α}
sαs1−α = C min{s−1, s−α}.

We conclude that
|λφ5(−λ2)| 6 C min{λ1−2/α, λ−1},

so that λφ5(−λ2) is in L p(R) for every p ∈ (1, α
2−α ).

Lemma 5.2. We have, for λ > 0,

φ5(λ) = − 1

π

∫ ∞
0

∫ ∞
0

e−λte−st Imφ5(−s)dsdt. (5.3)

Proof. As in the proof of Theorem 4.7, we find that, by Lemma 5.1, the function
√
λφ5(λ)

satisfies the assumptions of Corollary 2.17. It follows that for λ ∈ C \ (−∞, 0],

√
λφ5(λ) = −

√
λ

π

∫ ∞
0

Imφ5(−r)
r + λ

dr,

which implies (5.3).

Proof of Theorem 1.1. Let g ∈ H. Recall that for t > 0,∫ ∞
0

e−λtPx(τ0 > t)dt =
1

λ
− uλ(−x)

λuλ(0)
.

Since g is integrable, by Fubini’s theorem, for every λ > 0 we have∫ ∞
0

∫
R

e−λtPx(τ0 > t)g(x)dxdt =
L g(0)

λ
− 1

λuλ(0)

∫
R

uλ(−x)g(x)dx. (5.4)
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By Plancherel’s theorem and an argument used in Lemma 4.2,∫
R

uλ(−x)g(x)dx =
1

2π

∫
R

L g(iξ)

ψ(ξ) + λ
dξ = φ2(λ), (5.5)

and similarly uλ(0) = φ0(λ). Therefore,∫ ∞
0

∫
R

e−λtPx(τ0 > t)g(x)dxdt =
L g(0)

λ
− φ2(λ)

λφ0(λ)
= φ5(λ). (5.6)

By Lemma 5.2 we obtain∫ ∞
0

∫
R

e−λtPx(τ0 > t)g(x)dxdt = − 1

π

∫ ∞
0

∫ ∞
0

e−λte−rt Imφ5(−r)drdt

=
1

π

∫ ∞
0

∫ ∞
0

e−λte−s
αtαsα−1 Im

φ2(−sα)

−sαφ0(−sα)
dsdt

(5.7)

for every λ > 0. From the uniqueness of the Laplace transform we get, for almost all
t > 0, ∫

R

Px(τ0 > t)g(x)dx = −α
π

∫ ∞
0

e−s
αt

s
Im

φ2(−sα)

φ0(−sα)
ds. (5.8)

By Lemma (4.11), equality (4.20) and the fact that φj(−sα) = Kj(s)− iLj(s), j = 0, 2, we
get

Im
φ2(−sα)

φ0(−sα)
= Im

K2(s)− iL2(s)

K0(s)− iL0(s)

=
sin π

α

cos θ

∫ ∞
−∞

(G−(sx) + esx sin θ cos(sx cos θ − θ + π
α signx))g(x)dx

= −
sin π

α

cos θ

∫
R

F−(sx)g(x)dx.

(5.9)

We have thus proved that for almost all t > 0,∫
R

Px(τ0 > t)g(x)dx =
α sin π

α

π cos θ

∫ ∞
0

e−s
αt

s

∫
R

F−(sx)g(x)dxds. (5.10)

We now change the order of integration in the right-hand side of (5.10). With no loss of
generality, we assume that θ > 0; the other case is dealt with in a similar manner.

Recall that

F−(sx) = esx sin θ sin
(
s|x| cos θ − θ signx+

π

α
− π

2

)
−G−(sx).

We split the integral in the right-hand side of (5.10) into three parts:∫ ∞
0

e−s
αt

∫
R

F−(sx)

s
g(x)dxds = I1 + I2 + I3,

where

I1 =

∫ ∞
0

e−s
αt

∫ 0

−∞

F−(sx)

s
g(x)dxds,

I2 =

∫ ∞
0

e−s
αt

∫ ∞
0

e−sx sinϕ−G−(sx)

s
g(x)dxds,

I3 =

∫ ∞
0

e−s
αt

∫ ∞
0

esx sin θ sin(s|x| cos θ + ϕ)− e−sx sinϕ

s
g(x)dxds,

with the notation ϕ = π
α −

π
2 − θ.
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Since we assumed that θ > 0, the function ex sin θ sin(|x| cos θ + ϕ) is bounded and
Lipschitz continuous on (−∞, 0]. Recall that by Lemma 3.1, the function G− is Hölder
continuous on (−∞, 0) with exponent α − 1, and G−(0−) = sin(πα −

π
2 + θ) = sinϕ. It

follows that F− is Hölder continuous on (−∞, 0] with exponent α − 1, and F−(0) = 0.
Furthermore, F− is bounded on (−∞, 0], and hence |F−(sx)| 6 C min{1, (s|x|)α−1} for
x ∈ (−∞, 0]. Finally, by the definition of H, we have |g(x)| 6 C min{1, |x|−δ|x|}. We
conclude that the integrand in the double integral in the definition of I1 is bounded by
C min{1, (s|x|)α−1}s−1 min{1, |x|−δx}e−sαt, and∫ 0

−∞

∫ ∞
0

min{1, (s|x|)α−1}s−1 min{1, |x|−δ|x|}e−s
αtdsdx

6
∫ 0

−∞

(∫ 1/|x|

0

(s|x|)α−1s−1ds+

∫ ∞
1/|x|

s−1e−s
αtds

)
min{1, |x|−δ|x|}dx

Clearly,
∫ 1/|x|

0
(s|x|)α−1s−1ds = |x|α−1

∫ 1/|x|
0

sα−2ds = 1
α−1 . Furthermore, if |x| > 1, we

have
∫ 1

1/|x| s
−1e−s

αtds 6
∫ 1

1/|x| s
−1ds = log |x| 6 log(1 + |x|). Finally,

∫∞
1
s−1e−s

αtds 6∫∞
1
e−stds = 1

t e
−t 6 1

t . Hence,∫ 0

−∞

∫ ∞
0

min{1, (s|x|)α−1}s−1 min{1, |x|−δ|x|}e−s
αtdsdx

6
∫ 0

−∞

(
1

α− 1
+ log(1 + |x|) +

1

t

)
min{1, |x|−δ|x|}dx <∞.

Thus, the integral in the definition I1 converges absolutely, and by Fubini’s theorem,

I1 =

∫ 0

−∞
g(x)

∫ ∞
0

e−s
αtF

−(sx)

s
dsdx.

A similar argument applies to I2: again by Lemma 3.1, e−sx sinϕ−G−(sx) is bounded
and Hölder continuous on (0,∞) with right limit at 0 equal to zero, so that we may use
Fubini’s theorem. It follows that

I2 =

∫ ∞
0

g(x)

∫ ∞
0

e−s
αt e
−sx sinϕ−G−(sx)

s
dsdx.

The integral I3, however, requires a more subtle treatment. We split it further into two
parts, which are dealt with in a very similar way: since

esx sin θ sin(sx cos θ + ϕ) =
ei(sxe

−iθ+ϕ) − e−i(sxeiθ+ϕ)

2i
,

we have I3 = (I4 − I5)/(2i), where

I4 = eiϕ
∫ ∞

0

e−s
αt

∫ ∞
0

eisxe
−iθ − e−sx

s
g(x)dxds,

I5 = e−iϕ
∫ ∞

0

e−s
αt

∫ ∞
0

e−isxe
iθ − e−sx

s
g(x)dxds.

Recall that, by the definition of H, g extends to an analytic function in C \ iR, which
is bounded by C min{1, |x|−δ|x|} in the sector {x ∈ C : | arg x| 6 |θ|}. Furthermore,
exp(isxe−iθ) − exp(−sx) is an entire function of x, bounded by 2es|x|. Hence we may
deform the contour of integration in the inner integral from (0,∞) to (0, eiθ∞), and find
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that

I4 = eiϕ
∫ ∞

0

e−s
αt

∫
(0,eiθ∞)

eisxe
−iθ − e−sx

s
g(x)dxds

= eiϕ
∫ ∞

0

e−s
αt

∫ ∞
0

eirs − e−rseiθ

s
g(eiθr)eiθdrds.

(5.11)

The exponential function z 7→ e−z is Lipschitz continuous in the right complex half-plane,
with Lipschitz constant 1. Therefore, |eirs+iϕ − e−rseiθ+iϕ| 6 min{2, 2rs} when r, s > 0.
By the argument used in the analysis of I1, it follows that the double integral in (5.11)
converges absolutely, and so, by Fubini’s theorem,

I4 = eiϕ
∫ ∞

0

g(eiθr)eiθ
∫ ∞

0

e−s
αt e

irs − e−rseiθ

s
dsdr

= eiϕ
∫

(0,eiθ∞)

g(x)

∫ ∞
0

e−s
αt e

isxe−iθ − e−sx

s
dsdx.

We now deform the contour of integration with respect to x from (0, eiθ∞) back to (0,∞).
Note that the inner integral can be expressed by∫ ∞

0

e−s
αt e

isxe−iθ − e−sx

s
ds =

=

∫ ∞
0

e−s
αt 1− e−sx

s
ds−

∫ ∞
0

e−s
αt 1− eisxe

−iθ

s
ds

= Φ(x)− Φ(xe−iθ),

where Φ(z) is the entire function defined in Lemma 2.21. Furthermore, if 0 6 Arg z 6 θ,
then −θ 6 Arg(ze−iθ) 6 0. Since θ < π

2 <
π
2 + π

2α , Lemma 2.21 implies that Φ(z)−Φ(ze−iθ)

is bounded in the region 0 6 Arg z 6 θ.
Since |g(x)| 6 C min{1, |x|−δ|x|} in this sector, we may deform the contour of integra-

tion, and eventually find that

I4 = eiϕ
∫ ∞

0

g(x)

∫ ∞
0

e−s
αt e

isxe−iθ − e−sx

s
dsdx,

which is identical to the definition of I4, except that the integrals are in reverse order.
A very similar argument shows that the order of integration can be reversed in the

definition of I5, and thus also in I3. We conclude that∫ ∞
0

e−s
αt

∫
R

F−(sx)

s
g(x)dxds = I1 + I2 + I3 =

∫
R

g(x)

∫ ∞
0

e−s
αtF

−(sx)

s
dsdx,

By (5.10), for almost every t > 0 and every g ∈ H,∫
R

g(x)Px(τ0 > t)dx =
α sin π

α

π cos θ

∫
R

g(x)

∫ ∞
0

e−s
αt

s
F−(sx)dsdx.

By Lemma 2.5, we have

Px(τ0 > t) =
1

π cos θ

∫ ∞
0

e−s
αt

s
F−(sx)ds

for almost all x ∈ R \ {0} and t > 0. Since both sides are jointly continuous functions
of x ∈ R \ {0} and t > 0 (the right-hand side by a simple application of Lebesgue’s
dominated convergence theorem), the above equality in fact holds for all x ∈ R \ {0} and
t > 0, and the proof is complete.
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Glasnik matematički 37, 1 (2002): 211–233. MR-1918106

[46] K. Yano, Y. Yano, M. Yor, On the Laws of First Hitting Times of Points for One-Dimensional
Symmetric Lévy Processes without Gaussian Part. Séminaire de Probabilités XLII, Lecture
Notes in Math. 1979, Springer, 2009. MR-2599211

EJP 26 (2021), paper 14.
Page 32/33

https://www.imstat.org/ejp

https://arXiv.org/abs/1312.1866v1
https://mathscinet.ams.org/mathscinet-getitem?mr=3940770
https://mathscinet.ams.org/mathscinet-getitem?mr=3027903
http://dx.doi.org/10.1214/12-AOP790
https://mathscinet.ams.org/mathscinet-getitem?mr=3161489
http://dx.doi.org/10.1007/978-3-319-11970-0-13
https://mathscinet.ams.org/mathscinet-getitem?mr=3330824
https://mathscinet.ams.org/mathscinet-getitem?mr=0247667
https://mathscinet.ams.org/mathscinet-getitem?mr=2250510
https://mathscinet.ams.org/mathscinet-getitem?mr=0258138
https://mathscinet.ams.org/mathscinet-getitem?mr=1440948
http://dx.doi.org/10.1214/ECP.v13-1431
http://dx.doi.org/10.1214/ECP.v13-1431
https://mathscinet.ams.org/mathscinet-getitem?mr=2466193
https://mathscinet.ams.org/mathscinet-getitem?mr=0217877
https://mathscinet.ams.org/mathscinet-getitem?mr=3618135
https://mathscinet.ams.org/mathscinet-getitem?mr=0698932
https://mathscinet.ams.org/mathscinet-getitem?mr=0300349
https://mathscinet.ams.org/mathscinet-getitem?mr=1307384
http://dx.doi.org/10.1214/aop/1176994672
https://mathscinet.ams.org/mathscinet-getitem?mr=1739520
https://mathscinet.ams.org/mathscinet-getitem?mr=2978140
https://mathscinet.ams.org/mathscinet-getitem?mr=2800088
https://mathscinet.ams.org/mathscinet-getitem?mr=2012831
https://mathscinet.ams.org/mathscinet-getitem?mr=1918106
https://mathscinet.ams.org/mathscinet-getitem?mr=2599211
https://doi.org/10.1214/21-EJP594
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Spectral theory for stable processes

[47] T. Zhang, X. Zhou, Stochastic analysis and applications to finance : essays in honour of Jia-an
Yan. World Scientific, 2012. MR-2976662

EJP 26 (2021), paper 14.
Page 33/33

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=2976662
https://doi.org/10.1214/21-EJP594
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Electronic Journal of Probability
Electronic Communications in Probability

Advantages of publishing in EJP-ECP

• Very high standards

• Free for authors, free for readers

• Quick publication (no backlog)

• Secure publication (LOCKSS1)

• Easy interface (EJMS2)

Economical model of EJP-ECP

• Non profit, sponsored by IMS3, BS4 , ProjectEuclid5

• Purely electronic

Help keep the journal free and vigorous

• Donate to the IMS open access fund6 (click here to donate!)

• Submit your best articles to EJP-ECP

• Choose EJP-ECP over for-profit journals

1LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
2EJMS: Electronic Journal Management System http://www.vtex.lt/en/ejms.html
3IMS: Institute of Mathematical Statistics http://www.imstat.org/
4BS: Bernoulli Society http://www.bernoulli-society.org/
5Project Euclid: https://projecteuclid.org/
6IMS Open Access Fund: http://www.imstat.org/publications/open.htm

http://en.wikipedia.org/wiki/LOCKSS
http://www.vtex.lt/en/ejms.html
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
https://projecteuclid.org/
https://secure.imstat.org/secure/orders/donations.asp
http://www.lockss.org/
http://www.vtex.lt/en/ejms.html
http://www.imstat.org/
http://www.bernoulli-society.org/
https://projecteuclid.org/
http://www.imstat.org/publications/open.htm

	Introduction
	Main results
	Structure of the article

	Preliminaries
	Stable Lévy processes
	Test functions
	Stieltjes functions and Cauchy's integral formula for the upper half-plane
	Auxiliary lemmas

	Properties of the function G+
	Spectral expansion of transition operators Pt0
	Multiplication by test functions
	Contour deformation
	Application of the Cauchy's integral formula
	Generalised eigenfunction expansion of Pt0

	Hitting time
	References

