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Abstract

We are concerned with the general problem of proving the existence of joint distribu-
tions of two discrete random variables M and N subject to infinitely many constraints
of the form P(M = i,N = j) = 0. In particular, the variable M has a countably
infinite range and the other variable N is uniformly distributed with finite range. The
constraints placed on the joint distributions will require, for most elements j in the
range of N , P(M = i,N = j) = 0 for infinitely many values of i in the range of M ,
where the corresponding values of i depend on j. To prove the existence of such
joint distributions, we apply a theorem proved by Strassen on the existence of joint
distributions with prespecified marginal distributions.

We consider some combinatorial structures that can be decomposed into compo-
nents. Given n ∈ N, consider an assembly, multiset, or selection An among elements
of {1, 2, . . . , n}, and consider a uniformly distributed random variable N(n) on An.
For each i ≤ n, denote by Ci(n) the number of components of N(n) of size i so that∑

i≤n iCi(n) = n. In each of these combinatorial structures, there exists infinitely
many processes ((Zi(n, x))i≤n)x, indexed by a real parameter x, consisting of non-
negative independent variables (Zi(n, x))i≤n such that the distribution of the vector
(Ci(n))i≤n equals the distribution of the vector (Zi(n, x))i≤n conditional on the event
{
∑

i≤n iZi(n, x) = n}. Let M(n, x) denote a random variable whose components are
given by (Zi(n, x))i≤n. We introduce the notion of pivot mass which is then combined
with Strassen’s work to provide couplings of M(n, x) and N(n) with desired properties.
For each of these combinatorial structures, we prove that there exists a real number
x(n) for which we can couple M(n, x) and N(n) with

∑
i≤n(Ci(n) − Zi(n, x))

+ ≤ 1

when x > x(n). We are providing a partial answer to the question “how much
dependence is there in the process (Ci(n))i≤n?”
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1 Introduction

Our results regard the component counting process of a uniform random variable in
a combinatorial structure, and these results are provided by establishing the existence
of couplings of random variables.
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The component counting process of a uniform random variable

Definition 1.1. Let X and Y be random variables defined on probability spaces (ΩX ,FX ,
PX) and (ΩY ,FY ,PY ).1 A coupling of X and Y is a probability space (Ω,F ,P) in which
there exists random variables X ′ and Y ′ such that X ′ has the same distribution as X
and Y ′ has the same distribution as Y .2

Given a natural number n, this paper is concerned with combinatorial structures
An on the set [n] := {1, 2, . . . , n} that can be decomposed into components (e.g., the
components of a permutation are its cycles). The combinatorial structures considered in
this paper are known as assemblies, multisets and selections, and these structures are
outlined in §1.1. Given a uniform random variable N (n) ∼ Unif (An), let Ci (n) denote
the number of components of N (n) of size i, 1 ≤ i ≤ n. The sequence (Ci (n))i≤n is
called the component counting process of N (n); the variables Ci (n), 1 ≤ i ≤ n, are
dependent since

∑
i≤n iCi (n) = n. Our goal is to measure the amount of dependence in

this sequence by showing that it is dominated by a related sequence (Zi)i of independent
variables Zi in the following sense.3

Definition 1.2. Let n ∈ N. Given random variables M (n) and N (n) with components
Zi (n) and Ci (n), 1 ≤ i ≤ n, respectively, the variable M (n) d-dominates N (n) if there
exists a coupling of M (n) and N (n) such that∑

i≤n

(Ci (n)− Zi (n))
+ ≤ d, always. (1.1)

Condition (1.1) is equivalent to the equation P
(∑

i≤n (Ci (n)− Zi (n))
+ ≤ d

)
= 1.

The goal of this paper is to show that a uniform variable N is 1-dominated by a particular
variable M .

There is a natural combinatorial setup [3], with an N (n) based on uniformly chosen in-
stances, and related exponential families of independent variables Zi (n, x) , 1 ≤ i ≤ n; the
free parameter x [3, 4] corresponds to Cramer tilting. The combinatorial N (n) and the
independent variables Zi (n, x) are related by the conditioning relation, given by equation
(1.2) below. Let M (n, x) denote a random variable with i parts of size Zi (n, x). Now as
x increases (to infinity for assemblies, to 1 for multisets and selections), the Zi converge
in distribution to the supremum of their support. Thus under any coupling, the terms

(Ci (n)− Zi (n, x))
+ converge in distribution to 0 and P

(∑
i≤n (Ci (n)− Zi (n, x))

+ ≤ 1
)

tends to 1, where (·)+ denotes the positive part. The main result of this paper, Theorem
1.4, strengthens this fact since it provides the existence of a coupling of N (n) and
M (n, x) such that M (n, x) 1-dominates N (n) for sufficiently large values of x. More-
over, it will be shown that M (n, x) does not 0-dominate N (n) (i.e., we do not have
Zi (n, x) ≤ Ci (n) for all i ≤ n).

The notion of d-domination is motivated by a conjecture proposed by Richard Arratia
in §2.2 of [1], which we now describe. Consider a uniformly distributed variable N (n) ∈
[n] with prime factorization N (n) =

∏
p≤n p

Cp(n). It can be shown that the prime
power process (Cp (n))p≤n converges in distribution to a process (Zp)p≤n of independent

variables where Zp is a geometric random variable of parameter 1
p and range Z≥0, for

each prime p ≤ n. Defining M (n) =
∏
p≤n p

Zp , we state Arratia’s conjecture.

Conjecture 1.3 (Arratia). For all n ≥ 1, it is possible to construct N (n) uniformly

1The probability measure PX is defined by PX (i) = P (X = i).
2For each of the random variables X considered in this paper, X and X′ will share the same range. Thus,

when describing a particular coupling of X and Y , we often write X and Y instead of X′ and Y ′, respectively.
3Note that only component counting processes (Ci (n))i≤n satisfy the condition

∑
i≤n iCi (n) = n for

all n ∈ N. In general, variables denoted by Zi (n) , i ∈ N, will be independent, so we cannot assume∑
i≤n iZi (n) = n for any n ∈ N.
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The component counting process of a uniform random variable

distributed from 1 to n, M (n) and a prime P (n) such that

always N (n) divides M (n)P (n) .

Equivalently, the conjecture states that there exists a coupling of M (n) and N (n)

such that we always have
∑
p≤n (Cp (n)− Zp)+ ≤ 1, and this was the motivation for

the definition of d-domination. However, Arratia’s conjecture does not fall within the
combinatorial settings considered in this paper due to the fact that the prime power
process (Cp (n))p≤n does not satisfy the equation

∑
p≤n pCp (n) = n.

The combinatorial structures listed in §1.1 provide the frameworks in which we obtain
our couplings. Theorem 1.4, the main result of this paper, is stated in §1.2. In §2, we
describe how our constraints force a significant proportion of the entries of a prospective
joint mass distribution of our variables to be 0. In §3, we introduce the notion of pivot
mass, which depends on the constraints placed on the desired joint distribution. Some
properties of the pivot mass are proved in §3 and §4. In §5, we apply results on the
pivot mass and a theorem proved by Strassen to prove Theorem 1.4, thereby proving the
existence of our couplings.

1.1 Three major combinatorial structures

All couplings constructed in this paper involve a uniform random variable in any
one of the following three combinatorial classes. An assembly An is an example of
a combinatorial structure in which the set [n] is partitioned into blocks and for each
block of size i one of mi possible structures is chosen. A multiset An is a pair ([n] ,m),
where m : A→ N is a function that gives the multiplicity m (a) of each element a ∈ [n].
Equivalently (see Meta-example 2.2 of §2.2 of [2]), the integer n is partitioned into parts,
and for each part of size i, one of the mi objects of weight i is chosen. Selections are
similar to multisets, but now we require all parts to be distinct. To simplify the notation,
let us define kn := #An for each of these structures.

1.2 Couplings of random variables

In each of the assembly, multiset, and selection settings, our methods of arriving at
our desired couplings are similar. We start by considering N (n) ∼ Unif (An). Given i ≤ n,
if we denote by Ci (n) the number components of N (n) of size i, then 0 ≤ Ci (n) ≤ n

and
∑
i≤n iCi (n) = n. In these combinatorial settings, there exists an infinite family

((Zi(n, x))i≤n)x, parametrized by positive values of x (specifically, x > 0 for assemblies,
x ∈ (0, 1) for multisets, and x ∈ (0,∞) for selections) of infinite sequences (Zi (n, x))i≤n
of nonnegative integer-valued independent random variables Zi (n, x) for which

L (C1 (n) , . . . , Cn (n)) = L

Z1 (n, x) , . . . , Zn (n, x)

∣∣∣∣∣∑
i≤n

iZi (n, x) = n

 (1.2)

(§2.3 of [2]). Equation (1.2) states that the joint distribution of the vector (Ci (n))i≤n
is equal to the joint distribution of the vector (Zi (n, x))i≤n conditional on the event{∑

i≤n iZi (n, x) = n
}

. For a fixed x, we consider another random variable M (n, x)

whose component counts4 are given by (Zi (n, x))i≤n, so the distribution of M (n, x) is
determined by the independent process (Zi (n, x))i≤n.

The main result of this paper is the following theorem which deals with the case
d = 1; this theorem asserts the existence of a finite x (n) such that, for all x > x (n),

4For fixed x, since the variables Zi (n, x) , i ≤ n, are independent, it is not always true that
∑

i≤n iZi (n, x) =
n. Therefore, the variable M (n, x) does not always correspond to an element of An.
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The component counting process of a uniform random variable

couplings exist in which M (n, x) 1-dominates N (n).5

Theorem 1.4. Let n ∈ N and suppose An denotes an assembly, multiset, or a selection
among elements of [n]. Given N (n) ∼ Unif (An) with component counting process
(Ci (n))i≤n, there exists a positive real number x (n) for which, when x > x (n), there
exists a process (Zi (n, x))i≤n of non-negative independent random variables satisfying
(1.2) such that M (n, x) 1-dominates N (n).

It is worth noting that M (n, x) does not 0-dominate N (n) due to the fact that the
quantity P (Zi (n, x) = 0 for all i ≤ n) is positive for each of the combinatorial structures
considered in this paper (see §4 and apply independence of the Zi’s); however, the
Ci (n)’s are never all 0 due to the constraint

∑
i≤n iCi (n) = n.

2 The joint mass distribution of (M(n, x), N(n))

For some fixed value of x, if we are to successively construct a joint probabil-
ity mass function p (·, ·) such that M (n, x) 1-dominates N (n), we must ensure that
P (M (n, x) = ·, N (n) = ·) = 0 when

∑
i≤n (Ci (n)− Zi (n, x))

+
> 1. We can index the

joint distribution by using the range of N (n) and the range of M (n, x) for the column
labels and row labels, respectively. In particular, we can label the columns with the range
of (Ci (n))i≤n in lexicographic order. Since we have infinitely many row labels, for each
m ∈ Z≥0, we apply the lexicographic ordering on all elements (m1, . . . ,mn) ∈ (Z≥0)

n

with
∑
i≤nmi = m, starting with m = 0 (we start with m = 0 since the Zi (n, x)’s are

non-negative). With respect to this ordering, we will often enumerate the columns by
1, 2, . . . , kn and the rows by 1, 2, . . ..

In each of these three settings, there are additional constraints on any joint proba-
bility mass function of M (n, x) and N (n) since the marginal distributions are known.
In particular, the sum along column N (n) = j, 1 ≤ j ≤ kn, is P (N (n) = j) = 1/kn;
and the sum along the row M (n, x) = m, m ∈ N, labeled (Zi (n, x))i≤n = (mi)i≤n is

P
(

(Zi (n, x))i≤n = (mi)i≤n

)
=
∏
i≤nP (Zi (n, x) = mi), where the latest equation is due

to the independence of the process (Zi (n, x))i≤n.

3 Pivot mass

Given columns j and k, with corresponding components (Ci (n))i≤n and
(C ′i (n))i≤n, we seek a way to compare the corresponding sets of row labels in
which column j or k must be 0. Any of our desired couplings has the property that
column (Ci (n))i≤n has a zero in row (Zi (n, x))i≤n when the constraint∑
i≤n (Ci((n)− Zi (n, x))

+ ≤ 1 is violated, so we compare the probability measures of the

sets
{

(Zi (n, x))i≤n :
∑
i≤n (Ci (n)− Zi (n, x))

+
> 1
}

and
{

(Zi (n, x))i≤n :
∑
i≤n
(
C ′i (n) −

Zi (n, x)
)+

> 1
}
. I.e., since we seek couplings of M (n, x) and N (n) for which M (n, x)

1-dominates N (n), we measure the probability that M (n, x) takes on a value i for which
column j or k has a required 0 in row i. This motivates the following definition.

Definition 3.1. We call the pair (i, j), corresponding to the ith row label (Zi (x))i≤n and

the jth column label (Ci (n))i≤n, a pivot if
∑
i≤n (Ci (n)− Zi (x))

+
> 1. Denote the set of

all pivots by P . The pivot mass in column N (n) = j is defined as

PM (j) = PM(n,x) (j) :=
∑

i:(i,j)∈P

P (M (n, x) = i) .

5To simplify the notation, we will sometimes (Figure 2, Theorem 3.3, and §§4–5) replace Zi (n, x) with Zi,
replace Ci (n) with Ci, replace N (n) with N , and replace M (n, x) with M .
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The component counting process of a uniform random variable

Given a subset L (n) of column labels of [n], the pivot mass in L (n) is defined as

PM (L (n)) = PM(n,x) (L (n)) :=
∑

i:(i,j)∈P
∀j∈L(n)

P (M (n, x) = i) .

Theorem 3.3 gives a formula for PM (j). Fortunately, due to the role of the parameter
x, it is not necessary to derive a formula for PM (L (n)) in order to prove Theorem 1.4.
The fact that PM (L (n)) ≤ PM (j) for any j ∈ L (n) will be sufficient. Figure 1 shows
some of the features of our desired couplings.

Figure 1: If (i0, j0) is a pivot, then our desired joint distribution table should have a 0 in
the (i0, j0) entry.

Example 3.2. Fix n = 3 and consider the assembly A3 = S3 of permutations of {1, 2, 3}.
The elements of S3 are 1, (1 2) , (1 3) , (2 3) , (1 2 3) , (1 3 2), and their respective component
counts are (3, 0, 0) , (1, 1, 0) , (1, 1, 0) , (1, 1, 0) , (0, 0, 1) , (0, 0, 1). Some key features of a
desired joint mass distribution of (M (3, x) , N (3)) are given in Figure 2.

Figure 2: A desired coupling of M(3, x) and N(3) should have a zero at any location
((Zi(3, x))i≤3, (Ci(3))i≤3) satisfying

∑
i≤3(Ci(3)− Zi(3, x))+ > 1.

Each column with a pivot contains infinitely many pivots. E.g., in Figure 2, column
(3, 0, 0) has a pivot in any row of the form (a, b, c) with a ∈ {0, 1} , b, c ≥ 0. Columns
labeled (1, 1, 0) have a pivot in any row of the form (0, 0, l) for any l ∈ Z≥0. Moreover,
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The component counting process of a uniform random variable

note that 0-domination would require each entry in the first row to be 0; however, each
row mass is positive for all of the combinatorial structures considered in this paper.

The following theorem plays a key role in the proof of Theorem 1.4.6 For convenience,
in the proof of the following theorem, we simplify the notation by writing Ci (n) = Ci,
Zi (n, x) = Zi, M (n, x) = M and N (n) = N . Moreover, the notion of pivot mass
introduced in this section may be generalized; in a particular setting, one should define
pivot mass based on the constraints required of their desired coupling. It is both a
combinatorial and probabilistic object since it is a sum of probability masses indexed by
the counting constraint

∑
i≤n (Ci (n)− Zi (n, x))

+ ≤ 1.

Theorem 3.3 (Pivot Mass Formula for 1 Column). Consider a fixed column label N (n) ∈
An and denote its component counting process by (Ci (n))i≤n. Its pivot mass is

PM (N (n)) = 1−
∑
j≤n

1{Cj>0} (1− P (Zj ≤ Cj − 2))
∏
i 6=j,
i≤n

(1− P (Zi ≤ Ci − 1))


+

∑
i≤n

1{Ci>0} − 1

∏
i≤n

(1− P (Zi ≤ Ci − 1)) .

Proof. Given 1 ≤ j ≤ n, let −→ej denote the row vector of length n whose jth entry is
1 and whose other entries are 0. Given two vectors (ai)i≤n , (bi)i≤n in Rn, we write
(ai)i≤n ≤ (bi)i≤n if ai ≤ bi for each i ≤ n. Since

∑∞
k=1P (M (n, x) = k) = 1, we have

PM (N) = 1−
∑

k:(k,N)6∈P

P (M = k) . (3.1)

We have the event equality

{(M,N) 6∈ P} =
{
∃j ≤ n : (Zi)i≤n ≥ (Ci)i≤n −

−→ej · 1{Cj>0}

}
since the pair (M,N) is a not pivot if and only if Zi ≥ Ci for all i except possibly
one value j with Zj = Cj − 1. Since each Zi, 1 ≤ i ≤ n, is nonnegative, we can only
have Zj = Cj − 1 when Cj > 0. Note that if Zi ≥ Ci for all i, then any j satisfies
(Zi)i≤n ≥ (Ci)i≤n −

−→ej · 1{Cj>0}. On the other hand, if there exists a value j for which
Zj = Cj − 1 and Zi ≥ Ci for all i 6= j, then (Zi)i≤n ≥ (Ci)i≤n −

−→ej · 1{Cj>0}. Therefore,
the right hand side of equation (3.1) is

1−
∑

k:(k,N)6∈P

P (M = k) = 1− P
(
∃j ≤ n : (Zi)i≤n ≥ (Ci)i≤n −

−→ej · 1{Cj>0}

)
. (3.2)

We rewrite the probability P
(
∃j ≤ n : (Zi)i≤n ≥ (Ci)i≤n −

−→ej · 1{Cj>0}

)
by applying an

inclusion-exclusion argument. Corresponding to any j ≤ n with Cj > 0, Zj ≥ Cj − 1, and
Zi ≥ Ci for i 6= j, we add the term P (Zj ≥ Cj − 1, and Zi ≥ Ci for all i 6= j). As a result,
we have added those elements with Zi ≥ Ci for all i a total of

∑n
i=1 1{Ci>0} many times.

Therefore, we compensate by subtracting the term
(∑n

i=1 1{Ci>0} − 1
)
P
(
(Zi)i≤n ≥

(Ci)i≤n
)
. Further, applying independence of the process (Zi)i≤n, we have

P (Zj ≥ Cj − 1 and Zi ≥ Ci for all i 6= j) = P (Zj ≥ Cj − 1)P (Zi ≥ Ci for all i 6= j)

= P (Zj ≥ Cj − 1)
∏
i 6=j,
i≤n

P (Zi ≥ Ci)

6When Theorem 3.3 is applied in §4, additional indicator functions will be included to remind us that
P (Zi (n, x) ≤ k) = 0 if k < 0.
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The component counting process of a uniform random variable

and P
(

(Zi)i≤n ≥ (Ci)i≤n

)
=
∏
i≤nP (Zi ≥ Ci). Thus, the right hand side of equation

(3.2) becomes

1−
∑
j≤n

1{Cj>0}P (Zj ≥ Cj − 1)
∏
i6=j,
i≤n

P (Zi ≥ Ci)

+

∑
i≤n

1{Ci>0} − 1

∏
i≤n

P (Zi ≥ Ci) .

(3.3)
Using the fact that P (Zi ≥ a) = 1− P ((Zi ≤ a− 1)), expression (3.3) becomes

1−
∑
j≤n

1{Cj>0} (1− P (Zj ≤ Cj − 2))
∏
i6=j,
i≤n

(1− P (Zi ≤ Ci − 1))


+

∑
i≤n

1{Ci>0} − 1

∏
i≤n

(1− P (Zi ≤ Ci − 1)) .

The following result shows that only columns with label (Ci (n))i≤n = −→en have zero

pivot mass. In this paper, we will only apply the (⇐) part of the statement.7

Theorem 3.4. For any nonempty collection L (n) of column labels, PM (L (n)) = 0 if
and only if a column with label (Ci (n))i≤n = −→en belongs to L (n).

Proof. (⇐) Given any row label (Zi (n, x))i≤n, the vector (Ci (n))i≤n = −→en satisfies∑
i≤n

(Ci (n)− Zi (n, x))
+

= (Cn (n)− Zn (n, x))
+

= (1− Zn (n, x))
+

≤ 1.

Thus, PM (−→en) = 0. Therefore, given −→en ∈ L (n), we have

PM (L (n)) ≤ PM (−→en) = 0.

(⇒) Now suppose −→en 6∈ L (n). Recall that any column label (Ci (n))i≤n satisfies∑
i≤n iCi (n) = n. Since −→en is the only column label with

∑
i≤n Ci (n) = 1, this gives

us one of two cases for each column label in L (n). Either (a) there exists some j with
Cj (n) ≥ 2 or (b) there exists distinct j, k with Cj (n) ≥ 1, Ck (n) ≥ 1. In case (a), using
any row label (Zi (n, x))i≤n with Zj (n, x) = 0, we have∑

i≤n

(Ci (n)− Zi (n, x))
+ ≥ Cj (n)− Zj (n, x) ≥ 2.

In case (b), we can take any (Zi (n, x))i≤n with Zj (n, x) = Zk (n, x) = 0 to ensure that∑
i≤n

(Ci (n)− Zi (n, x))
+ ≥ (Cj (n)− Zj (n, x)) + (Ck (n)− Zk (n, x)) ≥ 2.

Since we have just showed that each column label other than −→en has a pivot, we use
the fact that each of these columns has a pivot in the first row (labeled (Zi (n, x))i≤n =

(0, 0, . . . , 0)). Note that P (M (n, x) = i) > 0 for all distributions in this paper (see §4), so
we have

PM (L (n)) ≥ P (Zi (n, x) = 0, ∀i ≤ n) = P (M (n, x) = 1) > 0.
7Note that (⇒) implies that each column label other than −→en has pivots. Using equations (2.2)–(2.4) in §2.2

of [2] (which give the number of columns with label −→en in each of these combinatorial settings), we can always
determine the number of columns that contain pivots.
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The component counting process of a uniform random variable

4 Pivot mass can be made arbitrarily small for assemblies, multi-
sets, and selections

The following condition on PM will be verified for our three combinatorial structures:

∀n ∈ N ∀ε > 0 ∃x (n) : x > x (n) =⇒ equation (1.2) holds and PM(n,x) (·) < ε. (4.1)

4.1 Assemblies

In the assembly setting, we can take8 Zi (n, x) ∼ Po
(
mix

i

i!

)
for any x > 0 to obtain

equation (1.2) (§2.3 of [2]). Recall that the CDF of a random variable Z ∼ Po (λ) is given
by P (Z ≤ k) = Γ(bk+1c,λ)

bkc! for k ∈ Z≥0, where Γ (a, b) is the upper incomplete gamma

function – i.e., Γ (a, b) =
∫∞
b
ta−1e−tdt.

Lemma 4.1. For a fixed a > 0, we have limb→∞ Γ (a, b) = 0.

Proof. Since Γ (a, 0) = Γ (a) is convergent for a > 0, we have

Γ (a, b) = Γ (a)−
∫ b

0

ta−1e−tdt

→ Γ (a)− Γ (a) as b→∞
= 0.

We can apply Lemma 4.1 and take x→∞ to obtain

Γ
(
Ci,

mix
i

i!

)
(Ci − 1)!

→ 0 when Ci > 0, (4.2)

Γ
(
Cj − 1,

mjx
j

j!

)
(Cj − 2)!

→ 0 when Cj > 1. (4.3)

Therefore, Theorem 3.3 implies that PM (N (n)) equals

1−
∑
j≤n

1{Cj>0}

1− 1{Cj>1}

Γ
(
Cj − 1,

mjx
j

j!

)
(Cj − 2)!

∏
i 6=j,
i≤n

1− 1{Ci>0}

Γ
(
Ci,

mix
i

i!

)
(Ci − 1)!




+

∑
i≤n

1{Ci>0} − 1

∏
i≤n

1− 1{Ci>0}

Γ
(
Ci,

mix
i

i!

)
(Ci − 1)!

 .

If we let x→∞, we can apply (4.2) and (4.3) to deduce that

PM (N (n))→ 1−
∑
j≤n

1{Cj>0} (1− 0)
∏
i 6=j,
i≤n

(1− 0)


8Although the distribution of Zi (n, x) does not depend on n, the choice the process (Zi (n, x))i≤n

satisfying (1.2) does depend on n. I.e., if (Zi (n, x))i≤n and (Zi (n+ 1, x))i≤n+1 equal (Ci (n))i≤n and

(Ci (n+ 1))i≤n+1, respectively, conditional on the events
{∑

i≤n iZi = n
}

and
{∑

i≤n+1 iZi = n+ 1
}

, re-

spectively, then we need not have (Zi (n, x))i≤n = (Zi (n+ 1, x))i≤n.
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+

∑
i≤n

1{Ci>0} − 1

∏
i≤n

(1− 0)

= 1−
∑
j≤n

1{Cj>0} +

∑
i≤n

1{Ci>0} − 1


= 0.

This verifies condition (4.1) for assemblies.

4.2 Multisets

In the multiset setting, we can take Zi (n, x) ∼ NB
(
mi, x

i
)
, for any x ∈ (0, 1), to

obtain equation (1.2) (§2.3 of [2]). Recall that the CDF of Z ∼ NB (r, p) is given by
P (Z ≤ k) = 1 − Ip (k + 1, r), where Ip is the regularized incomplete beta function.

That is, Ix (a, b) = B(x;a,b)
B(a,b) , where B (a, b) =

∫ 1

0
ta−1 (1− t)b−1

dt, defined for Re (a) > 0

and Re (b) > 0, is the beta function and B (x; a, b) =
∫ x

0
ta−1 (1− t)b−1

dt is the incom-
plete beta function.

Lemma 4.2. Given a > 0, limx→1 Ix (a, b) = 1.

Proof. We have

lim
x→1

Ix (a, b) = lim
x→1

B (x; a, b)

B (a, b)

= lim
x→1

∫ x
0
ta−1 (1− t)b−1

dt∫ 1

0
ta−1 (1− t)b−1

dt

=

∫ 1

0
ta−1 (1− t)b−1

dt∫ 1

0
ta−1 (1− t)b−1

dt

= 1.

Using Theorem 3.3, PM (N (n)) equals

1−

(∑
j≤n

(
1{Cj>0}

(
1− 1{Cj>1} (1− Ixj (Cj − 1,mj))

)∏
i 6=j,
i≤n

(
1− 1{Ci>0} (1− Ixi (Ci,mi))

)))

+

∑
i≤n

1{Ci>0} − 1

∏
i≤n

(
1− 1{Ci>0} (1− Ixi (Ci,mi))

)
.

Taking x→ 1 and applying Lemma 4.2, we have

PM (N (n)) → 1−

∑
j≤n

1{Cj>0}
(
1− 1{Cj>1} (1− 1)

)∏
i6=j,
i≤n

(
1− 1{Ci>0} (1− 1)

)


+

∑
i≤n

1{Ci>0} − 1

∏
i≤n

(
1− 1{Ci>0} (1− 1)

)

= 1−
∑
j≤n

1{Cj>0} +

∑
i≤n

1{Ci>0} − 1


= 0,

which verifies condition (4.1) for multisets.
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4.3 Selections

In the selection setting, we can take Zi (n, x) ∼ Bin
(
mi,

xi

1+xi

)
, 0 < x <∞, in order to

obtain equation (1.2) (§2.3 of [2]). In our case, we are taking p = xi

1+xi , so p→ 1 if and only
if x→∞. Recall that the CDF of Z ∼ Bin (n, p) is given by P (Z ≤ k) = I1−p (n− k, 1 + k).
Using Theorem 3.3, we can express PM (N (n)) as

1−
∑
j≤n

1{Cj>0}
(
1− 1{Cj>1}I1−p (mj − Cj + 2, Cj − 1)

) ∏
i 6=j,
i≤n

(
1− 1{Ci>0}I1−p (mi − Ci + 1, Ci)

)
+

∑
i≤n

1{Ci>0} − 1

∏
i≤n

(
1− 1{Ci>0}I1−p (mi − Ci + 1, Ci)

)
.

Lemma 4.3. We have limp→1 I1−p (n− k, 1 + k) = 0.

Proof.

lim
p→1

I1−p (n− k, 1 + k) = lim
p→1

B (1− p;n− k, 1 + k)

B (n− k, 1 + k)

= lim
p→1

∫ 1−p
0

tn−k−1 (1− t)k∫ 1

0
tn−k−1 (1− t)k

= 0.

Using Lemma 4.3, we see that

I1−p = I
1− xi

1+xi
→ 0 (4.4)

if x→∞. Thus, we apply Theorem 3.3 and Lemma 4.3 while taking x→∞ to obtain

PM (N (n))
(4.4)→ 1−

∑
j≤n

1{Cj>0} +

∑
i≤n

1{Ci>0} − 1

 = 0,

which verifies condition (4.1) for selections.

5 Using pivot mass to provide couplings

Given complete separable metric spaces S and T , denote by pS the projection of S×T
onto S. Let ω be a nonempty closed subset of S × T and ε ≥ 0. The following result is
Theorem 11 of [6].

Theorem 5.1 (Strassen9). There is a probability measure λ in S × T with marginals µ
and ν such that λ (ω) ≥ 1− ε, if and only if for all closed sets L ⊆ T

ν (L) ≤ µ (pS (ω ∩ (S × L))) + ε. (5.1)

Proof of Theorem 1.4. Define S = (Z≥0)
n and T =

{
(ai)i≤n ∈ (Z≥0)

n
:
∑
i≤n iai = n

}
,

corresponding to the set of row labels and the set of column labels respectively, and en-
dow both S and T with the metric d onZn defined as d

(
(xi)i≤n , (yi)i≤n

)
:= maxi≤n |xi − yi|.

Since S is finite and T is countably infinite, both S and T are separable. In both S and T
we have

(xi)i≤n 6= (yi)i≤n =⇒ d
(

(xi)i≤n , (yi)i≤n

)
≥ 1 (5.2)

9Thanks to Anthony Quas for suggesting the use of Hall’s Marriage Theorem. Strassen’s Theorem is a
variant of the marriage theorem.
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since our n-tuples are integer-valued. Therefore, every Cauchy sequence in S (or in T )
converges in S (or in T ). Thus, S and T are complete. Our goal is to apply Theorem 5.1
with ε = 0 and

ω = P c,

L = L (n) ,

µ(n,x) (i) = P (M (n, x) = i) , i ∈ S,
νn (j) = P (N (n) = j) , j ∈ T,

λ = p,

where P = {(i, j) ∈ S × T : (i, j) is a pivot}, L (n) denotes an arbitrary subset of T , and
p is our desired joint PMF, with marginals corresponding to M (n, x) and N (n), such that
(i, j) ∈ P implies p (i, j) = 0. Let us endow ω with the metric dω obtained by restricting
the metric

dS×T

((
(si)i≤n , (ti)i≤n

)
,
(

(s′i)i≤n , (t
′
i)i≤n

))
:= max

(
d
(

(si)i≤n , (s
′
i)i≤n

)
, d
(

(ti)i≤n , (t
′
i)i≤n

))
(5.3)

on S × T to ω. To show that ω is closed, we first show that S and T are closed. The

set T is closed since it is finite. Suppose that
(

(si (k))i≤n

)
k∈N

is a sequence of n-tuples

(si (k))i≤n ∈ S with limk→∞ (si (k))i≤n = l1 for some n-tuple l1 ∈ Zn. To show that S is
closed, it suffices to show that l1 ∈ S. For all ε′ ∈ (0, 1) there exists a constantK ∈ N such

that if k > K then d
(

(si (k))i≤n , l1

)
< ε′. Since ε′ < 1, (5.2) implies l1 = (si (K + 1))i≤n,

so l1 ∈ S. Therefore, S is closed. Now to show that ω is closed in S × T , suppose

that
((
si (k)i≤n

)
, (ti (k))i≤n

)
k∈N

is a sequence of pairs
((
si (k)i≤n

)
, (ti (k))i≤n

)
∈ ω of

n-tuples si (k)i≤n ∈ S, (ti (k))i≤n ∈ T with limk→∞

((
si (k)i≤n

)
, (ti (k))i≤n

)
= (l1, l2), for

some n-tuples l1, l2 ∈ Zn. Since S and T are closed, we have l1 ∈ S and l2 ∈ T . For all ε′ ∈
(0, 1) there exists a constant K ∈ N such that k > K =⇒ dS×T

((
si (k)i≤n

)
, (l1, l2)

)
< ε′.

Therefore,

k > K
(5.3)
=⇒ d

(
(si (k))i≤n , l1

)
, d
(

(ti (k))i≤n , l2

)
< ε′.

Since ε′ < 1,

k > K
(5.2)
=⇒ d

(
(si (k))i≤n , l1

)
= d

(
(ti (k))i≤n , l2

)
= 0.

Therefore, applying (5.2) twice, we obtain (l1, l2) =
(

(si (K + 1))i≤n , (ti (K + 1))i≤n

)
∈ ω,

so ω is a closed subset of S × T . Further, ω 6= ∅ since given any column label j, the pair
(j, j) belongs to ω. Note that the set L (n) is a closed subset of the column labels since
L (n) is a finite set. Moreover, vn (L (n)) is equal to P (N (n) ∈ L (n)) = #L(n)

kn
, and

µ(n,x) (pS (ω ∩ (S × L))) = P (M ∈ pS (ω ∩ (S × L (n))))

= P (M ∈ pS (P c ∩ (S × L (n))))

= P (∃j ∈ L (n) : (M, j) 6∈ P )

= 1− PM(n,x) (L (n)) .

Therefore, inequality (5.1) is equivalent to #L(n)
kn

≤ 1 − PM(n,x) (L (n)). The latest
inequality is equivalent to

PM(n,x) (L (n)) ≤ 1− #L (n)

kn
. (5.4)
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By (4.1), the left hand side can be made arbitrarily small, so (5.4) holds when 1−#L(n)
kn

> 0.

When 1− #L(n)
kn

= 0, we must have L (n) = An, so that PM(n,x) (L (n)) = 0 by Theorem
3.4. Therefore, by the conclusion of Strassen’s Theorem, there exists a joint probability
measure p, with marginals P (M (n, x) = ·) and P (N (n) = ·), such that p (ω) = 1. I.e, the
probability of having no pivot in this joint distribution is 1. Hence, the proof of Theorem
1.4 is complete.
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