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In this paper we introduce strategies for modeling, monitoring, and fore-
casting sequential web traffic data using flows from the Fox News website.
In our analysis we consider a family of Poisson-gamma state space (PGSS)
models that can accurately quantify the uncertainty exhibited by web traffic
data, can provide fast sequential monitoring and prediction mechanisms for
high frequency time intervals, and are computationally feasible when struc-
tural breaks are present. As such, we extend the family of PGSS models to
include the state augmented (sa-)PGSS model whose state evolution structure
is flexible and responsive to sudden changes. Such adaptability is achieved
by augmenting the state vector of the PGSS model with an additional state
variable for a time-varying discount factor. We develop an efficient particle-
based estimation procedure that is suitable for sequential analysis, allowing
us to estimate dynamic state variables and static parameters via closed-form
conditional sufficient statistics. We compare the performance of the PGSS
family of models against viable alternatives from the literature and argue that,
especially in the presence of structural breaks, our proposed approach yields
superior sequential model fit and predictive performance while preserving
computational feasibility. We provide additional insights by designing a sim-
ulation study that mimics potential web traffic data patterns.

1. Introduction. Web traffic data is a crucial component of many modern applications,
such as web analytics, consumer analytics, and network analysis, among others. Web traffic
data, generated by the visitors to a website, are often used as a performance metric and an
input for decision making by online retailers and various e-commerce businesses. Worldwide
e-commerce sales is a significant portion of the global economy and is predicted to reach
nearly $3.46 trillion in 2019, up from $2.93 trillion in 2018.1 Web traffic data is typically
defined by the number of visitors (or clicks) a site receives or the number of pages a visitor
browses within a given website. Many e-commerce businesses rely on accurate and fast pre-
diction of streaming web traffic data in high frequency time intervals to continually allocate
resources. Google, Yahoo, and various online news sites are often interested in modeling and
predicting traffic flows among webpages that are in turn used as inputs for selling and pricing
of online advertising campaigns. Online retailers, such as Amazon, Walmart, and Target, use
web traffic data as part of recommender systems and search engine optimization schemes to
better understand consumer behavior and purchasing trends.

The analysis of streaming web traffic data poses a number of statistical modeling chal-
lenges. In our view the most prominent challenges are threefold: (i) Adequately represent-
ing the uncertainty characteristics typically observed in web traffic data, (ii) Developing fast
and efficient learning and prediction mechanisms suitable for sequential analysis in high fre-
quency time intervals, and (iii) Designing models that can rapidly adapt to sudden structural
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changes in web traffic while preserving computational feasibility. In many e-commerce set-
tings, resource allocation decisions are made on the order of seconds to minutes in a sequen-
tial manner where balancing model complexity and computational speed is imperative. When
business operations of these web platforms depend on accurate short-term predictions of con-
sumer demand (measured in counts of visitors or clicks), the ability to quickly identify struc-
tural breaks and adjust forecasts of customer counts is critical. Markov switching models have
traditionally been used to model regime changes in time series data; however, on e-commerce
platforms, consumer demand changes rapidly, and resources are reallocated frequently. In
high-frequency applications the computational cost of fitting Markov switching models is
prohibitive, as they are not suitable for designing fast learning and forecasting mechanisms
in a sequential manner. The computational cost is amplified significantly when switching
points are unknown, as is the case in the analysis of web traffic data. In this paper we analyze
various streams of web traffic from the Fox News website in high-frequency time intervals
and develop computationally competitive Bayesian state space models that can adequately
represent characteristics of such high-frequency, bursty web traffic data. Specifically, we de-
velop the state-augmented Poisson-gamma state space (sa-PGSS) model, an integer-valued
state-space model whose structure flexibly adapts to newly observed counts and admits a se-
quential Monte Carlo algorithm for online updates of posterior and one-step-ahead predictive
distributions. It advances the literature on Poisson-gamma state-space (PGSS) models by in-
troducing a mechanism to sequentially adapt model structure, as called for by data. To achieve
this, we augment the state-variable in the PGSS model with a dynamic discount factor that
enables rapid model adaption to structural changes in observed counts. The methodological
novelty of our approach stems from this state variable augmentation which increases the flex-
ibility of the PGSS model while allowing us to develop a fast estimation algorithm suitable
for sequential parameter learning, system monitoring, and demand forecasting.

The remainder of our paper is structured as follows. In Section 2 we introduce the details
of the data. In Section 3 we summarize the PGSS model and its properties. We illustrate
the inability of the base PGSS model to rapidly adapt to structural breaks. In Section 4 we
introduce the sa-PGSS model and in Section 5 develop its particle-based algorithm. Section 6
discusses the numerical analysis of two web traffic streams from Fox News website and a
simulated study. Section 7 concludes with a summary and a discussion on future directions.

2. Web traffic data: Fox news streams. To investigate the characteristics of web traffic
data in a setting where fast sequential online learning, monitoring, and prediction are essen-
tial, we consider observations from the Fox News website. The data itself was obtained from
the raw access log of the Fox News website, which is a collection of individual URL access
logs (date and time), and is the flow (number of accesses) from one category of news arti-
cles to another. The counts are observed at 30 second intervals sequentially which precludes
the use of Markov chain Monte Carlo methods necessary for implementing many Markov
switching models. For our investigation we consider two flows within the Fox News website,
a high-count and a low-count flow, each aimed at addressing different characteristics of web
traffic data. The first flow we considered was from the top (main) page of the website to the
category titled “World” between 9:05 and 9:55 a.m. on February 23, 2015. The first observa-
tion at 9:05 is omitted from the series. The total length of the time series is T = 99. In this
illustration the web traffic counts range between approximately 70 and 270, thus is a suitable
example of a stream with relatively high counts. The second example involves flows between
pages that are visited less frequently, which we refer to as the low count stream. These in-
clude flows between the pages titled “Politics” and “Leisure” recorded between 13:05 and
13:33 p.m. on March 2, 2015. In this example, counts generally vary between zero and 10.
Our eventual goal is to show how we can build sequential models and estimation methods
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for either one of these flows 30 seconds in advance, allowing advertising impressions to be
optimally allocated across sections. Robust forecasting and real-time monitoring systems of
web traffic are of great interest to many e-commerce firms, as optimal online ad placement
and efficient web-server maintenance are top priorities.

3. Poisson-gamma state space (PGSS) model. Forecasting count data in high-
frequency settings that potentially exhibit bursts poses a number of statistical and computa-
tional challenges. One such challenge is to flexibly model temporal dependence in a way that
facilitates rapid and online estimation of model parameters. There are two main approaches
for modeling count time series: The first assumes that time-varying counts are generated by
a stationary stochastic process (Freeland and McCabe (2004)); the second approach mod-
els temporal dependence via state space models and allows for the possibility that counts
are nonstationary (Aktekin, Polson and Soyer (2018), Berry and West (2020), Chen, Banks
and West (2019), Chen et al. (2018), Frühwirth-Schnatter and Wagner (2006), Gamerman,
Rezende dos Santos and Franco (2013), Harvey and Fernandes (1989), Glynn et al. (2019)).
The state-space approach exploits the conditional independence of counts given that state
parameters themselves follow a stochastic process, inducing temporal dependence in counts
marginally; see Prado and West (2010) and Davis et al. (2015) for recent reviews of state
space models and time series of counts.

The PGSS model (Aktekin and Soyer (2011), Aktekin, Soyer and Xu (2013), Chen et al.
(2018)) is a popular choice for modeling time-varying count data, since the Poisson-gamma
conjugacy admits online, closed-form calculation of posterior and forecast distributions. The
PGSS model is one in a broader class of gamma-beta random walk models for Poisson rates.
The gamma-beta state transition was first introduced by Smith and Miller (1986) for state
space models with exponential likelihoods and was later utilized to model stochastic volatility
in financial markets by Uhlig (1994), Uhlig (1997). Recently, the same state transition struc-
ture has been used to model a general class of non-Gaussian state space models (Gamerman,
Rezende dos Santos and Franco (2013)). One attractive feature common to gamma-beta ran-
dom walk models is that the beta-distributed innovations in the state equation yield a state
variable that is marginally gamma distributed (assuming that the initial state prior is also
gamma distributed), leading to closed-form updates of posterior and forecast distributions in
the PGSS model. While online, analytically available posterior and predictive distributions
are attractive features, the single-process PGSS model is unable to capture sudden bursts or
regime switches in counts. The lack of flexibility in the PGSS model stems from the static
discount parameter used in defining state transitions.

In this section we introduce necessary notation and the conjugacy preliminaries for the
standard PGSS model which yields tractable filtering as well as one-step-ahead predic-
tive densities. Let Nt for t = 1, . . . , T represent a univariate time series of counts and
Dt = {N1, . . . ,Nt } a collection of these counts until time t . The likelihood (observational
equation) is defined by the Poisson distribution,

(1) (Nt |θt ) ∼ Po(θt ),

where, given θt , Nt is assumed to be conditionally independent of Nt−1. Temporal depen-
dence of Nt on Nt−1 is governed by the stochastic evolution of θt−1 to θt . The state transition
(evolution) equation follows a multiplicative gamma-beta random walk. Conditional on θt−1
and Dt−1,

(2) θt = θt−1ηt/γ, ηt ∼ Beta
(
γαt−1, (1 − γ )αt−1

)
,

which implies a state transition equation given by

(3) (θt |θt−1, γ,Dt−1) ∼ ScaledBeta
(
γαt−1, (1 − γ )αt−1

)
,
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for θt ∈ (0, θt−1/γ ), αt−1 > 0, and 0 < γ < 1. The shape parameter, αt−1, is a function of
the past observations Dt−1 in general, and its specific functional form is given later. We note
here that the state transition density (3) is a function of the past observations, Dt−1, unlike
traditional linear state space models. Here, γ is referred to as the discount factor and controls
the persistence of the state variables. For instance, when γ ↑ 1, θt and θt−1 will be similar
(strong dependence and persistence). Whereas, when γ ↓ 0, θt and θt−1 will likely be less
similar, implying more volatile state dynamics (weak dependence and persistence).

Various versions of the PGSS model have been considered in the literature. Gamerman,
Rezende dos Santos and Franco (2013) consider a general class of non-Gaussian state space
models where the Poisson sampling model appears as a special case. Aktekin, Soyer and Xu
(2013) consider it for modeling mortgage default counts, Chen et al. (2018) utilize it to model
web traffic in network flow data, and Aktekin, Polson and Soyer (2018) extend it to account
for multivariate time series of counts. Further details of the PGSS model can be found in
these papers and the references therein. In what follows, we provide a summary of some of
the relevant results of the PGSS model. Given the initial state prior of θ0 ∼ Ga(α0, β0), we
can show four key model properties:

i The time t − 1 posterior distribution (θt−1|γ,Dt−1) is gamma-distributed

(θt−1|γ,Dt−1) ∼ Ga(αt−1, βt−1).(4)

ii The prior distribution for θt is a discounted version of equation (4), inflating the prior
variance of θt relative to the posterior at t − 1,

(θt |γ,Dt−1) ∼ Ga(γ αt−1, γβt−1).(5)

iii The time t posterior is also gamma distributed

(θt |γ,Dt ) ∼ Ga(αt , βt ),(6)

where αt = γαt−1 +Nt = ∑t−1
s=0 γ sNt−s +γ tα0 and βt = γβt−1 +1 = 1−γ t

1−γ
+γ tβ0. Observe

that αt combines a γ -discounted shape parameter from the posterior of θt−1 and the most
recently observed Nt , while βt increments the γ -discounted rate parameter from the posterior
of θt−1 by one to reflect an additional data point.

iv The one-step-ahead predictive distribution is Negative Binomial,

(Nt |γ,Dt−1) ∼ NegBin
(
γαt−1,

γβt−1

γβt−1 + 1

)
.(7)

Conditional on γ , the filtering density p(θt |γ,Dt ) and the one-step-ahead predictive den-
sity p(Nt |γ,Dt−1) are available in closed form which makes the PGSS model attractive for
practical applications of web traffic count data. Another noteworthy property of the PGSS
model is the closed form availability of the marginal likelihood that can be used to estimate
static model parameters like γ . Typically these marginal likelihoods cannot be obtained ana-
lytically outside of linear and Gaussian models, such as the well-known dynamic linear model
(West and Harrison (1986), West and Harrison (1997)). With the negative binomial one-step
ahead densities in (7), we can construct the marginal likelihood from the product

p(DT |γ ) =
T∏

t=1

p(Nt |γ,Dt−1)

=
T∏

t=1

�(γαt−1 + Nt)

Nt !�(γαt−1)

(
γβt−1

γβt−1 + 1

)γαt−1
(

1

γβt−1 + 1

)Nt

.

(8)
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FIG. 1. The one-step-ahead predictive distribution of Nt (web traffic flow data with 30 second time intervals)
with static γ . The optimal value of γ is computed by the empirical Bayes method that makes use of the closed
form availability of the marginal likelihood. The solid line shows the median of the one-step-ahead predictions
and the dashed lines represent the 95% predictive intervals.

If we do not fix γ but treat it as a parameter to be estimated, the sequential analysis of
posterior and predictive distributions becomes more complicated. For any given continuous
prior choice of γ , it is not possible to obtain an analytically tractable posterior analysis.
However, given (8), we can obtain a discrete posterior distribution for γ if we assume a
discrete prior defined over the region (0,1). Alternatively, we can compute a point estimate
of γ by maximizing (8). In both cases the computations are straightforward and fast.

When γ is static, regardless of whether it is treated as a tuning parameter or a parameter to
be estimated, the PGSS model is slow to adapt to structural changes in counts. Such a struc-
tural change is illustrated in Figure 1, where a sudden surge in web traffic on the Fox News
website occurs at approximately 9:25 a.m (a similar graphic is presented in Figure 14 of Chen
et al. (2018) which contains a full PGSS analysis of the Fox News data). Observe that the me-
dian of the one-step-ahead predictive distribution (solid green line) fails to rapidly adapt to
the surge. In fact, the predictive distribution from the PGSS model effectively smooths the
web traffic data, due to the discount structure in (7). When volume surges at 9:25, the PGSS
model underpredicts traffic, and when the number of visitors drops after 9:45 a.m., the PGSS
model overpredicts traffic. In both directions the predictions are sluggish in responding to
rapid changes in observed data. This is largely due to the static treatment of γ . During the
stable period from 9:00 to 9:25, the data provides evidence for a reasonably high value of γ ,
and past counts significantly contribute to forecasts, (Nt+1|γ,Dt ). This feature—a strength
from 9:00 to 9:25—becomes a weakness when a surge in traffic occurs. The high value of
γ gives significant weight to past counts in one-step-ahead forecasts, but the forecasts fail to
adequately adapt to the structural change in the time series. At 9:25, a small γ is needed so
that less information is inherited from past counts and forecasts rapidly adapt to recently ob-
served data. We view this static γ as a major shortcoming of the PGSS model. In Section 4 we
augment the state variable with a dynamic discount factor γt that adaptively weights previous
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information, based on predictive errors, providing increased model flexibility when structural
changes occur.

4. The state-augmented PGSS model. In this section we extend the PGSS model to
account for dynamic changes in the discount factor, γ . In doing so, we preserve the properties
of the base PGSS model, conditional on the dynamic discount factor. The motivation for
modeling γ as dynamic stems from the lack of adaptability of the PGSS model to sudden
shifts in the web traffic data flow presented in Figure 1. This adaptability can be achieved by
allowing γt to be relatively large in stable regions and small in regions where sudden shifts
occur, eliminating the need for prospective intervention, as in Chen et al. (2018).

Assuming the same Poisson observation equation (1), we define the state evolution condi-
tional on γ1:t = {γ1, . . . , γt }, as p(θt |θt−1,Dt−1, γ1:t ), which will be

(9) (θt |θt−1,Dt−1, γ1:t ) ∼ ScaledBeta
(
γtαt−1, (1 − γt )αt−1

)
,

where θt ∈ (0, θt−1/γt ).
We note that the state equation depends on all the past observations Dt−1 and discount

factors γ1:(t−1) whose contributions are embedded in αt−1. Assuming the same initial state
prior as before, θ0 ∼ Ga(α0, β0), the online state update—conditional on γ1:t—will be
(θt |γ1:t ,Dt ) ∼ Ga(αt , βt ), where

αt = γtαt−1 + Nt,

βt = γtβt−1 + 1.
(10)

Similarly, the one-step-ahead predictive density can be shown to follow

(11) (Nt |γ1:t ,Dt−1) ∼ NegBin
(
γtαt−1,

γtβt−1

γtβt−1 + 1

)
.

The dynamic nature of the discount factors can be described by any Markovian process,
such as

(γt |γ1:(t−1)) ∼ p(γt |γt−1),

which needs to be selected carefully so that it facilitates sequential estimation but is also
flexible enough to increase the adaptability of the PGSS model. With this in mind and the fact
that γt ’s are defined between 0 and 1, we consider a logistic transformation of the following
form:

gt = logit(γt ) = log
γt

1 − γt

,

where the transformed series, g1, g2, . . . , gt−1, gt , . . ., follows a first order autoregressive
model, as in

(12) gt = (1 − φ)μ + φgt−1 + N
(
0, σ 2)

.

We take a fully Bayesian point of view and assume priors on the above AR(1) triplet,
(μ,φ,σ 2), and allow them to be updated sequentially in the face of new count data, substan-
tially increasing temporal adaptability of the PGSS model. To be more specific, for another
parametrization φ0 = (1 − φ)μ, φ1 = φ and w = σ−2, we assume the following normal-
inverse gamma distribution as the hyperprior:

(13) p(φ0, φ1,w|D0) = N(φ0, φ1|m0,C0/w)Ga(w|a0/2, b0/2).

As we see in the next section, this prior is conditionally conjugate in our model.
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FIG. 2. The histograms of samples generated from the prior of logit−1(μ) (top left), φ (top right), σ 2 (bottom
left), and the stationary marginal of γt (bottom right) implied by the prior in (13) with the choice of hyperpa-
rameters we consider in analyzing web traffic data. These priors are highly concentrated around the values of
logit−1(μ) = 0.9, φ = 0.9, and σ 2 = 0.5 to ensure the persistency of discount factors favoring higher values.

Hyperparameter selection. If the distribution of g0 is

g0 ∼ N
(
μ,σ 2/

√
1 − φ2

)
,

then the gt process would be stationary with marginal distribution

gt ∼ N
(
μ,σ 2/

√
1 − φ2

)
which indirectly implies the stationary distribution of γt by inverse logistic transformation.
The selection of hyperparameters in the prior of the AR(1) triplet controls the implied station-
ary distribution for γt . While the discount factor is now allowed to be dynamically changing,
it is preferable in many cases that the value of γt is high and stable over time. This can be
realized by high μ, high φ, and small σ 2. Assuming a relatively strong prior on (μ,φ,σ 2)

has practical advantages where the discount factor would be fairly constant to avoid overfit-
ting and high levels of flexibility. This allows the discount factor to be more adaptive only
when steep changes are observed in the flow of web traffic data. For all of our numerical
examples, the hyperparameters of normal-inverse gamma prior in equation (13) are set at
m0 = [(1 − 0.9)logit(0.9),0.9]′, C0 = (0.05)2I2, a0 = 10, and b0 = 5. This prior reflects our
preference on the specific values of (μ,φ,σ 2) = (logit(0.9),0.9,0.5) with small variance.
The implied priors of the AR(1) parameters and the stationary distribution of γt are shown in
Figure 2. Figure 2 shows that the prior distribution favors γt values near 1—implying persis-
tent counts—but still allowing for the possibility of γt values close to 0—implying a lower
level of dependence in Nt on previously observed counts Dt−1. We recommend those values
of hyperparameters as the default choice. In addition, our experiments using real web traffic
data (not shown here) revealed that using a diffuse prior may not be preferred in scenarios
that require higher and more stable discount factor processes.

5. Sequential estimation of the sa-PGSS model. The sa-PGSS model requires fast and
efficient computational strategies for online updates of posterior and predictive distributions.
As pointed out by Storvik (2002) and Carvalho et al. (2010a), traditional Markov chain Monte
Carlo (MCMC) methods, especially the forward filtering backward sampling (FFBS) algo-
rithm of Carter and Kohn (1994) and Frühwirth-Schnatter (1994), are computationally expen-
sive, as state variables must be reestimated each time new data is observed. With this in mind,
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we develop a particle-based algorithm that allows us to update static as well as the dynamic
(state) variables in a fast sequential manner. The initial idea of particle filtering (PF) dates
back to the work of Gordon, Salmond and Smith (1993). Since then there have been sev-
eral successful applications of the PF algorithm in various settings, such as those discussed
in Carvalho et al. (2010b) for general mixtures, Gramacy and Polson (2011) for Gaussian
process models in sequential optimization, Lopes and Polson (2016) for heavy-tailed distri-
butions, and Prado and Lopes (2013) for estimating parameters in autoregressive time series
models. One of challenges common to all PF applications is the particle degeneracy issue
that arises in learning static parameters. We overcome this issue using a particle learning al-
gorithm by obtaining the conditional sufficient statistics for the static parameters in a similar
vein to the methods proposed by Storvik (2002), Carvalho et al. (2010a) and Prado and Lopes
(2013). For recent surveys of particle-based methods, we refer readers to the works of Lopes
and Tsay (2011) and Singpurwalla, Polson and Soyer (2018).

In our proposed extension of the PGSS model, the new state vector consists of the (θt , γt )

pair and the static parameters vector is defined by ϑ = (μ,φ,σ ). The full joint density of
all model parameters can be summarized via p(θ1:t , γ1:t , ϑ |Dt ). However, as our main tar-
get is to sequentially update the relevant parameters and to obtain one-step-ahead forecasts,
our goal reduces to generating samples from p(θt , γt , ϑ |Dt ) which is not available in an-
alytical form. Markov chain Monte Carlo (MCMC) and particle filtering (PF) methods are
the two options for generating samples from this density. As pointed out by Storvik (2002),
MCMC requires restarting each simulation as new data is observed, increasing the compu-
tational burden significantly as the dimension t increases in state space models. As our goal
is fast sequential online updating and prediction, we consider PF algorithms that are based
on rebalancing of a finite number of particles of the state posterior distributions proportional
to the likelihood. As pointed out by Carvalho et al. (2010a), estimating static parameters in
sequential models is surprisingly difficult, due to potential particle degeneracy. A potential
remedy is to use conditional sufficient statistics of the static parameters when they are analyt-
ically available, as considered by Carvalho et al. (2010a), Fearnhead (2002), Storvik (2002).
As these conditional sufficient statistics for ϑ can be obtained analytically in our model, we
can devise a fast PF algorithm to generate samples from p(θt , γt , ϑ |Dt ). This approach is
typically referred to as particle learning (PL) algorithm due to the use of conditional suffi-
cient statistics in estimating static parameters. In developing the algorithm, we exploit three
major features of our model: 1) Closed-form availability of the state filtering density con-
ditional on the dynamic discount parameters, 2) Closed-form availability of the marginal
likelihoods, and 3) Analytical tractability of the conditional sufficient statistics for the static
parameters.

Our goal is to eventually obtain samples from p(θt , γt , ϑ |Dt ), which can be achieved by
augmenting the density by adding αt , βt as

p(θt , γt , αt , βt , ϑ |Dt )

= p(θt |γt , αt , βt , ϑ,Dt )p(αt , βt |γt , ϑ,Dt )p(γt , ϑ |Dt )

= p(θt |αt , βt ,Dt )p(αt , βt |γt ,Dt )p(γt , ϑ |Dt ),

(14)

where p(θt |αt , βt ,Dt ) is a Gamma distribution with parameters αt , βt and p(αt , βt |γt ,Dt )

is not a known density but can be computed via

p(αt , βt |γt ,Dt ) =
∫

p(αt , βt |γt , αt−1, βt−1,Dt )p(αt−1, βt−1|Dt ) dαt−1 dβt−1,

where p(αt , βt |γt , αt−1, βt−1,Dt ) is a degenerate density with deterministic parameter up-
dating given by (10). We note here that to sequentially compute αt and βt , we would need
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samples from p(αt−1, βt−1|Dt ), which we discuss in the sequel. (See the paragraph after the
algorithm on page 14.)

The next step is to sample from p(γt , ϑ |Dt ), which can be decomposed using a similar
augmentation approach via

p(γt , ϑ |Dt ) =
∫

p(γt , γt−1, αt−1, βt−1, ϑ |Dt ) dγt−1 dαt−1 dβt−1

∝
∫

p(Nt |γt , αt−1, βt−1,Dt−1)p(γt |γt−1, ϑ,Dt−1)p(ϑ |γt−1,Dt−1) × · · ·
× p(γt−1, αt−1, βt−1|Dt−1) dγt−1 dαt−1 dβt−1,

where p(Nt |γt , αt−1, βt−1,Dt−1) is a negative binomial density given by (11) and p(γt |γt−1,

ϑ,Dt−1) is the state transition for γt given by (12). In addition, we can approximate the online
posterior p(γt−1, αt−1, βt−1|Dt−1) at t − 1 by S particles as

p(γt−1, αt−1, βt−1|Dt−1) ≈
S∑

i=1

wi
t−1δ{γ i

t−1,α
i
t−1,β

i
t−1}(γt−1, αt−1, βt−1),

where δ{x}(·) is the point-mass distribution at x and {wi
t−1}i=1:S are nonnegative mixture

weights whose sum over i must be equal to one. The final step is to generate from the density
p(ϑ |γt−1,Dt−1) to fully implement the above sequential scheme. To do so, we utilize the
conditional sufficient statistics updating of ϑ which is available analytically in our model.
After the reparametrization of the hyperparameters as φ0 = (1 − φ)μ, φ1 = φ and w = σ−2,
we can use a bivariate normal-gamma prior as

p(φ0, φ1,w|D0) = N(φ0, φ1|m0,C0/w)Ga(w|a0/2, b0/2)

for a given collection of prior parameters S0 = {m0,C0, a0, b0}. The likelihood function for
the triplet φ0, φ1, w is obtained via the AR(1) model

(15) gt = φ0 + φ1gt−1 + N
(
0, σ 2)

,

and for all t , the conditional posterior would be

p(φ0, φ1,w|γ1:t ,Dt ) = p(φ0, φ1,w|St )

= N(φ0, φ1|mt,Ct/w)Ga(w|at/2, bt/2),
(16)

where the set of conditional sufficient statistics is given by St = {mt,Ct , at , bt } updated as a
function of St−1, gt , and gt−1 via

mt = mt−1 + Atet Ct = Ct−1 − qtAtA
′
t ,

at = at−1 + 1 bt = bt−1 + e2
t /qt ,

(17)

and

Gt = [
1, gt−1

]
et = gt − G′

tmt−1,

qt = 1 + G′
tCt−1Gt At = Ct−1Gt/qt .

(18)

The above approach can be implemented with a minor modification under the constraint on φ

for stationarity as in (Prado and Lopes (2013)). Namely, the prior and posterior distributions
are truncated such that the generated particles of φ that do not fall in the region (−1,1) (or
(0,1)) are rejected in sampling. Consequently, we can obtain samples from p(φ0, φ1,w|St−1)

and, in turn, from p(ϑ |γt−1,Dt−1) that is required for updating (14).
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In what follows, we present our algorithm that is based on the sequential decomposition
of model parameters of interest summarized by (14). Our approach can be viewed as a com-
bination of the auxiliary particle filter (APF) of Pitt and Shephard (1999) with conditional
sufficient statistics updating of static parameters. Our algorithm can be summarized via the
following steps:

Given a particle set (θ i
t−1, γ

i
t−1, α

i
t−1, β

i
t−1, ϑ

i |Dt−1) with weights wi
t−1, repeat the

following step 1-6 for each j ∈ 1:S.
1. Resample an auxiliary index i(j) with probability

w
i(j)
t−1|t ∝ p(Nt |γ̂ i

t , αi
t−1, β

i
t−1,Dt−1)w

i
t−1 for each i.

2. Propagate g
j
t from the state transition density,

N((1 − φi(j))μi(j) + φi(j)g
i(j)
t−1, (σ 2)i(j)) and set γ

j
t = logit−1(g

j
t ).

3. Resample using normalized weights
w

j
t ∝ p(Nt |γ j

t , α
i(j)
t−1, β

i(j)
t−1 ,Dt−1)/p(Nt |γ̂ i(j)

t , α
i(j)
t−1, β

i(j)
t−1 ,Dt−1).

4. Compute α
j
t = γ

j
t α

j
t−1 + Nt and β

j
t = γ

j
t β

j
t−1 + 1 and sample θ

j
t from Ga(αj

t , β
j
t ).

5. Update Sj
t = f (St−1, γ

j
t , γ

i(j)
t−1 ) via (17) and (18).

6. Sample ϑj from p(ϑ |Sj
t ) given by (16).

Use the particle set (θ
j
t , γ

j
t , α

j
t , β

j
t , ϑj |Dt ) for the next time period t + 1.

We note here that in step 1, γ̂ i
t is set equal to γ i

t−1 as an estimator for γt (similar to the
APF approach). At the end of step 3 and as a consequence of resampling, we obtain samples
from p(γt , αt−1, βt−1|Dt ) that are used in updating αt and βt in step 4. We do not need
to propagate θt from θt−1, as the conditional filtering density is available analytically. An
important feature of our sa-PGSS model is that the vector of past discount terms, γ1:t , can be
summarized by a lower dimensional vector (γt , αt−1, βt−1), thus reducing the dimension of
the state vector for γt ’s to 3 from t . This avoids the need to generate from the t dimensional
state vector (can be achieved using a forward filtering and backward sampling (FFBS) step)
and reduces the computational burden significantly.

Particle dimension and effective sample size. Our experiments with the sa-PGSS model
typically suggest that a particle size of N = 5000 was more than sufficient in all the numerical
examples. We also investigated the implications of using smaller particle sizes (1000, 2000,
and 3000) on the estimation paths of both the state and static parameters of our model and
found no clear differences. We omit the details of these experiments to preserve space in
the narrative and use N = 5000 as a very conservative particle size in all our subsequent
numerical examples.

To assess the existence of potential particle degeneracy in the estimates obtained using our
PF algorithm, we also keep track of the so-called effective sample size (ESS) via

ESSt = 1∑N
i=1(w

i
t )

2
,

where wi
t represents the weight of particle i at t before the resampling step (if any). We note

there that 1 ≤ ESSt ≤ N where lower values indicate evidence in favor of degeneration and
vice versa. The ESS estimates can be used as a monitoring tool for assessing the need to
resample at each point in time and to detect anomalies (such as structural breaks or sudden
bursts in data). We investigate the implications of monitoring the ESS over time and how it
can be used as a practical tool in our numerical examples.
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6. Analysis of web traffic data. In this section we analyze three examples of web traffic
data to investigate the implications of using the family of PGSS models, including sa-PGSS
extension, and to show the implementation of our particle based algorithms. We start our
discussion with a simulated study of a web traffic stream that exhibits clear and sudden shifts.
The second and third examples consider web traffic data from the Fox News website, as
described in Section 2. In all three scenarios we provide comparisons of online learning and
forecasting results for various models. A brief description of each model included in our
comparison is as follows:

1. sa-PGSS: The state-augmented Poisson-gamma state space model where the dynamic
discount factor, γt , evolves over time via the transition equation defined in equation (12).

2. PGSS-random: The Poisson-gamma state space model where γ is assumed to be
static but random. We assume that the prior distribution of γ is a uniform discrete distribution
defined over {0.01,0.02, . . . ,0.99}, an approach considered in Aktekin, Soyer and Xu (2013).
The posterior distribution of γ is then obtained via

p(γ |Dt ) ∝ p(γ )

t∏
s=1

p(Ns |Ds−1, γ ),

where p(Ns |Ds−1, γ ) is the negative binomial marginal likelihood from (8).
3. PGSS-deterministic: The Poisson-gamma state space model where the discount factor

γt evolves dynamically but in a deterministic manner as considered by Chen et al. (2018).
More specifically, γt is assumed to exhibit the following functional form

γt = d + (1 − d) exp(−kαt−1),

where d represents the baseline, k is a tuning parameter controlling the speed of the infor-
mation decay, and αt−1 is the shape parameter of the time t − 1 posterior distribution from
(4). The motivation of using the above specification stems from scenarios with zero counts
and to mitigate the numerical issues caused by extremely small αt−1’s. When αt−1 is large,
the exponential term approaches 0 and γt ≈ d , leading to an approximately constant discount
factor. In Chen et al. (2018) and our study, the decay parameter is set to k = 1. Formally, the
optimal value of d can be estimated using an empirical Bayes approach as in

d∗ = arg max
{
p(d|DT )

} = arg max

{
p(d)

T∏
t=1

p(Nt |Dt−1, d)

}

with some constraint on the support of d , such as d ∈ (0.9,1). In the Fox News dataset,
d = 0.9 is obtained by following this procedure with the training dataset. We choose d = 0.9
for the simulation example since a training dataset was not available.

4. Dynamic linear model (DLM): DLMs are commonly used state space models for
nonstationary time series with Gaussian observations. Similar to the PGSS model, tractable
updates of posterior and predictive distributions are available in DLMs. We use the first order
polynomial DLM (West and Harrison ((1997), Chapter 2.1)) that has the following form:

Nt = μt + vt , vt ∼ N(0,Vt ),

μt = μt−1 + wt, wt ∼ N
(
0,VtW

∗
t

)
,

where the parameters for the observational and state errors, Vt and W ∗
t , are modelled us-

ing discount factors, β and δ, respectively (West and Harrison ((1997), Chapter 10.8)). Our
experiments with the web traffic data showed that using δ ∈ {0.95,0.75} for the state evolu-
tion and β = 0.95 for the stochastic volatility provide reasonable coverage to the Fox News
streams. The discount factor β for the stochastic volatility has less impact on the posterior
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results and forecasting performance. The initial values are set such that the comparison with
the sa-PGSS models is fair. Using the general terminology of DLMs, we set the initial hyper-
parameters to m0 = C0 = N0 (using the discarded, latest observation as the prior mean and
variance of μt ) and n0 = 2 and S0 = N0 to mimic the initial priors that we used for the PGSS
models (Note that nt is the degree-of-freedom parameter and can be interpreted as the size of
the prior relative to the number of actual observations). For the low count example, as N0 = 0
(as the initial variance will be undefined), we replaced N0 = 0.1 to initialize the DLMs which
otherwise would be undefined.

Performance measures. Allocating advertisements across multiple webpages requires a
decision supported by an associated loss function. While the posterior mean and median are
associated with squared error and �1 loss functions, respectively, different applied settings
may require alternative loss functions. For instance, in the Fox News example the objective
may be to maximize advertising revenue, though often, revenue maximization is not the only
goal. There are typically additional advertising campaign constraints, such as serving partic-
ular ads to particular target demographics. These constraints may require the development of
multicriteria loss functions to account for both revenue and campaign objectives. With this
in mind, we focus on the following multiple predictive measures and hold our methodology
open to any specific loss analysis.

In assessing the model performance in analyzing web traffic data, we consider several
performance measures that can be tied to respective loss functions, such as the mean absolute
percent error (MAPE), the mean squared error (MSE), the mean absolute deviation (MAD),
scaled mean standard deviation (sMSD), and the log marginal likelihood. In addition, we also
show how the posterior model probability estimates can be used for assessing/monitoring the
online model fit performance. Many of these measures are used to assess the performance of
count time series models in the literature. We refer the reader to the discussions on predictive
performance and loss functions in the recent works of Berry and West (2020) and Berry,
Helman and West (2020).

MAPE is a standard measure of predictive performance and is defined as

MAPEt = 100

t

t∑
s=1

|Ns − fs |
Ns

,

where ft is the point forecast of Nt at t − 1; in our study, ft is the posterior median of the
one-step-ahead predictive distribution p(Nt |Dt−1) for simplicity, although the optimal point
forecast for the standard of MAPE can also be considered (e.g., Berry, Helman and West
((2020), Section 4.3)).

We remark here that MAPE estimates at time t would not be well defined if Ns = 0 for
any s ≤ t . This problem is more severe when the web traffic counts are small, as is the case
with one of our examples. In reporting the MAPE estimates for the low count example, we
replaced the denominator by 1 when Ns = 0. Alternatively, we computed the mean absolute
distance (MAD) for all cases which can be obtained by replacing the denominator of the
MAPE estimate by 1 for all s. The scaled mean standard deviation (sMSD) can also be
used to assess model performance and can be obtained by using the sample average at t ,
1
s

∑s
u=1 Nu, instead of Ns . In addition, we also computed the commonly used mean squared

error (MSE) estimates. For all measures, MAPE, MAD, MSE, and sMSD, a lower number
indicates a better prediction performance.

The posterior model probability p(M|Dt ) for model M ∈ {sa-PGSS, PGSS-random,
PGSS-deterministic, DLM(δ = 0.75), DLM(δ = 0.95)} is used to monitor the online model
fit. Particularly, p(M|Dt ) can help us identify when and why a particular model outperforms
others. For instance, in count data with sudden bursts and/or structural breaks, p(M|Dt ) can
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provide simple-to-interpret visual guidance. In addition, one can also consider p(M|Dt ) to
assess different choices of hyperparameters, computational methodologies, and particle sizes.

In order to compute p(M|Dt ), the marginal likelihood is needed and analytically available
through (the sum of) (8) in the PGSS family of models. For instance, in the sa-PGSS model,
the log marginal likelihood can be computed as a mixture, as in

logp(Nt |Dt−1)

=
∫

logp(Nt |Dt−1, γt , αt−1, βt−1)p(γt , αt−1, βt−1|Dt−1) d(γt , αt−1, βt−1)

= 1

S

S∑
i=1

logp
(
Nt |Dt−1, γ

i
t , αi

t−1, β
i
t−1

)
,

where the density of (Nt |Dt−1, γt , αt−1, βt−1) is the negative binomial distribution given
by equation (11). In the above, the particle set, (γ i

t , αi
t−1, β

i
t−1), is obtained by augmenting

(γ i
t−1, α

i
t−1, β

i
t−1, ϑ

i) with γ i
t through p(γt |γ i

t−1, ϑ
i). We remark here that the state variable,

θt , is Rao–Blackwellized which reduces the overall computational burden significantly. For
DLMs that are based on Gaussian likelihoods, the above marginal likelihoods will be replaced
by the t-distribution. The marginal likelihoods can also be used to assess the overall model
fit to data.

Computational details and performance. The computations for all three examples are
implemented in Ox (Doornik (2007)) on a laptop computer with Intel Core i7-7500U CPU
2.70GHz, 2.90GHz, RAM-8GB specifications. Table 1 summarizes the actual time (in sec-
onds) of sampling the online joint posterior distribution, p(θt , γt , ϑ |Dt ), using PF and
MCMC methods. For instance, in the Fox News example (with high counts) the time for
completing the update of N = 5000 particles from time period t to t + 1 for the PF algorithm
(without any explicit parallelization) is 0.27 seconds, on average, and 0.328 at maximum
for t = 0 : T − 1. We note here that this performance stays approximately the same as the
dimension of the series (T ) increases. Conversely, the estimation of the online posterior at
time t = T , using an MCMC algorithm with an independent Metropolis–Hastings step, is
approximately equal to 65.85 seconds. The details of the MCMC algorithm (5000 iterations
after a 500 burn-in period) can be found in the Appendix. We note here that, for both Fox
News examples, each time period is 30 seconds long, and the MCMC approach far exceeds
this threshold. The computational results for the low count web traffic stream were almost
identical. Our experiments indicated that, as the dimension of T got larger, the computational
burden for the MCMC method exponentially increased while the PF algorithm stayed around
the same. These results provide further evidence that any model that requires the implemen-
tation of MCMC methods in a sequential setting, such as Markov switching models, is not a
suitable alternative for analyzing web traffic data that is observed in short time intervals.

The online updating for DLMs with known discount factors takes less than 0.0001 sec-
onds. However, we note here that, in our numerical examples, the DLM discount factor is

TABLE 1
Summary of computational performance in seconds

Simulation (T = 99) Fox News (T = 99)

PF (Avg) 0.264 0.270
PF (Max) 0.297 0.328
MCMC 64.947 65.858
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not reestimated for each time period which would require the sequential evaluation of the
marginal likelihoods. The DLMs and PGSS models with static discount factors are unable
to quickly adapt to structural changes, due to nondynamic nature of their respective discount
factors. The attractive feature of the sa-PGSS model is that it achieves such adoption without
the need for heavy computational burden (each update takes less than half a second). In practi-
cal applications, these online updates typically become inputs of a large multivariate network
model (Chen et al. (2018)) where computational efficiency becomes of utmost importance.
A comparable model in the domain of DLMs would involve treating the discount factor as
dynamic. To the best of our knowledge, there are no DLM extensions that can achieve this
while preserving computational feasibility.

6.1. Simulated web traffic data with structural breaks. We first start our analysis of web
traffic data by simulating a stream that exhibits structural breaks. The simulation is designed
such that these breaks are visually clear with significant jumps when observed retrospectively.
We note here that our analysis is designed with the lens of sequential learning and forecasting
in high-frequency time intervals to mimic a hypothetical web traffic scenario. For instance,
Markov switching models may, in fact, work to detect changes when the full data series is
available for a retrospective analysis, but Markov switching models do not offer the same
sequential parameter updates that are available in our model for online monitoring and fore-
casting. As such, we designed a simulation study that can highlight the adaptability of our
proposed sa-PGSS model in analyzing web traffic data where automated machine monitoring
without the need for human intervention is key.

The data are generated from a nonhomogeneous Poisson model via Nt ∼ Po(θ∗
t ) indepen-

dently, where

(19) θ∗
t =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

80 t ∈ 1:32,

115,150,185 t = 33,34,35, resp.,

220 t ∈ 36:67,

200,180,160 t = 68,69,70, resp.,

110 t ∈ 71:100.

In the simulation design, two relatively slow-to-build structural breaks are represented at
time points t = 33 and t = 68 with structural shifts occurring shortly after (see the red lines
on Figures 3(a), 3(b), and 3(c)). The overall pattern of the simulated set roughly mimics that
of the Fox News example with steeper and clearer breaks. The simulation design allows us
to investigate the flexibility of the sa-PGSS model in adopting to sudden surges in the count

FIG. 3. Online posterior distributions of θt with mean (solid) and 95% credible intervals (dashed) and the true
values of θ∗

t (solid, piecewise linear) with the observed counts (+). The three figures, (a), (b), and (c) correspond
to sa-PGSS, PGSS-random and PGSS-deterministic models, respectively. Compared with the posterior of sa-PGSS
in (a), that of PGSS-random in (b) is volatile and overly adaptive in t ≥ 71. The posterior of PGSS-deterministic
in (c) is too persistent for the changes of true Poisson rates.
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data without the need for more complex models that are computationally expensive and thus
are not suitable for fast online learning/forecasting.

Figures 3(a), 3(b), and 3(c) display the online state posterior distributions with the respec-
tive 95% credible intervals for all three PGSS models where the straight red line represents
the level of the true state variable, θt . The posterior uncertainty, provided by the sa-PGSS
model in Figure 3(a), exhibits a fairly quick adaptive behavior to the sudden changes on the
level. In Figure 3(b) the PGSS-random model also seems to provide flexible coverage at first
glance, with some excessive overfitting right around the second state change at t = 68. In
contrast, the posterior coverage provided by the PGSS-deterministic model from Figure 3(c)
clearly shows the shortcomings of the base PGSS model with a deterministic discount factor,
as evidenced by its inability to adopt to sudden changes in the level.

To further investigate the online fit performances around and at the inflation points, we
computed the cumulative mean squared error (MSE) estimates over time via

MSEt = 1

t

t∑
s=1

(
E[θs |Ds] − θ∗

s

)2
,

where θ∗
s represents the true value of the Poisson rate at time s given in equation (19). The

overall pattern of the MSEs for all three models are shown in Figure 4. Right after the first
change point, the PGSS-deterministic model provides the worst coverage with respect to the
other two models with random discount factors. The encouraging finding here is that the sa-
PGSS model consistently outperforms the PGSS-random model strictly after the first change-
point (around t = 33). This may be explained by plotting the estimated paths of discount
factor γ for both models. For lower values of γ , the PGSS model tends to over-fit the data
(i.e., posterior mean estimates will follow recently observed data too closely).

Figures 5 and 6 show the estimated paths of the posterior means and the respective 95%
credible intervals of the discount factors of the sa-PGSS (via γt ) and PGSS-random (via γ )
models. For the sa-PGSS model, the initial γt estimates are high (close to 1) followed by a
steep drop right after the first change point (t = 33). Another drop can be observed at the
second change point (t = 68) beyond which the discount factor gradually increases back to
higher levels. The path of γ for the PGSS-random model tells a similar story during the first
32 time points with a steep decrease at the change point. However, after the second change
point, the PGSS-random model is unable to push γ back to the region of 0.9 to 1, unlike
the sa-PGSS model. We believe that this sheds light on the dominance previously observed
in the MSE estimates from Figure 4, as the PGSS-random model is unable to recover the

FIG. 4. The mean squared errors (log-scale) for the sa-PGSS (solid), PGSS-random (dashed), and PGSS-deter-
ministic (dotted) models. The MSE estimates for the PGSS-deterministic model are extremely large with respect to
the other two models and after t = 33 (the first switching point) are beyond the borders of the figure in this scale.
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FIG. 5. The means and credible intervals of the posterior of dynamic discount factor, p(γt |Dt ) (top), and the
ESS over time (bottom). Both discount factor and ESS are lowered when the true Poisson rates started to change.
The posterior of discount factors starts to increase after t ≥ 71.

appropriate value of γ , especially after the second break point. The dynamic nature of γt

in the sa-PGSS model allows the posterior distribution to shift between high values (when
θt ’s are similar or close to identical) and low values (when θt ’s are not similar which occurs
at the breaks). These structural breaks can also be identified by the sudden dips in the ESS
estimates from Figure 5, once again occurring at t = 33 and t = 68. Severe and sudden drops
in ESS estimates can be used as a formal monitoring tool for identifying structural breaks in
automated machine learning settings.

In terms of online model fit and predictive performance (marginal likelihoods, model prob-
abilities, and MAPE estimates), the sa-PGSS model outperforms the other two models after
structural breaks occur. Figure 7 shows the posterior model probabilities for the PGSS models
and the DLMs, where equal prior probabilities are assumed. One noteworthy observation is
that the PGSS-random is found to be the best model during the initial 30 observations. This
is expected since there is no need for a dynamically changing discount factor until around
t = 30, as the simulation design implies that γ should be equal to 1 in this epoch (e.g., θ1:30
are the same). After the first change point, sa-PGSS quickly becomes the dominant model and
continues to outperform others due to its ability to rapidly adapt to the new level of the gener-
ated counts. In a similar vein the results from the MAPE estimates from Figure 8 also confirm
the findings implied by the model probabilities where the sa-PGSS model consistently out-
performs the other models after the first change point. It is worth mentioning here that, in the

FIG. 6. The median (+ symbols) and credible intervals of the posterior of constant discount factor, p(γ |Dt ).
Unlike the postrior results of sa-PGSS in Figure 5, once the discount factor is lowered, it remains to be around
0.4–0.5 and never increases.
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FIG. 7. The posterior model probabilities of sa-PGSS (solid), PGSS-random (dashed), PGSS-deterministic (dot-
ted), DLM(δ = 0.75) (circle), and DLM(δ = 0.95) (triangle) with equal prior probabilities.

first 30 time points, the difference between the three models is small. The difference becomes
visually clearer at the two time points of structural change. A summary of the MAPE, MAD,
sMSD, MSE, and marginal log-likelihood estimates are shown in Table 2 where the sa-PGSS
and PGSS-random models outperform the DLMs and the PGSS-deterministic models.

In summary, our goal was to develop a highly adaptable PGSS model suitable for se-
quential parameter learning and online demand forecasting of web traffic data with structural
breaks. In doing so, we focused on developing a fast and efficient particle based algorithm
while avoiding traditional MCMC methods that are found to increase computational bur-
den significantly. The summary of results discussed previously based on the simulated study
confirms that our proposed sa-PGSS model performs well in terms of online model fit and
predictive performances such as MAPE, MAD, sMSD, MSE, and log-marginal likelihood
when compared against other suitable modeling strategies.

6.2. Web traffic data from the Fox News website (high count example). In what follows,
we first analyze one of the flows from the Fox News website with relatively high web traffic

FIG. 8. The mean absolute percentage errors (MAPEs) of sa-PGSS (solid), PGSS-random (dashed), PGSS-de-
terministic (dotted), DLM(δ = 0.75) (circle), and DLM(δ = 0.95) (triangle) over time.
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TABLE 2
Overall summary of predictive performances in the simulation study, Fox News high-count and Fox News

low-count data

PGSS DLM

sa Random Deterministic δ = 0.75 δ = 0.95

Simulation
MAPE 9.4 9.7 15.3 11.3 19.1
MAD 1309.6 1373.4 2440.8 1653.3 3207.5
sMSD 11.6 12.2 21.4 14.9 27.5
MSE 335.6 381.9 1228.2 576.5 1919.1
log-ML −421.0 −435.6 −690.4 −439.0 −486.5

Fox News (high-count)
MAPE 9.4 9.0 14.9 10.1 18.6
MAD 1504.0 1423.2 2591.9 1635.0 3422.7
sMSD 13.2 13.0 23.0 14.8 29.8
MSE 388.4 364.1 1171.6 501.6 2061.7
log-ML −436.3 −431.0 −664.8 −439.9 −494.3

Fox News (low-count)
MAPE 53.5 52.5 51.4 61.4 54.9
MAD 136.3 137.3 135.3 139.4 137.7
sMSD 58.5 58.6 57.9 59.9 59.1
MSE 348.4 355.5 345.4 325.8 342.6
log-ML −194.2 −193.5 −193.7 −196.5 −198.7

counts (roughly between 70–270), as described in Section 2. In doing so, we highlight here
the three main aspects that we envision web traffic monitoring and forecasting models should
possess. The first one is to be able to adequately quantify the uncertainty exhibited by web
traffic counts in high-frequency intervals, in other words sequentially observed count data.
A natural choice for analyzing such count data is to use a model with a Poisson distributed
likelihood, such as the PGSS family of models. Another approach would be to use Gaussian
based models as an approximation, such as the DLMs that may be viable alternatives when
web traffic counts are large. However, when web flows are relatively low, say between zero to
20 (as is the case with our next example), Gaussian based models are unable to quantify the
uncertainty characteristics of web traffic data accurately. The forecasting (predictive) densi-
ties for DLMs are also Gaussian by definition and are, therefore, symmetric, unlike those of
the PGSS models that are negative binomial (11) that are able to exhibit skeweness and are
able to represent zeros. The second main aspect we would expect the models to posses is the
ability to provide fast and efficient monitoring and prediction mechanisms that are suitable
for analyzing web traffic in high-frequency intervals (30 seconds in our illustrations). The
class of PGSS models and DLMs fit this profile, whereas more complex models, such as
Markov switching models with unknown number of states, do not, due to the additional com-
putational burden that would be required for sequential analysis, especially in 30 second long
time intervals. The third, and the last, feature we would envision web traffic models to have is
the rapid adaptability to sudden structural changes while preserving computational feasibility.
Our proposed sa-PGSS model was designed to exhibit such adaptability as an extension of the
current PGSS models in the literature. A Markov switching model with an unknown number
of states (as the data is observed sequentially) may provide such adaptability but would fail
to provide the necessary computational feasibility. Table 1 provides support in favor of our
proposed family of PGSS models with respect to their computational capability.

With the three previously discussed main features, we turn our attention to the analysis of
web traffic data. Chen et al. (2018) present a thorough analysis of the Fox News data set uti-
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FIG. 9. One-step-ahead predictive distributions of Nt for the sa-PGSS (solid/dashed lines) and PGSS-deter-
ministic (thinner lines) models, revisiting the dataset used in Figure 1. The sa-PGSS model is able to change its
predictive location flexibly in 9:25–9:30 and 9:50–9:55, while it makes stable predictions that are almost identical
to those of the PGSS-deterministic model in 9:05–9:25 and 9:40–9:45.

lizing the PGSS-deterministic model, and in this section we benchmark the sa-PGSS model’s
forecasting performance and model fit to PGSS-random, PGSS-deterministic models, and
DLMs. We consider one particular flow from the top (main) page of the website to the cate-
gory titled “World” between 9:05 and 9:55 a.m. on February 23, 2015. The first observation
at 9:05 is omitted from the series, as it is set equal to the hyperparameter of the initial state
prior α0. The total length of the time series is T = 99. Our goal is to monitor and forecast
the number of visitors navigating to the “World” Section 30 seconds in advance, allowing
advertising impressions to be optimally allocated across sections.

We first discuss the performance of the sa-PGSS model against the PGSS-deterministic
of Chen et al. (2018) that is used to model web traffic data and DLMs. Figure 9 shows
the one-step-ahead predictions and credible intervals for the sa-PGSS model and the PGSS-
deterministic model where the sa-PGSS model yields significantly better predictions when
there is a surge in the web traffic around 9:25. Forecasts from the PGSS-deterministic model
do not quickly adapt to such a sudden change in counts, highlighting the need for more flex-
ible discounting strategies. The estimation paths of γt and ESS are shown in Figure 10(a),

FIG. 10. Left: Online posterior median and 95% credible intervals for γt (top) and the ESS (bottom). The drop
of discount factors can be seen only in the time of sudden changes in observed counts. Right: Online posterior
of AR(1) parameters, that is, p(logit−1(μ)|Dt ), p(φ|Dt ) and p(σ 2|Dt ). The informative prior chosen for this
analysis is affected only by the sudden burst in 9:25.
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where the drop in the posterior mean of γt and the ESS coincide with the sudden shifts in
the web traffic counts, a property that the PGSS-deterministic model fails to capture. The
performance summary from Table 2 confirms that the sa-PGSS model has better predic-
tive performance with respect to the PGSS-deterministic model and the DLMs, no matter
what performance measure is used. Even though the web traffic counts are relatively large
where DLMs can be considered as viable approximations, based on all performance measures
(MAPE, MAD, sMSD, MSE, and log-marginal likelihoods) the sa-PGSS and PGSS-random
yield better forecasting performances. Such a finding further shows support in favor of using
models with Poisson likelihoods and negative binomial predictive densities for modeling and
forecasting web traffic data, even when the counts are relatively large.

Our experiments with both the simulated and real web traffic flows lead us to believe
that the PGSS-random model also provides a reasonable fit to data in the absence of sudden
surges in traffic. However, it also does not provide any significant computational advantage
over the sa-PGSS, even if γ is treated as a discrete random variable, as was the case in
all of our numerical analysis. For more realistic cases where γ is treated as a continuous
random variable (similar to the sa-PGSS model), the sa-PGSS model would yield superior
computation performance, as it will not involve any Metropolis–Hastings type sampling with
accept-reject steps. However, PGSS-deterministic always underperforms with respect to sa-
PGSS and PGSS-random models. As a rule of thumb, we suggest the use of the sa-PGSS
model, as it can adopt to sudden changes in web traffic and is not computationally more
expensive than the PGSS-random model.

Next, we discuss the implications of the hyperpriors used in modeling the dynamic dis-
count factor of the sa-PGSS model. The AR model structure and informative prior distribu-
tions mimic a constant discount factor when called for by the data, enabling us to sharply
estimate the dynamic discount factor γt in stable epochs. The effect of using informative
priors on the hyperparameters, ϑ = (μ,φ,σ 2), in the AR model of γt can be observed in
Figure 10(b). The posterior distribution paths of μ, φ, and σ 2 are quite stable, especially dur-
ing the first 20 minutes before the sudden surge in the traffic. While the prior is informative,
it is sufficiently diffuse, placing moderate prior mass on lower values of γt , as in Figure 2.
Observe the drop in location parameter μ and increased variance σ 2 from 9:20-9:23. The
changes in posterior distributions for μ, φ, and σ 2 translate to a drop in γt from 9:20-9:23
but with increased uncertainty as in Figure 10(a). Our analysis shows that, despite the rela-
tively strong priors on the AR parameters ϑ = (μ,φ,σ 2), the posterior distributions quickly
respond to changes in the level of the web traffic data.

6.3. Web traffic data from the Fox News website (low count example). In this section
we consider a Fox News flow with relatively low number of counts (zero to 10) to further
investigate the implications of using different modeling strategies. More specifically, we are
interested in investigating the performance of the sa-PGSS model with respect to the DLMs,
PGSS-random, and PGSS-deterministic models in cases where the web traffic counts are
stable and exhibit no clear structural changes. The flow we consider is from the “Politics”
topic to the “Leisure” topic that is recorded between 13:05–13:33 p.m. on March 2, 2015.
Notably, in contrast to the previous subsection, the observed web traffic counts in this example
are small but not zero-inflated. We view this as an example where the Poisson likelihood and
the Negative binomial predictive density of the PGSS family of models are more suitable
for quantifying the uncertainty characteristics of web traffic data, such as skewness and the
existence of zero counts, features Gaussian models are unable to capture.

Figure 11(a) displays the predictive distributions of the sa-PGSS models against the ob-
served counts of this flow. The data process is stable in the first 30 minutes, with a subtle
and upward level shift occurring around 13:40 p.m. Clearly, this shift is not as evident as
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FIG. 11. Left: One-step-ahead predictive median and 95% credible intervals of web traffic (low counts). Right:
Online posterior median and 95% credible intervals for γt and ESS.

those observed in the previous flow (from the main page to the topic “World”). As a conse-
quence, the mean estimates of the posterior distribution of γt are fairly stable, as shown in
Figure 11(b). However, it is clear that the subtle shift around 13:40 p.m. is captured by the
spike in the lower uncertainty bounds. In addition, the effective sample size drops sharply at
the suspected change point. As before, this is a desirable quality of the sa-PGSS models that
can be used for automated machine monitoring of web traffic.

Next, we investigate the implications of using state space models with Gaussian likeli-
hoods, such as DLMs, in analyzing web traffic data with relatively smaller counts. We assume
that the counts, Nt ’s, are continuous valued and are modeled using the first-order polynomial
DLMs with two discount factors, δ for the state evolution and β for the stochastic volatil-
ity. As is the case with the PGSS family, the sequential state posterior updating and one
step ahead prediction can be done analytically via forward filtering; see West and Harrison
((1997), Table 10.4).

Even tough DLMs are computationally comparable to the PGSS family of models, they
are unable to accurately represent the characteristics of low web traffic counts. Figures 12(a)
and 12(b) show the predictive distributions of the first-order polynomial DLMs with two dif-
ferent discount factor estimates for the state evolution. These discount factors were selected
such that the DLM results were comparable to the performance of the PGSS family of mod-
els. We remark here that the predictive 95% credible intervals using the DLMs can contain
negative values which is not realistic in modeling web traffic data. When compared with the
predictions provided by the sa-PGSS model shown in Figure 11(a), the predictive distribu-
tions of DLMs are more biased toward negative values, due to the symmetry of the predictive

FIG. 12. One-step-ahead predictive median and 95% credible intervals of web traffic (low counts) using a first
order polynomial dynamic linear model with discount factor for the state evolution of δ = 0.95 (left) and δ = 0.75
(right).



SEQUENTIAL FORECASTING OF WEB TRAFFIC 321

density functions of t-distributions. Another issue is that, when δ is relatively high (0.95), the
predictions provided by the DLM model are smoother but not entirely accurate. Conversely,
when δ is smaller (0.75), the predictions are less smooth, indicating that not much learning
from data occurs with concerns of overfitting. The summary shown in Table 2 indicates that
the DLMs do not perform as well as the PGSS family of models based on MAPE, MAD,
sMSD, and log-marginal likelihood metrics. Their performance is shown to be better in only
one (MSE) out of the five performance metrics. In this numerical example the count values
are small (most are in the range of 0–3). We believe that the noninteger predictions obtained
using the DLMs are producing slightly favorable MSE estimates when compared to those
obtained using the integer-valued predictions of the negative binomial predictive densities.
One surprising finding is that the PGSS-deterministic model provides the best performance.
This can be attributed to the stableness of the web traffic that mostly fluctuates between 1–5.

7. Discussion. In this paper we introduced strategies for modeling, monitoring, and fore-
casting web traffic data from a simulated study and the Fox News website where the flows
between pages are observed in high-frequency time intervals. We analyzed two sets of flows,
which we termed the high-count and low-count examples. In doing so, we considered the
family of Poisson gamma state space models that have been used to model count-valued time
series in the literature. In addition, we considered an extension of the PGSS class of models
where the dynamic discount factor whose temporal evolution is modeled with an autoregres-
sive process. Modeling the discount factor as a dynamic state variable is methodologically
novel, as current approaches treat the discount factor as either a fixed tuning parameter, a
random (static) parameter, or a deterministically time-varying quantity. We discussed how
the sa-PGSS models can be estimated using particle based methods designed for fast sequen-
tial learning, monitoring, and forecasting and showed its computational superiority against
MCMC based methods. More specifically, we developed a particle learning algorithm that
harnesses closed-form conditional sufficient statistics to rapidly estimate dynamic state vari-
ables and static parameters. We found that the PL algorithm is ∼250 times faster than com-
parable MCMC methods when the time series has 100 observations (see Table 1). Our ex-
periments showed that, as the time series lengthens, the relative speed gap between our PF
algorithm and MCMC significantly widens.

In our analysis of web traffic data, we argued that any approach considered for modeling
should possess three main features. First, the model should be able to accurately quantify the
uncertainty exhibited by web traffic data (count-valued). Second, the model should be able
to provide fast and efficient monitoring and prediction mechanisms in a sequential manner,
suitable for high frequency time intervals (sequential). Third, the model should be able to
rapidly adapt to sudden bursts or structural changes while preserving computational feasi-
bility (state shifting, computational feasibility). These features are summarized on Table 3
where sa-PGSS, PGSS, DLM, and Markov switching (MS) models are shown. In summary,
our experiments with the Fox News data showed that the current class of PGSS models (with

TABLE 3
List of web traffic models

Models Count-valued Sequential State shifting Computational Feasibility

sa-PGSS ✓ ✓ ✓ ✓

PGSS ✓ ✓ ✗ ✓

DLM ✗ ✓ ✗ ✓

MS ✗ ✗ ✓ ✗



322 K. IRIE, C. GLYNN AND T. AKTEKIN

static and random discount factors) are unable to quickly adapt to sudden shifts and state
changes. The random-PGSS model provides comparable results in terms of forecasting, when
there are no sudden shifts in data, but does not offer any significant computational advantage
over the sa-PGSS model. The PGSS models with deterministic γ (both static and dynamic)
consistently provide the worst forecasting performance in scenarios where web traffic ex-
hibit fluctuations and state shifts. Furthermore, the DLMs are not only unable to accurately
quantify the uncertainly exhibited by web traffic data, but they also fail to yield competi-
tive forecasting performance with respect to the class of PGSS models. In our view, Markov
switching models with unknown number of states (as the data is observed sequentially) can
certainly provide the required level of adaptability to state shifts but are simply not suitable
for online learning, monitoring, and forecasting web traffic data in high-frequency time inter-
vals (30 second time intervals in our analysis), due to their computational burden in sequential
settings.

Even though we focused on the analysis of web traffic data, it is important to note that
our approach is general and can be applied to many other settings where monitoring and
forecasting of relatively high-frequency count data with potential bursts are of interest. For
instance, structural changes in count-valued time series are pervasive in the digital economy.
Demand for Uber rides may exhibit a sudden burst at uncommon times, due to the conclu-
sion of a sporting event or concert. Surges in web traffic on Facebook, Instagram, Twitter,
and Google—while often due to predictable intraday variations—are occasionally driven by
unanticipated news events. At call centers and online help desks for insurance companies, un-
expected natural disasters and severe weather may result in dramatic increases in the number
of customers requiring service. Many of these e-commerce platforms continually allocate re-
sources in a sequential manner to meet consumer demand. When business operations of these
web platforms depend on accurate short-term predictions and monitoring of consumer de-
mand, the ability to quickly identify structural breaks and adjust forecasts of customer counts
is critical. Our proposed family of PGSS models can be a reasonable alternative for monitor-
ing and forecasting of sequential demand data typically observed in ridesharing economies
(Uber, Lyft), online advertising (Facebook, Google, . . . ), customer call centers (Liberty Mu-
tual, GEICO), and rapid-delivery online retailing (Amazon’s Prime Now and Fresh services),
among others. In all of these examples, resource allocation decisions are made on short time
intervals, and balancing model complexity and computational speed is imperative.

Many modern applications involve analysis of multiple time series that exhibit auto and
cross-sectional correlations. For example, Uber rides requested at nearby locations likely ex-
hibit rich temporal and cross-series structure. Not only are the time series of pick-up requests
spatially related, but the pick-up locations themselves may have defining characteristics that
explain variation in the number of requests. These applied challenges call for a multivariate
extension of the sa-PGSS model that includes covariates; however, extending the sa-PGSS
model to a multivariate setting with covariates presents significant technical difficulties be-
yond the scope of our current paper. While we recognize the current limits of the sa-PGSS
model, we believe that it offers significant promise for scaling online learning, monitoring,
and forecasting of count data to higher dimensions.

APPENDIX: MARKOV CHAIN MONTE CARLO ALGORITHM FOR THE SA-PGSS
MODEL

In what follows, we present a summary of steps of the MCMC algorithm that is an al-
ternative for the proposed PF algorithm. The goal is to generate samples from the full joint
posterior distribution of state as well as static parameters, p(θ1:t , γ1:t , ϑ |Dt ), in a sequential
manner. This can be achieved via the following steps:
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1. Sampling θ1:t
Given γ1:t and ϑ , sampling from the conditional posterior p(θ1:t |γ1:t , ϑ,Dt ) can be done

by forward filtering and backward sampling. First, we compute (a1:t , b1:t ) by forward filter-
ing. Next, we sample from θt ∼ Ga(at , bt ). Recursively, at each s < t , we sample θs , based
on the distributional relation θs = γsθs+1 + Ga((1 − γs)as, bs).

2. Sampling ϑ

The conditional posterior of p(ϑ |θ1:t , γ1:t ,Dt ) is given in Section 4 where the normal-
inverse gamma distribution for the transformed parameters are shown. Same approach can be
followed here.

3. Sampling γ1:t
This is the hardest part of the MCMC algorithm to implement. We take the single-mover

sampler approach and consider the sampling of each γs for s = 1:t . The conditional posterior
is written as (e.g., for 0 < s < t)

(20) p(γs |θ1:t , γ1:t\s, ϑ,Dt ) ∝ p(gs+1|gs,ϑ)p(gs |gs−1, ϑ)

t∏
u=s

p(θu|θu−1, γ1:u,Du−1),

where the transition density of states is that of the scaled-beta distribution,

p(θu|θu−1, γ1:u,Du−1)

= 1

Be(γuau−1, (1 − γu)au−1)

×
(

γu

θu−1

)γuαu−1

θ
γuαu−1−1
u

(
1 − γu

θu−1
θu

)(1−γu)αu−1−1

(21)

Note that γs is involved implicitly in p(θu|θu−1, γ1:u,Du−1) for not only u = s but also u > s

through the sufficient statistics αu, that is, sequentially updated by, for example, αs+1 =
γsαs + Ns .

The sampling from equation (20) is the key in the implementation of the MCMC algorithm.
The common approach is to use a random-walk Metropolis–Hastings step where t tuning
parameters are required in addition to many iterations, making this is an unattractive solution.
As an alternative, an independent Metropolis–Hastings step with a Gaussian proposal density
can be considered which requires the computation of the gradient and the Hessian of the
density in (20) in the log scale. To speed up the estimation, we propose to sample from

q(gs) ∝ p(gs+1|gs,ϑ)p(gs |gs−1, ϑ)

and accept the generated particle gnew
t with acceptance probability

P
[
gold

s → gnew
t

] = max

{
1,

t∏
u=s

p(θu|θu−1, γ1:u\s, γ new
s ,Du−1)

p(θu|θu−1, γ1:u\s, γ old
s ,Du−1)

}
.
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