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Symmetrical and Non-symmetrical Variants
of Three-Way Correspondence Analysis for
Ordered Variables
Rosaria Lombardo, Eric J. Beh and Pieter M. Kroonenberg

Abstract. In the framework of multi-way data analysis, this paper presents
symmetrical and non-symmetrical variants of three-way correspondence
analysis that are suitable when a three-way contingency table is constructed
from ordinal variables. In particular, such variables may be modelled using
general recurrence formulae to generate orthogonal polynomial vectors in-
stead of singular vectors coming from one of the possible three-way exten-
sions of the singular value decomposition. As we shall see, these polyno-
mials, that until now have been used to decompose two-way contingency ta-
bles with ordered variables, also constitute an alternative orthogonal basis for
modelling symmetrical, non-symmetrical associations and predictabilities in
three-way contingency tables. Consequences with respect to modelling and
graphing will be highlighted.

Key words and phrases: Symmetrical and non-symmetrical three-way cor-
respondence analysis, ordinal categorical variables, orthogonal polynomials,
trivariate moment decomposition.

1. INTRODUCTION

In the literature of multi-way data analysis, the basic
multi-way techniques have been mainly applied to con-
tinuous data (Kroonenberg, 2008, 2014, Smilde, Bro and
Geladi, 2004). Here, we aim to deal with multi-way cat-
egorical data. The study of multi-way contingency ta-
bles takes place via the analysis of lower and higher-
order associations (interactions) among variables. For this
purpose, association models (Clogg, 1982, van der Heij-
den, de Falguerolles and de Leeuw, 1989, Kroonenberg
and Anderson, 2006, Agresti and Gottard, 2007, Kateri,
2014) and partitions of the three-way chi-squared statis-
tic have been proposed in some detail (Lancaster, 1951,
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Choulakian, 1988, Beh and Davy, 1998, 1999, Loisel and
Takane, 2016, Lombardo, Takane and Beh, 2020).

Carlier and Kroonenberg (1996, 1998) and Kroonen-
berg (2008, Chapter 17) developed a comprehensive
approach to deal with three-way categorical data, that
is, three-way correspondence analysis, which includes
the Lancaster partitioning of the chi-squared (and phi-
squared) statistic (Lancaster, 1951), modelling of the
global dependence in the three-way table and graphing
of the global dependence via three-way correspondence
analysis. Rather than using three-way correspondence
analysis, it is more usual to examine sets of two-way ta-
bles and employ multiple correspondence analysis to an
indicator matrix or a Burt matrix (Benzécri, 1973, 1977,
Greenacre, 1984, Chapter 5, Greenacre, 1990, 2017,
Greenacre and Blasius, 2006), thereby ignoring higher-
order associations among variables (Beh and Lombardo,
2019).

Based on earlier versions of the papers by Carlier and
Kroonenberg (1996, 1998), Lombardo (1994) discussed
a variant of three-way correspondence analysis, called
non-symmetrical three-way correspondence analysis for
the analysis of a dependence relationship among the cat-
egorical variables, published as Lombardo, Carlier and
D’Ambra (1996). Non-symmetrical three-way correspon-
dence analysis is a generalisation of the two-way tech-
nique introduced by Lauro and D’Ambra (1984) and
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D’Ambra and Lauro (1989), in which a dependence struc-
ture is assumed such that the row variable is predicted by
the column variable, or vice versa. A practical description
of two-way non-symmetrical correspondence analysis is
given by Kroonenberg and Lombardo (1999).

1.1 Three-Way Correspondence Analysis for Ordinal
Data

In this paper, we propose variants of symmetrical and
non-symmetrical three-way correspondence analysis to
analyse ordinal three-way contingency tables, whereby an
‘ordinal table’ means that the three variables have ordi-
nal categories. These variants use a novel decomposition,
the trivariate moment decomposition, which has orthog-
onal polynomials as its basis. In contrast to much of the
literature that deals with stochastically modelling ordered
categorical data, but in line with the algorithmic modeling
culture (Breiman, 2001), orthogonal polynomials are used
for modelling the association among ordinal variables, in-
cluding possible asymmetrical (or non-symmetrical) as-
sociations that exists among their categories (Beh and
Lombardo, 2014, pages 91–100).

In order to analyse the association between the rows,
columns and tubes1 of a three-way contingency table, var-
ious extensions or generalisations of the singular value
decomposition have been proposed; see, for example,
Tucker (1966), Harshman (1970), Carroll and Chang
(1970), Kiers (1989) and Kroonenberg (1992, 2008,
2020). In this paper, we focus on the Tucker3 decompo-
sition (Tucker, 1966, Kroonenberg, 1983, 2008, Smilde,
Bro and Geladi, 2004) which can be used to derive three
orthogonal sets of singular vectors (components), one
for each way of the data array. The Tucker3 decomposi-
tion also consists of a three-way core array which con-
tains the strengths of the links between these compo-
nents. However, the Tucker3 components are not the only
type of basis vectors that can be defined for component
spaces. Orthogonal polynomials can serve as an alterna-
tive set of orthogonal components which span each of the
spaces of the three ways. For high-dimensional problems,
polynomial decompositions can be comparable to non-
parametric analysis of variance models (Lin and Zhang,
2006, Wahba, 1990, Wahba et al., 1995). As will be dis-
cussed in detail in Section 3, the decomposition based on
orthogonal polynomials is generally called the trivariate
moment decomposition. When among the three variables,
at least one is nominal, we define a hybrid decomposition
that uses polynomial components for the ordered categor-
ical variables and Tucker3 components for the nominal
variables.

The main aim of this paper is to therefore acquire in-
sight into the structure of variable dependence taking into
account the ordered information of categorical variables.

1A tube is a k-vector xij; the third-way analogue of a row or column.

As an example, we will examine the study of Van Herk
and Van de Velden (2007) where three-way correspon-
dence analysis is applied to study ratings and rankings of
items in five European countries, but replacing the singu-
lar vectors of two ways by orthogonal polynomials. The
findings of Van Herk and Van de Velden (2007) show
that ratings and rankings are assessed quite similarly by
people from different countries. Here, we show that the
orthogonal polynomial components can serve to evalu-
ate differences that can exist between the ratings and the
rankings across the countries.

1.2 Organisation of the Paper

This paper is organised as follows. In Section 2, we pro-
vide a summary of basic three-way correspondence anal-
ysis, both its symmetrical and non-symmetrical variants.
In Section 3, we describe how the basic correspondence
models can be adapted to three variables with ordinal cat-
egories. In this case, we will primarily concentrate on the
symmetrical variant in which the multidimensional spaces
have orthogonal polynomials as their support. The sym-
metrical variant for unordered variables has already been
described in detail in Carlier and Kroonenberg (1996) and
part of their basic results can also be used for handling or-
dered variables in the non-symmetrical case. In Section 4,
we will illustrate the technique and its interpretational as-
pects using the rating-ranking data previously analysed by
Van Herk and Van de Velden (2007).

2. SYMMETRICAL AND NON-SYMMETRICAL
THREE-WAY CORRESPONDENCE ANALYSIS

Symmetrical three-way correspondence analysis is con-
ceptually a straightforward generalisation of two-way
symmetrical correspondence analysis. While the singular
value decomposition is the core of the two-way analy-
sis, a variant of the three-way generalisation of the sin-
gular value decomposition is the central element of three-
way correspondence analysis. In practice, Tucker’s (1966)
three-mode principal component analysis is the variant
that is most commonly used and it is the one used here;
see Carlier and Kroonenberg (1996, Section 2.5) and
Kroonenberg (2008, Chapter 17), for further details.

2.1 Non-symmetrical Three-Way Correspondence
Analysis

Suppose we have three categorical variables observed
on a sample of n subjects that are cross-classified to form
a three-way contingency table. When one of the variables
of a three-way contingency table, say the row variable, is
a response variable predicted by the other two variables,
then we speak of non-symmetrical three-way correspon-
dence analysis (Lombardo, 1994, Lombardo, Carlier and
D’Ambra, 1996, Beh and Lombardo, 2014, Chapter 11).
In this case, it is not the deviation from independence of
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the variables which is the focus of the analysis, but the in-
crease in predictability of the row categories given the col-
umn and tube categories. The increase can be measured
by using the Marcotorchino index τM (Marcotorchino,
1985) which is a three-way generalisation of the two-way
τ index of Goodman and Kruskal (1954), used in two-way
non-symmetrical analysis (Kroonenberg and Lombardo,
1999).

2.2 The Marcotorchino Index and the Pearson
Statistic

To discuss the Marcotorchino index as well as Pear-
son’s �2 statistic, we will use the standardised notation
and terminology for three-way analysis (Kiers, 2000). Let
P = {pijk} be the I × J × K array2 of the observed joint
relative frequencies, so that

∑
ijk nijk/n = ∑

ijk pijk = 1
with nijk being the absolute frequencies. For columns
and tubes in symmetrical and non-symmetrical three-way
correspondence analysis, DJ = {d•j• = p•j•}, DK =
{d••k = p••k} are the diagonal weight matrices contain-
ing the relative marginal frequencies of the column and
tube variables, respectively. For the rows in the symmet-
rical variant, the diagonal weight matrix is DI = {di•• =
pi••}, but in the non-symmetrical case DI = {di•• = 1},
that is, the diagonal weights are one, rather than pi••
(Marcotorchino, 1985).

Based on these definitions the deviation from the three-
way independence model is defined as

�S =
{
πS

ijk = pijk

pi••p•j•p••k
− 1

}
while the expression for the column-tube centered profiles
in a three-way table with a dependence structure becomes

�M =
{
πM

ijk = pijk

p•j•p••k
− pi••

}
.

Therefore, πM
ijk indicates the difference between the value

of category i, predicted based on the knowledge of
the combined (or interactively coded) predictor category
(j, k), pijk

p•j•p••k
, and the marginal row proportion of cate-

gory i, pi••.
The inner product of the three-way array �M = (πM

ijk)

with itself in �I×J×K is equal to the squared norm or
squared length of the array and, taking into account the
diagonal weight matrices DI = {di•• = 1}, DJ and DK ,
it can be defined as

(1)

‖�M‖2 = 〈�M,�M〉

=
I∑

i=1

J∑
j=1

K∑
k=1

p•j•p••k
(
πM

ijk

)2
.

2Underlined bold capital letters indicate three-way arrays.

Equation (1) is the numerator of the Marcotorchino statis-
tic (1985), τM , which is a relative measure of predictabil-
ity of the rows given the columns and tubes so that

(2) τM =
∑I

i=1
∑J

j=1
∑K

k=1 p•j•p••k(πM
ijk)

2

1 − ∑I
i=1 p2

i••
= τMnum

τMden

.

Observe that the denominator is equivalent to the het-
erogeneity index (Gini, 1912) and measures the over-
all error in prediction and does not depend on the pre-
dictor categories. For this reason, the denominator can
be neglected when analysing the predictability of a row
given the column and tube categories (Beh and Lombardo,
2014, pages 459–461).

For symmetrical three-way correspondence analysis,
the comparable measure is Pearson’s �2 statistic in
which, DI = {di•• = pi••} rather than DI = {di•• = 1}.
This measure of deviation from independence may be
written as

(3)

�2 =
I∑

i=1

J∑
j=1

K∑
k=1

pi••p•j•p••k
(

pijk

pi••p•j•p••k
− 1

)2
.

2.3 Partitioning the Pearson and Marcotorchino
Indices

The orthogonal projections of �S and �M onto the
subspaces �0, �I , �J , �K , �IJ , �IK , �JK and �IJK

can be written in an ANOVA-like fashion (Lancaster,
1951, Choulakian, 1988, Carlier and Kroonenberg, 1996,
Lombardo, Carlier and D’Ambra, 1996). For simplicity, a
generic element of the space �I×J×K will be written in
ANOVA-form without the S or M superscript as follows:

(4)

πijk = (π•••) + (πi•• − π•••)
+ (π•j• − π•••) + (π••k − π•••)
+ (πij• − πi•• − π•j• + π•••)
+ (πi•k − πi•• − π••k + π•••)
+ (π•jk − π•j• − π••k + π•••)
+ (πijk − πij• − πi•k − π•jk + πi••
+ π•j• + π••k − π•••).

Here a dot (•) indicates that the weighted mean has been
taken over an index i, j , k, with respect to the associated
weights di••, d•j• and d••k , respectively. For example,

π••• =
I∑

i=1

J∑
j=1

K∑
k=1

di••d•j•d••kπijk = 0 and

π•jk =
I∑

i=1

di••πijk.

In the partition given by equation (4) the terms are
pairwise orthogonal. However, as the elements of �M
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and �S generally consist of the deviation from inde-
pendence based upon the observed frequencies, the fixed
term, π•••, together with the one-way terms πi••, π•j•
and π••k in equation (4) are all zero leaving only the bi-
variate and trivariate associations in the model (see Loisel
and Takane, 2016, Lombardo, Takane and Beh, 2020).
Therefore, Pearson’s �2 statistic can be partitioned as

(5)
�2 = ‖�S‖2 = 〈�S,�S〉

= �2
1,2 + �2

1,3 + �2
2,3 + �2

1,2,3,

where the first three terms of equation (5) are the pair-
wise phi-squared statistics obtained by aggregating across
the categories of each variable. That is, the row-column
pairwise symmetric association is assessed through the
term �2

1,2, and is (after multiplying it by n) asymptoti-
cally a χ2

(I−1)(J−1) random variable with (I − 1)(J − 1)

degrees of freedom. Similarly, the pairwise row-tube sym-
metric term n�2

1,3 is asymptotically χ2
(I−1)(K−1) and the

column-tube association is assessed by the term n�2
2,3

which is asymptotically a χ2 random variable with (J −
1)(K − 1) degrees of freedom. The last term, n�2

1,2,3,
measures the trivariate association and is asymptotically
χ2

(I−1)(J−1)(K−1).
Similarly, we may orthogonally partition the Marco-

torchino statistic, τMnum (Lombardo, Carlier and
D’Ambra, 1996) into four association terms consisting
of three two-way associations and one three-way associa-
tion. The partition of τMnum = ‖�M‖2 takes the form

(6)

τMnum =
I∑

i=1

J∑
j=1

K∑
k=1

p•j•p••k
(

pijk

p•j•p••k
− pi••

)2

=
I∑

i=1

J∑
j=1

p•j•
(

pij•
p•j•

− pi••
)2

+
I∑

i=1

K∑
k=1

p••k
(

pi•k
p••k

− pi••
)2

+
J∑

j=1

K∑
k=1

1

I
p•j•p••k

(
p•jk

p•j•p••k
− 1

)2

+
I∑

i=1

J∑
j=1

K∑
k=1

p•j•p••k
(

pijk − αpijk

p•j•p••k

)2
,

where αpijk = pij•p••k + pi•kp•j• + p•jk/I − pi•• ×
p•j•p••k − p•j•p••k/I (Lombardo, Carlier and
D’Ambra, 1996). This can be expressed more succinctly
as

(7)
τMnum = ‖�M‖2 = 〈�M,�M〉

= τ1,2 + τ1,3 + τ2,3 + τ1,2,3.

The first three terms of this partition consist of the contri-
bution to the increase in predictability of the bivariate as-
sociations, and the last term consists of the contribution of

the trivariate association. The first two terms are derived
by summing over the other index and they are equal to
the numerator of the Goodman–Kruskal τ index between
the response (row) variable and each of the two predictor
variables. They represent the increase in predictability of
the I row categories given the J column categories and
the K tube categories, respectively. The third term is 1/I

times the Pearson phi-squared statistic for the J ×K con-
tingency table formed by aggregating over the row cate-
gories. This term represents the design interaction and is
a measure of the symmetric association between the two
predictor variables. The last term is the contribution to the
increase in predictability of the three-way asymmetric as-
sociation among the three variables.

2.4 Testing the Strength of the Association

An important property of the components from the par-
tition of Pearson’s phi-squared statistic (in the symmet-
rical case) and the numerator of Marcotorchino statistic
(in the non-symmetrical case) is that they are orthogo-
nal and approximately independent under proper condi-
tions. Therefore, the relative contribution of the associ-
ations to the overall measures can be assessed with re-
spect to each other both in absolute terms and with re-
spect to their degrees of freedom. In the case of a sym-
metrical design the �2 contributions can be referred to
using the χ2-distribution, as can the Marcotorchino index
in the non-symmetrical case (equation (2)). In the latter
case the associated test statistic is the generalisation of
Light and Margolin’s (1971) C-statistic, referred to as the
CM -statistic, and defined by

(8) CM = (n − 1)(I − 1)τM ∼ χ2
α,df .

Here χ2
α,df is the 1 − α percentile of the chi-squared dis-

tribution with degrees of freedom df = IJK − I − J −
K + 2. Note that the left-hand side of equation (8) is
an asymptotically chi-squared random variable under the
sufficient, but not necessary condition, that 1 −∑

i p
2
i•• ≈

1/I . Furthermore, the CM -statistic can be partitioned as
follows:

CM = (I − 1)(n − 1)τ1,2

1 − ∑I
i=1 p2

i••
+ (I − 1)(n − 1)τ1,3

1 − ∑I
i=1 p2

i••

+(I − 1)(n − 1)τ2,3

I (1 − ∑I
i=1 p2

i••)
+ (I − 1)(n − 1)τ1,2,3

1 − ∑I
i=1 p2

i••
= CIJ + CIK + CJK + CIJK.

The first term, CIJ , is identical to the C-statistic of Light
and Margolin (1971) for the response (row) and predic-
tor (column) variables after aggregating across the tube
categories. As discussed by Light and Margolin (1971),
this measure is asymptotically a χ2 random variable with
(I − 1)(J − 1) degrees of freedom. Therefore, CIJ can
be used to determine whether there exists a significant
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asymmetric association between the row and column cate-
gories. Similarly, the statistic CIK can be used to formally
test for the association between the row and tube cate-
gories by comparing it with the 1−α percentile of the χ2-
distribution with (I − 1)(K − 1) degrees of freedom. The
C-statistic, CJK , for the association between the two pre-
dictors is akin to the Pearson �2 statistic for the two-way
contingency table formed by aggregating across each of
the row categories. For further details on the CM -statistic,
see Beh, Simonetti and D’Ambra (2007) and Beh and
Lombardo (2014, Section 11.5.2).

2.5 Modelling Association

The most common three-way generalisation of the sin-
gular value decomposition is the three-mode principal
component model (Tucker, 1966) or the Tucker3 model,
as it is now commonly referred to (Kroonenberg and
de Leeuw, 1980). This three-way decomposition is used
for both the symmetrical and non-symmetrical variants of
three-way correspondence analysis in an analogous way
to the use of the singular value decomposition in two-
way correspondence analysis (see Carlier and Kroonen-
berg, 1996, Lombardo, Carlier and D’Ambra, 1996). The
general form of the Tucker3 decomposition for the global
association is

(9)

πS
ijk = π̂S

ijk + eijk

=
P∑

p=1

Q∑
q=1

R∑
r=1

gpqraipbjqckr + eijk,

where P , Q and R (with P ≤ I , Q ≤ J and R ≤ K) rep-
resent the number of columns in the component matri-
ces A, B and C for the first (rows), second (columns) and
third (tubes) way, respectively. The orthogonality of the
vectors ap = {aip}, bq = {bjq} and cr = {ckr} is defined
with respect to the weight matrices DI , DJ and DK , re-
spectively. The orthogonality of the vectors ensures the
orthogonality of core elements gpqr so that the Pearson
X2 statistic can also be expressed in terms of the sum-of-
squares of the elements gpqr from the core array G, since
X2 = n

∑
pqr g2

pqr .

The elements gpqr = 〈̂�
S

, ap ⊗ bq ⊗ cr〉, where ⊗ is
the Kronecker product, can be interpreted as the gener-
alised, or three-way, analog of the singular values. The
magnitude of eijk indicates the error of the approximation
between the observed πS

ijk and its predicted value, π̂S
ijk

(see Kroonenberg, 2008, Chapter 4).

2.6 Orthogonal Polynomials

Before discussing the modelling of variables with or-
dered categories using orthogonal polynomials (Sec-
tion 3), we will briefly introduce these polynomials. Or-
thogonal polynomials arise in the literature in several

forms. Their basic form is such that the ith-order poly-
nomial includes as its highest-order term xi .

In the present proposal the orthogonal polynomials are
computed from the ordered categories and their related
marginal proportions. These are defined in such a way
that the zero’th-order polynomial is a constant, the first-
order polynomial is based on the means, the second-order
polynomial is based on the variances, the third-order term
is based on the skewness, etc. Polynomials with these
characteristics can be obtained via recurrence formulae
(Favard, 1935, Chihara, 1978, 1990) which were consid-
ered for categorical variables by Emerson (1968) and will
be referred to as orthogonal polynomials; for further de-
tails see, for example, Beh (1997, 1998), Beh and Lom-
bardo (2014, pages 94–96), Lombardo, Beh and Kroonen-
berg (2016) and Beh and Lombardo (2021).

Consider the ordered scores of an ordered variable.
Scores are defined to reflect this ordered structure and are
typically chosen to be consecutive integers, starting from
unity (Beh, 1998). These sets of integers for the three
variables are indicated by i = 1,2, . . . , I for the rows,
j = 1,2, . . . , J for the column and k = 1,2, . . . ,K for
the tube categories and are referred to as natural scores.
By substituting the ordered scores and the marginal pro-
portions into Emerson’s (1968) recurrence formulae, the
calculation of the orthogonal polynomials is similar for all
ordered variables. Their meaning will be briefly described
for the column categories; the vector of such column or-
thogonal polynomials will be denoted using the Greek let-
ter β .

• Zero’th-order polynomial: The zero’th-order polyno-
mial, β0, is equal to 1.

• First-order polynomial: The first-order polynomial, β1,
indicates the variation in the mean of the categories.

• Second-order polynomial: The second-order orthogo-
nal polynomial, β2, is a dispersion term as it is a func-
tion of the squared scores.

• Higher-order polynomials: Higher-order polynomials
represent higher-order moments of the ordered cate-
gories.

The normalisations of the orthogonal polynomials are
then carried out using the norm with respect to the met-
ric of the marginal proportions. For example, for the
columns, the norm is ‖βv‖DJ

where the subscript v indi-
cates the order of the polynomial v = 0, . . . , J − 1. Thus,
the column polynomials are orthonormal with respect to
the marginal proportions p•j• such that

J∑
j=1

p•j•βjvβjv′ =
{

1, v = v′,
0, v �= v′.

Similarly, the row (αi) and tube (γ k) polynomials are
orthonormal with respect to the marginal proportions pi••
and p••k , respectively.
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3. ORDINAL THREE-WAY CORRESPONDENCE
ANALYSIS

Both the standard symmetrical and non-symmetrical
variants of three-way correspondence analysis use singu-
lar vectors for the orthogonal decomposition of the devi-
ations. However, specific properties of the variables such
as ordinality of their categories are not catered for, even
though ordinality often features heavily in the interpreta-
tion. There are several contributions in the literature that
provide ways of performing classical two-way correspon-
dence analysis with order restrictions imposed on a set
of categories. See, for example, Nishisato (1980, Chap-
ter 2), Böckenholt and Böckenholt (1990), Takane, Yanai
and Mayekawa (1991) and Takane and Jung (2009).

In this paper, we go one step further and incorpo-
rate the ordinality of the variables into the three-way
modelling itself by replacing the singular vectors with
the orthogonal polynomials (Emerson, 1968) described
in the previous section. These are suitable for this pur-
pose due to their orthogonality, their ease of computa-
tion and their interpretational qualities (see below for de-
tails). The decomposition technique will be referred to
as the trivariate moment decomposition as it is an ana-
logue of its two-way variant, bivariate moment decom-
position (see, e.g., Beh, 1997, Beh and Lombardo, 2004,
Sections 3.10, 3.11, Lombardo, Carlier and D’Ambra,
1996) and it assumes that all three variables are ordered.
However, in a general framework for nonparametric mul-
tivariate function estimation, polynomial decomposition
can be considered akin to the smoothing spline analysis
of variance (SS-ANOVA) model (Lin and Zhang, 2006,
Wahba, 1990) for categorical variables.

Since the essence of the symmetrical and non-sym-
metrical variants is the same with respect to the inclusion
of orthogonal polynomials, we concentrate on the sym-
metrical case as it is the best known version.

When a row variable consists of I ordered cate-
gories, we can compute I orthogonal polynomials, us-
ing Emerson’s (1968) recurrence formulae, the ordered
row scores and the row marginal proportions. Each poly-
nomial has a specific interpretation and measures of as-
sociations derived from them can be formally tested. As
indicated above, we generate as many orthogonal polyno-
mials as there are categories: the zero’th order orthogonal
polynomial is trivial, the first-order polynomial is linear
(respecting the ordinality of categories), the second-order
polynomial is quadratic (describing the dispersion of cat-
egories), and so on, and all are centered and orthogonal to
each other. Thus, in a visual display of the first and sec-
ond orthogonal polynomials, the categories lie ordered on
a parabola centred at the origin.

3.1 Modelling Ordinal Three-Way Polynomial
Correspondence Analysis

In the trivariate moment decomposition for symmetri-
cal and non-symmetrical correspondence analysis, the de-
compositions of the Pearson �2 statistic and of the Mar-
cotorchino τMnum statistic are defined by replacing ap , bq

and cw (see equation (9)) with their orthogonal polyno-
mial equivalents. In particular, for the symmetrical case,
πS

ijk is given by

(10) πS
ijk =

U∑
u=0

V∑
v=0

W∑
w=0

zuvwαiuβjvγkw.

For the decomposition of equation (10), the row, col-
umn and tube orthogonal polynomials are weighted
such that

∑I
i=1 pi••α2

iu = 1,
∑J

j=1 p•j•β2
jv = 1 and∑K

k=1 p••kγ 2
kw = 1, respectively. Note that the indices u,

v, w run from 0 to U , V and W , respectively, (where
U = I − 1, V = J − 1, W = K − 1) and correspond to
the orders of the polynomials. The values zuvw in equa-
tion (10) are analogous to the core elements gpqr in the
nominal case, hence they are also referred to as polyno-
mial core elements and are defined by

zuvw = 〈�S,αu ⊗ βv ⊗ γ w〉.
For example, using the results from Section 2.6, the poly-
nomial core element, z111, is given by

z111 =
I∑

i=1

J∑
j=1

K∑
k=1

πS
ijkpi••p•j•p••kαi1βj1γk1

=
I∑

i=1

J∑
j=1

K∑
k=1

πS
ijkpi••p•j•p••k

× (i − μI )

σI

(j − μJ )

σJ

(k − μK)

σK

,

where i, j and k are the natural scores for the ith row,
j th column and kth tube category, respectively. Also, μI ,
μJ and μK are the weighted means of these scores, while
σI , σJ and σK are the corresponding standard deviations,
respectively.

The term z111 is akin to the magnitude of the gener-
alised correlation between the linear polynomials of the
ordered row, column and tube categories, respectively.
A comprehensive discussion of generalised correlations
for two-way contingency tables can be found in Rayner
and Best (1996) and for three-way tables in Rayner and
Beh (2009), and their interpretation extends naturally to
the non-symmetrical case.

It is the decomposition consisting of orthogonal poly-
nomials and polynomial core array elements as defined
by equation (10) that is generally referred to as the trivari-
ate moment decomposition of �S . From Section 2.3 and
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equation (5), it follows that the total inertia of the ordered
three-way contingency table is equal to the Pearson �2

statistic, to the squared norm of the array �S , and to the
sum of the squared polynomial core elements, such that

(11) �2 = ‖�S‖2 =
U∑

u=0

V∑
v=0

W∑
w=0

z2
uvw.

When analysing the association between the three vari-
ables using the orthogonal polynomials to yield each term
of the �2 partition (equation (5), see also Tables 2, 3, 4,
5), we can also re-express the decomposition given by
equation (10) as an additive polynomial model for the
global symmetrical dependence measure as a function of
the association terms such that

(12)

πS
ijk =

U∑
u=1

V∑
v=1

zuv0αiuβjv +
U∑

u=1

W∑
w=1

zu0wαiuγkw

+
V∑

v=1

W∑
w=1

z0vwβjvγkw

+
U∑

u=1

V∑
v=1

W∑
w=1

zuvwαiuβjvγkw.

Here the zuv0, zu0w and z0vw-terms represent the marginal
bivariate generalised correlations of the partition. For ex-
ample, the first term is defined as zuv0 = 〈�S,

αu ⊗ βv ⊗ γ 0〉.
It should be noted that the computation of the terms

zuv0, zu0w and z0vw requires special attention. For exam-
ple, zuv0 is computed using all the row and column poly-
nomials while only the tube polynomial remains constant,
at w = 0. The terms zu0w and z0vw are computed simi-
larly; see Section 4. The definitions of the above terms
can be used to show that the Pearson �2 statistic of equa-
tions (3) and (11) can also be expressed as

(13)

�2 =
U∑

u=0

V∑
v=0

W∑
w=0

z2
uvw

=
U∑

u=1

V∑
v=1

z2
uv0 +

U∑
u=1

W∑
w=1

z2
u0w

+
V∑

v=1

W∑
w=1

z2
0vw +

U∑
u=1

V∑
v=1

W∑
w=1

z2
uvw.

See Beh and Davy (1998) for more details on this parti-
tion.

3.2 Hybrid Decomposition for Nominal and Ordinal
Variables

When the three-way contingency table consists of nom-
inal and ordinal variables, the approximation of the global
dependence, or total inertia, involves computing Tucker3

components for the nominal variables and orthogonal
polynomials for the ordered variables (Lombardo and
Beh, 2017). Two cases involving such a structure can
arise: (1) two ordered variables and one nominal variable,
or (2) two nominal variables and only one ordered vari-
able. As an example of case 1, after computing the poly-
nomials for the two ordered variables, say the row and col-
umn variables, and the Tucker3 components for the tube
variable, the hybrid decomposition takes on the form

(14)

πS
ijk = π̂S

ijk + eijk

=
U∑

u=0

V∑
v=0

R∑
r=1

zuvrαiuβjvckr + eijk,

where the αu and βv are the row and column polynomi-
als, respectively, and the cr are the tube singular vectors
(Tucker3 components). The values zuvr in equation (14)
are defined by zuvr = 〈�̂S

,αu ⊗ βv ⊗ cr〉.
While the number of the orthogonal polynomials for the

rows and columns should always be equal to the num-
ber of categories in a variable (see Section 2.6), the num-
ber of Tucker3 components for the tube variable can be
smaller (R ≤ K). Note that in the hybrid decomposition
the solutions are not nested, in contrast to the trivariate
moment decomposition (equation (10)) which allows for
the definition of nested solutions. A complete orthogonal
decomposition is always used when all the three variables
are ordered, as it is for model (10), but is seldom used in
practice when the variables are not all ordered.

3.3 Number of Components in Trivariate Moment
Decompositions and in Hybrid Decompositions

To determine which polynomial components are impor-
tant for approximating the data with the model, it is neces-
sary to inspect the inertia that is accounted for. Unlike the
singular vector based decomposition, one needs to eval-
uate all terms in the orthogonal decomposition because
there is no decreasing order in the inertia that is accounted
for.

The size of a polynomial triplet (u, v,w) depends on
how well its orthogonal polynomials approximate the as-
sociation structures in a given set of data, and this may be
a third-order cubic polynomial rather than the first-order
linear one. The size of the squared core values indicate
how well a certain triplet succeeds in accounting for the
variability. Clearly, the higher the order of a polynomial,
the more difficult its interpretation becomes. Therefore, a
preference is given to those triplets of polynomials with
lower-orders combined with large squared core values.

Note that if higher-order polynomials have large
squared core values but none of the lower-order ones do,
then the higher-order polynomial can generally be con-
sidered as an unexplainable source of variation due to the
high frequency fluctuations between the categories. The
higher-order polynomials, in most cases, are associated



THREE-WAY CA FOR ORDERED VARIABLES 549

with the unstructured information, showing the noise in
the data and often cannot be interpreted sensibly. On the
other hand, lower-order polynomials take care of smooth-
ing the profiles of the categories over the other categories.
They provide the analyst with insightful, parsimonious,
and relatively smooth descriptions of the associations or
increases in predictability in three-way tables. Therefore,
the association structures can be modelled using constant,
linear, quadratic and cubic orthogonal polynomials.

However when performing the hybrid decomposition
we also need to compute generalised singular vectors. As
a result, when assessing the dimensionality in a more for-
malised manner, it may be appropriate to consider vari-
ous methods based on numerical and visual inspections
(such as the convex hull or Pareto frontier); see, for ex-
ample, Kroonenberg and Oort (2003), Ceulemans and
Kiers (2006, 2009), Kroonenberg and Anderson (2006),
Ceulemans, Timmerman and Kiers (2011) and Lorenzo-
Seva, Timmerman and Kiers (2011). For more of a dis-
cussion on the interpretation of lower and higher order
polynomials, refer to Rayner and Best (1996) and Beh and
Lombardo (2014, Chapter 6).

Since our primary interest is in describing the utility of
orthogonal polynomials as components, the number of di-
mensions to retain will be based upon the varying degrees
of explained inertia by the different combinations of poly-
nomials and generalised singular vectors (see Section 4).

3.4 Graphing the Trivariate Moment Decompositon:
Polynomial Biplots

To visually portray the association structure between
categorical variables in a three-way contingency table,
Carlier and Kroonenberg (1996) and Kroonenberg (2008)
discussed various types of biplots. Here, we focus on in-
teractive biplots (also referred to as nested-mode biplots
by Kroonenberg, 2008, Section 11.5.4), since they are the
only ones that allow for a simultaneous representation of
all row, column and tube categories in a single display
(see also Gower, Le Roux and Gardner-Lubbe, 2016).

Therefore to depict graphically the symmetric structure
of the ordered categorical variables, we consider three-
way polynomial interactive biplots. Such biplots represent
a generalisation to the three-way case of the polynomial
biplots presented with respect to the two-way ordered
variants of correspondence analysis (Lombardo, Beh and
Kroonenberg, 2016). These three-way biplots essentially
follow the construction of those for nominal variables pro-
posed by Kroonenberg (2008, pages 273–280), but with
the singular vectors replaced by the orthogonal polyno-
mials. However for the non-symmetrical case, their in-
terpretation is quite different since they portray the pre-
dictability of the response given the predictors rather than
the mutual association. The non-symmetrical association
between the three variables can be visualised using three-
way polynomial interactive biplots by reflecting how the

column-tube category interactions impact upon the row
categories.

As described in the following sections, three-way poly-
nomial biplots can take two forms depending on whether
the row coordinates or the column-tube coordinates are
isometric. The isometry indicates which components are
in principal coordinates and thus which distances be-
tween which categories can be determined and properly
assessed.

3.4.1 Interactively-coded polynomial biplot. [rows:
standard polynomial coordinates; column × tubes prin-
cipal polynomial coordinates].

Following Kroonenberg’s (2008, page 273) terminol-
ogy for the interactively-coded isometric biplot, the ref-
erence mode is the variable (in our case, the row) visually
depicted using standard coordinates and the interactive-
mode (column-tube category combination) is in princi-
pal coordinates. We consider the case where the reference
mode is the row variable, while the pair consisting of the
j th column and the kth tube categories will be coded in-
teractively (j, k) and will be represented by a single point.
The coordinates of the two modes follow from

πS
ijk =

U∑
u=0

αiu

[
V∑

v=0

W∑
w=0

zuvwβjvγkw

]

=
U∑

u=0

αiuhjk,u.

Here hjk,u represents the interactively coded (column-
tube category) principal polynomial coordinates, that can
be expressed as

hjk,u =
I∑

i=1

pi••αiuπ
S
ijk.

Each of the I slices of the array �S is approximated by
the linear combination of the matrices Hu = (hjk,u) (for
u = 0,1,2, . . . ,U ) with the coefficients αiu. Therefore,
the main aim of this plot is to explicitly code the column-
tube category (j, k) and to join the points of the ordered
categories.

For this biplot, we are dealing with a simple U -
dimensional display space (U = I − 1 excluding the
zero’th polynomial) where the coordinates for both the
row and column-tube categories are displayed in the space
defined by the U row orthogonal polynomial axes, that
is, the row standard polynomial coordinates. Along these
axes we can investigate the association between the row
categories and the column-tube categories by observing
the trends of the rows and those of the interactively coded
categories in a joint graphical display. For example, in
a linear-by-quadratic biplot, we display the row standard
coordinates αi1 and αi2, and the column-tube principal
coordinates hjk,1 and hjk,2 where the scales for the two
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axes are determined by the polynomial core values z1••
and z2••, respectively. In the symmetric case, the per-
cent of variability explained by the u’th axis is given by
z2
u••/X2 × 100.

3.4.2 Single-variable polynomial biplots. [rows: prin-
cipal polynomial coordinates; columns × tubes: standard
polynomial coordinates].

Such a biplot can be constructed when the coordi-
nates for both the single-variable and the interactively-
coded variables are displayed in the space defined by the
interactively-coded orthogonal polynomials (instead of in
the space of the single-variable orthogonal polynomials).
Therefore, the aim of this plot is to visually depict the as-
sociation between the three variables such that the struc-
ture of the ordinal variable is preserved while reflecting
the possibility that there exists a column-tube associa-
tion. We define the single-variable isometric polynomial
biplot. Here we are dealing with a space whose dimen-
sionality is V W = (J − 1 × K − 1) (when excluding the
zero’th polynomials). To obtain the single-variable biplot,
the deviations from independence, given in πS

ijk , are de-
composed such that

πS
ijk =

U∑
u=0

V∑
v=0

W∑
w=0

[zuvwαiu][βjvγkw]

=
V∑

v=0

W∑
w=0

fi,vwhjk,vw.

Here fi,vw is the row principal polynomial coordinates,
given by the product of the ith row polynomial for the
polynomial core values zuvw , while hjk,vw represents the
interactively-coded standard polynomial coordinate, us-
ing the interactively-coded element of the j th column
polynomial and the kth tube polynomial.

Therefore, the single-variable principal polynomial co-
ordinates are defined by

F(I×V W) = AZ(U×V W)

(
fi,vw =

U∑
u=0

αiuzuvw

)
,

and the interactively-coded standard polynomial coordi-
nates are

H (JK×V W) = (B ⊗ C) (hjk,vw = βjvγkw).

We use the generalised correlations of the polynomial
core array to select the relevant combination of orthogo-
nal polynomials to display. For the single-variable biplots,
the points for the standard coordinates of the column-tube
pairs will be sequentially connected to show the column-
tube trend, while the rows will be graphically depicted
as points. For example, in a linear-by-quadratic biplot
we display the row principal coordinates fi,11 and fi,22
(where the scales for the two axes are determined by the
polynomial core values z•11 and z•22, respectively) and

the column-tube standard coordinates hjk,11 (using the
linear, column and tube polynomials) and hjk,22 (using
the quadratic, column and tube polynomials). In the sym-
metric case, the percent of variability reported by the in-
teractive linear polynomials axis (β1γ1) is z2•11/X2 × 100
and for the interactive quadratic polynomial axis (β2γ2) is
given by z2•22/X2 × 100.

However, when using the hybrid decomposition, as we
do for the example in Section 4, we consider the gener-
alised singular vectors for the nominal variable. As a re-
sult, for the single-variable biplot, the column-tube stan-
dard coordinates are hybrid orthogonal polynomials re-
sulting from the combination of polynomials with gener-
alised singular vectors.

3.4.3 Interpretation of polynomial biplots. Some gen-
eral rules for the interpretation of the polynomial biplots
are listed here for reference, but they will become clearer
when discussing the example. For all types of polyno-
mial biplots, the standard polynomial coordinates play the
most important role in determining the strength of the as-
sociation as they represent the polynomial axes on which
all the other categories are projected.

– Interactively-coded biplots. The origin of this plot rep-
resents the mean of the ordered categories of the refer-
ence mode (rows in our application; see Section 4).

Linear (or first-order) polynomial. If the standard
polynomial coordinate of a reference category is pos-
itive and large then its value is higher than the mean
profile. It influences all those column-tube categories
that take large positive coordinates on the first axis.
Quadratic (or second-order) polynomial. If the stan-
dard coordinate of a reference category is positive
and large on the quadratic polynomial, it means that
it has a large dispersion (positive difference with re-
spect to the mean of the ordered reference scores).
All those column-tube categories with a large coor-
dinate on this second axis will be affected by that
reference category.

In general when plotting the linear-by-quadratic (or the
quadratic-by-linear) polynomial, the plot always shows
a parabolic shape of different narrowness and concavity.
However, when using two linear polynomial axes (which
is possible only for interatively-coded biplots), the plot
always results in a configuration akin to the spokes of a
cartwheel, where all lines go through the origin due to the
centring of the polynomials.

– Single-variable biplots. The origin of this plot rep-
resents the mean of the ordered, interactively-coded
(column-tube) categories.

Linear (or first-order) polynomial. If the standard
polynomial coordinate of the interactively coded
column-tube category is positive and large then it
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TABLE 1
Rating-ranking data: Partitioning of the Pearson index; I = Ratings; J = Rankings; K = Countries

Association Index % Inertia df X2/df Type

n�2
1,2 = X2

IJ 18,359 86% 64 287 Ratings–Rankings

n�2
2,3 = X2

JK 255 1% 32 8 Rankings–Countries

n�2
1,3 = X2

IK 590 3% 32 18 Ratings–Countries

n�2
1,2,3 = X2

IJK 2062 10% 256 8 Ratings × Rankings × Countries

Total 21,266 100% 384 55 Overall

means that category is above its mean. All row cat-
egories that are in the positive direction will be af-
fected by that column-tube category.
Quadratic (or second-order) polynomial. If the stan-
dard coordinate of a column-tube category is positive
and large on the quadratic polynomial, then that cat-
egory has a large dispersion, that is, a positive differ-
ence with respect to its mean, and one or more row
categories can be affected by that large column-tube
coordinate.

Finally, we cannot say that one kind of polynomial biplot
is better than the other because they portray similar in-
formation about the variable structure of the association
between the variables, but does so differently. However,
they can highlight different aspects of the association par-
ticularly at the origin of these polynomial biplots since
they do not have the same meaning.

4. APPLICATION

To illustrate the advantages of the ordinal three-way
correspondence analysis method outlined in this paper,
when compared to the classical analysis, we will reanal-
yse Van Herk and Van de Velden’s (2007) three-way con-
tingency table. This table consists of two ordered vari-
ables and one nominal variable which are symmetrically
associated, that is, there is not a dependence design. This
table can be analysed with a hybrid decomposition where
the orthogonal polynomials are computed for the ordered
row and column variables, and the Tucker3 components
for the nominal tube variable.

The data, which are very useful in sensory analysis and
marketing research, were part of a large European survey
dataset (Van Herk and Van de Velden, 2007). In particular,
in an empirical study based on the List of Values (LOV;
Kahle, 1983), participants were asked to study the LOV
list, and then rated each item on a nine-point scale. Subse-
quently, the participants ranked the same nine statements,
assessing the most important item with a score “9”, and
the least important item with “1”. The LOV was described
to participants as a list of things that some people look for
or want out of life. The items on the LOV list were Sense

of belonging, Excitement, Warm relationships with others,
Self-fulfillment, Being well respected, Fun and enjoyment
in life, Security, Self-respect and a Sense of accomplish-
ment; for more details see Van Herk and Van de Velden
(2007).

The three-way contingency table consists of nine rating
values against nine ranking values given by the same par-
ticipants across five European countries. In the literature,
there has been an ongoing debate about the pros and cons
of rating and ranking procedures (see Alwin and Kros-
nick, 1985, Rodrigue et al., 2000, Van Herk and Van de
Velden, 2007) that is beyond the scope of this paper.

Van Herk and Van de Velden’s analysis was aimed at
understanding whether the information from the ratings
and rankings were consistent (or concordant) across five
European countries. Our aim is to evaluate the relative
effectiveness of the polynomial approach versus the tra-
ditional multi-way approach. Furthermore, while Table 1
shows that the partition of Pearson’s chi-squared statistic
is identical to that of the standard analysis (Carlier and
Kroonenberg, 1996, 1998), Tables 2, 3, 4 and 5 provide
the partition of Pearson’s X2 statistic for the ordered cate-
gorical variables when using the orthogonal polynomials
(see equation (13)).

TABLE 2
Partitioning of the Pearson term X2

IJ : I = Ratings; J = Rankings

Ratings polynomials (αu) X2
IJ % Inertia df X2/df

1st order: α1 12,701 70% 8 1588
2nd order: α2 3883 21% 8 485
3rd order: α3 834 5% 8 104
all–higher–order 941 5% 40 24

Total 18,359 100% 64 287

Rankings polynomials (βv) X2
IJ % Inertia df X2/df

1st order: β1 13,820 75% 8 1727
2nd order: β2 3178 17% 8 397
3rd order: β3 605 3% 8 76
all–higher–order 756 5% 40 19

Total 18,359 100% 64 287
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TABLE 3
Partitioning of the Pearson term X2

IK : I = Ratings; K = Countries

Ratings polynomials (αu) X2
IK % Inertia df X2/df

1st order: α1 207 35% 4 52
2nd order: α2 133 23% 4 33
3rd order: α3 90 15% 4 23
all–other–order 159 27% 20 8

Total 589 100% 32 18

4.1 Rating-Ranking Data

The rating-ranking data were obtained from a sample
of about 5000 participants from five European countries;
France, Italy, Germany, UK and Spain. Since Van Herk
and Van de Velden (2007) were interested in the com-
parative use of the different scales, they cross-classified
the ratings and rankings. That is, they counted the num-
ber of times respondents gave a rating i and a ranking j

to the same item. This provided them with a contingency
table of size 9 × 9 × 5 (I × J × K), in which an entry
nijk denotes the number of times respondents of a coun-
try k assigned an item both a rating i and a rank j ; one
could refer to this number as rating-ranking concordance
or consistency.

Van Herk and Van de Velden (2007) analysed the as-
sociation in the three-way table of Ratings × Rankings ×
Countries with standard three-way correspondence anal-
ysis.

However, in contrast to Van Herk and Van de Velden
(2007), we modelled the association in the table and the
ordinality of the two measurement variables by employ-
ing orthogonal polynomials for rating and ranking points
and generalised singular vectors for country points. The
similarity between ratings and rankings of the same set of
items would be expected to be higher when inconsistency
is low. However, as stated by Van Herk and Van de Velden
(2007), inconsistency between ratings and rankings may
happen due to the cognitive complexity of the task, be-
cause of potential misunderstandings of the procedure, or
from the presence of random errors.

4.2 Aim of the Analysis

The main questions we shall address here are:

TABLE 4
Partitioning of the Pearson term X2

JK : J = Rankings; K = Countries

Rankings polynomials (βv) X2
JK % Inertia df X2/df

1st order: β1 139 55% 4 35
2nd order: β2 74 29% 4 18
3rd order: β3 16 6% 4 4
all–other–order 26 6% 20 1

Total 255 100% 32 8

TABLE 5
Partitioning of the Pearson term X2

IJK : I = Ratings; J = Rankings;
K =Countries

Ratings polynomials (αu) X2
IJK % Inertia df X2/df

1st order: α1 638 30% 32 20
2nd order: α2 702 34% 32 22
3rd order: α3 217 10% 32 7
all–higher–order 505 26% 160 3

Total 2062 100% 256 8

Rankings polynomials (βv) X2
IJK % Inertia df X2/df

1st order: β1 809 40% 32 25
2nd order: β2 545 26% 32 17
3rd order: β3 281 14% 32 9
all–higher–order 427 20% 160 3

Total 2062 100% 256 8

1. To what extent is there an association among Rat-
ings, Rankings and Countries?

2. What are the trends of Ratings and Rankings across
Countries?

3. Can these trends be more parsimoniously mod-
elled and easier to interpret using orthogonal polynomials
rather than singular vectors?

From Table 1, we can assess how much the variables Rat-
ings and Rankings, as well as their mutual association,
change across Countries. Fortunately, from Tables 2, 3, 4
and 5, we can also evaluate the importance of the orthog-
onal polynomials when identifying the most important as-
sociation terms from the partition of �2. This information
is also contained in the polynomial core elements of Ta-
ble 8.

4.3 Size and Nature of the Dependence

Our analysis starts with investigating the importance of
the two-way and three-way association terms with the aim
of determining if and how Ratings were associated with
Rankings across Countries. To this end, we partitioned
the Pearson �2 statistic into three two-way terms and one
three-way term; see equation (5). Given the large number
of observations the two-way terms and the three-way term
are all statistically significant at the 0.01 level. Therefore,
we will in general not refer to significance, but only com-
pare the relative sizes of the inertia (X2/df ). Indeed, the
mean of a χ2 variable is equal to df , thus X2/df allows for
comparisons between X2 values from different (asymp-
totical) chi-squared distributions. The overall association
is X2 = 21,266 (df = 384) which shows that there is ev-
idence of a strong association among Ratings, Rankings
and Countries.

The percentage contributions to the inertia of the four
terms are given in Table 1, but can also be derived from
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squaring the polynomial core elements using equation
(13); this is akin to squaring the core elements obtained
from the generalised singular value (Tucker3) decompo-
sition (see Kroonenberg, 2008, Section 9.5.1). The major
source of association in these data is the two-way associa-
tion between Ratings and Rankings, which contributes to
86% of the total inertia.

Table 2 shows that, for both the ordered variables Rat-
ings (I ) and Rankings (J ), the linear and quadratic poly-
nomials play the most important role in the contribution
to the total inertia. Using all row and column orthogonal
polynomials lead to statistically significant scores of as-
sociation for the Ratings and Rankings variables.

The two remaining two-way association terms do not
make a substantial contribution to the inertia of these data,
as their contribution is very low; 3% and 1% of the iner-
tia for X2

IK and X2
JK , respectively. However, the relative

size (X2/df ) of the two-way association term X2
IK (18)

is considerably greater than that of the three-way term
X2

IJK (8). The association between Ratings and Countries
in Table 3 indicates differences in rating patterns in the
five countries, as well as the association between Rank-
ings and Countries in Table 4 shows some differences in
ranking patterns across the five European countries. As
Van de Herk and Van de Velden pointed out in their pa-
per, these association terms should be close to zero as the
respondents were asked to use a precise rating and ranking
system in all countries. However, in practice, respondents
did not always perform a consistent rating and ranking
evaluation.

In terms of the orthogonal polynomials, Table 3 shows
that, when studying the association between Ratings and
Countries, the contribution of the first four polynomi-
als lead to statistically significant sources of association,
while the polynomials of order greater than five do not.
In Table 4, we illustrate the partition of the bivariate term
X2

JK using the orthogonal polynomials. Here the first and
second order polynomials provide the greatest contribu-
tion to the association between Rankings and Countries.
The first three orthogonal polynomials result statistically
significant, while the polynomials of order greater than
three are not significant.

Finally, the three-way association is quite dominant and
contributes to 10% of the total inertia; see Table 1. The
orthogonal polynomials which contribute to this trivariate
association are all statistically significant and are given in
Table 5. We note that the linear polynomial of Ratings is
no longer the most important source of association, as the
contribution of the quadratic polynomials to the inertia is
higher (34%) in this trivariate association term. Also, its
relative size (X2/df = 22) is higher than the linear poly-
nomial’s size (X2/df = 20).

TABLE 6
Rating–ranking data: Un-normalised polynomial coefficients for

Ratings and Rankings

Polynomials

Term 1st 2nd 3rd Marg. Prop.

Ratings
α1 α2 α3

rat1 −1.46 1.44 −1.17 0.39
rat2 −1.08 0.28 0.75 0.19
rat3 −0.70 −0.54 1.26 0.14
rat4 −0.32 −1.02 0.83 0.08
rat5 0.06 −1.16 −0.05 0.08
rat6 0.44 −0.97 −0.91 0.03
rat7 0.82 −0.45 −1.28 0.03
rat8 1.20 0.42 −0.69 0.02
rat9 1.58 1.62 1.35 0.04

Rankings
β1 β2 β2

rank1 −0.83 0.71 −0.51 0.13
rank2 −0.38 −0.33 1.00 0.12
rank3 0.07 −1.00 1.03 0.11
rank4 0.52 −1.30 0.16 0.11
rank5 0.97 −1.22 −1.05 0.11
rank6 1.42 −0.76 −2.03 0.11
rank7 1.87 0.07 −2.22 0.10
rank8 2.33 1.27 −1.04 0.11
rank9 2.78 2.85 2.08 0.11

4.4 Polynomial Axis

To compute the orthogonal polynomials, we assign nat-
ural scores to the ordered categories of the Ratings and
Rankings variables and consider their associated marginal
proportions when using Emerson’s (1968) recurrence for-
mulae. Table 6 summarises the first, second and third or-
der polynomial coefficients for each of the two ordered
ways.

Apart from the normalisations, the coefficients of the
orthogonal polynomials in Table 6 show their linear,
quadratic and cubic shapes. The normalisations are neces-
sary to respect the orthonormality constraints, and there-
fore the polynomial components are multiplied by the
square root of the marginal proportions. Thus, the zero’th
polynomials are not equal to 1.00 but vary based on the
square root of their marginal proportions (see the last col-
umn of Table 6); for example, after the normalisation, the
first rating category labelled as rat1 has a zero’th order
polynomial coefficient of

√
0.39 = 0.62.

4.4.1 Model dimensionality and Tucker3 components.
When using the orthogonal polynomials, the number of
dimensions is equal to the number of ordered categories,
but when using the hybrid decomposition we have to also
compute the generalised singular vectors. However for the
sake of simplicity, in our application the dimensionality
has been selected by inspecting the varying degrees of
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TABLE 7
Tucker3 component for Countries

Countries r1 r2

Italy (I) −0.37 0.03
United Kingdom (UK) −0.40 0.47
France (F) −0.43 −0.50
Spain (S) −0.47 0.57
Germany (G) −0.54 −0.46

explained variance from the different interpretable plots.
Therefore, for Ratings and Rankings, the dimensionality
is equal to the number of the orthogonal polynomials, that
is, nine, while for the nominal variable Countries only two
dimensions are considered. Indeed, the improvement to
the explained inertia of the second Tucker3 component
was not very important, but this second tube component
allowed for a linear-by-linear interactively-coded biplot to
be constructed (Figure 4).

Table 7 reports the two generalised singular vectors of
the Countries variable. We observe that the scores of Ger-
many and France on the second Tucker3 component of
Countries are negative while the scores of Spain, UK and
Italy are positive. All countries have large scores for the
first and second Tucker3 axis except Italy, whose score
on the second axis is close to zero. This will affect the
interactively-coded polynomal biplots of Figures 3 and 4.

The dimensionality choice was based on the amount of
explained variance when adding/deleting dimensions to
the tube variable. Doing so, the resulting explained iner-
tia is 19,971, that is, 94% of the total chi-squared statis-
tic. In contrast, the model dimension of the classical anal-
ysis performed by Van Herk and Van de Velden (2007)
was chosen to be 2 × 2 × 1 and its explained inertia was
17,726, that is, 83% of the total chi-squared statistic.

4.5 Polynomial Core Array and Generalised
Correlations

The next step is to investigate which combinations of
polynomials and singular vectors, that is, which triplets
(αu, βv , and cr ), contribute substantially to the inertia.
This information is to be found in the (squared) polyno-
mial core elements. Observe that the sum of the squared
polynomial core elements is equal to the total explained
inertia, that is, 19,971. As already indicated, the orthog-
onal polynomials are ordered by their degree and not by
their inertia accounted for so that we first have to calculate
all polynomials for the row and column ways, as well as
the Tucker3 components for the third way, and the poly-
nomial core array. Subsequently, we select those core ele-
ments with the highest z2

uvr . At present, this is a subjective
process without stringent significance tests.

Table 8 shows the elements zuvr of the polynomial core
array for all combinations of u, v, and r . Each z2

uvr repre-
sents the inertia accounted for by the triplet (αu, βv , and

cr ) or the strength of the link between these components
(see Section 3.3). An inspection of these polynomial core
elements in Table 8 shows a strong link (z2

111 = 12,027)
between the linear polynomial of Ratings (u = 1) and the
linear polynomials of Rankings (v = 1) when considering
the first country component r = 1. This triplet shows that
the association among Ratings, Rankings and Countries
is for the largest part linear in both Ratings and Rankings
variables, and accounts for 57% of the total explained in-
ertia. The next largest polynomial core element is due to
the triplet of the quadratic polynomial of Ratings with
the linear polynomial of Rankings and the first compo-
nent of Countries (z2

211 = 1867). While it is much smaller,
it still represents an important contribution to fitting the
model to the data (9% of total). Another important con-
tributor to the total explained inertia of polynomial core
elements is z2

221 and reflects 8% of this inertia. It refers
to the quadratic components of Ratings and of Rankings
when r = 1.

4.5.1 Contributions of the orthogonal polynomials in
an interactively-coded polynomial biplot. From Table 8,
we can also compute the percentage contribution of each
of the orthogonal polynomials for the two ordered vari-
ables to the total inertia (X2 = 21,266). Here, we fo-
cus our attention on the rating polynomials since Rat-
ings is the reference variable in the interactively-coded
biplot of Figure 2. Table 9 reports the percentage contri-
bution for the Ratings variable. The contribution of the
linear polynomial, α1, is z2

1••/X2 × 100 = 0.63 × 100 =
63%, while the quadratic polynomial is z2

2••/X2 × 100 =
0.21 × 100 = 21%. Therefore, Figure 2 accounts for 84%
of the total inertia when using the linear-by-quadratic
polynomials; we shall describe this figure in more detail
in Section 5.2.

4.5.2 Contributions of the orthogonal polynomials in
a single-variable polynomial biplot. For biplots con-
structed under a single-variable isometry the coordinates
are determined from the axes of the interactively-coded
Rankings (column) and Countries (tube) variables; from
them we get V = 9 column polynomials and R = 2 gen-
eralised singular vectors for the Countries variable. This
implies that, when constructing such biplots, one has to
select which of the 18 hybrid polynomial axes to portray
the association. For the sake of simplicity here, the choice
of these axes is determined by the size of the inertia along
each axis; see Table 10.

The most dominant inertia lies along the second axis
(β1, c1) and is calculated from the sum of the associated
squared polynomial core elements: z2•11 = ∑U

u=0 z2
u11 =

13,929. Therefore, its contribution to the total inertia is
13,929/21,266 × 100 = 66%. Note this second axis is
the hybrid polynomial computed using the linear poly-
nomial of Rankings combined with the first generalised
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TABLE 8
Polynomial core array: zuvr

Countries: Tucker3 component r1

Rankings

Ratings v0 v1 v2 v3 v4 v5 v6 v7 v8

0th order: u0 0.00 1.33 −1.02 0.18 −0.29 −0.09 0.11 −0.06 −0.11
1st order: u1 −0.52 −109.67 −25.92 −12.07 −3.21 −1.90 1.59 −0.30 −1.61
2nd order: u2 0.95 43.21 −42.81 −13.76 −8.69 0.13 −1.98 −0.16 0.89
3th order: u3 −0.38 −2.78 25.32 −14.34 −0.27 −5.09 −0.89 1.01 2.34
4th order: u4 0.39 −4.22 −12.72 6.39 −11.00 3.36 −2.27 −0.99 −2.03
5th order: u5 0.03 1.48 1.86 −6.16 −1.52 −10.87 5.18 −0.20 −1.64
6th order: u6 −0.12 0.07 2.72 4.54 −1.55 −2.85 −11.64 3.29 1.17
7th order: u7 0.12 −1.81 −1.67 −0.78 1.32 1.63 −2.31 −10.87 1.46
8th order: u8 −0.26 −1.21 −0.41 −0.77 −1.60 −0.24 0.19 −2.41 −11.28

Countries: Tucker3 component r2

Rankings

Ratings v0 v1 v2 v3 v4 v5 v6 v7 v8

0th order: u0 0.00 −5.24 2.53 −3.42 2.44 −2.53 0.98 −0.63 0.41
1st order: u1 −13.85 −16.65 −8.93 2.03 −1.01 0.42 −0.35 0.43 0.91
2nd order: u2 6.37 −12.20 −10.32 −9.75 −0.40 −0.28 −0.38 0.18 −1.06
3th order: u3 −5.47 3.08 0.72 −2.45 −4.45 −1.07 0.29 −0.63 1.28
4th order: u4 4.09 −4.49 1.96 3.74 0.79 −2.83 0.87 0.05 −0.54
5th order: u5 −4.87 2.55 0.74 −1.20 1.68 3.00 −1.95 −0.58 −0.42
6th order: u6 1.86 −2.19 0.46 0.15 −2.09 −1.77 2.56 0.67 0.62
7th order: u7 −0.63 1.66 −0.11 −1.32 0.36 0.09 −0.99 0.39 −1.28
8th order: u8 0.73 0.48 0.73 0.01 0.36 0.33 −0.09 1.43 2.48

TABLE 9
Percentage contributions of the rating polynomials to the total explained inertia

Row polynomials

α0 α1 α2 α3 α4 α5 α6 α7 α8
axis1 axis2 axis3 axis4 axis5 axis6 axis7 axis8 axis9 % Inertia

0 63 21 4 2 1 1 1 1 94

TABLE 10
Percentage contributions of the hybrid polynomials in the single-variable polynomial biplot

Hybrid column-tube polynomials

β0, c1 β1, c1 β2, c1 β3, c1 β4, c1 β5, c1 β6, c1 β7, c1 β8, c1
axis1 axis2 axis3 axis4 axis5 axis6 axis7 axis8 axis9

0 66 16 3 1 1 1 1 1

β0, c2 β1, c2 β2, c2 β3, c2 β4, c2 β5, c2 β6, c2 β7, c2 β8, c2
axis10 axis11 axis12 axis13 axis14 axis15 axis16 axis17 axis18 % Inertia

1 2 1 0 0 0 0 0 0 94
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vector of Countries. Similarly, along the third axis, where
(β2, c1), the inertia is calculated from the sum of the
associated squared polynomial core elements: z2•21 =∑U

u=0 z2
u21 = 3322 and its contribution to the total iner-

tia is 3322/21,266 × 100 = 16% (see Tables 8 and 10).
Therefore, Figure 3 accounts for 82% of the total inertia
when using the linear-by-quadratic hybrid polynomials.
Finally, note that the 11th hybrid axis (β1, c2) is given by
the linear polynomial of Rankings combined with the sec-
ond generalised vector of Countries and its contribution
to the total inertia is 309/21,266 × 100 = 2%. Figure 4
portrays the association when using the linear-by-linear
hybrid polynomials and accounts for 68% of the total in-
ertia. Figures 3 and 4 will be described in more detail in
the next section.

5. GRAPHING ASSOCIATION

As indicated above, numerical summaries are seldom
enough for understanding complex relationships and this
is certainly the case with three-way data. We argued above
that polynomial biplots are suitable graphical tools to vi-
sualise the symmetrical or non-symmetrical association
for ordered three-way contingency tables. In this section,
we present examples of both the interactively-coded and
the single-variable polynomial biplots to understand this
dependence structure. To put the contribution of the poly-
nomial biplots into perspective, in Section 5.1, we first
visualise the association between the rating-ranking data
after carrying out a classical symmetrical three-way corre-
spondence analysis based on the Tucker3 decomposition.
Then in Sections 5.2 and 5.3, we illustrate the two kinds of
polynomial biplots (described in Section 3.4) based on the
hybrid decomposition resulting from using the orthogo-
nal polynomials for the ordered row and column variables
(Ratings and Rankings) and the Tucker3 components for
the nominal tube variable (Countries). It is also worth not-
ing that in both cases these graphs display the complete
information on the total association and not just one of
the two-way association term (or even just the three-way
association term). This implies that one may also focus on
details in those association terms, even though we do not
do so in the present example, since our primary interest is
in describing the proposed methodology.

5.1 Biplots for the Classical Symmetrical Three-Way
Correspondence Analysis

Figure 1 shows the association of Ratings and Rank-
ings across Countries categories when using the Tucker3
components for the row, column and tube variables; see
also Van Herk and Van de Velden (2007). The dimen-
sionality of the space for their analysis was chosen to be
2 × 2 × 1 and was based on the amount of explained vari-
ance when adding/deleting dimensions. Notwithstanding
the dimension reduction, the resulting explained inertia

FIG. 1. Row isometric biplot according to classical symmetrical
three-way correspondence analysis.

is 17,726, that is, 83% of the total chi-squared statistic.
Having only two row components, the first two axes of
the interactively-coded biplot represent 83% of the total
inertia. Here, the Rankings and Countries categories are
interactively-coded and are visually represented by stan-
dard coordinates while the Ratings categories are depicted
using principal coordinates. In classical three-way corre-
spondence analysis of Figure 1, the origin of the plot rep-
resents the independence among the variables.

In Figure 1, the point labelled rat9 represents the rating
score 9. The points labelled R9G, R9F, R9S, R9I, R9UK
represent the rank of 9 given in Germany, France, Italy,
Spain and UK, respectively. It can be seen that the items
considered least important (i.e., having ratings/rankings
of 1 and 2) are located on the right-hand side of the plot,
while the items considered most important (i.e., those
with ratings/rankings of 8 and 9) are located on the left-
hand side of the plot. Indeed, a hierarchy from least to
most important can be clearly distinguished when look-
ing at the ranking scores across the five countries, but it is
less evident when observing the rating values. On the right
side of the plot, we can see only rat1 and rat2, while the
remaining rating categories are on the left side of Figure 1.
Therefore, there is a clear inconsistency between the rank-
ings of 6 and 7, and the rating of 3. As noted by Van Herk
and Van de Velden (2007), the distances between scale
points are not equal for either rating or ranking points.
For example, the distance between rating points 8 and 9 is
smaller than that between rating points 1 and 2. Further-
more, it can be observed that countries have been placed
in the same order for each ranking score; Germany is lo-
cated furthest from the origin, the UK is located closest
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to the origin and the other countries lie in between the
two. Figure 1 also shows more consistency between the
high ranking score of Germany, France, Italy, Spain and
UK (R9G, R9F, R9S, R9I, R9UK) and the high rating cate-
gory, rat9. The ranking-country association suggests pos-
sible differences in response patterns between countries.
Indeed, there are also differences in the use of ranking
between countries. Participants in Germany (points R1G
through to R9G) show more discrimination in their rank-
ings than participants in, for example, Italy or UK, whose
points are closer to the origin of the plot.

5.2 Interactively-Coded Polynomial Biplot for the
Symmetrical Hybrid Decomposition

As explained above, the polynomial interactively-coded
biplot has the same structure as its classic version, but now
the axes are defined in terms of the orthogonal polynomi-
als. Thus a comparison between the two rests on the inter-
pretation of the axes and on the meaning of the origin of
the plot.

In the polynomial biplot of Figure 2, the Ratings vari-
able is depicted using standardised coordinates, while the
interactively coded categories of Rankings and Countries
are depicted using principal coordinates; the polynomial
axes of Figure 2 account for about 84% of the total ex-
plained inertia (see Table 8 and the inertia of row poly-
nomials in Section 4.5.1). The horizontal polynomial axis
of Figure 2 reflects the linear polynomial of the Ratings
variable and is weighted with respect to the row propor-
tions. Similarly, the vertical polynomial axis reflects the
quadratic polynomial of the variable and is also weighted
with respect to its marginal proportions. As the data are

FIG. 2. Interactively-coded polynomial biplot from an ordinal sym-
metrical three-way correspondence analysis.

centred at the origin of the plot, and the rows are depicted
using standard coordinates, the origin of the plot corre-
sponds to the position of the mean rating; which is shown
to be 3 (rat3). We note that the categories of the Rat-
ings variable do not follow a perfect parabolic curve since
there are large differences in the linearity (or mean val-
ues) of its categories. Based on the principal coordinates
only, distances between the interactively-coded Rankings-
Countries categories can be measurable and interpretable.
For example, the highest ranking values for Germany and
France, R9G and R9F, are close to each other showing the
greatest consistency than any other Rankings-Countries
pair.

When examining the rankings, the ranks of 4, 5, and 6
across all of the countries are associated with a low rating
value of 2 and 3, showing that there exist inconsistencies
in how the different countries rate. The mean value of the
two lowest rating levels, rat1 and rat2, are less than the
overall mean rating (since these categories are located on
the left side of the plot) while rat 4 through to rat9 have a
mean value that is higher than the overall mean.

We can also observe some differences across countries
in terms of ranking variability. For example, rankings are
higher for Germany and France (note the large cooordi-
nates on the second axis for R9G and R9F) while the
rankings are lower for Spain, Italy and UK. Given the
large coordinate values along the first and second axis,
note that there is a strong association between the highest
level of rating (rat9) and the highest level of ranking given
by Germany and France (R9G and R9F). One can also see
that there exists an association between the lowest level
of rating (rat1) and the lowest level of ranking for Ger-
many, Spain and UK (R1G, R1S and R1UK). Figure 2 also
shows that the increasing rating levels are associated with
increasing levels of ranking, but not at the same level (e.g.,
rat3 is strongly associated with R6G, R6F). This is con-
sistent with the two-way association terms summarised in
Table 1; recall that the inertia for Ratings × Rankings and
Ratings × Countries accounted for 86% and 3%, respec-
tively.

5.3 Single-Variable Polynomial Biplot for the
Symmetrical Hybrid Decomposition

The biplots constructed under a single-variable isome-
try are interpreted in a similar way to interactively-coded
biplots. However, it is the basis of the space in which the
categories of the variables are displayed that is different.
The variable coordinates are now determined by the axes
of the interactively-coded Rankings and Countries vari-
ables.

5.3.1 Linear-by-quadratic polynomial biplots. For the
single-variable polynomial biplot of Figure 3, the hor-
izontal axis consists of the combination of the linear
Rankings polynomial, β1, and the first generalised axis
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FIG. 3. Single-variable polynomial biplot from an ordinal symmetri-
cal three-way correspondence analysis.

(Tucker3 component) for Countries, c1, while the ver-
tical axis stems from the combination of the quadratic
Rankings polynomial, β2, and, again, the first gener-
alised Countries axis, c1. Therefore, we note that there are
parabolic trends between the interactively-coded column-
tube variables and the row variable (see Section 4.5.2).
In Figure 3, for all countries, the parabolas are concave.
Since the narrowness of the parabolas is determined by
the size of the quadratic polynomial coordinates of Rank-
ings, higher coordinates produce narrow parabolic trends
(e.g., UK and Italy) and coordinate values close to zero
lead to flat parabolas. Here, unlike the interactively-coded
biplot of Figure 2, the Rankings-Countries categories are
depicted using standard polynomial coordinates and the
rating categories are depicted using principal polynomial
coordinates. Therefore, only distances between rating cat-
egory points can be properly assessed. As the column-
tube categories have standardised coordinates in Figure 3,
the origin of the plot represents the mean of the rankings;
it shows that the mean ranking across all Countries is 5
(R5). This mean ranking is strongly associated with rat-
ings 2 and 3 (rat2 and rat3).

As we described for Figure 1, it can be observed from
Figure 3 that the countries have been placed in the same
order for each ranking score. However in contrast to Fig-
ure 1, participants in Italy show less discrimination in
their rankings as Italy is located closest to the origin fol-
lowed by UK, France, Spain and Germany, where the lat-
ter is always the furthest country from the origin. Further-
more, given the isometry of the Ratings variable, Figure 3
shows that the distance of rat9 from rat8 is much shorter

than the distance of rat1 from rat2. Therefore the partici-
pants show less discrimination in their high ratings than in
the lowest ratings. Figure 3 accounts for 82% of the total
inertia which is commensurate with Figure 2.

Note that, for all countries, say for example Germany
(G), the Ranking categories lie in a linearly decreasing or-
der along the horizontal axis of Figure 3. The low levels
of Rankings, R1 and R2, across the countries are primarily
associated with the low level of Ratings (rat1) that lie on
the right side of the horizontal axis below the mean of the
linear polynomial of Rankings. Furthermore, items con-
sidered least important with a rating of 2 (rat2) are located
on the right-hand side of the biplot, showing a strong as-
sociation with R4, while ratings of 6, 7, 8 and 9 (rat6,
rat7, rat8, rat9) are located on the left of the plot, above
the mean of the linear polynomial of Rankings (R5). How-
ever, items with ratings of 3, 4 and 5 (rat3, ra4, rat5) are
on the same side of the plot showing some inconsistencies
between rankings and ratings, and appear more evident
than what Figure 1 shows.

5.3.2 Linear-by-linear polynomial biplots. Figure 4 is
the polynomial biplot of linear-by-linear hybrid polyno-
mials. Therefore, the configuration of the plot is akin to
the spokes of a cartwheel, where all lines go through the
origin due to the centring of the orthogonal polynomials
(see Section 3.4.3). In Figure 4, the horizontal axis is the
combination of the linear ranking polynomial, β1, and the
first generalised singular axis (Tucker3 component) for
Countries, c1, while the vertical axis is the combination
of the linear Rankings polynomial, β1, and the second
generalised singular Countries axis, c2. From Table 7, we

FIG. 4. Single-variable polynomial biplot by ordinal symmetrical
three-way correspondence analysis.
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can see that, on this second Tucker3 axis, UK and Spain
have a larger score than they do on axis c1 and are op-
posite in sign, while France and Germany have the same
score sign on the two Tucker3 axes, c1 and c2. Indeed,
we also observe that the score of Italy along c2 is close
to zero, and so the ranking of Italy lies almost adjacent to
the first axis. All ranking categories are linearly ordered
on both the horizontal and vertical axis, while the inter-
actively coded categories R5G, R5F, R5S, R5I, R5UK all
have a zero coordinate as the mean ranking is 5.

As in Figure 3, the explained inertia along the horizon-
tal axis is 66%; see also Table 10. Along the vertical axis,
the explained inertia is 2%. Figure 4 accounts for 68% of
the total inertia. This reduction in quality, when compared
with Figures 2 and 3, can be explained because of the
large number of polynomials required to optimally depict
the association. However, Figure 4 does provide an inter-
esting representation of the linearity of the interactively-
coded ranking-country categories.

In the interactively-coded biplot of Figure 4, we ob-
serve that all categories for Spain and UK lie on the same
line and the ranking categories (R9 through R1) lie in a
linearly decreasing order from the top-left to the bottom-
right. We also note a reversal of ordering of rankings for
Germany and France, when compared to Spain and UK;
see Table 7.

In contrast to Figure 1, when only considering the lin-
earity of ranking categories (ignoring its variability unlike
Figure 2), Figure 4 shows that the participants of Spain
and UK are very consistent in their rankings of items. It
also shows that the participants in Germany and France
have similar rankings. However, Italian participants ex-
hibit very little variation in how they rank, highlighting a
very different approach when ranking items.

6. CONCLUSION

The methodology of both symmetrical and non-sym-
metrical ordered three-way correspondence analysis has
been discussed with the aim of showing how both order-
ing and dependency can be incorporated into the mod-
elling of the association of the three variables using three-
way correspondence analysis. The major benefits of in-
cluding such design aspects into the analysis include its
ability to incorporate pre-existing information about the
data in the modelling phase.

Including the order of the categories has been achieved
by replacing the singular vectors with orthogonal poly-
nomials. Generating orthogonal polynomials (Favard,
1935, Chihara, 1978, 1990) using the recurrence formu-
lae described for categorical variables by Emerson (1968)
has been shown to be especially useful in this respect.
These polynomials provide information about the sources
of variation in the variables by examining their linear,
quadratic or higher-order trends, which is difficult to do

using the Tucker3 approach or other similar nominally
structured methods of three-way decomposition.

The orthogonal polynomials (and/or the singular vec-
tors) used for the partition of the three-way measures of
association are computed here for the complete model.
However, the axes derived from these polynomial/singular
vectors are the same as those used in the decomposition of
the various association terms derived from the partition.
To further understand what is gained by considering or-
dered and/or hybrid variants of three-way correspondence
analysis, further investigations can be made to analyse
those association terms that come from the familywise
decompositions of Pearson’s �2 statistic (Lombardo,
Takane and Beh, 2020).

We have described how the technical issues of the vari-
ants of three-way correspondence analysis presented in
this paper can be applied to a three-way contingency table
with a non-symmetrical association structure. A compre-
hensive discussion of all these variants including the issue
of the best model dimension choice shall be left for future
consideration.
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