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Abstract: The multi-index model is a simple yet powerful high-dimensional
regression model which circumvents the curse of dimensionality assuming
E[Y|X] = g(AT X) for some unknown index space A and link function g. In
this paper we introduce a method for the estimation of the index space, and
study the propagation error of an index space estimate in the regression of
the link function. The proposed method approximates the index space by
the span of linear regression slope coefficients computed over level sets of
the data. Being based on ordinary least squares, our approach is easy to
implement and computationally efficient. We prove a tight concentration
bound that shows N~!/2-convergence, but also faithfully describes the de-
pendence on the chosen partition of level sets, hence providing guidance on
the hyperparameter tuning. The estimator’s competitiveness is confirmed
by extensive comparisons with state-of-the-art methods, both on synthetic
and real data sets. As a second contribution, we establish minimax optimal
generalization bounds for k-nearest neighbors and piecewise polynomial re-
gression when trained on samples projected onto any N ~1/2-consistent es-
timate of the index space, thus providing complete and provable estimation
of the multi-index model.
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1. Introduction

Many recent advances in the analysis of high-dimensional data are based on the
observation that real-world data are inherently structured, and the relationship
between the features is often of a lower dimensional nature [1, 6, 30, 31, 41, 42].
A popular model incorporating this assumption is the multi-index model, which
poses the relation between a predictor X € R” and a response Y € R as

Y =g(ATX)+¢, (1)

where A € RP*? is an unknown full column rank matrix with d < D, g : R —
R is an unknown function, and ¢ is a noise term with E[¢|X] = 0, independent
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of X given AT X. In the following we refer to g as the link function and A as
the index space, assuming, without loss of generality, that the columns of A are
orthonormal [16]. Model (1) asserts that the information required to predict the
conditional expectation

f(@) = E[Y|X = 2] = g(ATx) (2)

is encoded in the distribution of AT X. Therefore, knowing the projection P :=
AAT allows to estimate f in a nonparametric fashion with a number of samples
scaling with the intrinsic dimension d, rather than the ambient dimension D.

In this work we derive and analyze a method for estimating f under the model
assumption (1) from a given data set {(X;,Y;) : ¢ =1,..., N}, where (X,,Y;)
are independent copies of (X,Y"). In the first step we construct an estimate P of
the projection P, whereas the second step estimates f, respectively g, by means
of classical nonparametric estimators on the projected data set {(PXi, Y):i=
1,...,N}. To construct P we first divide the range of Y into J subintervals, and
assign each sample X; to a different level set depending on which interval its
response Y; belongs to. After that, we compute the vector of linear regression
coefficients on each level set. We do not use such coefficients to locally estimate
f, but rather as an estimate of the average gradient of f on the level set. Our
estimate P is then simply defined as the orthogonal projector onto the subspace
generated by the J vectors of linear coefficients. Since our approach is based
on solving localized least squares problems, where localization is enforced by
conditioning on the response variable, we call our method response-conditional
least squares (RCLS). A detailed description of RCLS follows in Section 2.

The proposed method is attractive for practitioners, being computationally
efficient and easy to implement, with only one hyperparameter (the number
of level sets J) to be specified. An additional advantage is that ordinary least
squares can be readily exchanged by variants leveraging priors such as sparsity
[34, 50] and further. RCLS is also provable, with strong theoretical guarantees
neatly derivable from a few reasonable assumptions. In particular, denoting by
I-|| » the Frobenius norm, we establish a tight concentration bound

|- Pl s €5 ®)
which disentangles the influence of the sample size N and the parameter J on
the performance of our estimator (Corollary 8). Furthermore, we provide finite
sample generalization bounds for model (1) accounting for the projection error
| P — PJ|, measured in spectral norm |-||, in the reduced regression problem.
We analyze two popular nonparametric methods, namely k-nearest neighbors
regression (kNN) and piecewise polynomial regression, and prove that, for s-
Holder regular functions g, the estimator f satisfies the generalization bound
(up to logarithmic factors)

2

E|f(X) - f(X)|" § N +

“5 . P||min{25,2}’ (4)
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where s € (0,1] in the case of kNN, and s € (0,+00) in the case of piecewise
polynomials (Theorems 11 and 14). The bound (4) shows that optimal esti-
mation rates (in the minimax sense) are achieved by traditional regressors for
d=1and s> 3, ord>2and any s > 0, provided that |P—P||<N-Y2 In
particular, combining (3) and (4) we obtain that RCLS paired with piecewise
polynomial regression produces an optimal estimation of the multi-index model.

Before providing a general literature review in the next section, we note
that this work builts on [27, 28], which analyze estimators based on response-
conditional least squares vectors for the single-index model and a nonlinear
generalization thereof. While we can resort here to some results developed in
[27] for determining the accuracy of local least squares vectors, the analysis
requires extension to the multi-index case. Furthermore, in the present paper
we derive a regression analysis of the link function, complementing index space
estimation by RCLS and beyond.

1.1. Related work

Many methods for estimating the index space have been developed in the sta-
tistical literature under the name of sufficient dimension reduction [35], where
the multi-index model is relaxed to

Y L X|ATX. (5)

Note that this setting generalizes our problem since (1) and ¢ I X|ATX im-
ply (5). A space Im(A) satisfying (5) is called a dimension reduction subspace,
and if the intersection of such spaces satisfies (5) it is called central subspace.
Except for degenerate cases, a unique central subspace exists [10, 11]. One can
also consider a model where (5) is replaced by Y I E[Y|X]|AT X, which leads
to the definition of central mean subspace [13]. In the case of model (1) with
¢ I X|AT X, the space Im(A) is both the central subspace and the central mean
subspace [13]. Thus, we will treat related research under the same umbrella.

The methods for sufficient dimension reduction can broadly be grouped into
inverse regression based methods and nonparametric methods [1, 45]. The first
group reverses the regression dependency between X and Y and uses moments
of the conditional predictor X|Y to construct a matrix A with Im(A) C Im(A).
The most prominent representatives are sliced inverse regression (SIR/SIRII)
[38, 39], sliced average variance estimation (SAVE) [12], and contour regres-
sion/directional regression (CR/DR) [36, 37] (see Table 1 for the corresponding
definition of A). Linear combinations of related matrices A have been called
hybrid methods [59]. Furthermore, in the case where X follows a normal dis-
tribution, two popular methods are principal Hessian directions (pHd) [40] and
iterative Hessian transformations (iHt) [13]. In this setting, A is the averaged
Hessian matrix of the regression function, which can be efficiently computed
using Stein’s Lemma.

If Im(A) C Im(A), eigenvectors corresponding to nonzero eigenvalues of A
yield an unbiased subspace of the index space Im(A). A typical assumption to
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guarantee this is the linear conditional mean (LCM), given by E[X|PX]| = PX.
It holds, for example, for all elliptically symmetric distributions [38, 45]. Meth-
ods based on second order moments usually need in addition the constant con-
ditional variance assumption (CCV), which requires Cov (X|PX) to be non-
random. In particular, the normal distribution satisfies both LCM and CCV. If
Im(A) = Im(A), a method is called ezhaustive. A condition to ensure exhaus-
tiveness is E[v" Z|Y] being non-degenerate (i.e. not almost surely equal to a
constant) for all nonzero v € Im(A), where Z is the standardization of X. In
Table 1 we denote this condition by RCP (random conditional projection), and
by RCP? when E[v' Z|Y] is replaced by E[(v Z)?|Y].

TABLE 1
A summary of prominent inverse regression based methods (plus pHd). We let Z be the
standardized X, and (Z',Y") an independent copy of (Z,Y). The table omits details on
contour regression [37] (strongly related to DR), iterative Hessian transformations [15]
(related to pHd), and hybrid approaches [59] (linear combinations of methods above).

Method Matrix A Im(A) C Im(A) Im(A) =Im(A)
SIR  [38] Cov (E[Z|Y]) LCM RCP

SIRII [39] E(Cov(Z|Y)—ECov(Z|Y))? LCM and CCV  N/A

SAVE [12] E(ld — Cov (Z|Y))? LCM and CCV ~ RCP or RCP?
DR  [36] E(2ld— Cov(Z — Z')|Y,Y"))? LCM and CCV ~ RCP or RCP?
pHd [40] E(Y —EY)(X —EX)(X —EX)"T  normal X N/A

As inverse regression based methods require only computation of finite sam-
ple means and covariances, they are efficient and easy to implement. The matrix
A is usually estimated by partitioning the range Im(Y') = U{leJ’e and approx-
imating statistics of X|Y by empirical statistics of X|Y" € R .. Therefore, only
a single hyperparameter, the number of subsets J, needs to be tuned. A strategy
for choosing J optimally is not known [45].

Nonparametric methods try to estimate the gradient field of the regres-
sion function f based on the observation that the d leading eigenvectors of
E[Vf(X)Vf(X)T] (assuming f is differentiable) span the index space. The con-
crete implementation of this idea differs between methods. Popular examples are
minimum average variance estimation (MAVE), outer product of gradient esti-
mation (OPG), and variants thereof [58]. While MAVE converges to the index
space under mild assumptions, it suffers from the curse of dimensionality due to
nonparametric estimation of gradients of f. The inverse MAVE (IMAVE) [58]
combines MAVE with inverse regression, achieving N~'/2-consistency under
LCM. Sliced regression [55] collects local MAVE estimates on response slices,
producing N~1'/2-consistent index estimates free of LCM for d < 3. Further-
more, iterative generalizations of the average derivative estimation (ADE) [21]
have been proved to be N~/2-consistent for d < 3 and d < 4 [15, 23].
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Compared to inverse regression methods, nonparametric methods rely on less
stringent assumptions, but are computationally more demanding, require more
hyperparameter tuning, and are often more complex to analyze. The relation
between inverse regression and nonparametric methods has been investigated
in [44, 46] by introducing semiparametric methods. The authors showed that
the computational efficiency and simplicity of inverse regression methods come
at the cost of assumptions such as LCM/CCV. Moreover, they demonstrated
that inverse regression methods can be modified by including a nonparametric
estimation step to achieve theoretical guarantees even when LCM/CCV do not
hold.

The work presented above focuses mainly on index space estimation, not pro-
viding ways to estimate the link function or generalization bounds for the pro-
jected regression problem. Other methods have been studied, addressing both di-
mensionality reduction and regression in the case d = 1 [8, 24, 28, 32, 33, 43, 49]
ord>119, 18, 57]. The multi-index problem was also considered in an active
sampling setting, where the user is allowed to query data points (X,Y) and
the goal is to minimize the number of queries [16, 22]. Moreover, model (2) has
strong ties with shallow neural network models f(z) = 3" | g;(a ), which are
currently actively investigated [17, 25, 48, 52].

1.2. Organization of the paper

Section 2 describes RCLS for index space estimation. Section 3 presents the-
oretical guarantees on the population level and in the finite sample regime.
Section 4 establishes the generalization bound (4). Section 5 compares RCLS
with state-of-the-art methods on synthetic and real data sets.

1.3. General notation

We let Ny be the set of natural numbers including 0 and [m] := {1,...,m} for
any positive integer m. We write a V b := max{a,b} and a A b := min{a, b}.
Throughout the paper, C stands for a universal constant that may change on
each appearance. We use || -|| for the Euclidean norm of vectors, and |||, ||-|| » for
the spectral and Frobenius matrix norms, respectively. The notation O(G(T))
defines the class of functions F(T) for which there exist C' and Tj such that
|F(T)| < CG(T) for all T > Ty. For a symmetric real matrix A € RP*P | we
denote the ordered eigenvalues as A;(A) > --- > Ap(A) and the corresponding
eigenvectors as ui(A),...,up(A). The Moore-Penrose inverse of A is denoted
by Af.

We denote expectation and covariance of a random vector X by E[X] and
Cov (X), respectively, and let X := X — E[X]. The sub-Gaussian norm of a
random variable Z is || Z]|,, := inf{t > 0 : Eexp(Z*/t*) < 2}. Similarly, the
sub-Exponential norm is [|Z]|,,, = inf{t > 0 : Eexp(|Z]/t) < 2}. Finally, we
abbreviate the mean squared error of an estimator f of f by MSE(f, f) =
EIF(X) — F(X)[2,
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2. Index space estimation by response-conditional least squares

In this section we describe response-conditional least squares (RCLS), first on
the population level and then in its actual empirical implementation. Further-
more, we highlight advantages and disadvantages of the approach compared to
other methods in the literature (see Section 1.1).

RCLS Let Im(Y) = U/_, R be an arbitrary decomposition of the range into
J intervals. For instance, in the case of a bounded range Im(Y') = [0, 1), we can
think of Ry, := [5’71, §) The vector of linear slope coefficients on the level set
R, is defined by

bre:= ZTM Kie,
where
2J7g := Cov (X|Y S RJJ) , and KJ,Z := Cov (X, Y‘Y S RJJ) .

Intuitively speaking, b, can be seen as an averaged gradient of the regression
function f over the level set f~1(R,,). Taking into account the model (2),
we expect by, to lie in the index space Im(A), under suitable assumptions.
This motivates to approximate the index space by the leading eigenvectors of a
(weighted) outer product matrix of the vectors {b¢ : £ € [J]}. We thus define
the projection

d
Pj = Zui(MJ)Ui(MJ)Ta

i=1
where

J
My:=> pribseby, and pre =P € Ryp).
(=1

In practice we have to replace the quantities just defined with sample estimates.
To this purpose, we assign the samples {(X;,Y;) : i € [N]} to the subsets

Vie=1{Yi:Yi€Rye}, and Xjp:={X;:Y;€ Ry}, (6)

which we refer to as level sets in the following. On each level set, we solve the
ordinary least squares problem

bye =35 Ky,
where

2.]74 = EXj (X - IEX‘MX)(X - IE‘)(‘M.X)T7
KJ,Z = E(XJ,Z7yJ,2)(X - EXJ,zX)(Y - Eyny)
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and E Xy IAEyJ, . and E( X7.0,Y,) denote the usual finite sample means. We there-
fore compute

d
Pj(d) = Zui(MJ)ui(MJ)T,
i=1
where
J
. T R | X6
M; = ;PJ,ebubIz, and P = N

The parameter d<dis user-specified and ideally equals dim(span{bs, : ¢ €
[J]}) in the limit N — oo. If this value is unknown, we select it via model
selection techniques or by inspecting the spectrum of M. The procedure for
the index space estimation using RCLS is summarized in Algorithm 1.

Algorithm 1 Index space estimation via RCLS

Input: Data set {(X;,Y;) : i € [N]}, parameters J and d
Output: Orthoprojector Py (d)
split data into {Xj, : € € [J]} and {Vj, : £ € [J]} according to (6)
for{=1,...,Jdo .
Sre=Ex (X —Ex, , X)(X —Ex, ,X)T
Kje:= IE(XJ,ZvyJ,Z) (X - EXJ,eX)(Y —Ey,,Y)

by = 23’2 Ky

paei=|Xse| N7
epd for o
My =%, Paebred],

Py(d) =% wi(My)yu; (M )T

Remark 1 (Choice of partition). The proposed method offers much flexibility
in choosing a decomposition of the range Im(Y’) because both practically and
theoretically we require fairly minimal assumptions (e.g. no need for disjoint or
bounded sets R ). The most stringent requirements in theory are dim(My) =
d, so that we can exhaustively estimate the index space Im(A), and a lower
bound for the minimal probability mass p s min := mingc(j P(Y € Ry.), because
our bounds suggest that the accuracy degrades linearly in 1/p min-

In practice and without a priori knowledge, we recommend one of the two
following choices:

1. using J equisized intervals of [min,c|y) Y;, max;cin) Yil;
2. using statistically equivalent blocks, i.e. split [min;e[n] Y;, max;e[ny Yi] into
J connected intervals with equally many samples (+1 sample).

Option 2 is the statistically robust choice because it balances the mass in level
sets and thus generically balances estimation errors incurred due to BJ,Z ~byein
each level set. However, Option 1 can perform better if the corresponding least
squares vectors {bs, : £ € [J]} are less coherent, leading to a stabler extraction
of the leading d-dimensional eigenspace of M.
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The influence of parameter J on the accuracy of RCLS, even under the two
generic decomposition choices mentioned above, is highly nontrivial, implying
that choosing J a priori without problem knowledge is challenging. Practically,
we therefore recommend using cross-validation over a range {d,d+1, ..., Jmax}»
or a subset thereof. If the problem at hand is favorable to the RCLS estima-
tor, choosing large J can lead to an improved accuracy of P J(J) because finer
decompositions play favorably with estimating the vector b, in each level set.
On the other hand, increasing J also reduces the signal-to-noise ratio in each
level set (in the presence of noise ¢) so that large J generically degrades the
accuracy of RCLS. We return to the influence of J on the performance of RCLS
in Section 3.2.3 and in experiments in Section 5.

Remark 2 (Algorithmic complexity). The main computational demand is con-
structing the vectors {bs : £ € [J]}. Assuming we use a partition of disjoint
level sets R j ¢, i.e. each sample is only used once in the construction of M 7, the
cost for this is O(Y5_, | Xz D?) = O(ND?).

Comparison of RCLS with inverse regression methods In RCLS, re-
sponse conditioning serves to localize and produce multiple estimates rather
than induce anisotropy in the marginal distribution (e.g. no conditioning is re-
quired in the single-index case); hence, it is not a typical inverse regression
method. At the same time, it shares the same general advantages: it is sim-
ple, computationally efficient, and provable. On par with all inverse regression
methods, RCLS requires the LCM assumption. Although it is often more or at
least as accurate as second order inverse regression methods, such as CR and
DR, it does not need the CCV assumption. This is a major generalization since,
as pointed out in [45], assuming both LCM and CCV for all directions reduces
X to the normal distribution. RCLS low computational cost matches that of
typical inverse regression estimates (except CR, which is O(N2D?)).

Comparison of RCLS with nonparametric methods Essentially relying
on gradient field estimation, RCLS has strong ties with nonparametric methods,
but it has lower computation cost and it is easier to implement. Note that non-
parametric methods typically involve kernel smoothing, leading to complexities
quadratic in the sample size V. Such costs are linearizable resorting for example
to nearest neighbor truncation, but while naive kNN still requires the computa-
tion of O(N?) distances, hierarchical structures for fast neighbor search, such as
k-d and cover trees [3, 4], imply constants exponential in the dimension D, not to
mention the overhead resulting from cross-validating the number of neighbors.
Cross-validation is in principle also required for bandwidth selection, even for
joint tuning of two different bandwidths [55], since optimal choices beyond rules
of thumb (e.g. the “normal reference”) are to date an open problem. Last but
not least, kernel estimates are sensitive to the curse of dimensionality, whose
overcoming requires further complications, algorithmic tweaks, initializations
and iterative procedures [55, 58].
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3. Guarantees for RCLS

All quantities thus far are defined through the random vector (X,Y’) without
using the regression function. In fact, in this section we can technically avoid
specifying the regression function by defining P as the orthogonal projection
onto the minimal dimensional subspace such that

(A1) Y 1L X|PX.

As mentioned in Section 1.1, (A1) uniquely defines Im(P) except for degenerate
cases, which we exclude here. Moreover, (1) with ¢ 1. X|AT X implies (A1).
In the following analysis, we also require the following assumptions.

(A2) E[X|PX] = PX almost surely;
(A3) X and Y are sub-Gaussian random variables.

(A2) is the LCM assumption introduced in Section 1.1 and is required in all
inverse regression based techniques like SIR, SAVE or DR. It is satisfied for
example for any elliptical distribution and ensures Im(M ;) C Im(A) as shown
in Proposition 3 below. (A3) is maximally general to use the tools developed in
the framework of sub-Gaussian random variables, namely finite sample concen-
tration bounds. Examples of sub-Gaussian random variables include bounded
distributions, the normal distribution, or more generally random variables for
which all one-dimensional marginals have tails that exhibit a Gaussian-like de-
cay after a certain threshold [54].

3.1. Population level

The population level results are summarized in the following proposition.

Proposition 3. If (X,Y) satisfies (A1) and (A2), then by, € Im(A) for any
e [J] and any J. Also, Im(My) C Im(A), with equality iff \g (M) > 0.

We need the following result for the proof of Proposition 3.
Lemma 4. Let Q :=1d — P. Under (A1) and (A2), we get

(a) E[X|Y] =E[PX|Y] almost surely, or equivalently E[QX|Y] = 0;
(b) Cov(X |Y)=Cov(PX |Y)+ Cov(QX |Y) almost surely.

Proof. (a). The towering property of conditional expectations yields E[X|Y] =
E[E[X|PX,Y]|Y]. Assumption (Al) impliess YV 1L X|PX, and thus
E[X|PX,Y] = E[X|PX] = PX by assumption (A2).
(b). By the law of total covariance,
Cov (PX,QX|Y) = E[Cov (PX,QX|PX,Y)|Y]
+ Cov (E[QX|PX,Y],E[PX|PX,Y]|Y) = 0 +0,

where we used E[X|PX,Y] = PX as shown in the proof of (a). Therefore,
Cov(X |Y)=Cov(PX+QX|Y)=Cov(PX |Y)+Cov(QX |Y). O
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Proof of Proposition 3. We only show that b;, € Im(A) for all Ry, since
Im(My) C Im(A) follows immediately. We have

Cov(QX,YY € Rje) =E[Cov (QX,Y|Y)|Y € Ry,
+ Cov (E[QX|Y]E[Y|Y]IY € Ry)
— 0+ Cov (E[QX|Y], Y]V € Ryy) =0,

where the last equality follows from E[QX|Y] = 0 by Lemma 4. Therefore

K= Cov (PX,Y|Y € Ryy) + Cov (QX,Y|Y € Ryy)
= Cov (PX,Y|Y € Ry,) +0.

Furthermore, statement (b) of Lemma 4 implies
Y= Cov(PX|Y € Ryp)+ Cov(QX|Y € Rye),

hence the eigenspace of ¥;, decomposes orthogonally into eigenspaces of
Cov (PX]Y € Rj,) and of Cov (QX|Y € Ry¢). The same holds for ZTM because

the eigenvectors are precisely the same as for ¥ ;,. This implies ZS o2 € Im(P)
for all z € Im(P), and the result follows by

bre =3, Ky =30, Cov(PX,Y|Y €R,y) € A. O

Exhaustiveness Proposition 3 ensures exhaustiveness of RCLS (on the pop-
ulation level) whenever d out of the J least squares vectors by, are linearly
independent. Even when this is not the case, we believe that RCLS generically
finds a subspace of the index space that accounts for most of the variability in
f, thereby allowing for a sufficient dimension reduction. The rationale behind
this is that the b ¢’s can be interpreted as averaged gradients over approximate
level sets, and thus they provide samples of the first order behavior of f along
the chosen partition. This claim is supported numerically in Section 5.2, where
RCLS performs better or as good as all inverse regression based methods listed
in Table 1.

Analyzing the exhaustiveness of inverse regression estimators is challenging
since in general it is easy to construct examples where some directions of the
index space only show up in the tails of (X,Y"). This also justifies why most
typical exhaustiveness conditions such as RCP and RCP? are formulated on the
nonquantized level, and therefore do not quite imply exhaustiveness of the actual
quantized estimator. The only exception we are aware of is [37, Theorem 3.1],
where sufficient conditions for the exhaustiveness of the estimator are provided
by decoupling the roles of regression function and noise.

Lastly, we mention that it is possible to further enrich the space Im(M )
by adding outer products of vectors Bb;, for matrices B which map Im(P) to
Im(P). This resembles the idea behind the iHt method [14], where B is chosen
as a positive power of the average residual- or response-based Hessian matrix
[14, 40]. Other choices are powers of X, or ETIW which map Im(P) to Im(P)
under (A1) and (A2).
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3.2. Finite sample regime

We now analyze the finite sample performance of P, J(J) as an estimator for the
orthoprojector Py. Our main result (Corollary 8) establishes convergence at rate
N—1/2 while additionally tracking the dependence on the hyperparameter .J.
Convergence will be proved using the Davis—-Kahan theorem followed by con-
centration inequalities. For hyperparameter characterization, it will be crucial
to exploit anisotropy using the techniques recently derived in [27].

To understand the role of anisotropy in RCLS, recall that P; is the pro-
jection onto the span of least squares vectors {bs, : ¢ € [J]}, which are ob-
tained after conditioning responses in range subintervals, namely ¥ € R ;.
Response conditioning induces anisotropy in the distribution of predictors, as
encoded in the spectral properties of the conditional covariance matrix ¥, =
Cov (XY € Rj;). When concentrating on ¥ ;,, an isotropic bound would pay
maximum variance factors indiscriminately for all directions. An anisotropic
bound, on the other hand, separates the directions of smaller variance, allow-
ing to capture directional dependencies induced by the conditioning and hence,
ultimately, by the hyperparameter .J.

We expound on anisotropic concentrations for ordinary least squares in Sec-
tion 3.2.1. After these technical preliminaries, we bound the estimation error of
RCLS in Section 3.2.2. In Section 3.2.3 we show numerically that our bounds ac-
curately describe the influence of the hyperparameter. Throughout all sections
we let X|;, and Y|, denote the random variables X and Y conditioned on
Y € Ry By (A3) and Lemma 18, X|,, and Y|, are sub-Gaussian whenever
pre > 0, which implies that ||.X| ||y, and ||Y |||y, are finite. Moreover, we
define Py, as the orthoprojector onto span{b;,} and Qs :=Id — Pj,.

3.2.1. Anisotropic concentrations

An anisotropic concentration bound for b 7,6 — by ¢ uses the orthogonal decom-
position

bre—bre=Pro(bse—bre) +Qrilbre—bre) = Pre(bse —bre) + Qe

and finds separate bounds for the terms PJ’Z(Z;LL[ —bye) and Qj,el;]’[. To see
why those terms play different roles when estimating Im(P), let us consider the
illustrative case of the single-index model, where P = aa' for some a € SP~1.
We can estimate a by the direction of any b ¢, because any nonzero b ¢ is aligned
with ¢ under (A1) and (A2). Using few algebraic manipulations we have, with
Q:=Id-P,

b by bre HQb“H
T | = ~ - = ~
b bol| MOl ™ oell = || P = bso)

(7
|

)

whenever IA)IEb J¢ > 0. This reveals that the error is dominated by ||Ql; gL

whereas | P(b¢—by)| is a higher order error term as soon as | X | is sufficiently
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large. A similar observation will be established for higher dimensional index
spaces in (11) below.

Anisotropic concentration bounds for ordinary least squares vectors have been
recently provided in [27]. To restate the bounds, we introduce a directional sub-
Gaussian condition number £ := k(Pye, X|se) V (Q e, X|s¢), where (recall
Z=27-E2)

- 2
K(L, X) = HLCOV (X)TX‘

Lf(‘

2
2 ¥
As described in [27], (L, X) is related to the restricted matrix condition number
defined by %(L, Cov (X)) := ||L Cov (X)' L|| | L Cov (X) L||, which measures the
heterogeneity of eigenvalues of Cov (X), when restricting the eigenspaces to
Im(L). In fact, if X follows a normal distribution, the sub-Gaussian norm is a
tight variance proxy and (L, X) differs from £(L, Cov (X)) by a constant factor
that only depends on the precise definition of the sub-Gaussian norm.

We further introduce the standardized random variable Z| s := E;y °X| g0

/2

where Z;i is the matrix square root of ZT“. As a consequence of the stan-

dardization, we have Cov(Z| ) = Idp.
Lemma 5 (Anisotropic ordinary least squares bounds). Let J € N, ¢ € [J] and

assume (A3). For fized u > 0, € > 0, with |Xje| > C(D + U)(HZ|J7E||,L4P2 VeT?),
we get, with probability at least 1 — exp(—u),

HPJ,z(bJ,z - iU,z)H <eRie H?\J,sz HPJ,zETMXlJ,sz , (8)
2 2
HQJ,ZISJ,ZH <eKis H?\J,eHw HQJ,EZTJ,[X|J,EHw . 9)
2 2

Furthermore, we have

el < 2||Ple | |[PrezheXlae, - (10)
P2 ’ p2

Proof. The concentration bounds are precisely [27, Lemma 14] adjusted to the

notation used here. (10) follows from b;, = PMET“ Cov (X|se,Y|se) and [27,

Lemma 6.5]. O

Equations (8) and (9) in Lemma 5 reveal that the concentration of Py ¢(be—
bye) and Qb e scale with sub-Gaussian norms of PUET,’ZX, and QMET,’ZX

(we can intuitively think of ||.P‘]7[ET]7€.PJ’@H, and ||Q-MEE,1€Q17£”)~ In many sce-
narios, both norms, if viewed as functions of the parameter J, behave very dif-
ferently. This is because increasing the number of level sets J typically reduces
the variance in the direction of the least squares solution b;,, and therefore
increases ||PJ,[2T]’4PJ7[||7 while HQ‘],ZZTLZQ‘]’[” is often not affected. The effect
is particularly strong for single-index models with monotone link functions, as
illustrated in Figure 1, but it can also be observed in more general scenarios, for
instance if f follows a monotone single-index model locally on one of the level
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1023.6

705.0

386.4

Fia 1. We sample X ~ Uni({X : || X|| <1}) and Y = 1/(1+exp(—X1)), and show ||PETJ£P||
(top) and ||QET”Q|| (bottom) row for P = ere] , Q = |d—P, and all ¢ € [J] for J € {5, 10, 15}.
The red lines mark local ordinary least squares vectors. We see that HPEB[PH increases

substantially when increasing the number of level sets J, while HQEEeQH remains roughly
constant.

sets. Recalling (7), using anisotropic concentration is therefore necessary, if we
alm at an accurate description of the projection error in terms of both, N and

J.

To simplify notation in the following, we introduce the shorthands

77&@ = H?b,eHw HPJ>EETJ,£X|J,E‘
2

, Uiz = HY/ J,eH HQJ,@ETJ,ZXlJ,eHw ,
2

P2 P2

and 1, := 77!‘1,@ + nje.

3.2.2. Concentration bounds for index space estimation

Our goal is now to provide concentration bounds for p J(d~) around Pj. Using
the Davis—Kahan theorem [5, Theorem 7.3.1] we have for Q; :=|d — Py

|Pr@ (3t = 315) @,
Ag(My)

G - a,

< - . (11)
AJ(MJ)_HMJ—MJ

HPJ(J)QJHFS

where we used Weyl’s bound [56] to get )\J(MJ) > Nj(My) — | My — M| in
the second inequality. It remains to develop concentration bounds for ||(M; —
M;)Q ||, which dictates the projection error, and || My — Mj|| to ensure that
the denominator does not vanish.

Theorem 6. Let (A1) - (A3) hold. Fiz u > 0, £ > 0, and define

R 7 4 — mi
W Jmax = ?&E?ﬁ ||Z|J,Z||zp2a PJ,min ‘= ?61[151] pPJe-
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Whenever N > C(D + u + log(J))(wJ,max p}jnin V e~2) we have

J
P (HMJ — MJHF < 521/p1’m],m?,7[> > 1 —exp(—u). (12)
=1

Proof. The first step is to decompose the error according to

J
HMJ - MJHF = HZ P (bJ,eb},e - bJ,eb;,e) — (e = Pre) brebyy
(=1

F

J J
< Zﬁu "I;J,él;:]l—,e - bJ,eb},eHF + Z |pge — piel HbJ,eb},eHF
=1

2

J J
<Y hae (HbJ,tz - bJ,sz +2 H%,e”) HbJ,tz - bJ,tzH + 3 1o = pael bl
£=1

=T =:T5

The second term can be bounded using Lemma 5 and 20. Specifically, Lemma 5
implies ||by || < 214, and (28) in Lemma 20 with a union bound argument over
¢ € [J] shows

P (W € [J]:lpse—pael < /pie (5 A %\/m>) > 1 —exp(—u), (13)

provided N > C(u+log(J))(p;i1111V€_2). Thus we have Tp < 4e ¢ - /PTG
with probability 1 — exp(—u) whenever N > C'(u + log(J))(p}jnin VeT2).

To bound T; we first need to ensure that each level set is sufficiently popu-
lated. Using the second case in (13), we have 1/2 < ps,/pse < pJe/Psmin, and
it N>C(D+u—+log(J)) (M \/5’2) we get

PJ,min

(Xl = pseN > C (D +u+10g(]) (12150

|ﬁ)2 \/8_2,@])@) . (14)

Now we can use Lemma 5 to concentrate ||bs, — bjel|, giving the bound

P (VE e [J]: HIA)M - bJ’fH < (5‘ /% A 1) 77]’[> > 1 — exp(—u). (15)

Finally, (15) and ||by¢|| < 21y from Lemma 5 implies

J
T = ZﬁJ,K (HbJ,K - bJ’ZH +2 Hb.]j”) Hb‘Lg — bJJH

J J
<52 N pauksenty <15/28 Y \/prekrene,
=1 =1
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where we used py ¢ < 3/2ps, by (13) in the final step. Taking the union bound
over events (13) and (15), all results hold with probability at least 1 —2 exp(—u)

whenever N > C' (D + u + log(J)) (%\/5*2). The assertion (12) follows with

probability at least 1 — exp(—u) after adjusting C accordingly. O
Theorem 7. Let (A1) - (A3) hold. Fiz u >0, € > 0, and define

4 .
J7f||¢2’ PJ,min -= 1N O jp.

W Jmax ‘= m?}? ||Z Pel]

le

Whenever N > C(D + u + log(J))(wJ,max pj,lmin V e~2) we have

J
P (H (MJ - MJ) QJHF <ey vm,zm,zm,mh) > 1— exp(—u).
(=1

Proof. By the definition of @ and Q ¢, we have Im(Q ;) C Im(Q ). This first
allows us to bound

7
H(MJ - MJ)QJHF = H;ﬁJ,ébJ,éb},zQJ

J
< Zﬁu HbJ,EH HQJbJ,ZH
F =1

< ZJ:[)J,Z HI;J,ZH HQJ,ZBJ,ZH < zjjﬁu (lle,e | + HIAJM - bJ,éH) HQJ,ZI;J,ZH .
=1 =1

By the same argument as in the proof of Theorem 6, we have |pj¢ — pje| <
1/2py, for all £ € [J] with probability at least 1 — 2exp(—u), and thus the
number of samples in each level set satisfies (14). Using this together with (8)
and (9), and the union bound over ¢ € [J], we get

P (w e J]: HB” - bJ,EH < nJ,e) > 1— exp(—u),

P (VE eJ]: HQJ),@(SJ)[H < 6\/@an> >1—exp(—u).
pe

Plugging this, and ||bse|| < 21, by Lemma 5, in the initial decomposition, we
get with probability at least 1 — 4 exp(—u)

ot =300, = 3= (st =) ]|
=1

J J
9
N 1 1
< 3e Z VPIeksMTeIe S SE Z VPILETENT 17,65
=1 =1

where the last step follows from p;, < 3/2p; for all ¢ € [J]. By suitable choice
of C in the statement, we can absorb the factor 9/2, and adjust the probability
to 1 — exp(—u). O

The guarantee for Py(d) now follows as a Corollary.
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Corollary 8. Let (A1) - (A3) hold. Fiz u > 0, ¢ > 0, and define wjmax :=
maxyef.g] ||Z|J’g||3}2, PJmin = Mingeps pse. If rank(My) = d and \j(M;) >
vy > 0 we have with probability at least 1 — exp(—u)

J
D=1 \/PJ,Z"JJ,ZUJ,ZQJ]_,Z

’PJ(J) — PJH <e ,  whenever
F vJ
J 2 2
max = AR, 1
N > C(D +u+log(.])) °;"’ v (Zé L Vf’y‘”’ ”"“) v e
J,min J

Proof. Using Weyl’s bound )\d(MJ) > Nj(My) — HMJ - MJH [56], and Theo-
rem 6, we have with probability 1 — exp(—u) the guarantee )\d‘(MJ) D

My —M JH > %”y 7, whenever the number of samples exceeds

J 2 2
_ JiR,
N > C(D +u +log(J)) | £2max (Z‘—l VAL wm)

£.J,min YJ

Furthermore, Theorem 7 implies

J
P (H (MJ - MJ) QJHF < 52 \/pJ,zfiJ,MJ,mie> > 1 —exp(—u),
=1

whenever N > C(D + u + log(J))(wJ7maXp;7inin V £72). Using the union bound
over both events, the conclusion in the statement follows with probability at
least 1 — 2exp(—u) from ||P; — Py|lp < V2|P;(d)Qy|r (see Lemma 22 in the
Appendix), and the Davis—Kahan bound (11). O

2 maximizes (16), Corollary 8 implies the bound

VI+log() ), VPIELIMTe [D+u (17)
V. N

It separates the error into a leading factor, which only depends on the hyper-
parameter J, respectively, the induced level set partition, and a trailing factor,
which describes dependencies on v D, N~/2 and the confidence parameter w.
By using anisotropic bounds from Lemma 5, we obtain a linear dependence on
1.0, which scales like the term ||b s.¢]|, and a linear dependence on nj-)@, which

Assuming e~

i, <c

scales like ||@ Jb J.¢||. An isotropic concentration bound for b J.¢ — by e would have
resulted in 77?,’ ¢» which, judging by Figure 1, leads to a loose characterization of
the influence of J onto the error.

Remark 9 (An alternative interpretation of Corollary 8). In certain idealized
cases, Corollary 8 allows for an alternative interpretation by choosing J as a
function growing with N. To illustrate this, we consider (X,Y") with Im(Y") =
[0, 1] and a partition induced by R, = [Z_Tl, %) Further, we assume there exist

universal Cq,Cy > 0 (independent of J) so that
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1. we have balanced level sets in the sense that p;, > C1J -1

2. X satisfies ||UXJ7g||12bz < Gy ||UX .U |, for all matrices U with matching
shape (this condition is fairly common, see e.g. [51, Assumption 2.1}, and
sometimes called strict sub-Gaussianity [2]),

3. partitioning influences local covariances X ;, according to the model

Sse=J2Pro+ Qs (18)

Condition (18) is an idealization, which asserts that partitioning does not affect
Y. in directions corresponding to Im(Q ) = span{b;,}*, while reducing the
variance in direction by, by a factor J 2. Using Conditions 1-3, there exists a
constant C' depending only on C, Cy so that wjmax < C, kg < C, and

70 = 1V 156l |QueSh X sellys = 11V |rells \/C2HQJ,EET],€QJ,Z”2 <cJ

00 = 17 el | Pre=h Xl < ¥ 1l CallPres Pl < C.

and thus also 7, = njz + 77.'}4 < C'. Inserting this into Corollary 8 and using
e = CJ /2, we obtain with probability at least 1 — exp(—u)

HPJ(J) - PJH < ——, whenever N > ¢ +u4;10g(J))J.
F Jvs Y7
This reformulation of Corollary 8 suggests to choose J as large as possible so
that the condition on N is still satisfied. Assuming v; > CJ~? for some § > 0
uniformly in J, the choice J ~ |C(N/(D +u))*/(1+28) | is permitted (neglecting
the log(.J)-factor for simplicity), which indicates that error rates of up to order
O(N_%) are possible. If 3 € [0,1/4), this improves upon the typical N~1/2
rate up to N~! for 3 = 0. While Conditions 1-3 and v; > CJ~# are unlikely
satisfied uniformly for all possible J’s, it may hold approximately within a range
J € {Jmin, Jmin+1, ..., Jmax}, resulting in temporary faster error decay. We will
return to this phenomenon in our synthetic experiments in Section 5.1, where
RCLS achieves faster error decay in certain cases under an optimal choice of J.
Indeed, these experiments show the optimal J strongly depends on N, which
supports the observations in this remark, but also implies there is no optimal
fixed range decomposition for a fixed multi-index problem, independently of N.

3.2.8. Data-driven proxy and tightness of (17)

We now empirically study the tightness of (17) when considering a fixed num-
ber of samples N but varying the number of level sets J. First, we develop
a data-driven proxy to estimate the leading factor in (17) from a given data
set. Afterwards, we compare the proxy with the true error on several synthetic
examples.
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== 1B - Pl 0.025]| =+ 15 -PIr 0.05 == 1B - Pl
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’ (1+2])

FIG 2. Figures plot the function J — ||Py(d) — P||p (blue), and compare it to the right hand
side of (19) with (orange) and without (green) the union bound factor \/1+log(J). The

proxy is rescaled by a constant to match |P;(d) — P||p for J = d. Vertical bars indicate the
standard deviation.

Data-driven proxy We have to replace vy, pJe, 1.0, 775',2 and Ky in (17)
by quantities that can be estimated from data. The first three quantities are
approximated by v; =~ Ad(MJ), pae = pyeand 0y ~ ||ZA)J7£||7 where the last
replacement is motivated by the fact that 7, is used to bound ||| < ||b..c||+
1676 — byl < mye in the proofs of Theorems 6 and 7. Furthermore, we use the
conditional sample covariance )y J.¢, and projections P 6= ||l§ ]’[”_28 ]’EI;IZ and

QM =1Id — P”, to compute an approximation to ¢ by

‘ )

Note that replacing squared sub-Gaussian norms with spectral norms of the
corresponding covariance matrices can underestimate the true value of k.
The same strategy is used for nj:e, i.e. we approximate 775‘,@ by

o = max { | PrSoePoe| | oS P

QJ,eiJ,zQJ,zH HQJ,ZETLEQJ,ZH} .

~ N 294 4 A
e = B (¥ < By ¥) |00 0|



Response-conditional least squares 607

Combining everything, the data-driven proxy for the leading factor in (17) with-
out the union bound factor /1 + log(J) is given by

J = 7 Al
22]:1 VPTERT NI 2i=1 VPR HbJ,L’H 76
VI )\d(MJ) )

(19)

In order to reduce the variance in estimating (19), we further restrict the sum
to level sets with at least |X,| > 5D samples in the experiments below.

Experiments We sample N = 80000 points from Uni({X : | X|| < 1})in D =
20 dimensions and set Y = g(AT X) + ¢, where ( ~ N(0,10~*Var(f(X))) and
A = [e1]...|eq] with e; being the i-th standard basis vector. Each experiment is
repeated 50 times and we report averaged results plus standard deviations for
different link functions in Figures 2a-2f. With the only exception of g., which is
given by

96(1'171'27.’173) = Zhl(mz) with

hl(l‘l) = 1(],‘1 < 0)02.131 + l(xl > O)Z‘l, (20)
hg(.’lﬁg) = 1($2 < 0)0.25.%'2 + 1(.’172 > 0)1.25372,

the link functions we use in our experiments are defined below the respective
plot in Figure 2.

We observe that the map J + ||P;(d) — P|r initially decreases when in-
creasing the number of level sets J beyond d, and then either stalls, such as in
Figures 2a, 2c, 2d and 2e or increases as in Figures 2b and 2f. This behavior is
captured well by the data driven proxy (19). Furthermore, even if the relation
J — ||Ps(d) — P||r shows several bumps and the index space error depends
strongly on J as in 2e, the derived data-driven proxy qualitatively reproduces
the same behavior. The experiments suggest that Corollary 8 characterizes the
influence of J and the induced level set partition on the projection error well.
Furthermore, they raise the question whether J, which minimizes the data-
driven proxy (19), can be used for hyperparameter tuning in practice. This is
an interesting direction for future work, because choosing J for the related class
of inverse regression based methods has been identified as a notoriously difficult
problem, for which no good strategies exist [45].

4. Regression in the reduced space

In this section we return to the multi-index model ¥ = g(A"X) + ¢ with
E[¢|X] = 0 almost surely. Assumption ¢ I X|AT X is not strictly required in
this part. The second step to estimate the model is to learn the link function g,
while leveraging the approximated projection P P, e.g. constructed by using
RCLS. We restrict our analysis to two popular and commonly used regressors,
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namely kNN-regression and piecewise polynomial regression. Our analysis re-
veals how the error || P — P|| affects kNN and piecewise polynomials, if they are
trained on perturbed data i(]in,}Q) .1 € [N]} instead of {(PX;,Y;) : 4 € [N]}.
For simplicity, we assume P is deterministic and thus statistically independent
of {(X;,Y;) : i € [N]}. In practice, statistical independence can be ensured by
using separate data sets for learning P and performing the subsequent regression
task, for example randomly splitting the data in half.

To study regression rates, smoothness properties of the link function play an
important role. We use to the following standard definition [19].

Definition 10. Let f: RD — R, s1 € Np, s9 € (0,1] and s = s1 + s2. We say f
is (L, s)-smooth if partial derivatives 9 f exist for all & € N with Y, a; < s1,
and for all s with ), a; = s1 we have

09F(2) = 0*() < LIz = 2'||.
The minimax rate for nonparametric estimation in R? is well known [19, 53]

and reads, for (L, s)-smooth regression function f,

2

MSE (f, f) —E|f(x) - f(0)| = N~ (21)

Similarly, the rate is a lower bound for nonparametric estimation of the multi-
index model with dim(P) = d, because we are still left with a nonparametric
regression problem in R¢ once P is identified. In the following, we provide con-
ditions on ||[P — P|| so that the optimal rate (21) is achieved, when training on
perturbed data. In the analysis, we assume that X is sub-Gaussian, |f(X)| <1
almost surely, and Var(¢|X) < O'g almost surely.

4.1. kKNN-regression

Let  be a new data point and denote a reordering of the indices by 1(z), ..., N(x)
so that

P (m — Xi(z))H < Hﬁ’ (x — Xj(m))H for all 7 > i and all 1,

i.e. i(x) is the i-th nearest neighbor to z after projecting onto Im(P). The
kNN-estimator is defined by fi(z) := k! Zle Y;(») and the following theorem
characterizes the influence of the projection error on the generalization perfor-
mance. The proof resembles [19, 29] and is given in Appendix A.3.

Theorem 11. Let g be (L, s)-smooth for s € (0,1], and d > 2s. For k =
C,N2s/@2std) e obtain

2s
b

MSE (fk, f) < OiN~7H7 4 Oy log(N) HP _ P‘

(22)

where C1 depends on d,o¢, ||XH¢2 ,Cr, L,s, and Cs additionally linearly on
DIIX][3,.
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Remark 12 (d > 2s assumption). The condition d > 2s in Theorem 11 is not
due to the error | P — P||, but arises from [29, Lemma 1], where ordinary kNN is
analyzed for unbounded marginal distributions. It has been shown in [19] that
achieving similar rates for d < 2s requires an extra assumption of the marginal
distribution of X (boundedness does not suffice).

Remark 13 (Rate optimality). Assuming ||[P — P| € O(N~/2), we observe
that the second term in (22) has order N ~°. Therefore, Theorem 11 ensures, up
to the logarithmic factor, the optimal rate N—25/(2s+d) for ¢ > 2. The logarith-
mic factor disappears, if the marginal distribution of X is bounded.

4.2. Piecewise polynomsial regression

Piecewise polynomial estimators can be defined in different ways as they depend
on a partition of the underlying space. Therefore we first have to describe the
type of piecewise polynomials that we consider in the following.

Let A € RP*? contain column-wise an arbitrary orthonormal basis of Im(f?).
Denote by A; the set of dyadic cubes in R, i.e. the set of cubes with side
length 27! and corners in the set {27! (vy,...,v4) : v; € Z}, and let A(R) C A,
be the subset that has non-empty intersection with {ATZ : z € Br}, where
Br = {X € RP : | X|| < R}. Moreover, let Py be the space of polynomials of
degree k in R? and 14 be the characteristic function of a set A. The function
space of piecewise polynomials we consider is defined by

FALkR)= [:1(@)=1p,(x) 3 1(ATx)p. (472) .pe € Py
ceA(R)

To construct the estimator, we perform empirical risk minimization
N
- ] 5
f:= argmin Z (h(X;) —Yy)",
heF(A,Lk,R) i=1

and then set f(z) := T[,lyl](f(a:)), where Ti_y 1j(u) := sign(u)(Ju| A 1). Note
that piecewise polynomial estimators are typically analyzed after thresholding
to avoid technical difficulties with potentially unbounded predictions (see also
[7, 19]).

The following theorem characterizes the influence of |[P — P|| on the gener-
alization performance of the estimator.

Theorem 14. Let g be (L, s)-smooth with s = s1 + sa2, s1 € No, s2 € (0,1].
Choosing | = [logy(N)/(2s +d)], R> =D ||XH12bz log(N), and k = s1 we get

2/N2s

MSE (f, f) <Cilog!V# (N)N™ =7 4 Cylog(N)* | P~ P||” (23)

where the constants grow with o¢,d, s, L* := Ld**/*>(1 — ||P — P||?)~*/2, and C}
depends linearly on (D HX||iQ)d/2, and Cy linearly on (D ||X||i2)1AS.
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Remark 15 (Boundedness and log-factors). For bounded X, the choice R? <

log(N) is not required and 1og1v%(N) reduces to log(N). Moreover, D HX||12Z)2
can be replaced by the squared radius of a ball containing the support of X,
which removes the dependency on D entirely.

Remark 16 (Rate optimality). Assuming ||[P — P|| € O(N~/2), we observe
that the last term in (23) has order N ~*!. Therefore, Theorem 14 ensures, up
to log-factors, the optimal rate N=25/(s+4) for d =1 and s > 3, or d > 2 and
s> 0.

Proof sketch The first step is to apply the following well-known result.
Theorem 17 (Theorem 11.3 in [19]). Let F be a vector space of functions f :
RP — [~1,1]. Assume Y = f(X)+¢, E[Y|X] = f(X) and Var(¢|X = z) < Ug.
Denote by f the empirical risk minimizer in F over N #id. copies of (X,Y),
and let f =Ti_11)(f). Then there exists a universal constant C such that

log(N) + dim(F)
N

MSE (f, f) <2V 1) +C int MSE(h,f).  (24)

The first term in (24) is the estimation error, which measures the deviation of
the performance of the empirical risk minimizer to the best performing estimator
in F when having access to the entire distribution. It decreases as more samples
become available, but increases with the complexity of F, here measured in
terms of the dimensionality. It can be checked that F (/1, l,k, R) is closed under
addition and scalar multiplication and is thus a vector space. A basis can be
constructed by combining the standard polynomial basis for each cell of the
partition. Therefore dim(F(A,1,k, R)) = |A(R)] (d:k), where |A;(R)]| is the
number of cells required to cover {ATZ : z € Br}. Lemma 25 in the Appendix
proves |A;(R)| < [(2"1R)?] and therefore

dim(F(A,1,k, R)) < (d Z k) [(2F1R)1]. (25)

The second term in (24) is the approximation error, which measures how
well f can be approximated by any function h € F (A, l,k, R). Neglecting for a
moment the perturbation P— P, it is known that a piecewise Taylor expansion of
g can be used to approximate g with an accuracy that increases as the underlying
partition is refined. The main difficulty in our case is to define a piecewise
polynomial function h € F(A, 1, k, R) that approximates g(ATx), despite the
fact that h depends on coordinates ATz instead of AT z.

To define such a function, we first prove the existence of a function g* that ap-
proximates g uniformly well, when being evaluated on ATz, Precisely, Lemma 26
in the Appendix shows

g (ATa) = g(ATa)| < L™ [l |IP = P,



Response-conditional least squares 611

for some (L*, s)-smooth function g*. Now, by approximating g* through a piece-
wise Taylor expansion, we can construct a function h € F(A, [, k, R) which, using
choices [, k and R as in Theorem 14, satisfies

s . ~ 2A2s
MSE (h, f) < Cy N~ %4 + Cylog*(N) |P = P|| (26)

for constants C; depending on L*,d, s, and Cy depending on L* and linearly
on (D ||XH12)MS (see Corollary 28). The proof of Theorem 14 concludes by
combining Theorem 17, the dimensionality bound (25), and the approximation
error bound (26) (see Appendix A.4).

5. Numerical experiments

We now compare RCLS to the most prominent inverse regression based tech-
niques SIR, SIRII, SAVE, pHd and DR that have been described extensively
in Section 1.1. In the first part we consider synthetic problems and we directly
assess the performance by evaluating ||P;(d) — P||r, since the true index space
is known. In the second part, we consider real data sets from the UCI data set
repository. Here, the true index space is unknown, and we instead compare recov-
ered spaces Im(P) by measuring the predictive performance of kNN-regression,
when trained on {(PX;,Y;) : i € [N]}. In both cases we construct the partition
R e using an equisized partition of the empirical range [min; ¥;, maxY;] as de-
scribed in Remark 1. The source code for all experiments is readily available at
https://github.com/soply/sdr_toolbox and https://github.com/soply/
mim_experiments.

5.1. Synthetic data sets

We sample X ~ Uni({X : ||X]|| < 1}) in R?°, and generate the response by
Y = g(AT X) + ¢ for several functions g € {g,,...,gs}, each one defined below
the respective plot in Figure 3, and ¢ ~ N(0,0.012Var(g(AT X))). The index
space is A = [eq] ... |eq] € RP*? where e; is the i-th standard basis vector. The
hyperparameter J is chosen optimally for SIR, SIRII, SAVE, DR and RCLS to
minimize the projection error within J € [100]. No parameter is required for
pHd.

We report projection errors averaged over 100 repetitions of the same experi-
ment in Figures 3a - 3f. First, notice that most estimators (except pHd and SIR
in some cases) achieve the expected N ~1/2 rate on all problems. pHd fails to
detect linear trends and therefore fails to detect the index space in some cases.
RCLS achieves the best performance in Figures 3a - 3d, performs poorly on 3e,
and is tied with SAVE and DR on Figure 3f. The poor performance in 3e is re-
lated to the fact that the ranges Im(hq),Im(hs),Im(h3) are almost completely
overlapping (see (20)), which means that most of the conditional distributions
(X7.0,Y5e), € € [J], generate the same direction, and the remaining two direc-
tions are only visible on a small fraction of the distribution (X,Y).


https://github.com/soply/sdr_toolbox
https://github.com/soply/mim_experiments
https://github.com/soply/mim_experiments
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Fic 3. Projection error |P;(d) — P||p versus sample size N for different methods and func-
tions. For all estimators except pHd and SIR, the expected N—1Y/2 rate is observed on all
problems. In some cases, RCLS stands out by temporarily attaining faster decay and obtain-
ing significantly smaller error.
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FI1G 4. Level set partition of {X : || X|| < 1} C R? induced by equisized intervals Ry for link

function gq(x) = 1+(11+1)2 Different colors represent different level sets and red bars are

local vectors by .

In Figures 3a - 3d, where RCLS improves upon competitors, we observe
temporary error decays beyond the rate N~/2 from Corollary 8. A possible
explanation for this phenomenon is given in Remark 9, which shows that con-
vergence rates up to N ! are possible in an idealized scenario and when choosing
the number of level sets J as a monotone increasing function of N. Judging by
Figure 5a, the optimal J indeed exhibits a fairly monotone increase with the
number of samples N for link functions gg, g, gc, ga, at least within a certain
range of N’s. As pointed out in Remark 9, a second requirement for faster error
decay seems to be that local covariances behave roughly like

Sse~J 2P+ Q. (27)

We believe this can be a reasonable approximation if X follows a generic distri-
butions, e.g. X ~ Uni({X : || X|| < 1}) or X ~ N(0,ldp), and if the function
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Fi1c 5. (a) Optimal choices for parameter J for the RCLS method in all synthethic examples
evaluated in Figure 3. The range J € [100] was used in experiments. (b) Sensitivity analysis
of RCLS with respect to J on all real data sets. We fix the subspace dimension d and the
number of neighbors k to the nearest integer to cross-validated values in Table 2 and plot the
error, averaged over 100 repititions, as a function of parameter J. The error is normalized
so that it equals 1 for the choice J = d.

follows locally (in response domain) monotone single-index model structure. In
such cases, the resulting partition qualitatively should look like the one in Fig-
ure 4, which is generated by g,(z) = 1+(;+1)2 and J € {4,8,16,32}. Lastly,
we also add that faster convergence rates with an estimator based on response-
conditional least squares vectors have also been observed and analyzed in [27, 28]

for the monotone single-index model, and a nonlinear generalizations thereof.

5.2. Real data sets

To compare RCLS with inverse regression based competitors on real data sets,
we first compute an index space and then compare the predictive performance
when training a kNN-regressor on projected samples. More precisely, we conduct
the following steps.

1. Split the data set {(X;,Y;) : ¢ € [N]} into training and test set Xrvain,
yTraina and XTesty yTest

2. Use pHd, SIR, SIRII, SAVE, DR, RCLS on the training set to compute
an index space A

3. Train a kNN-regressor using {(ATXi, Y:) : Xi € Xrvain}

4. Crossvalidate over hyperparameters d (index space dimension), k (kNN
parameter), and J (number of level sets) using a hold-out validation set
of the training data

5. Compute the root mean squared error (RMSE) of the kNN-regressor on
the test set

The test set contains 15% of the data, while cross-validation is performed using
a 10-fold splitting strategy. Each experiment is repeated 20 times and we report
the mean and standard deviation.
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TABLE 2
RMSE, standard deviation, and cross-validated hyperparameters, over 20 repetitions for
several estimators and UCI repository data sets. Values for d, k, J are averages over
different runs of each experiment. First 5 rows describe the data sets and their
characteristics, and the remaining rows contain the results. For a simplified presentation,
we divide the mean and STD of RMSE, and the mean and STD of the data (5th row) by the
value in row Factor.

Characteristics Airquality Ames Boston Concrete Skillcraft Yacht
log-TF No Yes Yes No Yes Yes
D, N 11, 7393 7, 1197 12, 506 8, 1030 16, 3338 6, 307
Factor 107! 10° 10t 10t 10? 10*

Y £ STD(Y) 9.95 +4.03 1.74 £ 0.67 1.27+£0.71 3.58 £ 1.67 1.15+£0.48 1.05 £ 1.51

Baselines

LinReg 1.22 4+ 0.03 0.23 + 0.02 0.50 £ 0.11 1.06 + 0.06 0.14 +£0.03 0.22 + 0.07
kNN 1.03 + 0.02 0.26 + 0.03 0.41 +0.06 0.89 +0.08 0.17 £ 0.01 0.76 £ 0.11

k 25.0 9.8 6.8 5.5 9.8 1.1

SDR + KNN

pHd 1.01 +0.04 0.29 £+ 0.04 0.43 + 0.06 0.89 +0.04 0.26 + 0.01 0.70 £ 0.18

d 10.2 6.5 7.55 6.65 7.0 5.4

k 10.0 7.7 5.3 4.0 16.4 1.7
SIR 0.59 £+ 0.02 0.24 +£0.04 0.42 +0.07 0.87 £ 0.06 0.08 £ 0.01 0.18 +£0.07

d 6.15 1.4 4.8 6.1 1.85 1.15

k 10.0 11.4 6.95 3.7 11.4 8.4

J 10.3 10.8 8.6 9.8 7.65 8.6
SIRII 0.87 £ 0.02 0.27 £ 0.04 0.44 +0.07 0.89 + 0.06 0.29 +0.03 0.53 £ 0.21

d 11.0 7.0 6.65 8.0 2.75 2.8

k 10.0 8.45 5.3 4.0 16.75 6.7

J 12.0 9.8 8.2 10.4 3.75 4.6
SAVE 0.58 £ 0.01 0.25 £+ 0.04 0.44 £+ 0.05 0.79 £ 0.09 0.09 £+ 0.01 0.18 + 0.04

d 6.0 2.9 7.55 3.85 4.65 1.7

k 10.0 10.7 6.35 3.2 9.5 7.35

J 13.4 12.0 9.9 8.3 8.75 8.7
DR 0.58 +0.02 0.24 +£0.03 0.40 + 0.07 0.75 + 0.08 0.08 £ 0.01 0.18 + 0.06

d 5.85 2.15 5.45 3.35 2.6 1.75

k 10.0 11.3 6.8 3.7 14.9 6.55

J 12.6 12.0 10.2 8.5 9.3 8.75
RCLS 0.51 +0.03 0.25 +0.03 0.41 +0.06 0.72+0.06 0.07+0.01 0.17+0.06

d 5.4 1.9 5.1 3.25 2.95 1.75

k 10.0 13.55 11.0 4.3 9.15 5.6

J 11.9 6.4 5.7 5.7 3.2 7.3

We consider the UCI data sets Airquality, Ames-housing, Boston-housing,
Concrete, Skillcraft and Yacht. We standardize the components of X to
[-1,1] and potentially perform a log transformation of Y if the marginal has
sparsely populated tails. This is indicated by the log-TF row in Table 2. For
some data sets, we also exclude features with missing values, or, in the case of
Ames, we exclude some irrelevant and categorical features to reduce the complex-
ity of the data set. Preprocessed data sets can be found at https://github.
com/soply/db_hand.


https://github.com/soply/db_hand
https://github.com/soply/db_hand
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The RMSE and cross-validated hyperparameters are presented in Table 2. To
have robust baselines for comparison, we also compute the RMSE of standard
linear regression and kNN regression. We first see that applying a dimension
reduction technique improves the performance of linear regression and ordinary
kNN significantly on data sets Airquality, Concrete, Skillcraft and Yacht. Fur-
thermore, on these data sets, RCLS convinces by achieving the best results
among all competitors. Runner-up is DR, where SIR and SAVE share third and
fourth place. The results of pHd and SIRII are not convincing on most data
sets.

The sensitivity of RCLS with respect to parameter J is illustrated in Fig-
ure 5b. Respective test errors between best and worst fit vary by around up
to 20%, indicating that the choice of the partition, as for most inverse regres-
sion techniques, plays an important role in RCLS. Fortunately, the efficiency
of the method allows for fast cross-validation and trying different partitioning
strategies as mentioned in Remark 1.

The study confirms that RCLS is a viable alternative to other prominent
inverse regression methods. Some of the data sets were chosen because one-
dimensional maps e;] X + Y, where e; is the i-th standard basis vector, show
a certain degree of monotonicity. We believe this could promote local mono-
tone single-index model structure, respectively, that partitioning affects local
covariances according to the model (27), and thus may be beneficial for the
performance of RCLS.

Appendix
A.1. Probabilistic results

This section contains some probabilistic auxiliary results used in the paper.

Lemma 18. If Z € R? is sub-Gaussian and E an event with P(E) > 0, then
Z|E is sub-Gaussian with || Z|E|,, < ||Z]],, P(E)~ L.

Proof. Assume without loss of generality Z € R. The result for the vector then
follows by the definition. We use the characterization of sub-Gaussianity by
the moment bound in [54, Proposition 2.5.2, b)]. So let p > 1. By the law of
total expectation it follows that E[|Z|"] = E[|Z|" |E|P(E)+E[|Z|" |ECP(EC) >
E[Z|” |E)P(E). Dividing P(E) and using monotonicity of the p-th root

E[Z)Y" @z 2Ny, VP
pE S BE) < RE)

(E[Z]” | <

where C' is some universal constant, the second inequality follows from P(E) < 1,
and the third from the sub-Gaussianity of Z. O

Lemma 19. If X € RP is sub-Gaussian, so is | X ||, with ||| X |||y, < VD||X ||y,
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Proof. Using Holder’s inequality and the sub-Gaussianity of X we compute

D
X% lef X|?
Elexp| =5 exp | ——5—
l (DIIXII?M e { jixp
Lemma 20. Fizu >0, >0. Let Y € R be a random variable, R an interval,

D T x|2 1/D
< HE exp & 2| <2 O
palet X135,
and P(Y € R) := |{Y; € R} N~! the empirical estimate of P(Y € R) based on

N iid. samples. Then, with probability at least 1 — exp(—u) we have

P(YGR)IP’(YER)'SMIP’(YGR)(s/\; IP’(YGR)) (28)

provided N > Cu(P(Y € R)~tve=2).

Proof. Let p:=P(Y € R) and p = P(Y € R) for short and define § = (e/v/DN
1/2) € (0,1/2). We can use a Chernoff bound from [47] for the random variable
Np with expectation Np to get

N
P(p—p = ~0p) =P(Np— Np < ~6Np) < exp (‘5 2 p>,

3%2Np 5%2Np
P(p—p>dp)=P(Np—Np>35Np) < _ < - .
and P(p —p > dp) =P (Np— Np >0 p)_eXp( 2+5>_e><p< 5/2>

Taking the union bound over both events we therefore have

. 8%Np min{e?, p} N
- < > — .
P(|p—p| <dp) >1—2exp < 5/2 ) 1—2exp < — 1 )

The result follows by the condition on N assuming large enough C' > 0. O

A.2. Differences of projections

We gather two auxiliary results to rewrite the norm of differences of projections.

Lemma 21. Let A and B be subspaces with dim(A) = dim(B), and let Pa

and Pp the corresponding orthogonal projections. For Py. = Id — P4 we get
1Pa — P = [|Pas P5]-
Proof. Assume ||(Ild — Pa) Pg|| = ||ParPg|| < 1 first. Then the first case of

Theorem 6.34 in Chapter 1 in [26] applies. Note that the second case can be
ruled out since P4 can not map Range(Ppg) one-to-one onto a proper subspace
of V' C Range(P,4) because dim(V) < dim(Range(P4)) = dim(Range(Pgp))
according to the assumption. Thus, in the first case it follows that

[(Id = Pa) Pg| = [|(Id = Pp) Pa|| = |[Pa — P3|
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Now let |P4. Pg|| = 1. Then there exists v € S such that ||P4. Pgv| = ||v].
Since
[oll = 1Pevll = |Pax Ppol| =[],

it follows that ||Pgv| = ||v||, and thus Pgv = v because Pp is a projection.
With the same argument we deduce also P41v = v, and then

(Py—Pg)v=Pav—Ppv=0—v=vw
implies ||Pa — Pg|| =1 = || P41 Pg||- O

Lemma 22. Let A and B be subspaces with m = dim(A) = dim(B), and let
P4 and Pp the corresponding orthogonal projections. For P41 = |d — Py we get
1PA = Pgllp = V2|Pas Ppll -

Proof. With slight abuse of notation we denote A, B € RP>*™ two orthonormal
bases of A respectively B such that Py = AAT, P = BB'. Now, denote
ATB = U(cos(0))VT where cos() € R™*™ is the diagonal matrix containing
the principal angles 6; [20]. From [20] we obtain the identity 1/2||P4 — Pg H; =
m — Y it cos?(6;). Doing some further manipulations we get

1 i 2
5 1P — Pglh=m—> cos’(6;) =m— ||[ATB|,
i=1
= m — Trace(B" AAT B) = m — Trace(AA" BBT)
= m — Trace(P4Pg) = m — Trace((ld — P41 )Pp)
=m — Trace(Pp) + Trace(P4. Pp).

The result follows by Trace(Pp) = m and Trace(Py+ Pp) = ||Pa+ PBH?;. O

A.3. Proof of Theorem 11

Proof of Theorem 11. Denote Sx = {X; : i € [N]} and fi(z) = E[fr(2)|Sx] =
Zle J(Xi(a)) for fixed z. We first decompose (randomness is in the ¢;’s)

B | (fule) - 1) [sx| =& | (o)~ ) [sx] + (fite) - 1)
and then use the towering property of conditional expectations to obtain
B (.00 - 7(30))" = B8 | (4u) - £00) |5 ]
=58 | (Aux) - 7)) [sx] + 2 (A0 - £00)
=B (fu(X) ~ fuX)) +E (fex) - 5(%))
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Since E¢; = 0, ¢; L ¢; and Var(G|X = z) < o’?, the first term satisfies the
bound

2
]E(fk(X)—fk( ) —Var< ch(X>_?<=Ck_lagN_2s2ﬁ.

For E (fk (X) - f(X))Z, we recall that f(X) = g(AT X) for some (L, s)-smooth

g, which implies

2 k ?
E (fk(X) - f(X)) =E (% Zg(ATXi(X)) - Q(ATX)>
§4L2E< Zm1n{|A Xix) — )Hs,l}) ,

where the 4 can be injected since |f(X)| < 1 almost surely. To bound this
term further we have to replace {X;x) : i € [k]} (the &k closest samples

wrt to d(-, X) = ||Ifi( — X)) by the k closest samples based on d(-, X) :=
|P(-— X)|. So let X;(x) denote the i-th closest sample to X based on d, and

let further ¢ := HP — PH Since

d(X, X') — d(X, X') — P)(X - X')

and (a +b)® < a® +b° for s <1, we can bound
k k
in{d(X; x), X)*, 1} < in{d(X; x), X)* + &° X, —X|°,1
Zmln{( (x), X)%, 1} Zmln{( x), X)* + }g%” f 17,1}
k ~
< in{d(X;x), X)* + 6° X;—X|°,1
_;mm{( (x), X) g%” f 17,1}
k
< in < d(X;x), X)® + 26° Xi—X|I°, 1},
< 3 min {0, )" 20" 6 X1}

where in the second inequality we used that X; x) minimizes the distance to
X measured in ci, and can therefore be replaced by Xi(X). Denoting Ax y :=
20° max;en | X; — X||° and using (F b)2 < kXSF | b2 for arbitrary by’s, we
get

E (fu(X) - f(X))2 <4L’E ( me{d i), X)* + AX,NJ})

4L? ZEmm{ Z(X )S—i—AX)N)Q,l} (29)

I /\

8L2 8L?
ZEmm{d i(x), X 1}+—ZEA

I /\
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For the first term, we proceed as in [19, 29] by randomly splitting the data set
{X; :i € [N]} into k+1 sets, where the first k sets contain | N/k]| samples. Then
we let X ;“( X) denote the nearest neighbor to X (measured in d) within the i-th

set. Since {X,-( x) @4 € [k]} are by definition the closest k samples (measured in
d), we can bound

8L2 8L?2
ZEmm{d i), X)%, 1}<—Z}Emm{d(X(X X)% 1}

=1
2s
?]‘ ?

— 8L?E min { HP (Xix) - X)
where the last equality uses that the distribution of X ;‘( x)~ X is independent
of the set index i. Since ||P(-)|| = ||AT(-)||, d > 2s by assumption, and

E|ATX|]" =E|X|° S IX|5, 8°/2

for any 8 > 1 by the sub-Gaussianity of X (see [54, Proposition 2.5.2]), Lemma
1 in [29] implies the existence of a constant C1 = C1(d, s, | X||,) satisfying

23,1} Emin{HAT (X1 - X) 28,1}

2s

AN 2s 25
<Cy (N) :Clcde 2s+d

Emin{HP (Xiex) - X)

It remains to bound the last term in (29). Denote for short ox = [|X[|,,,. We
first compute that

EA?XN:/ P(A§N>u)du=/ ]P’(_max 1X; — X|*° > 2>du
’ 0 ’ 0 i=1,..., 462s

We can control this probability by using the sub-Gaussianity of X. More pre-
cisely, since X is sub-Gaussian, X; — X is sub-Gaussian (norm changing only by
a universal constant), and Lemma 19 implies that || | X; — X|| [y, < CVDox.
Taking the square, and using [54, Lemma 2.7.6], we obtain

2
i — 1 i — 12Z12 < CDO’_%(
X = X Mgy < HIXs = XL

To bound the integral, we first split [0,c0] into intervals [0, vDo% log(N)§%]

and [vDo% log(N)§%*, o] for some v > 4max{m C'}, which yields

EA% y < /D s P (rg[%( 1X; — X|** > F) du + vDo% log(N)§*.
vDo% log s

For the first term we realize that u > vDo% log(N)6* > 46 implies

2s u 2 u
F (il,?.?fN 12X = X7 > 4625) =F (quaXN 1% = X117 > 462S>
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Then the sub-Exponentiality of || X — X;||? and a union bound argument over
i € [N] give

EA2 g/ P(max X, - X|? > —
N I/DG’2X log(N)§2s i€[N] || || 4(523

N 0 (D) e 2005
vlog(N)
C
< 20D0o%6* N exp (—log(N)) + vDo% log(N )6
< 2(v Vv C)Do% log(N)6%. O

) du + vDo% log(N )52

< 20D0o%6* N exp < ) + vDo% log(N)§2*

A.}. Proof of Theorem 14

Interlude: smoothness of linear concatenations In this section we es-
tablish smoothness properties of linear concatenations with explicit bounds for
corresponding Lipschitz constants.

Lemma 23. Let ¢ : R — R, W € R™? and (2) = ¢(Wz). Let s € N
and o € N% be a multi-index with E?Zl a; =k < 5. If ¢ € C5(RY), i.e. all
partial derivatives 0%¢ exist and are continuous, then also all 0% exist and
are continuous. Moreover, if i : [k] — [d] is an arbitrary derivative ordering

satisfying o = 22:1 €i(w), we can express for any k € [s]

d d
S|
i1=1 =1 \w

Example 1. Let a = ¢; +¢e; and i(1) = ¢, i(2) = j. Then the formula yields
the derivative

k

Wiw,v:(w)) Oiy -+ 03, (9)(W2).
1

d d
0%(z) = > > Wi, Wi, j0i, 0, () (W2).

11=11i0=1

Proof. 1 is a concatenation of a C® function with a linear transformation and
is therefore as smooth as ¢. For the formula, we use induction over k. Let « be
a multi-index with 2?21 a; = 1, i.e. a is equal to a standard basis vector e; for
some i € [d]. Since Vi)(z) = WTV@(Wz) we have

d

Dip(2) = (Wi, Vo(Wz)) = > Wi, 105, (6)(W2).

i1=1

For the induction step £k — 1 — k, we let a be a multi-index with Zle a; =k
and we calculate 9%(z) = 0;()0“~“®(z). Since o — e;(xy is a multi-index
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whose entries sum to k — 1, by induction hypothesis we have

k—1
9%Y(2) = Oiw) Z Z <H Wiw,i(w)> 0iy -+ 03y, (9)(W2)

11=1 ir—1=1 \w=1

I
<m&

"_21<HWW w>> ik (0i, -+ Oip_, (0)(W2))

11=1 w=1
d d k—1 d
- z Z ( Wiw,i(w)> z Wi itk) iy -+ 03, (0) (W 2)
i1=1 ip—1=1 \w=1 k=1

I
M&

Z Z <H sz,uw)) Wi ik O - O (0) (W2),

Zkl 1’Lk 1

.
I
—

1

where we used Schwartz Lemma in the second to last equality The result follows
by extending the product. O

Lemma 24. Let ¢ : R* - R, s1 € Ny, 0 < 59 <1 and s = s1 + so. Assume
¢ is (L, s)-smooth, W € R4 and define 1(z) = ¢(Wz) for some W € RI*4,
Then 1 is (Ld= |W|°, s)-smooth.

Proof. Since W is a linear transformation, 1/) has as many continuous partial
derivatives as ¢. Now consider a € N& with Z _1a; = s1,andlet ¢ : [s1] — [d] be

an arbitrary derivative ordering Satlsfymg S €j(w) = . By using Lemma 23,
we get

0% (2) = 0%¢(2)]

d d
B Sy (H sz,“w)) O (O)(W2) =8y, - 0, ($)(W2))

i1=1 i =1

w=1

< _max_[979(Wz) — 0"p(W2) (> Z I Wi

iy i oy=s1 i1=1 is; =1 w=1

Furthermore denote |[W{|; = max; ), [W; ;| < Vd|W|. Then we can rewrite

d d s1 d
o 20 I Wil = D2 W] Z We. it

i1=1 iy, =lw=1 i1=1 isy =1

< W5 <dF W

Combining this with the previous calculation, and the fact that ¢ is (L, s)-
smooth, we get

0°9(2) — 0p(2")| < LWz — W22 d? |W|* < Ld? |[W|° ||z — 2| .
(]
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Bounding dim(F (4,1, k, R))
Lemma 25. We have |A;(R)| < [(2"1R)?], and thus

dim(F(A, 1k, R)) < (d Jk: k) (21 R)).

Proof. First we note that the number of cells with side length 27! required
to cover [—R, R]? is given by [(2R2))?] = [(2*1R)4]. Furthermore, for any

we {ATz: z € Br(0)}, we have |Jw|| = HATZH < ||#|]| £ R, hence w € Br(0)
(in RY). Therefore a bound for |A;(R)| is given by a bound for the number of
cells covering [— R, R]%. O

Bounding the approximation error We first show the existence of g* al-
most as regular as g and satisfying g¢* (ATa:) ~ g(ATz). Then we bound the
approximation error between f and h over Bg. Finally, we provide the bound
for the mean squared approximation error (second term in (24)).

Lemma 26. Let g be (L, s)-smooth with s = s1 + s2, s1 € N, s2 € (0,1], and
|P—P| < 1. Then (AT A)~! exists, and the function g*(z) := g((ATA)~12) is
(L*, s)-smooth for L* := Ld*'/?(1 — |P — P||?)~*/2. Moreover, it achieves

9" (ATz) — g(AT2)| < L* |l || P = P

Proof. Let § := |P — P|| < 1, and denote the singular value decomposition
ATA = USVT, where S denotes the cosines of principal angles between Im(A)
and Im(A) in descending order. It is known from [20, Definition 2 and Equa-
tion (5)] that § = (1 — S2,)'/2, which implies 1 > [|S|| > /1 — 42, hence
AT A is invertible with |[(ATA)~!| < (1 — §2)~1/2. Applying Lemma 24, g* is
(L*, s)-smooth. Furthermore we have g*(ATAATz) = g((ATA)"TATAATz) =
g(ATz). Using the smoothness of g*, it follows that

g (ATz) - g(ATm)‘ = |g*(ATz) - g*(ATAATx)( < *|[AT (dp — Py
ATl < 1 PQHMS ][
= o || P el
where we used Lemma 21 in the last equality. O

Proposition 27. Let f(x) = g(ATxz) for P = AAT, g be (L, s)-smooth with
s = 51+ 52, s1 € No, 52 € (0,1], and ||P — P|| < 1. There exists a function
h e F(A,l, s1,R) such that

1As

d81+5*2
’ , (30)

max [h(z) - f(z)| < LT =———27*(TD) 4 [* R

rEBR S1-

pP-pP

where L* 1= Ld* /(1 = | P = P|)~*/2
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Proof. First notice that |h(z) — f(x)| < |h(z) — f*(x)| + | f*(x) — f(2)]|, where
f*(x) := g*(ATz) is the function defined in Lemma 26. Using the bound in
Lemma 26, and ||z| < R, the second term is bounded by L* R $||P — P||'/s. Tt
remains to bound |h(z) — f*(z)| for a suitably chosen h. Since f*(z) = g* (AT z)
and g* is (L*, s)-smooth, we can use the multivariate Taylor theorem to expand
g* as

g(=)= 6ag;1(20—)(2—20)°‘+ > aag;f—ZO)’?a (31)
|| <s1—1 ’ la]=s1 ’

for some 7 on the line segment from z to zp. We define the function h as follows:
for a cell ¢ € A, let 2z, € R? denote the center point of the cell, and set h. to

he(z) = Z 8“%'(,20)(2 — z:)%.
lee|<s1 )

Then we define h € F(A, 1, s1,R) by

h(z) == 1pg(0) () Z Lo(AT2)he(AT2) = 1p,(0) (@) he(a) (AT @),
CGAZ(R)

where ¢(z) := {¢ € A|(R) : © € c}. To prove (30), we now use (31) with
20 = Z¢(z) and compute

w7 g (2e(x)) [ 4 a
ha) =g (ATa) = 3 — A (ATa—z) —g7(ATa)
la|<s1
aag*(zc(z)) - aag* (77) 2 @
= o (ATZ‘ — ZC(I)> 5
la|=s1

where 7 lies on the line between ATz and Ze(z)- The smoothness of g* implies

—9%g*(n)| ’(ATx _ Zc(w))“

o) -] < ¥ 0 )

al
‘(X|:51
L* Ze(x) — N 52 N «
<y I ) I (A7a - 2
‘04|231

Since ATz, Ze(z) € ¢(z), we can furthermore bound

d
TTCAT )i = (zegay)a)™

i=1

(472 - 2"

<11 (2—<l+1))‘“ —o-(+D)s:.

i=1

Furthermore since c(z) is convex, and 7 is on the line between A"z and c(z),
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it follows that n € ¢(x) and therefore also Hzc(m) - < 2-(+D/d. Thus

. s 1
k(AT x 752 5—(141)s -

h(z) —g*(A x)‘ng22 E ol

la|=s1

52
Sdsl _ d81+7

= L*dF 2~
81! 81!

27S(l+1)’

where we used the multinomial formula in the second to last equality. O

Corollary 28. In the setting of Theorem 1/, there exists h € .7:(121, l,s1, R) with

2A2s

E(h(X) — f(X))? < CLN~ =57 4+ Cylog*(N) ‘ pP_p

)

where C7 depends on L*,d,s and Cs depends on L* and linearly on
2 \1ns
(D [|X [,

Proof. Using the law of total expectation, and [h(X) — f(X)| = |f(X)] < 1 if
|IX]| > R, we obtain for any h € F(A,l,s1, R)

E (h(X) = f(X))* <E [(h(X) - F(X))* | IX]| < R| P(IX]| < R)

+E[(h(X) - f(X)°|I1X] > R P(IX| > R)  (32)

<E[((X) ~ /(X)) |IX]) < R] + P(IX]| > R).

For the first term, we use the function h in Proposition 27 satisfying the guar-
antee (30). Using | = [logy(N)/(2s + d)], or 278 > N~=V2s+d) and R? =
D || X7, log(N) we get

E[(h(X) = £())* | 1X]| < R]

P-pr

IN

dsit+# .
* —s(l+1) * plAs
(L — 2 +L*R

S1:

2
1/\s>

1As

. 2A2s
P-P

IN

C~¢12—QSl + 2(L*)2R2/\25

2A2s

< GiNTF 20 (DX, log(V)) [P P

VD | X, by Lemma 19. Therefore, using R*=D \|X||i2 log(N) we have by
[54, Proposition 2.5.2]

For the second term in (32), we note that || X|| is a sub-Gaussian with ||| X{|||,, <

R2
P(|X] > R) < exp (——) < exp(~ log(N)) = N1, O
D[X]ly,
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Finalizing the argument

Proof of Theorem 14. Theorem 17 and Corollary 28 imply

E (FX) - £())" < Cmao?, 112800+ din(2)

+C)N™ 75 + Chlog"*(N) HP P

2A2s (33)

)

where C! = CC; with C; as in Corollary 28, and C is a universal constant.
Furthermore, using Lemma 25, 2! < N'/2s+d) 11 and R? = D ||XH12/J2 log(N),
we bound the complexity of F by

dim(F(A,1, 51, R)) < (d + 31) [(2H1R)Y] < 2d (d + 81) [(2'R)"]

S1 S1
d+81 d d 2 %
< s
_( . )2 {Nﬂd (D|\X||w2 1og(N))

< Cylog"*(N)N =1,

with C% depending on d, s; and linearly on (D ||X||12b2)d/2. Inserting this in (33)

and using NZ=ra~! = N~%%a, the result follows for Co = C} and C; =
max{C1,C},C max{og, 1}}. O
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