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Abstract: Bootstrap for nonparametric regression has been around for
more than 30 years. Nevertheless, most results are based on assuming an
additive regression model with respect to independent and identical (i.i.d.)
errors. An exception is the Local Bootstrap of Shi [23] for which, however,
no bootstrap consistency results are available. We attempt to remedy this
here while at the same time showing bootstrap consistency for a more
general class of methods that fall under the heading of Model-free Bootstrap
of Politis [18].
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1. Introduction

Consider regression data {(Yi, Xi)}, i = 1, . . . , n which are independent and
identical (i.i.d.) pairs. The response Yi is real-valued; for simplicity, we also
suppose that Xi is univariate and random with density function f(x), but the
method works in the same way when Xi is multivariate. Just assuming that the
pairs {(Yi, Xi)}, i = 1, . . . , n are i.i.d. can be considered a “Model-free” regres-
sion setup where interest lies on nonparametric estimation of the conditional
expectation m(x) = E(Yi|Xi = x).

Nevertheless, often practitioners assume a model equation that relates Yi to
Xi; this would be a “model-based” setup despite that fact that the model could
be of nonparametric nature. A typical model for nonparametric regression with
i.i.d. errors is:

Yi = m(Xi) + σ · εi, i = 1, . . . , n,

or, more generally,

Yi = m(Xi) + σ(Xi) · εi, i = 1, . . . , n, (1.1)

where the εi’s are assumed i.i.d. with mean 0 and variance 1. As in the Model-
free case, m(x) = E(Y |X = x) is the target of interest, and σ2(x) = Var(Y |X =
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x) allows for heteroscedasticity; the functions m(·) and σ2(·) will be assumed
unknown but smooth, i.e., a nonparametric setup.

Since Efron [3] pioneering paper, several resampling methods for nonpara-
metric regression problem were developed. One of the first was the paper by
Härdle and Bowman [5]; see also the book by Hall [4]. These methods are very
powerful on additive model such as (1.1). An interesting procedure called the
Local bootstrap was proposed early on by Shi [23]. The Local bootstrap was
designed for the heteroscedastic model (1.1), and it was based on the estimator
of Priestley and Chao [19]. Unfortunately its consistency was never proven. We
attempt to remedy this here; in fact, we will show that the Local bootstrap is
consistent under the Model-free setup of i.i.d. pairs without resort to a restric-
tive model equation such as (1.1). We will further show the consistency of a more
general class of methods that fall under the heading of Model-free Bootstrap of
Politis [18].

Before describing the notion of Model-free Bootstrap it is important to note
that Efron’s [3] well-known method of resampling pairs has a chance does not
work appropriately in nonparametric regression. The caveat has to do with
nonparametric estimation of m(x) = E(Yi|Xi = x) for some particular x of
interest. Although there may be many points with regressor value near x on the
original scatterplot, there is no guarantee that there will be any points with
regressor value near x on the bootstrap scatterplot, rendering nonparametric
estimation (which is a local method) vacuous in the bootstrap world. More
discussion see Remark 1.1 below.

Remark 1.1. Regarding to bootstrap pairs, as one example, suppose Xi =
i/n, i = 1, . . . , n (discrete grid), in addition suppose we use a bandwidth that is
equivalent to using the m nearest neighbors, i.e. estimating f(a) by a weighted
average of the 2m + 1 values in a window centered at a, where a is a value of
interest on the grid. Assume that a is an interior point (i.e., 0 < a −m/n and
a +m/n < 1), and that 2m + 1 < n; then using the pairs bootstrap to create
(Y ∗

i , X
∗
i ) for i = 1, . . . , n, the probability that not one of the X∗

i for i = 1, . . . , n
falls in the local window [a−m/n, a+m/n] is ((n− (2m+ 1))/n)n which, for
large n, can be approximated by exp(−2m− 1). When this situation occurs, we
can not construct the estimate of f(a) in the bootstrap world, as there are no
data in the local neighborhood of a. This might appear extreme, but a similar
problems occurs when only a few X∗ fall in the local window. Notably, if m
becomes large, exp(−2m− 1) will become smaller but it is always nonzero. To
perform bootstrap, we typically draw B resamples, each of size n, where B is a
large number. It is easy to see that the probability of the extreme situation (no
X∗ in the local window) occurring in at least one of the B resamples (and thus
rendering the whole simulation vacuous) is: 1− [1− exp(−2m− 1)]B , which can
be appreciable even for m large.

The notion of Model-free Bootstrap was proposed in a regression context by
Politis [13], and further developed by Sperlich [24], Politis [14, 17, 16]. The basic
idea is to transform a non-i.i.d. dataset such as the set of responses Y1, . . . , Yn to
an i.i.d. dataset that can be resampled in the usual way. The Model-free Boot-
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strap is described in detail in the recent book by Politis [18] but no consistency
results have been proven so far. In this paper we will provide the first theoretical
results on Model-free bootstrap consistency, and we will further compare to the
Local bootstrap by simulation. We also reveal a close relationship between the
two methods under specified assumptions, i.e., the Local bootstrap is essentially
a special case of the Model-free bootstrap.

Although both the Local bootstrap and the Model-free bootstrap can be
implemented using any form of nonparametric regression estimators, to fix ideas
in this paper we focus on the Nadaraya-Watson (N-W) kernel estimator [11]:

m̂n,h(x) =

∑n
i=1 YiK

(
Xi−x

h

)
∑n

i=1 K
(

Xi−x
h

) , (1.2)

whose properties have been very well studied [2, 7, 10, 8]. E.g., the conditional
cumulative distribution function (CDF) and the quantile estimator based on
N-W estimator were studied by Li and Racine [9] and Qu and Yoon [20].

The following is a brief introduction to the spirit of Local bootstrap and
Model-free method in regression problem; more details can be found in sections 3
and 4.

(i) Local bootstrap. Instead of resampling data in an i.i.d. fashion, the
Local bootstrap method resamples data independently but not identically
distributed. More specifically, the probability mass function (p.m.f.) that
the Local bootstrap uses is derived by the N-W estimator first. WLOG,
suppose we have n i.i.d. pairs (Xi, Yi), i = 1, . . . , n at our disposal. To each
Xi, the bootstrap will assign a bootstrap response Y ∗

i which is selected
from one of the n responses, i.e., Y1, . . . , Yn, according to the p.m.f.

(ii) Model-free bootstrap. The idea of Model-free bootstrap is transforming
the non-i.i.d. data to i.i.d. data first, and then applying i.i.d. resampling.
More particularly for regression problem, by probability integral transform
theory, we can transform each observation Yi to approximately U(0, 1)
random variable Ui. Ideally Ui’s are i.i.d., thus we can resample Ui inde-
pendently to obtain bootstrap data U+

i . The last step is using estimated
quantile function of Y |x to transform U+

i ’s back, and denote this final
bootstrap data at different Xi by Y +

i .

The rest of the paper is organized as follows. In section 2, we address all the
necessary assumptions for the theoretical analysis. Section 3 and 4 introduce for-
mal definition of local bootstrap and model free bootstrap as well as important
lemmas. Main results and theorems are presented in section 5. In section 6 we
discuss the details of parameter selection, like the choice of transformed function
and bandwidth. Simulation results are presented in section 7. Proofs of most
lemmas and theorems can be found in the Appendix.
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2. Assumptions and problem set up

This paper is motivated to prove consistency of Model-free bootstrap method
and Local bootstrap method without the assumption of an additive model;
instead we assume that the data {(Yi, Xi)}, i = 1, . . . , n are i.i.d. pairs. Re-
call definition of N-W estimator (1.2), and denote the density function of in-
dependent random variables X1, . . . , Xn by f(x), and the function of interest
m(x) = E(Y |X = x). Let fY |X(y|x) be the conditional probability density func-
tion (PDF) of Y given X = x, D(y|x) is the conditional cumulative density
function (CDF) of Y given X = x, i.e. D(y|x) = P(Y ≤ y|X = x).

Consider the following assumptions:
Assumption A for r.v. X:

(i) EX2
i is finite;

(ii) f(x) is twice differentiable, and both first and second order derivative
functions satisfy the Lipschitz condition |g(x)− g(y)| ≤ C|x− y| for some
C > 0; here g denotes either f ′ or f ′′;

(iii) m(x) is twice differentiable, and both first and second order derivative
functions satisfy the Lipschitz condition |g(x)− g(y)| ≤ C|x− y| for some
C > 0; here g denotes either f ′ or f ′′;

(iv) σ2(x) = Var(Yi|Xi = x) is a continuous function of x;
(v) ∀x ∈support of X, there exists a compact set S ⊂support of X, such that

infx∈S f(x) ≥ δ > 0.

Assumption B for r.v. Y :

(i) fY |X(y|x) is twice differentiable with respect to x;

(ii) There exist B1(y) > 0, B2(y) > 0, such that ∂f(y|x)
∂x ≤ B1(y),

∂2f(y|x)
∂x2 ≤

B2(y), and
∫
Bi(y)dy < ∞, i = 1, 2;

(iii) E
(
|Y |3|X = x

)
< ∞ for all x;

(iv) Var
(
|Yi|3|Xi = x

)
< ∞ for all x;

(v) D(y|x) > 0 and is twice differentiable with respect to both y and x in S.
Assumption C for kernel function K(·):
(i) K(·) is a symmetric, bounded and twice differentiable function;
(ii) K(x) ≥ 0,

∫
K(x)dx = 1;

(iii)
∫
x2K(x)dx < ∞;

(iv) K(·) is Lipschitz continuous. Denote the Lipschitz constant by C1.

Assumption D for sample size n and bandwidth h:

(i) n → ∞, h → 0, nh → ∞;

(ii) h = o(n− 1
5 ).

Li and Racine [8] proved the following theorems under the assumption of
i.i.d. pairs, Assumption A (i)-(iv), Assumption C (i)-(iii), and Assumption D (i)
for estimator (1.2):

E[m̂n,h(x)] = m(x) + h2Bs(x) +O(h3), (2.1)
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Var[m̂n,h(x)] =
1

nh

κσ2(x)

f(x)
+O

(h

n

)
, (2.2)

√
nh(m̂n,h(x)−m(x)− h2Bs(x))

d→ N

(
0,

κσ2(x)

f(x)

)
, (2.3)

where

Bs(x) =
κ2

2

2f ′(x)m′(x) + f(x)m′′(x)

f(x)
, (2.4)

and κ2 =
∫
v2K(v)dv, κ =

∫
K2(v)dv.

Remark 2.1. Motivations of some assumptions:

a. In the following sections, we need the same assumptions Li and Racine [8]
used, only with Assumption A (iii) and (iv) excluded. Additional assump-
tions, which are slightly stronger and play similar role in proof, are intro-
duced in Assumption B (i) and (ii). The motivation is to show validity of
bootstrap methods without additive model, we need to not only assume
m(x) = E(Y |X = x) and σ2(x) = Var(Y |X = x) are smooth with respect to
x, but also assume fY |X(y|x) is smooth with respect to x. Assumption B (ii)
will allow us to apply Dominated Convergence Theorem.;

b. Assumption A (iv), B (v) and C (iv) help to show uniform almost surely
convergence for an estimator of D(y|x), more details please see Section 4;

c. Assumption B (iii) and (iv) are essentially conditions of Lyapunov central
limit theorem applied in Section 5;

d. Assumption D (ii) is essentially under smoothing technique.

3. Local bootstrap

The Local bootstrap method proposed by Shi [23] was originally for the scenario
that the regressors xi’s are deterministic design points in [0, 1]. In what follows,
we address the condition that regressorsXi are random variables. The procedure
of local bootstrap can be described as follows:

(i) For each observation Xi, we create an estimator of conditional probability
mass function (p.m.f.) of Y given Xi:

ĜXi :

(
Y1 Y2 . . . Yn

w1i w2i . . . wni

)
, (3.1)

i.e. we estimate the probability distribution of Y given Xi as a discrete dis-

tribution taking value Yj with probability wji, where wji =
K

(
Xj−Xi

h

)
∑n

l=1 K

(
Xl−Xi

h

)
for i, j = 1, 2, . . . , n, so

∑
j wji = 1.

(ii) At each Xi, we resample Y ∗
i from distribution ĜXi .
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(iii) Compute bootstrap kernel estimator:

m̂∗
n,h(x) =

∑n
i=1 Y

∗
i K

(
Xi−x

h

)
∑n

i=1 K
(

Xi−x
h

) . (3.2)

Shi [23] provided theoretical analyses on Y ∗
i but not the asymptotic properties

of m̂∗
n,h(x); This gap is filled in section 5 but needs the following lemma and

theorem presented in rest of current section.

Lemma 3.1. Under Assumption B (i)-(iii) and Assumption C (i)-(iii),

EXi,Yi

[
g(Yi)K

l
(Xi − x

h

)]
= h

{
A(x)E[g(Y )|X = x] +O(h2)

}
, (3.3)

where g(·) is a continuous function (in this paper, g(x) = xk or g(x) = |x|k, k =
1, 2, 3), A(x) = fX(x)

∫
Kl(u)du, and l is a fixed positive integer, fX(x) is den-

sity function of X1, . . . , Xn. Also, EXi,Yi denote the joint expectation of (Xi.Yi).

Notice i disappears on the right side of (3.3) and thus O(h2) is uniform for
i = 1, . . . , n. This lemma is also valid if replacing Yi by Y ∗

i , and O(·) by Op(·)
under the same assumptions:

EXi,Y ∗
i

[
g(Y ∗

i )K
l
(Xi − x

h

)]
= h

{
A(x)E∗[g(Y ∗)|X = x] +Op(h

2)
}
, (3.4)

where EXi,Y ∗
i

is the expectation in bootstrap world, and thus is conditional
expectation in real world. Lemma 3.1 and (3.4) then lead to the following pre-
liminary result:

Theorem 3.2. Under Assumption B (i)-(iv) and Assumption C (i)-(iii),

|E∗[g(Y ∗)|X = x]− E[g(Y )|X = x]| = Op

(
h2 +

1√
nh

)
, (3.5)

where g(·) is the same continuous function as the one in lemma 3.1, and sim-
ilarly to equation (3.4), E∗ is the expectation in bootstrap world, and thus is
conditional expectation in real world.

Notice Shi [23] has a similar result for the Priestley and Chao Estimator
[19] for the scenario regressors xi’s are deterministic design points in [0, 1].
Theorem 3.2 here holds for the Nadaraya-Watson estimator under the condition
(Xi, Yi), i = 1, 2, . . . are i.i.d. pairs.

4. Model-free bootstrap

The principle of all bootstrap methods is imitating the original sampling that
occurred in real world. If the data are sampled i.i.d., then bootstrap method
resamples data i.i.d.. The problem local bootstrap method solves is the response
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data are collected independently but not identically distributed. As a solution,
the local bootstrap assigns different probabilities to the observed responses.

The Model-free bootstrap of Politis [13] is using a different technique: trans-
forming the non-i.i.d. data to i.i.d. (or approximately i.i.d.), and then performing
i.i.d. resampling. In the Model-free setup of i.i.d. pairs, the transformation could
be achieved by the probability integral transform [1]. More specifically, denote
the conditional distribution function Dx(·) of Y as

Dx(y) = P (Y ≤ y|X = x), (4.1)

and assume it is continuous with respect to y; then, Dx(Y ) follows Unif(0,1)
distribution. Since the true conditional distribution Dx(y) is unknown, it can
be estimated by a N-W estimator, i.e.,

D̂x(y) =

∑n
i=1 1{Yi≤y}K

(
Xi−x

h

)
∑n

i=1 K
(

Xi−x
h

) . (4.2)

Estimator (4.2) is consistent (see Li and Racine [8]) but not continuous in y. A
doubly smoothed version of (4.2) is defined by

D̃x(y) =

∑n
i=1 Λ

(
Yi−y
h0

)
K

(
Xi−x

h

)
∑n

i=1 K
(

Xi−x
h

) , (4.3)

where Λ(·) is a continuous and strictly increasing CDF over its support. Now
define two estimators of quantile-inverse function:

D̂−1
x (u) = min

i=1,...,n
{Yi : u ≤ D̂x(Yi)}, (4.4)

and

= inf
y
{y : u ≤ D̃x(y)}. (4.5)

Both D̂−1
X (·) and D̃−1

x (·) have good properties, see [13, 14]; more discussions are

given in section 6. To specify the ideas, we apply D̃−1
x (·) defined in (4.5) in all

our theoretical results; the same results are expected to hold if one uses D̂−1
x (·)

instead of D̃−1
x (u).

In this section, we denote Model-free bootstrap data by Y +, to distinguish
from Local bootstrap data Y ∗. Politis [13] proposed three ways to generate
Model-free bootstrap data Y +

1 , . . . , Y +
n associated with the same original re-

gressors X1, . . . , Xn.

Method 1. Obtain transformed data U1, · · · , Un by computing Ui = D̃Xi(Yi).
Then sample randomly from the transformed data U1, . . . , Un to get
bootstrap pseudo-data u+

1 , . . . , u
+
n . Finally Y +

i = D̃−1
Xi

(u+
i ), for for

i = 1, . . . , n.
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Method 2. Generate bootstrap pseudo-data u+
1 , . . . , u

+
n i.i.d. from Unif(0,1) dis-

tribution, then Y +
i = D̂−1

Xi
(u+

i ), for i = 1, . . . , n.

Method 3. Let D̃
(t)
x denote the estimator D̃x(·) as computed from the delete–

(Xt, Yt) dataset, i.e., {(Yi, Xi), i = 1, . . . , t − 1, t + 1, . . . , n}. Now
define the “predictive” residuals as

u
(t)
t = D̃

(t)
Xt

(Yt), for t = 1, . . . , n.

Then sample randomly from predictive u-data u
(1)
1 , . . . , u

(n)
n to create

bootstrap pseudo-data u+
1 , . . . , u

+
n , which leads to Y +

i = D̃−1
Xi

(u+
i ),

for i = 1, . . . , n.

Remark 4.1. In the rest of this paper, we will follow the notation given by
Politis [18], i.e., denote Method 1 by the term Model-free (MF), Method 2 by
the term Limit Model-free (LMF), and Method 3 by the term Predictive Model-
free (PMF).

Remark 4.2. For LMF with Y +
i = D̂−1

Xi
(u+

i ), notice D̂Xi(·) and D̂−1
Xi

(·) are both
step functions. It implies LMF is essentially a method resampling Y +

i from

Yi with a p.m.f. ĤXi . Further discussion please see theorem 4.4 and its proof.
We can also modify LMF by using Y +

i = D̃−1
Xi

(u+
i ), and expect it has similar

property, but the discussion is omitted due to space limit.

Remark 4.3. Let xf is the point of interest, and denote m̌n,h(xf ) the estimator
proposed by Politis [13], i.e.

m̌n,h(xf ) =
1

n

n∑
i=1

D̂−1
xf

(ui). (4.6)

We noticed m̌n,h(xf ) and m̂n,h(xf ) are numerically identical. In fact, by the

definition of D̂x(·) (4.2) and D̂−1
x (u) (4.4), the internal relationship of m̌n,h(xf )

and m̂n,h(xf ) can be derived:

m̂n,h(xf ) =

∑n
i=1 YiK

(
Xi−xf

h

)
∑n

i=1 K
(

Xi−xf

h

)
=

∫
ydD̂xf

(y)

=

∫ 1

0

D̂−1
xf

(u)du

= EU [D̂
−1
xf

(U)], (4.7)

where u is a variable for integration, and U is random variable, whose expec-
tation is denoted by EU , conditional on xf , and U follows unform [0,1] distri-
bution. Notice (4.6) is approximation of (4.7), consequently m̌n,h(xf ) is also an
approximation of m̂n,h(xf ) if ui’s are random variables from Unif(0,1).
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The following describe resampling algorithm to establish Model-free confidence
intervals for m(xf ):

(a) Pick one Model-free method from MF, LMF and PMF, to obtain bootstrap
data u+

1 , . . . , u
+
n and Y +

1 , . . . , Y +
n

(b) Based on the pseudo data {(Y +
i , Xi), i = 1, . . . , n}, re-estimate the con-

ditional CDF Dx(·); Denote the bootstrap estimates by D̂+
x (·) and D̃+

x (·)
(which are unsmoothed and smoothed CDF estimator described earlier).

(c) Give it a replicate of the bootstrap confidence interval root: m̂n,h(xf ) −
m̂+

n,h(xf ), or m̌n,h(xf )− m̌+
n,h(xf ), where

m̂+
n,h(xf ) =

∑n
i=1 Y

+
i K

(
Xi−x

h

)
∑n

i=1 K
(

Xi−x
h

) , (4.8)

and

m̌+
n,h(xf ) =

1

n

n∑
i=1

D̂+−1
xf

(u+
i ). (4.9)

(d) Steps (a)-(c) in the above are repeated B times, and the B bootstrap root
replicates are collected in the form of an empirical distribution with α-
quantile denoted by q(α).

(e) Then, the Model-free (1−α)100% equal-tailed confidence interval for m(xf )
is

[m̂n,h(xf ) + q(α/2), m̂n,h(xf ) + q(1− α/2)].

The following lemmas and theorems reveal MF, LMF and PMF method has the
same rate of convergence to true m(x) in probability as local bootstrap method.
In fact, LMF is closely related to the local bootstrap.

Theorem 4.4. LMF and local bootstrap method are equivalent. More specif-
ically, for i.i.d. pairs (Xi, Yi), i = 1, 2, . . ., bootstrapped Y ∗|X = Xi by local
bootstrap method and bootstrapped Y +|X = Xi by LMF have exactly the same
distribution.

Notice the major difference from LMF to MF and PMF, are the algorithm
how u+

i are resampled. LMF resamples u+
i directly from Unif(0,1) distribution,

while MF and PMF resample u+
i from transformed data U1, . . . , Un. The follow-

ing theorem shows the intuition behind of MF and PMF by supposing U1, . . . , Un

are Unif(0,1) distributed. The setting of Theorem 4.5 is a hybrid between MF
and LMF.

Theorem 4.5. Recall Model free bootstrap method 1, i.e., MF method, but re-
place Ui = D̃Xi(Yi) by random variable from Unif(0,1). Still denote u+

i the

bootstrapped data after each bootstrap iteration, and let Y +
i = D̂−1

Xi
(u+

i ). Then
under Assumption B (i)-(iv) and Assumption C (i)-(iii), a similar result as
Theorem 3.2 holds, that is:

|E+[g(Y +)|X = x]− E[g(Y )|X = x]| = Op

(
h2 +

1√
nh

)
, (4.10)

where g(·) is the same continuous function in lemma 3.1.
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Lemma 4.6. Under Assumption A (v), Assumption B (i)-(v) and Assumption
C (i)-(iv), we have:

sup
x∈S

|D̃x(y)−Dx(y)| = O
(
h2
0 + h2 +

[ ln(n)
nh

] 1
2
)
, a.s.

where Dx(·) is the real conditional CDF of Y , D̃x(y) is the estimated conditional
CDF of Y , h and h0 are two bandwidth parameters, and S is any fixed compact
set.

Lemma 4.6 and Polya’s Theorem lead to the following theorems:

Corollary 4.7. Under Assumption A (ii) (v), Assumption B (i)-(v) and As-
sumption C (i)-(iv), we have:

sup
x∈S

sup
y

|D̃x(y)−Dx(y)| = o(1) a.s.

Remark 4.8. Recall MF is using D̃x(y) and PMF is using D̃
(t)
x (y) where tth

pair (Xt, Yt) is deleted. By lemma 4.6, D̃x(y) and D̃
(t)
x (y) have different orders

of almost surely convergence. Fortunately, order of almost surely convergence
is not necessary to show pointwise convergence of MF and PMF. We only need
corollary 4.7 which holds and supports main results for both MF and PMF.

Lemma 4.9. ∀ε > 0 and q0 ∈ (0, 1), ∃N = N(ε, q0) > 0 and δ = δ(ε, q0), such
that ∀n > N , if |q − q0| < δ, then∣∣∣D̃−1

x (q)− D̃−1
x (q0)

∣∣∣ < ε a.s.

Moreover, for a compact support C ⊂ (0, 1), ∀q0 ∈ C, ∃N = N(ε) > 0 and
δ = δ(ε), such that ∀n > N , |q − q0| < δ, then∣∣∣D̃−1

x (q)− D̃−1
x (q0)

∣∣∣ < ε a.s.

Theorem 4.10. For MF method, under Assumption A (ii) (v), Assumption B
(i)-(v) and Assumption C (i)-(iv),

|E+[g(Y +)|X = x]− E[g(Y )|X = x]| = Op

(
h2 +

1√
nh

)
,

where g(·) is the same continuous function in lemma 3.1.

Remark 4.11. Theorem 4.10 is valid for PMF as well. The proof is exactly the
same, thus omitted.

Remark 4.12. The proof of the theorems above are inspired by [6, 10, 15, 21].
The theorems, lemmas and corollaries in this section are the cornerstone of the
consistency results in the next section.
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5. Main results

Although we provided theorem 3.2 and theorem 4.10 which show the consistency
of bootstrapped sample mean, the main interest in this paper is consistency of
bootstrapped N-W estimator (4.8) by local bootstrap method, LMF, MF and
PMF. Before moving forward, the following notations and lemmas are needed:

K̃
(Xi − x

h

)
=

K
(

Xi−x
h

)
1
nh

∑n
j=1 K

(
Xj−x

h

) =
K

(
Xi−x

h

)
f̂X(x)

=
K

(
Xi−x

h

)
fX(x) + op(1)

, (5.1)

where fX(x) is the density function of X1, . . . , Xn and f̂X(x) is kernel estimator
of fX(x), i.e.,

f̂X(x) =
1

nh

n∑
j=1

K
(Xj − x

h

)
.

By equation (5.1), we have the corollary of Lemma 3.1:

Lemma 5.1. Under Assumption B (i)-(iii) and Assumption C (i)-(iii),

EXi,Yi

[
g(Yi)K̃

l
(Xi − x

h

)]
= h

{
Ã(x)E[g(Y )|X = x] +O(h2)

}
, (5.2)

where g(·) is the same function in lemma 3.1, Ã(x) =
∫
K̃l(u)du, and l is any

fixed positive integer.

Similarly to (3.4), this lemma is also valid if replacing Yi by local boot-
strapped Y ∗

i or model free bootstrapped Y +
i . For example, for local boot-

strapped Y ∗
i :

EXi,Y ∗
i

[
g(Y ∗

i )K̃
l
(Xi − x

h

)]
= h

{
Ã(x)E∗[g(Y ∗)|X = x] +O(h2)

}
,

where EXi,Y ∗
i

is the expectation in bootstrap world, and thus is conditional
expectation in real world. Let us re-write (1.2) and (4.8):

m̂n,h(x) =
1

nh

n∑
i=1

YiK̃
(Xi − x

h

)
, (5.3)

m̂∗
n,h(x) =

1

nh

n∑
i=1

Y ∗
i K̃

(Xi − x

h

)
. (5.4)

The new form is equivalent to original N-W estimator. For the rest of this
paper, we use superscript ∗ to denote local bootstrap and model free bootstrap
for simplicity. Recall lemma 5.1, we have the following theorems:

Theorem 5.2. Under Assumption A (ii) (v), Assumption B (i)-(v) and As-
sumption C (i)-(iv),

|E∗[m̂∗
n,h(x)]− m̂n,h(x)| = Op

(
h2 +

1√
nh

)
. (5.5)
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Theorem 5.3. Under Assumption A (ii) (v), Assumption B (i)-(v) and As-
sumption C (i)-(iv),

nh|Var∗[m̂∗
n,h(x)]−Var[m̂n,h(x)]| = Op

(
h2 +

1√
nh

)
. (5.6)

Finally, by Lyapunov CLT, we can get:

Theorem 5.4. Under Assumption A (i)-(v), Assumption B (i)-(v), Assumption
C (i)-(iv) and Assumption D (i), for any fixed x,

√
nh(m̂∗

n,h(x)− E∗[m̂∗
n,h(x)])

d→ N

(
0,

κσ2(x)

f(x)

)
. (5.7)

Recall equations (2.1) and (2.3), and by Theorem 5.4, we have:

sup
u

∣∣∣P (
√
nh(m̂∗

n,h(x)− E∗m̂∗
n,h(x)) ≤ u)− P (

√
nh(m̂n,h(x)− Em̂n,h(x)) ≤ u)

∣∣∣
p.→ 0.

In order to build bootstrap confidence intervals for m(x), according to equa-
tion (2.3), we either have to estimate the bias h2Bs(x), where Bs(x) is quite
complex defined in equation (2.4), or use an under-smoothed bandwidth as given
by Assumptions (viii); the latter is recommended in this paper:

Corollary 5.5. Under Assumption A (i)-(v), Assumption B (i)-(v), Assump-
tion C (i)-(iv) and Assumption D (i)-(ii),

sup
u

∣∣∣P (
√
nh(m̂∗

n,h(x)− E∗m̂∗
n,h(x)) ≤ u)− P (

√
nh(m̂n,h(x)−m(x)) ≤ u)

∣∣∣ p.→ 0.

Then an equal-tailed (1− α)100% bootstrap confidence interval can be con-
structed:

[m̂n,h(x) + q∗(α/2), m̂n,h(x) + q∗(1− α/2)],

where q∗(α) denote the α-quantile of empirical distribution function of m̂n,h(x)−
E∗m̂∗

n,h(x). In the next two sections, we go over the parameters setup and sim-
ulation results.

6. Practical issues

6.1. The transform and transform-back functions

In this section, we discuss the selection of transform & transform back functions
of model free method between discrete and smooth conditional CDF kernel
estimation. Politis applied the smooth kernel estimator in [13, 14], i.e. D̃x(·),
see (4.3). The discrete estimation, D̂x(·) (4.3), was not suggested because it
makes the transformed data unnatural and too equidistant in application.
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For the selection of transform back function, that transforms U∗
i (resampled

from U1, . . . , Un, where Ui is transformed data for MF or PMF method, true
Unif(0,1) data for LMF method), to bootstrapped data Y +|x. As mentioned
earlier, all theorems in this paper are proven based on smooth transform back
function D̃−1

x (·). The validity of these theorems if replacing the smooth trans-

form back function by discrete transform back function D̂−1
x (·) requires further

study but very likely remains, due to the fact two transform back functions
share many same properties. In addition, this selection problem between D̃−1

x (·)
and D̂x(·) is similar to the question discussed by Efron [3]. He was interested
the performance of resampling from regular empirical distribution function and
from a kernel distribution estimation, and so compared the mean squared er-
ror (MSE) of

∫
g(x)dF̂ (x) and

∫
g(x)dF̃ (x), see [22]. For the sake of simplicity,

suppose u∗
i are distributed Unif(0,1), then D̃−1

x (u∗
i ) is equivalent to a random

variable from D̃x(·), D̂−1
x (u∗

i ) is equivalent to a random variable from D̂x(·).
Define:

g̃ =

∫
g(y)dD̃x(y),

and

ĝ =

∫
g(y)dD̂x(y).

If we assume x1, . . . , xn are deterministic, and do some simple computation, can
obtain:

MSE [g̃] = MSE [ĝ] + h2
0 ·

∑n
i=1

{∫
g(yi)g

′′(yi)dDxi(yi)
}
K

(
xi−x
h

)∑n
i=1 K

(
xi−x
h

) +O(h4
0).

Denote the second term on the left side by �. It is apparently � determines
which MSE is greater. For example, if � > 0, D̂−1

x (·) is better with respect to
MSE. Although it is extremely difficult to estimate �, when g(·) is identical
function:

MSE
[
g(Ẽ)

]
= MSE

[
g(Ẽ)

]
= O(h4

0).

The MSE difference is trivial when h0 → 0 (requires n → ∞). More similar
discussions can by found in [8, 9].

6.2. Selection of bandwidth

Since the smooth kernel estimation of conditional CDF has two different band-
widths h and h0, see lemma 4.6, the whole procedure of model free method
requires to optimize both of them. For ĥ, the cross validation method proposed
by Politis [13] is employed in this paper. For h0, Politis [13] employed R software
function bw.nrd0() which is a fast bandwidth selection for density estimation.

Li and Racine [8] showed that h0 = O(n− 2
5 ) and h = O(n− 1

5 ) by minimizing
weighted IMSE. Therefore running another cross validation for h0 does not
guarantee the correct order but definitely increase the overall complexity of
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algorithm. We suggest the same idea by Pan and Politis [12], that is simply

making ĥ0 = ĥ2. In our simulation, we find that both two selections of h0 work
well, and give numerical close outputs. The work on bandwidth h and especially
h0 require further study.

7. Simulation

In this section we present simulation results for both additive model and non-
additive model. The results are tabulated in the following two sub-sections.

7.1. Additive model

The additive model in this simulation has functional defined in (1.1), with
m(x) = sin(x), σ(x) = 1/2, and errors εi i.i.d. N(0,1) or two sided exponen-
tial (Laplace) rescaled to unit variance.

Yi = sin(xi) +
1

2
εi, i = 1, . . . , n.

For each model, 500 datasets are simulated. Each dataset has sample size n =
100, where regressors x1, . . . , xn are randomly drawn from normal distribution
with mean π and standard deviation π. Kernel function employed by N-W es-
timator, D̂x(·) and D̃x(·) is always a normal density function. In each cell of
the following tables, first line gives estimated coverage probability, second line
gives mean of length of confidence interval, third line gives standard error of
length. “Norm” denote normal approximation by (2.3). “MB” is model-based
bootstrap and “PRMB” is predictive residual model-based bootstrap, both of
them were proposed by Politis [13] for nonparametric regression. “LB” stands
for local bootstrap. “LMF”, “MF”, “PMF” are using statistics defined in equa-
tion (4.9). “LMF using N-W” is using a different statistics defined in equation
(4.8). All the intervals have confidence level 95%.

• The standard error of the reported coverage probability levels over the 500
replications is

√
0.05× 0.95/500 ≈ 0.0097

• Since the true model is m(x) = sin(x), this simulation has some symmetry
that helps us to adjust the CVRs. To elaborate, note that for any x ∈ [0, π],
we have |m(x)| = |m(2π − x)|, and the same symmetry holds for the
derivatives of m(x) as well due to the sinusoidal structure. Due to this
symmetry, for any good confidence interval method, m̂n,h(x) at each two
symmetric points are supposed to have exactly same limit distribution,
and hence numerically very close CVRs.

• PRMBmethod show outstanding CVR, while had very high average length
and standard error. After diving into the stored bootstrap data, it turned
out in some bootstrap iteration, the bootstrap ε were very high, and re-
sulted in a wide confidence interval. Such confidence intervals are appar-
ently outliers, and deserve further root cause analysis.
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• Theorem 4.4, the equivalence between the local bootstrap and LMF is
verified in the simulation. Notice that only “LMF using N-W” produces
numerically similar results as local bootstrap. Finite sample difference
exists when using “LMF”, which can be relieved by larger sample size.

• In table 2, CDF of laplace distribution violate assumption (vii). More
precisely, CDF of Laplace distribution is not continuously differentiable
at 0, so lemma 4.6 might fail or the convergence has a slower rate. It
implies that U1, . . . , Un calculated from (Xi, Yi), i = 1, . . . , n might not
be approximately Unif(0,1) distributed, see Fig 1. This is the primary
reason at some points LMF, MF and PMF show over-coverage problem
for Laplace error.

Fig 1. Examples of QQ plots from all three models

7.2. Non-additive model

In this subsection we present the simulation result of a non-additive model. For
the sake of comparison to section 7.1, we use the following model:

Yi = sin(xi) +
1

2
εxi , i = 1, . . . , n,

where xi ∈ [0, 2π], εx = cxZ+(1−cx)W√
c2x+(1−cx)2

, and cx = x/2π, Z ∼ N(0, 1) independent

of W that will be distributed as 1
2χ

2
2 − 1. Thus εx has mean 0 and variance 1.

E(Y |X = x) = sin(x) and Var(Y |X = x) = 1/4, and regressors x1, . . . , xn are
randomly drawn from normal distribution with mean π and standard deviation
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Table 1

Simulation results of 95% level C.I. with additive model and i.i.d. normal distributed error

Methods
Metrics

xf/pi =
0.15 0.3 0.5 0.75 1 1.25 1.5 1.7 1.85

Norm

CVR

Avg Length

Std. Err. Length

88.6%

0.520

0.005

86.0%

0.487

0.004

79.4%

0.458

0.004

78.8%

0.432

0.003

87.6%

0.427

0.003

81.0%

0.434

0.003

78.6%

0.462

0.004

84.8%

0.485

0.004

86.0%

0.514

0.005

MB

CVR

Avg Length

Std. Err. Length

83.4%

0.509

0.005

80.8%

0.454

0.004

81.0%

0.413

0.004

83.4%

0.431

0.004

86.6%

0.451

0.004

86.2%

0.427

0.004

82.2%

0.406

0.004

81.6%

0.452

0.005

83.4%

0.504

0.005

PRMB

CVR

Avg Length

Std. Err. Length

94.2%

1.791

0.137

92.8%

1.559

0.114

91.6%

1.379

0.105

92.8%

1.437

0.109

95.0%

1.478

0.105

93.6%

1.420

0.102

91.8%

1.344

0.100

91.6%

1.551

0.130

92.8%

1.649

0.122

LB

CVR

Avg Length

Std. Err. Length

88.4%

0.612

0.006

88.0%

0.543

0.005

88.4%

0.494

0.005

89.8%

0.517

0.004

92.4%

0.543

0.004

89.0%

0.513

0.004

88.2%

0.491

0.005

89.4%

0.544

0.006

89.8%

0.610

0.006

LMF

using

N-W

CVR

Avg Length

Std. Err. Length

90.4%

0.587

0.005

89.0%

0.523

0.004

86.6%

0.472

0.004

88.2%

0.492

0.003

93.8%

0.520

0.004

88.0%

0.494

0.004

85.4%

0.471

0.004

89.8%

0.520

0.005

90.2%

0.580

0.005

LMF

CVR

Avg Length

Std. Err. Length

89.8%

0.719

0.005

91.8%

0.646

0.004

92.0%

0.595

0.004

93.4%

0.642

0.004

94.2%

0.686

0.004

93.6%

0.642

0.004

91.4%

0.592

0.004

93.6%

0.643

0.005

90.8%

0.710

0.005

MF

CVR

Avg Length

Std. Err. Length

88.6%

0.582

0.005

88.6%

0.522

0.004

87.0%

0.483

0.003

91.0%

0.511

0.003

92.6%

0.547

0.003

88.6%

0.512

0.003

87.4%

0.482

0.003

91.4%

0.518

0.004

89.6%

0.573

0.004

PMF

CVR

Avg Length

Std. Err. Length

95.2%

0.728

0.006

95.2%

0.662

0.005

93.8%

0.617

0.005

96.2%

0.649

0.004

98.8%

0.686

0.005

96.6%

0.649

0.004

93.4%

0.616

0.005

95.2%

0.660

0.006

96.2%

0.721

0.006

Table 2

Simulation results of 95% level C.I. with additive model and i.i.d. Laplace distributed error

Methods
Metrics

xf/pi =
0.15 0.3 0.5 0.75 1 1.25 1.5 1.7 1.85

Norm

CVR

Avg Length

Std. Err. Length

89.2%

0.518

0.005

89.0%

0.488

0.004

80.6%

0.459

0.004

83.2%

0.434

0.004

87.4%

0.426

0.003

82.8%

0.434

0.003

78.4%

0.460

0.004

87.8%

0.489

0.004

88.6%

0.507

0.004

MB

CVR

Avg Length

Std. Err. Length

87.0%

0.503

0.006

84.0%

0.444

0.005

80.6%

0.401

0.005

85.8%

0.428

0.005

87.2%

0.445

0.004

83.6%

0.411

0.004

81.2%

0.391

0.005

85.0%

0.440

0.005

84.6%

0.492

0.006

PRMB

CVR

Avg Length

Std. Err. Length

94.6%

1.610

0.113

95.4%

1.415

0.100

94.4%

1.274

0.094

95.4%

1.309

0.094

96.6%

1.347

0.092

95.8%

1.251

0.085

92.8%

1.201

0.083

95.2%

1.407

0.095

95.2%

1.646

0.121

LB

CVR

Avg Length

Std. Err. Length

92.4%

0.615

0.007

92.0%

0.547

0.007

88.6%

0.496

0.006

91.0%

0.522

0.006

94.0%

0.546

0.005

91.0%

0.502

0.005

88.0%

0.479

0.006

91.0%

0.538

0.006

91.2%

0.599

0.007

LMF

using

N-W

CVR

Avg Length

Std. Err. Length

93.6%

0.584

0.006

91.0%

0.523

0.006

88.0%

0.479

0.005

90.4%

0.500

0.005

93.2%

0.521

0.004

90.0%

0.489

0.004

87.2%

0.464

0.005

90.8%

0.514

0.006

92.8%

0.575

0.006

LMF

CVR

Avg Length

Std. Err. Length

93.2%

0.715

0.006

95.0%

0.646

0.006

96.4%

0.602

0.006

96.0%

0.652

0.005

95.0%

0.688

0.005

96.2%

0.637

0.005

94.0%

0.584

0.005

95.0%

0.636

0.006

93.6%

0.703

0.006

MF

CVR

Avg Length

Std. Err. Length

92.4%

0.547

0.005

91.0%

0.483

0.004

88.8%

0.446

0.004

90.4%

0.479

0.003

93.6%

0.519

0.003

92.6%

0.475

0.003

85.6%

0.438

0.003

90.0%

0.478

0.004

90.2%

0.538

0.004

PMF

CVR

Avg Length

Std. Err. Length

97.4%

0.712

0.006

98.2%

0.649

0.006

95.6%

0.610

0.005

96.8%

0.642

0.005

98.8%

0.680

0.004

96.4%

0.633

0.005

93.4%

0.599

0.005

96.2%

0.643

0.006

97.0%

0.703

0.006
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Table 3

Simulation results of 95% level C.I. with non-additive model

Methods
Metrics

xf/pi =
0.15 0.3 0.5 0.75 1 1.25 1.5 1.7 1.85

Norm

CVR

Avg Length

Std. Err. Length

88.4%

0.513

0.005

86.2%

0.483

0.005

81.0%

0.456

0.004

78.2%

0.429

0.004

86.4%

0.425

0.004

80.4%

0.430

0.004

78.8%

0.459

0.004

85.8%

0.482

0.004

86.0%

0.506

0.005

MB

CVR

Avg Length

Std. Err. Length

82.2%

0.486

0.006

81.0%

0.435

0.006

81.0%

0.391

0.005

80.6%

0.417

0.005

86.0%

0.449

0.005

83.0%

0.420

0.005

79.0%

0.398

0.005

80.6%

0.442

0.005

83.6%

0.497

0.005

PRMB

CVR

Avg Length

Std. Err. Length

92.8%

1.581

0.112

90.0%

1.404

0.100

87.6%

1.254

0.088

91.2%

1.240

0.080

96.6%

1.373

0.096

95.2%

1.353

0.100

93.4%

1.285

0.093

92.4%

1.406

0.096

94.6%

1.606

0.112

LB

CVR

Avg Length

Std. Err. Length

88.4%

0.592

0.007

86.4%

0.531

0.007

85.0%

0.474

0.006

88.0%

0.511

0.005

92.6%

0.549

0.006

90.6%

0.514

0.006

87.8%

0.485

0.006

89.2%

0.539

0.006

89.8%

0.607

0.006

LMF

using

N-W

CVR

Avg Length

Std. Err. Length

90.8%

0.573

0.006

88.0%

0.512

0.006

83.8%

0.462

0.005

86.6%

0.491

0.005

93.6%

0.525

0.005

90.8%

0.495

0.005

85.6%

0.467

0.005

88.4%

0.519

0.005

92.2%

0.582

0.005

LMF

CVR

Avg Length

Std. Err. Length

92.0%

0.701

0.007

91.8%

0.633

0.007

88.6%

0.584

0.006

95.0%

0.640

0.005

95.4%

0.694

0.005

94.8%

0.644

0.005

92.8%

0.588

0.005

93.2%

0.641

0.005

92.2%

0.712

0.005

MF

CVR

Avg Length

Std. Err. Length

88.4%

0.533

0.005

86.4%

0.475

0.004

81.2%

0.437

0.003

86.8%

0.468

0.003

92.8%

0.523

0.004

90.0%

0.488

0.004

86.4%

0.458

0.004

89.4%

0.500

0.004

90.6%

0.557

0.004

PMF

CVR

Avg Length

Std. Err. Length

95.6%

0.685

0.007

94.6%

0.622

0.006

89.6%

0.576

0.005

94.2%

0.613

0.005

98.2%

0.673

0.005

97.4%

0.641

0.006

95.6%

0.603

0.005

96.0%

0.643

0.006

96.6%

0.705

0.006

π with sample size n = 100. However, εx has skewness depending on x that
violating i.i.d. assumption. The result is presented in table 3. It seems that
PMF performs the best among the different methods although it yields some
over-coverage, e.g. at x = π and x = 1.25π.
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Appendix: Proof

Proof of lemma 3.1. Since l is a fixed positive integer, by Assumption C(i),
Kl(·) is also symmetric, bounded and twice differentiable function. Then,

EXi,Yi

[
g(Yi)K

l
(Xi − x

h

)]
=

∫∫
g(yi)K

l(
xi − x

h
)fXi,Yi(xi, yi)dxidyi

= h

∫∫
g(yi)K

l(ui)fXi,Yi(x+ uih, yi)duidyi
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= h

∫∫
g(yi)K

l(ui)
[
fXi,Yi(x, yi) +

∂fXi,Yi(x, yi)uih

∂x

+
1

2

∂2fXi,Yi(x, yi)u
2
ih

2

∂x2

]
duidyi

= h

{ ∫
Kl(ui)dui

∫
g(yi)fXi,Yi(x, yi)dyi

+ h

∫
uiK

l(ui)dui

∫
g(yi)

∂fXi,Yi(x, yi)

∂x
dyi

+
h2

2

∫
u2
iK

l(ui)dui

∫
g(yi)

∂2fXi,Yi(x, yi)

∂x2
dyi +O(h3)

}

= h

{ ∫
Kl(ui)dui

∫
g(yi)fYi|Xi

(yi|x)fXi(x)dyi +
h2

2

∫
u2
iK

l(ui)dui

∫
g(yi)

∂2fXi,Yi(x, yi)

∂x2
dyi +O(h3)

}

= h

{
fX(x)

∫
Kl(u)du · E[g(Y )|X = x]

+
h2

2

∫
u2Kl(u)du

∫
g(y)

∂2

∂x2
fX,Y (x, y)dy +O(h3)

}
= h

{
A(x) · E[g(Y )|X = x] +O(h2)

}
where A(x) = fX(x)

∫
Kl(u)du. The very last step we can get O(h2) is because

of Assumption B(ii), by which and dominated convergence theorem, we can
interchange order of differentiation and integration. Then by Assumption B(iii),
the integration is finite. Notice the original term of O(h2) is not related to i
anymore, so they have the common bound.

Proof of theorem 3.2. By definition of Big O notation in probability, we just
need to show:

E∗[g(Y ∗)|X = x]− E[g(Y )|X = x] = Op

(
h2 +

1√
nh

)
First, by the definition of local bootstrap algorithm,

E∗[g(Y ∗)|X = x] =

∑n
i=1 g(Yi)K

(
Xi−x

h

)
∑n

i=1 K
(

Xi−x
h

)
=

1

f̂X(x)
· 1

nh

n∑
i=1

g(Yi)K
(Xi − x

h

)
=

1

fX(x) + op(1)
· 1

nh

n∑
i=1

g(Yi)K
(Xi − x

h

)
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By lemma 3.1, we have:

EX,Y

[ 1

nh

n∑
i=1

g(Yi)K
(Xi − x

h

)]
=

1

nh

n∑
i=1

EXi,Yi

[
g(Yi)K

l
(Xi − x

h

)]
=

1

nh

n∑
i=1

h
{
fX(x)

∫
K(u)du · E[g(Y )|X = x] +O(h2)

}
= fX(x) · E[g(Y )|X = x] +O(h2)

As {(Xi, Yi}ni=1 are independent and under Assumption B(iv), we also have

VarX,Y

[ 1

nh

n∑
i=1

g(Yi)K
(Xi − x

h

)]
=

1

(nh)2

n∑
i=1

Var
[
g(Yi)K

(Xi − x

h

)]
=

1

(nh)2

n∑
i=1

{
E

[
g(Yi)K

(Xi − x

h

)]2
−

(
E

[
g(Yi)K

(Xi − x

h

)])2
}

=
1

(nh)2

n∑
i=1

(
h
{
fX(x)

∫
K2(u)du · E[g2(Y )|X = x] +O(h2)

}
−h2

{
fX(x)

∫
K(u)du · E[g(Y )|X = x] +O(h2)

}2
)

=
1

nh

[ ∫
K2(u)dufX(x)E[g2(Y )|X = x] +O(h2)

]
− 1

n

[
fX(x)E[g(Y )|X = x] +O(h2)

]2
= O

( 1

nh

)
By Markov’s Inequality, it is easy to get

1

nh

n∑
i=1

g(Yi)K
(Xi − x

h

)
− fX(x)E[g(Yi)] = Op

(
h2 +

1√
nh

)
Finally, we get:

E∗[g(Y )|X = x]− E[g(Y )|X = x]

=
1

fX(x) + op(1)
· 1

nh

n∑
i=1

g(Yi)K
(Xi − x

h

)
− E[g(Y )|X = x]

=
1

fX(x) + op(1)
·
[

1

nh

n∑
i=1

g(Yi)K
(Xi − x

h

)
−
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[fX(x) + op(1)]E[g(Y )|X = x]

]

=
Op(h

2 + 1/
√
nh)− op(1)E[g(Y )|X = x]

fX(x) + op(1)

= Op

(
h2 +

1√
nh

)
Proof of theorem 4.4. For the resampling method of local bootstrap, at Xi, re-
call (3.1), ĜXi is the p.m.f. to resample data and generate Y ∗

i . On the other

side, remark 4.2 explains LMF also uses a p.m.f. ĤXi to generate Y ∗
i . To show

the equivalence, we will prove Ĝxi = Ĥxi .

Ĥxi :

(
Y1 Y2 . . . Yn

w̃1i w̃2i . . . w̃ni

)
The reason we can define such a function for model free, is that no matter what
u∗
i we get from Unif(0,1), by the transformed function D̂−1

x (·), Y + will be always
one point from {Y1, . . . , Yn}. Thus for each Yj , there is a probability we choose
it as Y +

i . For each i, j, we define Y −
j = maxk=1,...,n{Yk, Yk < Yj}. Then, we

have:

w̃ij = P (Y +
i = Yj)

= P (D̂−1
xi

(u∗
i ) = Yj)

= P (1{∃k,Yk<Yj} · D̂xi(Y
−
j ) < u∗

i ≤ D̂xi(Yj))

=

∑n
t=1 1{Yt≤Yj}K

(
Xi−Xt

h

)
∑n

t=1 K
(

Xi−Xt

h

) − 1{∃k,Yk<Yj} ·
∑n

t=1 1{Yt≤Y −
j }K

(
Xi−Xt

h

)
∑n

t=1 K
(

Xi−Xt

h

)
=

K
(

Xi−Xj

h

)
∑n

t=1 K
(

Xi−Xt

h

)
Proof of Theorem 4.5. By the algorithm of MF, but notice each ui, i = 1 . . . , n
is assumed to be Unif(0,1) distributed. Then,

E+[g(Y +)|X = x] =
1

n

n∑
i=1

g[D̂−1
x (ui)]

Then, consider

|E+[g(Y +)|x]− E[g(Y )|X = x]| ≤
|E+[g(Y +)|x]− E∗[g(Y ∗)|X = x]|+ |E∗[g(Y ∗)|X = x]− E[g(Y )|X = x]|

(A.1)

Let E∗ denote expectation in local bootstrap world, and E+ denote expectation
in model free bootstrap world. For the right side of inequality above, the second
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term is proved in theorem 3.2. For the first term, by equation (4.7), we know

E∗[g(Y ∗)|X = x] = Eug[D̂
−1
x (u)], where u comes from Unif(0,1) distribution.

Let random vector U = (u1, . . . , un), independent from u. Then we have:

E{E+[g(Y +)|X = x]− E∗[g(Y ∗)|X = x]}

= EX,Y,U

[ 1
n

n∑
i=1

g[D̂−1
x (ui)]− Eug[D̂

−1
x (u)]

]
= EX,Y

{
EU

[ 1
n

n∑
i=1

g[D̂−1
x (ui)

∣∣∣X,Y ]
]
−

Eug
[
D̂−1

x (u)
∣∣∣X,Y

]}
= 0 (A.2)

Then consider the variance:

VarX,Y,U

{
E+[g(Y +)|X = x]− E∗[g(Y ∗)|X = x]

}
= EX,Y,U

{
E+[g(Y +)|X = x]− E∗[g(Y ∗)|X = x]

}2

= EX,Y

(
EU

{
E+[g(Y +)|X = x]− E∗[g(Y ∗)|X = x]

∣∣X,Y
}2

)
= EX,Y

(
EU

{ 1

n

n∑
i=1

g[D̂−1
x (ui)]− Eug[D̂

−1
x (u)]

∣∣∣X,Y
}2)

= EX,Y

(
VarU

{ 1

n

n∑
i=1

g[D̂−1
x (ui)]

∣∣∣X,Y
})

= EX,Y

( 1

n2

n∑
i=1

VarU
{
g[D̂−1

x (ui)]
∣∣X,Y

})
=

1

n
EX,Y

(
Var∗[g(Y ∗)|X = x]

)
=

1

n
EX,Y

(
E∗[g(Y ∗)|X = x]2 −

{
E∗[g(Y ∗)|X = x]

}2
)

For the second term, in theorem 3.2, we already show that

E∗[g(Y ∗)|X = x]− E[g(Y )|X = x] = Op

(
h2 +

1√
nh

)
and

VarX,Y

(
E∗[g(Y ∗)|X = x]

)
= O

( 1

nh

)
which implies

EX,Y

(
E∗[g(Y ∗)|X = x]

)2

= VarX,Y

(
E∗[g(Y ∗)|X = x]

)
+

[
EX,Y

(
E∗[g(Y ∗)|X = x]

)]2
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is bounded. Then let us see the first term:

EX,Y

{
E∗[g(Y ∗)|X = x]2

}
= EX,Y

{ 1

nh

n∑
i=1

g2(Yi)K̃
(Xi − x

h

)}
=

1

nh

n∑
i=1

EX,Y

{
g2(Yi)K̃

(Xi − x

h

)}
=

1

nh

n∑
i=1

h
{
fX(x)

∫
K̃(u)du · E[g2(Y )|X = x] +O(h2)

}
by lemma 5.1

= Ã(x)E[g2(Y )|X = x] +O(h2)

< ∞

Thus VarX,Y,U

{
E+[g(Y +)|X = x] − E∗[g(Y ∗)|X = x]

}
= O(1/n). This and

(A.2), Chebyshev inequality, and the definition of big O in probability notation
leads to:

E+[g(Y +)|X = x]− E∗[g(Y ∗)|X = x] = Op

( 1√
n

)
Recall (A.1), we have:

|E+[g(Y +)|X = x]− E[g(Y )|X = x]| = Op

( 1√
n

)
+Op

(
h2 +

1√
nh

)
= Op

(
h2 +

1√
nh

)
Proof of lemma 4.6. Let d̂(x) = 1

nh

∑n
i=1 Λ

(
Yi−y
h0

)
K

(
Xi−x

h

)
, then we write:

sup
x∈S

|D̃x(y)−Dx(y)|

= sup
x∈S

∣∣∣∣∣ d̂(x)f̂(x)
−Dx(y)

∣∣∣∣∣
≤

supx∈S

∣∣∣d̂(x)− E
(
d̂(x)

)
+ E

(
d̂(x)

)
−Dx(y)f̂(x)

∣∣∣
infx∈S |f̂(x)|

≤
supx∈S

∣∣∣d̂(x)− E
(
d̂(x)

)∣∣∣
infx∈S |f̂(x)|

+
supx∈S

∣∣∣E(
d̂(x)

)
−Dx(y)f̂(x)

∣∣∣
infx∈S |f̂(x)|

Where f̂(x) = 1
nh

∑n
i=1 K

(
Xi−x

h

)
.

By Assumption A (v) and thm 1.4 from [8], i.e. supx∈S |f̂(x) − f(x)| a.s.→ 0,

for large sufficiently enough n we can find another δ′ s.t. infx∈S f̂(x) ≥ δ′ > 0.
And for the second term, by theorem 6.2 in Li and Racine [8], we have:{

E
[
d̂(x)

]
−Dx(y)f̂(x)

}
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=
h2
0

2

∫
u2K(u)du · ∂

2Dx(y)

∂y2
f(x) +

h2

2

∫
u2K(u)du

[∂2Dx(y)

∂x2
f(x)

+ 2
∂f(x)

∂x
· ∂Dx(y)

∂x

]
+ o(h2

0 + h2)

= O(h2
0 + h2)

By Assumption A (ii) and Assumption B (v), ∂2Dx(y)
∂y2 and supx∈S

[
∂Dx(y)

∂x f(x)+

2∂f(x)
∂x · ∂Dx(y)

∂x

]
is bounded, which implies

sup
x∈S

∣∣∣E(
d̂(x)

)
−Dx(y)f̂(x)

∣∣∣ = O(h2
0 + h2)

Then just need to show

sup
x∈S

∣∣∣d̂(x)− E
(
d̂(x)

)∣∣∣ = O
([ ln(n)

nh

] 1
2
)

a.s. (A.3)

As S is compact, it can be covered by a finite number Ln of interval {Ik}n1 with
length ln, and Ln = constant/ln. We write:

sup
x∈S

∣∣∣d̂(x)− E
(
d̂(x)

)∣∣∣ = max
1≤k≤Ln

sup
x∈S

⋂
Ik

|d̂(x)− E
(
d̂(x)

)
|

≤ max
1≤k≤Ln

sup
x∈S

⋂
Ik

|d̂(x)− d̂(xk,n)|

+ max
1≤k≤Ln

|d̂(xk,n)− E[d̂(xk,n)]|

+ max
1≤k≤Ln

sup
x∈S

⋂
Ik

|E[d̂(xk,n)]− E[d̂(x)]|

= Q1 +Q2 +Q3

For Q2, the sup can be ignored because it only concern xk,n but not x, and xk,n

is the central point of the interval Ik. We will show Q1 and Q3 in the last part,
just consider Q2 first. To show Q2 = O(ηn) a.s., by Borel-Cantelli Lemma, we
just need to show

∞∑
n=1

P [Q2 > ηn] < ∞

Let Wn(x) = d̂(x)− E[d̂(x)] =
∑

i Zn,i, where

Zn,i =
1

nh

{
Λ

(Yi − y

h0

)
K

(Xi − x

h

)
− E

[
Λ

(Yi − y

h0

)
K

(Xi − x

h

)]}
For any ηn > 0, we have

P [Q2 > ηn] = P [ max
1≤k≤Ln

|Wn(xk,n)| > ηn]
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≤
Ln∑
k=1

P [|Wn(xk,n)| > ηn]

≤ Ln sup
x∈S

P [|Wn(x)| > ηn]

Since K(·) is bounded, let its supremum is A1, moreover, Λ(·) is a CDF and so

|Λ(·) ≤ 1|, thus we have Zn,i ≤ 2A1

nh . Define λn = (nh ln(n))
1
2 , then λn|Zn,i| ≤

2A1

[
ln(n)
nh

] 1
2

. Then we can choose sufficiently large n such that λn|Zn,i| ≤ 1
2 for

all i = 1, 2, . . . , n. Now use inequality

exp(x) ≤ 1 + x+ x2 as |x| ≤ 1

2

and
1 + x ≤ exp(x) as x ≥ 0

We have:

E[exp(±λnZn,i)] ≤ 1 + E[±λnZn,i] + E[λ2
n|Z2

n,i|] ≤ exp(E[λ2
n|Z2

n,i|]) a.s.

By the Markov inequality, (a > 0)

P [X > c] ≤ E[exp(Xa)]

exp(ac)
(A.4)

Thus,

P [|Wn(x)| > η] = P
[∣∣∣ n∑

i=1

Zn,i

∣∣∣ > η
]

= P
[ n∑

i=1

Zn,i > η
]
+ P

[
−

n∑
i=1

Zn,i > η
]

≤ E[exp(λn

∑n
i=1 Zn,i)] + E[exp(−λn

∑n
i=1 Zn,i)]

exp(λnη)

≤ 2 exp(−λnη)

n∏
i=1

[
exp

(
λ2
nEZ2

n,i

)]
≤ 2 exp(−λnη)

[
exp

(A2λ
2
n

nh

)]
Where we use

EZ2
n,i =

1

(nh)2
Var

[
Λ

(Yi − y

h0

)
K

(Xi − x

h

)]
≤ 1

n2h2
E

[
Λ

(Yi − y

h0

)
K

(Xi − x

h

)]2
≤ 1

n2h2

∫
K2

(xi − x

h

)
fX(xi)dxi
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=
1

n2h

∫
K2(u))fX(x+ uh)du

=
1

n2h

∫
K2(u))

[
fX(x) +

∂fX(x)uh

∂x
+O(h2)

]
du

=
1

n2h

{
fX(x)

∫
K2(u)du+ h

∂fX(x)

∂x

∫
uK2(u)du+O(h2)

}
=

f(x)
∫
K2(u)du

n2h
[1 +O(h2)]

≤ A2

n2h

As f(x) is bounded, and
∫
uK2(u)du = 0 since K is symmetric. Because A2 is

independent of x, we get

sup
x∈S

P [|Wn(x)| > ηn] ≤ 2 exp
(
− λnηn +

A2λ
2
n

nh

)
And let λn = [(nh) ln(n)]

1
2 and ηn = C4 ln(n)/λn = C4[ln(n)/(nh)]

1
2 , where C4

is positive. Choosing large enough C4, we get(
− λnη +

A2λ
2
n

nh

)
= (−C4 +A2) lnn = α lnn

where α = (−C4 + A2) is negative, and it can be small enough (by the choice
of C4) so that:

∞∑
n=1

P [Q2 > ηn] ≤
∞∑

n=1

sup
x∈S

P [|Wn(x)| > ηn] ≤
∞∑

n=1

Ln

nα
< ∞

by choosing Ln =
√

n
h3 lnn . Thus, based on all the above and Borel-Cantelli

Lemma, we know that,

Q2 = O
([ ln(n)

nh

] 1
2
)

a.s.

Now consider Q1 and Q3. By Assumption C (iv), K(·) is Lipschitz continuous
and Lipschitz constant is C1, we know that

sup
S

⋂
Ik

∣∣∣Λ(Yi − y

h0

)
K

(Xi − x

h

)
− Λ

(Yi − y

h0

)
K

(Xi − xk,n

h

)∣∣∣
≤ C1

h
sup

S
⋂

Ik

||x− xk,n||

≤ C1ln
h

By using the same choice of Ln above, we have ln = constant ·
√

h3 lnn
n , and

|Q1| ≤
C1ln
h2

= O
([ ln(n)

nh

] 1
2
)

a.s.
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And by exactly same argument, we can also show

|Q3| = O
([ ln(n)

nh

] 1
2
)

a.s.

Thus, finally, we get

sup
x∈S

|D̃x(y)−Dx(y)| = O
(
h2
0 + h2 +

[ ln(n)
nh

] 1
2
)

a.s.

Proof of Lemma 4.9. Recall (4.3), the definition of D̃x(·) and (4.5), the defi-

nition of D̃−1
x (·), and both are sequence functions with n. Denote Dx(·) the

function D̃x(·) converge to, then Dx(·) and D̃x(·) are CDF and 1 to 1 increasing

functions and have inverse function D−1
x (·) and D̃−1

x (·). For a fixed q0 ∈ (0, 1),
let y0 = D−1

x (q0). Pick M1 > y0, then ∀�, that 0 < � < Dx(M1) − Dx(y0),

by Lemma 4.6, ∃N1 = N1(q0) > 0, ∀n > N1, |D̃x(M1) − Dx(M1)| < � a.s.. It
implies

q0 = Dx(y0) < Dx(M1)−� < D̃x(M1) a.s.

Apparently D̃−1
x (·) is 1-1 increasing function as well, so

D̃−1
x (q0) < M1 a.s.

Similarly, we could show that, pickM2 < y0, ∃N2 = N2(q0), ∀n > N2, D̃
−1
x (q0) >

M2 a.s.. Now consider that ∀ε > 0, by supremum triangle inequality,

sup
M2<u<M1

[
D̃x(u− ε)− D̃x(u)

]
= sup

M2<u<M1

[
D̃x(u− ε)−Dx(u− ε) +Dx(u− ε)−Dx(u) +Dx(u)− D̃x(u)

]
≤ sup

M2<u<M1

[
D̃x(u− ε)−Dx(u− ε)

]
+ sup

M2<u<M1

[Dx(u− ε)−Dx(u)]

+ sup
M2<u<M1

[
Dx(u)− D̃x(u)

]
≤ 2 sup

u

[
Dx(u)− D̃x(u)

]
+ sup

M2<u<M1

[Dx(u− ε)−Dx(u)] (A.5)

Dx(·) is continuous 1 to 1 increasing function, so ∃δ = δ(ε, q0) > 0 such that

sup
M2<u<M1

[Dx(u− ε)−Dx(u)] < −2δ < 0

By Lemma 4.6 again, ∃N3 = N3(ε, q0) > 0, ∀n > N3,

2 sup
u

[
Dx(u)− D̃x(u)

]
≤ 2 sup

u

∣∣∣Dx(u)− D̃x(u)
∣∣∣ < δ a.s.

Back to (A.5), we have:

sup
M2<u<M1

[
D̃x(u− ε)− D̃x(u)

]
< −δ a.s.
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Similarly, we could show

inf
M2<u<M1

[
D̃x(u+ ε)− D̃x(u)

]
> δ a.s.

Let N = max(N1, N2, N3), ∀n > N , we found δ, if |q − q0| < δ,

D̃x(D̃
−1
x (q0)− ε)− D̃x(D̃

−1
x (q0)) ≤ sup

M2<u<M1

[
D̃x(u− ε)− D̃x(u)

]
< −δ

Thus
D̃x(D̃

−1
x (q0)− ε) ≤ q0 − δ < q

Analogically,
D̃x(D̃

−1
x (q0) + ε) ≥ q0 + δ > q

Above all, we can show for ∀ε > 0, ∃N = N(ε, q0) > 0, and δ = δ(ε, q0), ∀n > N ,
if |q − q0| < δ, then

D̃x(D̃
−1
x (q0)− ε) < q < D̃x(D̃

−1
x (q0) + ε)

D̃−1
x (q0)− ε < D̃−1

x (q) < D̃−1
x (q0) + ε∣∣∣D̃−1

x (q)− D̃−1
x (q0)

∣∣∣ < ε a.s.

Now by the same proof of Heine-Cantor theorem, we can find finite open covers
for C, thus finite different N and δ work for all q ∈ C. Then obviously for
∀q0 ∈ C, ∃N = N(ε) > 0 and δ = δ(ε), such that ∀n > N , |q − q0| < δ, we have∣∣∣D̃−1

x (q)− D̃−1
x (q0)

∣∣∣ < ε a.s.

Proof of Theorem 4.10. First, by Probability Integral Transform theorem, we
have

E[g(Y )|X = x] = E{g[D−1
x (U)]}

The first expectation is with respect to Y |x, the expectation on the right side
is with respect to r.v. U , that follows Unif(0,1). By Law of Large Number, we
have

E{g[D−1
x (U)]} =

1

n

n∑
i=1

g[D−1
x (Ui)] + op

(
1√
n

)
Where Ui follows Unif[0,1] i.i.d. On the other hand, by the algorithm of model
free

E+[g(Y +)|X = x] =
1

n

n∑
i=1

g
(
D̃−1

x [D̃xi(Yi)]
)

Then, to show the theorem, we just need to prove∣∣∣∣∣ 1n
n∑

i=1

g
(
D̃−1

x [D̃xi(Yi)]
)
− 1

n

n∑
i=1

g[D−1
x (Ui)]

∣∣∣∣∣ = Op

(
h2 +

1√
nh

)
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Because we are eventually showing the convergence in probability, according
to assumption (i), (v) and (vi), both X and Y have finite expectation and
variance, by Chebyshev’s inequality, both X and Y are bounded in probability.
Furthermore, it is obvious that Dx(Y ) is also bounded in probability, i.e. For
∀ε > 0, ∃Mε > 0, such that

P (Dx(Y ) < 1−Mε and Dx(Y ) > Mε) < ε

By Lemma 4.6, with a large enough n, D̃x(Y ) is also bounded in probability:

for the same ε, ∃M̃ε > 0, such that

P

(
D̃x(Y ) < 1− M̃ε and D̃x(Y ) > M̃ε

)
< ε

Then letM ′
ε = max(Mε, M̃ε). ForXi, Yi such that D̃x(Yi) < 1−M̃ε and D̃x(Yi) >

M̃ε

P

(∣∣∣∣∣ 1n
n∑

i=1

g
(
D̃−1

x [D̃xi(Yi)]
)
− 1

n

n∑
i=1

g[D−1
x (Ui)]

∣∣∣∣∣ ≥ O
(
h2 +

1√
nh

))
≤ P

(
D̃x(Y ) < 1−M ′

ε and D̃x(Y ) > M ′
ε

)
< ε

Thus in the following proof, we only need to consider Xi, Yi such that 1−M ′
ε ≤

D̃x(Yi) ≤ M ′
ε. By Lemma 4.9, we only need to prove∣∣∣∣∣ 1n
n∑

i=1

g
(
D̃−1

x [Dxi(Yi)]
)
− 1

n

n∑
i=1

g[D−1
x (Ui)]

∣∣∣∣∣ = Op

(
h2 +

1√
nh

)
Were Ui follows Unif[0,1] i.i.d.. Notice that∣∣∣∣∣ 1n

n∑
i=1

g
(
D̃−1

x [Dxi(Yi)]
)
− 1

n

n∑
i=1

g[D−1
x (Ui)]

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑

i=1

g
(
D̃−1

x [Dxi(Yi)]
)
− 1

n

n∑
i=1

g
(
D−1

x [Dxi(Yi)]
)∣∣∣∣∣

+

∣∣∣∣∣ 1n
n∑

i=1

g
(
D−1

x [Dxi(Yi)]
)
− 1

n

n∑
i=1

g[D−1
x (Ui)]

∣∣∣∣∣ (A.6)

Dxi(Yi) essentially follows Unif(0,1) by Probability Integral Transform Theo-

rem. Thus the second term is op

(
1√
n

)
by Law of Large Number. The first term

is however, complicated since D̃−1
x (·) includes Xi, Yi. But it is straightforward

if we can show

sup
xi,yi

∣∣∣g (
D̃−1,i

x [Dxi(yi)]
)
− g

(
D−1

x [Dxi(yi)]
)∣∣∣ = Op

(
h2 +

1√
nh

)
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where D̃−1,i
x (·) denote the same function D̃−1

x (·) but with variables xi, yi in-
stead of random variables Xi, Yi. However, the equality above might fail because
Dxi(yi) can reach 0 or 1, which leads D̃−1

x (·) and D−1
x (·) to infinity. Fortunately,

we just study these functions in probability, which implies Y |X = x, and Dx(Y )
are both bounded in probability. ∀ε > 0, ∃Mε, s.t.

P(|Y |X = x| > Mε) < ε

For the same ε, there also exists M̃ε > 0, such that

P

(
Dx(Y ) < 1− M̃ε and Dx(Y ) > M̃ε

)
< ε

Here notice that Mε, M̃ε does not depend on i. Now we consider to prove

sup
xi;yi∈[1−M̃ε,M̃ε]

∣∣∣g (
D̃−1,i

x [Dxi(yi)]
)
− g

(
D−1

x [Dxi(yi)]
)∣∣∣ = Op

(
h2 +

1√
nh

)
Since the function inside is continuous, we can attain the maximum. Denote the

maximizer by x
(n)
0 , y

(n)
0 , and let u

(n)
0 = D

x
(n)
0

(y
(n)
0 ), then

sup
xi;yi∈[1−M̃ε,M̃ε]

∣∣∣g (
D̃−1,i

x [Dxi(yi)]
)
− g

(
D−1

x [Dxi(yi)]
)∣∣∣

=
∣∣∣g (

D̃−1,i,0
x (u

(n)
0 )

)
− g

(
D−1

x (u
(n)
0 )

)∣∣∣ (A.7)

Let sn = D−1
x (u

(n)
0 ), s̃n = D̃−1,i,0

x (u
(n)
0 ), t̃n = D̃i,0

x (sn), where D̃−1,i,0
x (·) and

D̃i,0
x (·) denote the same function D̃−1

x (·) and D̃x(·) but with maximizer x
(n)
0 , y

(n)
0

instead of random variables Xi, Yi. By the definition of sn, s̃n, t̃n, we have

u
(n)
0 = Dx(sn) = D̃i,0

x (s̃n)

sn = D−1
x (u

(n)
0 ) = D̃−1,i,0

x (t̃n)

Then we go back the right side of equation (A.7). In the following procedures,

we are using the tricks D−1
x (u

(n)
0 ) = D̃−1,i,0

x (t̃n), u
(n)
0 = Dx(sn), t̃n = D̃i,0

x (sn),∣∣∣g (
D̃−1,i,0

x (u
(n)
0 )

)
− g

(
D−1

x (u
(n)
0 )

)∣∣∣ = ∣∣∣g (
D̃−1,i,0

x (u
(n)
0 )

)
− g

(
D̃−1,i,0

x (t̃n)
)∣∣∣

Since g(x) = xk or g(x) = |x|k, k = 1, 2, 3, let h(x) = xk only, then∣∣∣g (
D̃−1,i,0

x (u
(n)
0 )

)
− g

(
D−1

x (u
(n)
0 )

)∣∣∣ = ∣∣∣g (
D̃−1,i,0

x (u
(n)
0 )

)
− g

(
D̃−1,i,0

x (t̃n)
)∣∣∣

≤
∣∣∣h(

D̃−1,i,0
x (u

(n)
0 )

)
− h

(
D̃−1,i,0

x (t̃n)
)∣∣∣

=
h′

(
D̃−1,i,0

x (cn)
)

D̃′ i,0
x [D̃−1,i,0

x (cn)]

∣∣∣u(n)
0 − t̃n

∣∣∣
=

h′
(
D̃−1,i,0

x (cn)
)

D̃′ i,0
x [D̃−1,i,0

x (cn)]

∣∣∣D̃i,0
x (sn)−Dx(sn)

∣∣∣
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The third line is derived by mean value theorem. First we consider the equation∣∣∣D̃i,0
x (sn)−Dx(sn)

∣∣∣∣∣∣D̃i,0
x (sn)−Dx(sn)

∣∣∣ ≤ ∣∣∣D̃i,0
x (sn)− D̃x(sn)

∣∣∣ + ∣∣∣D̃x(sn)−Dx(sn)
∣∣∣

On the right side, the second term is shown by Q. Li and J.S. Racine [8] in
theorem 6.2, that ∣∣∣D̃x(sn)−Dx(sn)

∣∣∣ = Op

(
h2 +

1√
nh

)
Thus, we only need to concern the first term

∣∣∣D̃i,0
x (sn)− D̃x(sn)

∣∣∣. Actually their

difference is very minor

D̃i,0
x (x) =

∑n
j 	=i Λ

(
Yj−y
h0

)
K

(
Xj−x

h

)
∑n

j 	=i K
(

Xj−x
h

)
=

∑n
j=1 Λ

(
Yj−y
h0

)
K

(
Xj−x

h

)
+ Λ

(
yi−y
h0

)
K

(
yi−x
h

)
− Λ

(
Yi−y
h0

)
K

(
Xi−x

h

)
∑n

j=1 K
(

Xj−x
h

)
+K

(
xi−x
h

)
−K

(
Xi−x

h

)
Let

an =

n∑
j=1

Λ
(Yj − y

h0

)
K

(Xj − x

h

)
, δa,i = Λ

(yi − y

h0

)
K

(yi − x

h

)
,

�a,i = Λ
(Yi − y

h0

)
K

(Xi − x

h

)
, bn =

n∑
j=1

K
(Xj − x

h

)
, δb,i = K

(xi − x

h

)
,

�b,i = K
(Xi − x

h

)
Then

D̃i,0
x (y) =

an + δa,i −�a,i

bn + δb,i −�b,i

=
an
bn

(
1− 
a,i−δa,i

an

1− 
b,i−δb,i
bn

)

=
an
bn

(
1− �a,i − δa,i

an

)
×

(
1 +

�b,i − δb,i
bn

+

[
�b,i − δb,i

bn

]2

+ o

[
�b,i − δb,i

bn

]2
)

=
an
bn

+Op

(
1

n

)
= D̃x(y) +Op

(
1

n

)
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Above all, we have that∣∣∣D̃i,0
x (sn)−Dx(sn)

∣∣∣ = Op

(
h2 +

1√
nh

)
It also imples ∣∣∣u(n)

0 − t̃n

∣∣∣ = Op

(
h2 +

1√
nh

)
We know that u

(n)
0 is bounded in probability. With a large enough n, t̃n is also

bounded in probability. And cn is a value between u
(n)
0 and t̃n, and also bounded

in probability. This leads to
h′(D̃−1,i,0

x (cn))
D̃′ i,0

x [D̃−1,i,0
x (cn)]

is bounded in probability. Thus

sup
xi;yi∈[1−M̃ε,M̃ε]

∣∣∣g (
D̃−1,i

x [Dxi(yi)]
)
− g

(
D−1

x [Dxi(yi)]
)∣∣∣ = Op

(
h2 +

1√
nh

)
Now we go back to (A.6), it is very straightforward to see our target equation
holds

|E+[g(Y +)|X = x]− E[g(Y )|X = x]| = Op

(
h2 +

1√
nh

)
Proof of Theorem 5.2. Recall lemma 5.1, we have:

E∗m̂∗
n,h(x) =

1

nh

n∑
i=1

E∗
[
Y ∗
i K

(Xi − x

h

)]
=

1

nh

n∑
i=1

[
h

∫
K(u)duE∗(Y ∗|X = x) +O(h2)

]
= E∗(Y ∗|X = x) +O(h2)

By theorem 3.2 & 4.10, local bootstrap method, LMF, MF and PMF all satisfy

|E∗(Y ∗|X = x)− E(Y |X = x)| = Op

(
h2 +

1√
nh

)
If denote E∗ as local bootstrap, E+ as one of model free method, then

|E∗(Y ∗|X = x)− E+(Y +|X = x)| = Op

(
h2 +

1√
nh

)
Notice, by definition of resampling method of local bootstrap,

E∗(Y ∗|X = x) = m̂n,h(x)

As a result,

E∗m̂∗
n,h(x) =

1

nh

n∑
i=1

E∗
[
Y ∗
i K

(Xi − x

h

)]
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= E∗(Y ∗|X = x) +O(h2)

= m̂n,h(x) +Op

(
h2 +

1√
nh

)
which implies |E∗m̂∗

n,h(x)− m̂n,h(x)| = Op(h
2)

Proof of Theorem 5.3.

nh
∣∣∣Var∗[m̂∗

n,h(x)]−Var[m̂n,h(x)]
∣∣∣

= nh
∣∣∣ 1

(nh)2

n∑
i=1

Var∗
[
Y ∗
i K̃

(Xi − x

h

)]
− 1

(nh)2

N∑
i=1

Var
[
YiK̃

(Xi − x

h

)]∣∣∣
≤ 1

nh

n∑
i=1

∣∣∣E∗
[
Y ∗
i K̃

(Xi − x

h

)]2
−

(
E∗

[
Y ∗
i K̃

(Xi − x

h

)])2

− E
[
YiK̃

(Xi − x

h

)]2
+

(
E

[
YiK̃

(Xi − x

h

)])2∣∣∣
≤ 1

nh

n∑
i=1

∣∣∣E∗
[
Y ∗
i K̃

(Xi − x

h

)]2
− E

[
YiK̃

(Xi − x

h

)]2∣∣∣
+

1

nh

n∑
i=1

∣∣∣(E∗
[
Y ∗
i K̃

(Xi − x

h

)])2

−
(
E

[
YiK̃

(Xi − x

h

)])2∣∣∣
=

1

nh

n∑
i=1

h
∣∣∣fX(x)

∫
K̃2(u)du · (E∗(Y ∗2|X = x)− E(Y 2|X = x)) +O(h2)

∣∣∣+
1

nh

n∑
i=1

∣∣∣(E∗
[
Y ∗
i K̃

(Xi − x

h

)]
+ E

[
YiK̃

(Xi − x

h

)])(
E∗

[
Y ∗
i K̃

(Xi − x

h

)]
− E

[
YiK̃

(Xi − x

h

)])∣∣∣
≤ fX(x)

∫
K̃2(u)du · |E∗(Y ∗2|X = x)− E(Y 2|X = x)|+O(h2)

+
1

nh

n∑
i=1

∣∣∣h[
fX(x)

∫
K̃(u)du · (E∗(Y ∗||x) + E(Y |x)) +O(h2)

]
· h

[
fX(x)

∫
K̃(u)du · (E∗(Y ∗|x)− E(Y |x)) +O(h2)

]∣∣∣
≤ fX(x)

∫
K̃2(u)du · |E∗(Y ∗2||x)− E(Y 2|x)|

+ h
(
fX(x)

∫
K̃(u)du

)2

|E∗(Y ∗|x) + E(Y |x)| · |E∗(Y ∗|x)− E(Y |x)|

Here notice that

|E∗(Y ∗|x)|+ E(Y |x)| ≤ |E∗(Y ∗|x)|+ |E(Y |x)|
≤ |E(Y |x)|+ |E∗(Y ∗|x)− E(Y |x)|+ |E(Y |x)|
< ∞
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Thus, recall theorem 3.2 & 4.10, we can easily get:

nh
∣∣∣Var∗[m̂∗

n,h(x)]−Var[m̂n,h(x)]
∣∣∣ = Op

(
h2 +

1√
nh

)
Proof of Theorem 5.4. Define u∗

i = 1
nhY

∗
i K̃

(
Xi−x

h

)
and ui = 1

nhYiK̃
(

Xi−x
h

)
.

Then we have m̂∗
n,h(x) =

∑n
i=1 u

∗
i , m̂n,h(x) =

∑n
i=1 ui. Also, let

S∗2
n =

n∑
i=1

Var∗(u∗
i ) = Var∗[m̂∗

n,h(x)], S2
n =

n∑
i=1

Var(ui) = Var[m̂n,h(x)]

Our goal is to show

√
nh(m̂∗

n,h(x)− E∗[m̂∗
n,h(x)])

d→ N

(
0,

κσ2(x)

f(x)

)
which is equivalent to

√
nh

n∑
i=1

(u∗
i − E∗u∗

i )
d→ N

(
0,

κσ2(x)

f(x)

)

It is easy to see that {u∗
i } are independent but not identical, thus we can use

Lyapunov Central Limit Theorem to show the above equation. Actually, we only
need to show Lyapunov Condition∑n

i=1 E
∗|u∗

i − E∗u∗
i |3

S∗3
n

p.→ 0

First, recall (2.2) and theorem 5.3, we have:

S∗3
n ≤ |S∗3

n − S3
n|+ S3

n = op(1) + S3
n

p.→ 1

(nh)
3
2

κσ2(x)

fX(x)

Simply, we just need

S∗3
n = Op

( 1

(nh)
3
2

)
(A.8)

E∗|u∗
i − E∗u∗

i |3

=
1

(nh)3
E∗

∣∣∣Y ∗
i K̃

(Xi − x

h

)
− E∗

[
Y ∗
i K̃

(Xi − x

h

)]∣∣∣3
≤ 1

(nh)3

{
E∗

∣∣∣Y ∗
i K̃

(Xi − x

h

)∣∣∣3 + 3
∣∣∣E∗

[
Y ∗
i K̃

(Xi − x

h

)]∣∣∣ · E∗
[
Y ∗
i K̃

(Xi − x

h

)]2
+ 3

(
E∗

[
Y ∗
i K̃

(Xi − x

h

)])2

· E∗
∣∣∣Y ∗

i K̃
(Xi − x

h

)∣∣∣ + ∣∣∣E∗
[
Y ∗
i K̃

(Xi − x

h

)]∣∣∣3}

≤ 1

(nh)3

{
hÃ3(x)E

∗|Y ∗|x|3 + 3h2Ã1(x)Ã2(x)|E∗(Y |x)∗| · E∗(Y ∗2|x)+
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3h3Ã3
1(x)(E

∗(Y ∗|x)2 · E∗|Y ∗|x|+ h3Ã3
1|E∗(Y ∗|x)|3 +O(h2)

}
= O

( 1

n3h2

)
in probability

= Op

( 1

n3h2

)
Here we use E∗|Y ∗|x|k ≤

∣∣∣E∗|Y ∗|x|k − E|Y |x|k
∣∣∣ + E|Y |x|k < ∞.

n∑
i=1

E∗|u∗
i − E∗u∗

i |3 = Op

( 1

(nh)2

)
Recall (A.8), we have ∑n

i=1 E
∗|u∗

i − E∗u∗
i |3

S∗3
n

= Op

( 1√
nh

)
By Lyapunov Central Limit Theorem, we have

m̂∗
n,h(x)− E∗[m̂∗

n,h(x)]√
Var∗[m̂∗

n,h(x)]
=

∑n
i=1(u

∗
i − E∗u∗

i )

S∗
n

d→ N(0, 1)

With the result of theorem 5.3, Var∗[m̂∗
n,h(x)]

p.→ Var[m̂n,h(x)] → 1
nh

κσ2(x)
fX(x) , we

can finally get

√
nh(m̂∗

n,h(x)− E[m̂∗
n,h(x)])

d→ N

(
0,

κσ2(x)

f(x)

)
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