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Abstract: The asymptotic analysis of covariance parameter estimation of
Gaussian processes has been subject to intensive investigation. However,
this asymptotic analysis is very scarce for non-Gaussian processes. In this
paper, we study a class of non-Gaussian processes obtained by regular non-
linear transformations of Gaussian processes. We provide the increasing-
domain asymptotic properties of the (Gaussian) maximum likelihood and
cross validation estimators of the covariance parameters of a non-Gaussian
process of this class. We show that these estimators are consistent and
asymptotically normal, although they are defined as if the process was
Gaussian. They do not need to model or estimate the non-linear trans-
formation. Our results can thus be interpreted as a robustness of (Gaus-
sian) maximum likelihood and cross validation towards non-Gaussianity.
Our proofs rely on two technical results that are of independent interest
for the increasing-domain asymptotic literature of spatial processes. First,
we show that, under mild assumptions, coefficients of inverses of large co-
variance matrices decay at an inverse polynomial rate as a function of the
corresponding observation location distances. Second, we provide a general
central limit theorem for quadratic forms obtained from transformed Gaus-
sian processes. Finally, our asymptotic results are illustrated by numerical
simulations.
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Asymptotics for transformed Gaussian processes 1963

1. Introduction

Kriging [48, 40] consists of inferring the values of a (Gaussian) random field given
observations at a finite set of points. It has become a popular method for a large
range of applications, such as geostatistics [37], numerical code approximation
[41, 43, 9], calibration [39, 10], global optimization [33], and machine learning
[40].

When considering a Gaussian process, one has to deal with the estimation
of its covariance function. Usually, it is assumed that the covariance function
belongs to a given parametric family (see [1] for a review of classical families). In
this case, the estimation boils down to estimating the corresponding covariance
parameters. Nowadays, the main estimation techniques are based on maximum
likelihood [48, 40], cross-validation [59, 6, 7, 14] and variation estimators [31, 3,
4].

The asymptotic properties of estimators of the covariance parameters have
been widely studied in the two following frameworks. The fixed-domain asymp-
totic framework, sometimes called infill asymptotics [48, 21], corresponds to the
case where more and more data are observed in some fixed bounded sampling
domain. The increasing-domain asymptotic framework corresponds to the case
where the sampling domain increases with the number of observed data.

Under fixed-domain asymptotics, and particularly in low dimensional set-
tings, not all covariance parameters can be estimated consistently (see [30, 48]).
Hence, the distinction is made between microergodic and non-microergodic co-
variance parameters [30, 48]. Although non-microergodic parameters cannot be
estimated consistently, they have an asymptotically negligible impact on pre-
diction [45, 46, 47, 58]. There is, however, a fair amount of literature on the
consistent estimation of microergodic parameters (see for instance [58, 34, 24,
51, 56, 57]).

This paper focuses on the increasing-domain asymptotic framework. Indeed,
generally speaking, increasing-domain asymptotic results hold for significantly
more general families of covariance functions than fixed-domain ones. Under
increasing-domain asymptotics, the maximum likelihood and cross validation
estimators of the covariance parameters are consistent and asymptotically nor-
mal under mild regularity conditions [36, 44, 7, 28].

All the asymptotic results discussed above are based on the assumption that
the data come from a Gaussian random field. This assumption is indeed theoret-
ically convenient but might be unrealistic for real applications. When the data
stem from a non-Gaussian random field, it is still relevant to estimate the co-
variance function of this random field. Hence, it would be valuable to extend the
asymptotic results discussed above to the problem of estimating the covariance
parameters of a non-Gaussian random field.

In this paper, we provide such an extension, in the special case where the
non-Gaussian random field is a deterministic (unknown) transformation of a
Gaussian random field. Models of transformed Gaussian random fields have
been used extensively in practice (for example in [20, 53, 2, 55]).
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We provide various asymptotic results, under reasonable regularity assump-
tions. In particular, our assumptions on the transformation function are mild.
For most of our results, only sub-exponentiality is required.

We prove that applying the (Gaussian) maximum likelihood estimator to data
from a transformed Gaussian random field yields a consistent and asymptoti-
cally normal estimator of the covariance parameters of the transformed random
field. This (Gaussian) maximum likelihood estimator corresponds to what would
typically be done in practice when applying a Gaussian process model to a non-
Gaussian spatial process. This estimator does not need to know the existence of
the non-linear transformation function and is not based on the exact density of
the non-Gaussian data. We refer to Remark 5 for further details and discussion
on this point.

We then obtain the same consistency and asymptotic normality result when
considering a cross validation estimator. In addition, we establish the joint
asymptotic normality of both these estimators, which provides the asymptotic
distribution of a large family of aggregated estimators. Our asymptotic results
on maximum likelihood and cross validation are illustrated by numerical simu-
lations.

To the best of our knowledge, our results (Theorems 3, 4, 5, 6 and 7) provide
the first increasing-domain asymptotic analysis of Gaussian maximum likelihood
and cross validation for non-Gaussian random fields. Our proofs intensively rely
on Theorems 1 and 2. Theorem 1 shows that the components of inverse covari-
ance matrices are bounded by inverse polynomial functions of the corresponding
distance between observation locations. Theorem 2 provides a generic central
limit theorem for quadratic forms constructed from transformed Gaussian pro-
cesses. These two theorems have an interest in themselves.

The rest of the paper is organized as follows. In Section 2, general properties
of transformed Gaussian processes are provided. In Section 3, Theorems 1 and 2
are stated. In Section 4, an application of these two theorems is given to the
case of estimating a single variance parameter. In Section 5, the consistency and
asymptotic normality results for general covariance parameters are given. The
joint asymptotic normality result is also given in this section. Section 6 discusses
some extensions of the results of the previous sections. The simulation results
are provided in Section 7. All the proofs are provided in the appendix.

2. General properties of transformed Gaussian processes

In applications, the use of Gaussian process models may be too restrictive. One
possibility for obtaining larger and more flexible classes of random fields is to
consider transformations of Gaussian processes. In this section, we now intro-
duce the family of transformed Gaussian processes that we will study asymp-
totically in this paper. This family is determined by regularity conditions on the
covariance function of the original Gaussian process and on the transformation
function.
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Let us first introduce some notation. Throughout the paper, Ci,s > 0 (resp.
Csup < 00) denotes a generic strictly positive (resp. finite) constant. This con-
stant never depends on the number of observations n, or on the covariance
parameters (see Section 5), but is allowed to depend on other variables. We
mention these dependences explicitly in cases of ambiguity. The values of Ciy¢
and Cs,p, may change across different occurrences.

For a vector x of dimension d we let || = max;—1, g4 |®;|. Further, the
Euclidean and operator norms are denoted by ||z|| and by ||M||op = sup{||Mz|] :
[|z]| < 1}, for any matrix M. We let A;(B) > ... > A\.(B) be the r eigenvalues
of a r x r symmetric matrix B. We let p1(B) > ... > p.(B) > 0 be the r singular
values of a r x r matrix B. We let N be the set of non-zero natural numbers.

Further, we define the Fourier transform of a function k : R* — R by h(f) =
2m)™ [oa h(t)e= "tdt, where i2 = —1, for f € R’ When mentioning the
Fourier transform of a function h, we implicitly assume that Fourier inversion
holds, that is & is summable and, for s € R?, h(s) = Jga fz(f)eisdef.

For a sequence of observation locations, the next condition ensures that a
fixed distance between any two observation locations exists. This condition is
classical [7, 12].

Condition 1. We say that a sequence of observation locations, (z;)ien, ; € R,
is asymptotically well-separated if we have inf; jen iz, |T; — ;| > 0.

The next condition on a stationary covariance function is classical under
increasing-domain asymptotics. This condition provides asymptotic decorrela-
tion for pairs of distant observation locations and implies that covariance matri-
ces are asymptotically well-conditioned when a minimal distance between any
two distinct observation locations exists [36, 7].

Condition 2. We say that a stationary covariance function k on R® is sub-
exponential and asymptotically positive if:

i) Csup and Ciyr exist such that, for all s € R4, we have
k()] < Csup exp (—Cines|); (1)

1) For any sequence (x;);en satisfying Condition 1, we have inf,en Ap (X) >
0, where ¥ is the n x n matriz (k(z; — 2;))i j=1,....n-

In Condition 2, we remark that k : R? — R is called a stationary covariance
function in the sense that (x1,z2) — k(z1 — x2) is a covariance function. We
use this slight language abuse for convenience.

We also remark that, when non-transformed Gaussian processes are consid-
ered, a polynomial decay of the covariance function in Condition 2 i) is suffi-
cient to obtain asymptotic results [7, 8]. Here an exponential decay is needed
in the proofs to deal with the non-Gaussian case. Nevertheless, most classical
covariance functions satisfy inequality (1). In particular, the Matérn covariance
functions [48], the generalized Wendland covariance functions [17] and some of
the power exponential covariance functions [43] satisfy inequality (1). On the
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other hand, for instance, the covariance functions in the Cauchy class [29] do
not satisfy inequality (1).

When considering a transformed Gaussian process, we will consider a trans-
formation satisfying the following regularity condition, which enables us to sub-
sequently obtain regularity conditions on the covariance function of the trans-
formed Gaussian process.

Condition 3. Let F' : R — R be a fivred non-constant continuously differ-
entiable function, with deriwative F'. We say that F is sub-exponential and
non-decreasing if:

i) For all t € R, we have |F(t)| < Csupexp (Csuplt]) and [F'(t)] < Csup
exp (Csuplt]);
11) The function F is non-decreasing on R.

Regarding Condition 3 ii), we point out that many transformations of Gaus-
sian processes considered in the literature are indeed non-decreasing, for instance
the Tukey’s g-and-h transformation in [53] and the exponential transformation
for log-Gaussian processes. Furthermore, Condition 3 ii) need not always be
assumed for the results of the present paper to hold, see Remarks 4 and 9.

In the following lemma, we show that the covariance function of a transformed
Gaussian process satisfies Condition 2, when Conditions 2 and 3 are satisfied,
for the original process and for the transformation.

Lemma 1. Assume that the stationary covariance function k satisfies Condi-
tion 2 and that the transformation F satisfies Condition 3. Let X be a zero-mean
Gaussian process with covariance function k and let k' be the stationary covari-
ance function of F(X(-)). Then, k' satisfies Condition 2.

In the next lemma, we show that we can replace the condition of an increasing-
transformation by the condition of a monomial transformation of even degree
(with an additive constant).

Lemma 2. If a covariance function k satisfies Condition 2 i) and if the Fourier
transform k of k is strictly positive on R%, then k satisfies Condition 2 ii).
Furthermore, in this case, in Lemma 1, Condition 3 ii) can be replaced by the
condition F(z) = 2* +u forr € N, u € R and z € R.

3. Two main technical results
3.1. Transformed Gaussian process framework

In the rest of the paper, we will consider an unobserved Gaussian process Z on
R? with d € N fixed. Assume that Z has zero-mean and stationary covariance
function kz. We assume throughout that ky satisfies Condition 2.

We consider a fixed transformation function 7' satisfying Condition 3. We
assume that we observe the transformed Gaussian process Y, defined by Y (s) =
T(Z(s)) for any s € R9.
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We assume throughout that the random field Y has zero-mean. We remark
that, for a non-linear transformation F : R — R, for s € R?, the fact that
Z(s) has zero-mean does not imply that the random variable F'(Z(s)) has zero-
mean. Hence, we implicitly assume that T is of the form F —E[F(Z(z))], where
F satisfies Condition 3 and = € R? is arbitrary. Note that E[F(Z(x))] is constant
in x by stationarity and that, if F satisfies Condition 3 or the condition specified
in Lemma 2, then F'—E[F(Z(x))] also satisfies these conditions. We remark that
the assumption of zero-mean (or equivalently of a known mean function for V)
is common in the literature. We provide a further discussion of this assumption
in Section 6.2.

We let ky be the covariance function of Y. We remark that, from Lemma 1
(applied with F' = T and X = Z and thus ¥’ = ky ), ky also satisfies Condition 2.

We let (s;)ien be the sequence of observation locations, with s; € R? for
i € N. We assume that (s;);en satisfies Condition 1.

For n € N, we let y = (y1,...,yn) ' = (Y(51),-..,Y(s,))" be the (non-
Gaussian) observation vector and R = (ky (s; — $;))i j=1,....n be its covariance
matrix.

The problem of estimating the covariance function ky from the observation
vector y is crucial and has been extensively studied in the Gaussian case (when
T is a linear function). Classically, we assume that ky belongs to a parametric
family of covariance functions. We will provide the asymptotic properties of
two of the most popular estimators of the covariance parameters: the one based
on the (Gaussian) maximum likelihood [40, 48] and the one based on cross
validation [14, 6, 59]. To our knowledge, such properties are currently known
only for Gaussian processes, and we will provide analogous properties in the
transformed Gaussian framework.

3.2. Bounds on the elements of inverse covariance matrices

In the case of (non-transformed) Gaussian processes, one important argument
for establishing the asymptotic properties of the maximum likelihood and cross
validation estimators is to bound the largest eigenvalue of the inverse covariance
matrix R~'. Unfortunately, due to the non-linearity of the transformation T,
such a bound on the largest eigenvalue is no longer sufficient in our setting.

To circumvent this issue, we obtain in the following theorem stronger control
over the matrix R~!: we show that its coefficients decrease polynomially quickly
with respect to the corresponding distance between observation locations. This
theorem may have an interest in itself.

Theorem 1. Consider the setting of Section 3.1. For all fixed 0 < 7 < 00, we
have, for allm e N andi,j=1,....,n

C.
R™Y). ‘ < -—0
’( )ial S 1+ |s; — s5]4F7

where Ceyp depends on T but does not depend on n,1,j.
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3.3. Central limit theorem for quadratic forms of transformed
Gaussian processes

In the proofs on covariance parameter estimation of Gaussian processes, a cen-
tral step is to show the asymptotic normality of quadratic forms of large Gaus-
sian vectors. This asymptotic normality is established by diagonalizing the ma-
trices of the quadratic forms. This diagonalization provides sums of squares of
decorrelated Gaussian variables and thus sums of independent variables [31, 7].

In the transformed Gaussian case, one has to deal with quadratic forms in-
volving transformations of Gaussian vectors. Hence, the previous arguments are
not longer valid. To overcome this issue, we provide below a general central limit
theorem for quadratic forms of transformed Gaussian vectors. This theorem may
have an interest in itself.

This asymptotic normality result is established by considering a metric d,,
generating the topology of weak convergence on the set of Borel probability
measures on Euclidean spaces (see, e.g., [26] p. 393). We prove that the distance
between the sequence of the standardized distributions of the quadratic forms
and Gaussian distributions decreases to zero when n increases. The introduction
of the metric d,, enables us to formulate asymptotic normality results in cases
when the sequence of standardized variances of the quadratic forms does not
necessarily converge as n — oo.

Theorem 2. Consider the setting of Section 3.1. Let (An)nen be a sequence
of matrices such that A, has dimension n X n for any n € N. Let A = A,, for
concision. Assume that for allm € N and for alli,j=1,...,n,

CVsup
|A1,J S 1 + |8i _ 8j|d+ci“f7

where Cgyp does not depend on i, j. Let

Vo= 1y ay. (2)
n

Let L,, be the distribution of \/n(V,, — E[V,]). Then, as n — oo,
doy (Ln,N[O, nVar(Vn)]) — 0.

In addition, the sequence (n Var(V,,))nen s bounded.

Remark 1. In the case where limits Eo, and oo exist, such that
E[V,] — Ex = o(n~?)

and the sequence (n Var(V,,))nen converges to a fived variance o2, the result of
Theorem 2 can be written in the classical form

Vi (Ve — Ex) 5 N0, 02.],

as n — o0.
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Remark 2. Throughout Section 3, we assume that kz satisfies Condition 2.
Note that this condition does not impose kz to be continuous at zero. Hence,
Theorems 1 and 2 allow for a decomposition kz(s) = kz(s) +nls=0, for s € R?,
where kz : R? — R is a continuous stationary covariance function and n > 0.
Hence, Theorems 1 and 2 allow for an additive nugget effect, with variance n, on
the unobserved Gaussian process Z. Furthermore, we remark that in this case,
when n > 0, kz automatically satisfies Condition 2 i), as the eigenvalues of
covariance matrices obtained from kyz are larger than n.

Remark 3. One can check that in the proofs of Theorems 1 and 2, it is not
necessary that kz satisfies Condition 2 ii). Hence, these two theorems hold when-
ever T satisfies Condition 3, ky satisfies Condition 2 i) and i) and kz satisfies
Condition 2 i). There are various assumptions that can be made, in order to
guarantee that ky satisfies Condition 2 ii).

First, if a nugget effect as described in Remark 2 is assumed on the covari-
ance function kz, then kz automatically satisfies Condition 2 ii) and thus, from
Lemma 1, ky satisfies Condition 2 ).

Second, it would be possible to assume that for s € R, we have Y (s) =
T(Z(s)) + N(s), where Y and Z still have zero-mean and where N is a cen-
tered stationary random field on R, independent of Z, with Cov(N (u), N (v)) =
Nly—y, for u,v € R, with n > 0. In this case, the covariance function ky of Y
satisfies Condition 2 i), similarly as in Remark 2. Furthermore, consider the
case where there exists T : R — R satisfying Condition 3, such that, for s € R,
N(s) = T(((s)), where ¢ is a centered Gaussian random field, independent of
Z, with Cov(¢(u), ((v)) = Kklyey for u,v € R, with k > 0. In this case, one can
check that Theorems 1 and 2 hold in this modified setting for Y, with proofs that
are minor but straightforward modifications of those given in the appendiz (see
also the proof of Proposition 1 in the appendiz). Note that this modified setting
is equivalent to letting the observation vector y be defined by y; = T(Z(s;)) + &,
i=1,...,n, where &,...,&, are i.i.d., independent of Z, with zero-mean and
variance 1, since Si,...,S, are two-by-two distinct.

Third, in the case where ky and kz are continuous, we have shown in Lemma 1
that if kz satisfies Condition 2 i), then ky satisfies Condition 2 ). In Sec-
tions 3 and 4, we thus simply assume that kz satisfies Condition 2 ii). A clas-
sical assumption that guarantees kz to satisfy Condition 2 ii) is that kz has a
strictly positive Fourier transform [7, 12] (see also the proof of Lemma 2).

Finally, when ky 1s continuous, one could also assume that its Fourier trans-
form is strictly positive to guarantee that ky satisfies Condition 2 ii). In fact,
this is what we do in Section 5, see Condition 5.

4. Estimation of a single variance parameter

We let 02 be the marginal variance of Y, that is Var(Y (s)) = o3 for any s € R%.
We let ky = agc;f be the stationary covariance function of Y, where cy is a
correlation function. We assume that the same conditions as in Section 3 hold.
Then, the standard Gaussian maximum likelihood estimator of the variance
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parameter is )

2 T -1

oL =y Oy,
where C' = (cy (s; — $;))1<i,j<n- One can simply show that E[63;;] = 0§ even
though y is not a Gaussian vector, since y has mean vector 0 and covariance
matrix 05C. Hence, a direct consequence of Theorems 1 and 2 is then that the
maximum likelihood estimator is asymptotically Gaussian, with a n'/? rate of
convergence, even though the transformed process Y is not a Gaussian process.

Corollary 1. Let L,, be the distribution of \/n(63,, — 0d). Then, as n — oo,
dw (ﬁnvN[Ov nVar(&%/[L - 0(2))]) — 0.

In addition, the sequence (nVar(63,, — J%))neN is bounded.

The proof of Theorem 2 actually allows us to study another estimator of the
variance of of the form
. 1 _
Ul%/IL,K = E?/TCKIZL
where (Cx')i; = (C™Yij1jsi—s;1<k- The proof of Theorem 2 then directly
implies the following.

Corollary 2. Let K, be any sequence of positive numbers tending to infinity.
Let L, n be the distribution of \/n(63, x, — 05). Then, as n — oo,

dy (ﬁKmmN[OmVar(&?ML’KH — O’S)]) — 0.
In addition, we have
nVar(&iIL’Kn —03) —nVar(63,, — o) — 0.

The above corollary shows that one can taper the elements of C~! when
estimating the variance parameter, and obtain the same asymptotic distribution
of the error, as long as the taper range goes to infinity, with no rate assumption.
This result may have an interest in itself, in view of the existing literature on
covariance tapering for Gaussian processes under increasing-domain asymptotics
[28, 44]. We also remark that the computation costs of CATI%/IL, r and 621, have the
same orders of magnitude because C~! needs to be computed in both cases.

Remark 4. In the results of this section, the condition that F is non-decreasing
in Condition 3 i) can be replaced by the condition that C has its smallest eigen-
value bounded away from zero. This can be checked in the corresponding proofs.

5. General covariance
5.1. Framework

As in Section 3.1, we consider a zero-mean Gaussian process Z defined on R?
with covariance function kz satisfying Condition 2. Let Y be the random field
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defined for any s € R? by Y (s) = T(Z(s)), where T is a fixed function satisfying
Condition 3. Furthermore we assume that Y has zero-mean function and we
recall that from Lemma 1, its covariance function ky also satisfies Condition 2.
Finally, the sequence of observation locations (s;);en satisfies Condition 1.

Let {ky,;0 € O} be a parametric set of stationary covariance functions on
R?, with © a compact set of RP. We consider the following condition on this
parametric set of covariance functions.

Condition 4. For all s € RY, ky y(s) is three times continuously differentiable
with respect to 0, and we have

sup |ky,0(s)| < Csup exp (—Cins]), (3)
fee
akyg(s) Csup
. . 4
223 ’60,’1,...,89” - 1—|—|S|d+ci“f ( )
=1,2,3

01,000 =1,...,p

The smoothness condition in (4) is classical and is assumed for instance in [7].
As discussed after Condition 2, milder versions of (3) can be assumed for non-
transformed Gaussian processes, but (3) is satisfied by most classical families of
covariance functions nonetheless.

The next condition, on the Fourier transforms of the covariance functions in
the model, is standard.

Condition 5. We let ];'y)e be the Fourier transform of kyg. Then Izzyﬁ(f) 18
jointly continuous with respect to 0 and f and is strictly positive on © x R<.

We remark that Condition 5 does not automatically follow from Condition 4
(nor from Conditions 6 to 10 below). For instance, in the case d = 1, the family
of triangular covariance functions {o?cy;0? € [07,02,,]}, with 0 < o2y <
02,, < oo and with ¢y (z) = (1 — |z|)* for 2 € R, satisfies Condition 4 but not
Condition 5 [12].

Finally, the next condition means that we address the well-specified case
[6, 8], where the family of covariance functions does contain the true covari-
ance function of Y. The well-specified case is considered in the majority of the
literature on Gaussian processes.

Condition 6. There exists 6y in the interior of © such that ky = Ky,

In the next two subsections, we study the asymptotic properties of two clas-
sical estimators (maximum likelihood and cross validation) for the covariance
parameter 8y. The asymptotic properties of these estimators are already known
for Gaussian processes and we extend them to the non-Gaussian process Y.

5.2. Maximum Likelthood

For n € N, let Ry be the n x n matrix (kyﬂ(si — s])) , and let

i,7=1,....,n

O, € argmin Ly (5)
e
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with 1
Ly = — (log(det(Ro)) + " Ry'y)

be a maximum likelihood estimator. We will provide its consistency under the
following condition.

Condition 7. For all x > 0 we have

1 & 2
liminf inf — kyeo(s; —s;) —k si—s;)) >0.
m 1n ||9—60H2xn”z:1< vo(si —s5) = kv, (si — 55))

Condition 7 can be interpreted as a global indentifiability condition. It im-
plies in particular that two different covariance parameters yield two different
distributions for the observation vector. It is used in several studies, for instance
[7].

Theorem 3. Consider the setting of Section 5.1 for Z, T, Y and (8;)ien-
Assume that Conditions 4, 5, 6 and 7 hold. Then, as n — oo,

éML £) 90.

Remark 5. Let us discuss and interpret Theorem 3. In Theorem 3, there is a
Gaussian process Z with zero-mean (see Section 6.2 for a discussion of the case
where Z has non-zero mean) and covariance function ky. Consider for the sake
of interpretation that the covariance function kz belongs to a set of covariance
functions {kz o, € A}, with kz = kz,4,, o € A.

In Theorem 3 there is a transformation T : R — R that is fixed and unknown.
The aim of this paper is not to estimate T, and in particular we do not assume
that T belongs to a known parametric set of transformation functions. This
transformation T then defines the non-Gaussian process Y = T(Z). We also
assume that' Y has zero-mean, the case of a non-zero mean also being discussed
in Section 6.2. In Theorem 3, we assume that the covariance function ky of Y
belongs to the set of covariance functions {kyg;0 € ©}, with ky = ky,, for
0y € O©.

Assume for the sake of interpretation that, for o € A, if the covariance
function of Z was kz o, then the covariance function of Y would belong to
{ky,9;60 € O}. Assume also for the sake of discussion that 0 — ky,g is in-
jective (which is an extension of the requirement in Condition 7). Then, there
erists a fized mapping T : A — © such that, if the covariance function of Z
was kz o, then the covariance function of Y would be ky, (o). The mapping T is
uniquely defined because 0 — ky g is assumed to be injective.

The process Y is observed at s1,. .., Sy, yielding the observation vector y and
then the (Gaussian) mazimum likelihood estimator Opr in Theorem 3. This
estimator is based on the false assumption that'Y is a Gaussian process but on
the correct assumption that the covariance function of Y belongs to {ky ;0 €
O}. This estimator is thus misspecified from a likelihood point of view but well-
specified from a covariance function point of view. Theorem & shows that this
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estimator is consistent and Theorem /4 below will show that this estimator is
asymptotically unbiased with an asymptotic covariance matriz of sandwich form,
see (6). We remark that this form is typical in misspecified models [15, 27, 52].

If the transformation T was known and injective, one could recover the values
Z(81)y.-., Z(sn) from Y(s1),...,Y(sn) and thus compute the (well-specified)
Gaussian mazimum likelihood estimator &y, of ag. Note that we have éML #+
T(Gpmr) in general. We remark that one can expect éprp, to satisfy some type of
statistical efficiency principle, as an estimator of o, since it is a well-specified
mazximum likelihood estimator. Nevertheless, while there is a fair amount of work
on efficiency of estimators in the case of i.i.d. data [50], almost no counterparts
exist, to the best of our knowledge, for the efficiency of estimators of covariance
parameters of Gaussian processes. One of the few examples is [49], in the spe-
cial case of the exponential covariance functions. If an efficiency property could
be proved for G, then one could also expect that 7(&r) satisfies a similar
efficiency property, as an estimator of 0y (for instance, in the spirit of Theorem
25.47 in [50]). In particular, one can expect T(&pp) to be asymptotically a better
estimator of 0y than Onr- Nevertheless, we emphasize than when T is unknown,
7(éprr) can not be computed but éML can.

Finally, let us explicit the mapping T in a special case. Consider that the
transformation function is given by T(z) = 2? — E[Z(0)?] for x € R. Con-
sider also that the covariance models {kyg;0 € O} and {kz ;o € A} are
{o2e Pl (02, p) € ©} and {oe "Il (62, p) € A}, with ©, A C (0,00)%. Then
if ag = (02, po), by Mehler’s formula [5], for u,v € R?,

Cov(Y (u),Y (v)) = 2Cov(Z(u), Z(v))? = 204e2rollu=ll

and thus we have, for a = (a1, az), 7(a) = (202, 20as).
Condition 8. For any (x1,---,Xxp) # (0,...,0), we have

n

1 P Okygy(si—s;)\°
liminf ~ 3 7y TRl TR :
i ( AT =0

ij=1 \ £=1

Condition 8 can be interpreted as a regularity condition and as a local inden-
tifiability condition around 6. In the next theorem, we provide the asymptotic
normality of the maximum likelihood estimator. In this theorem, the matrices
My, and Xy, depend on the number of observation locations.

Theorem 4. Consider the setting of Section 5.1 for Z, T, Y and (S;)ien-
Assume that Conditions 4, 5, 6, 7 and 8 hold. Let My, be the p x p matrix
defined by

_ 1 _10Rg, . _10Ry,
(Mso)ij = Etr(R"o 26, % ", )

Let Y, be the p x p covariance matriz defined by (Xg, )i j = Cov(n/20Lg, /00;,
n'/20Lg, /96;). Let Lo, be the distribution of /n(Aar — o). Then, as n — oo,

dw (Logn, N0, My '3, My 1) — 0. (6)
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In addition,
lim sup Ay (M, Sg, M, ") < +oc. (7)
n—oo

Remark 6. If the sequences of matrices My, and X¢, converge asn — oo, then
Vn(OmL —0o) converges in distribution to a fized centered Gaussian distribution

where the limiting covariance matriz s given by

: —1 —1

i, Mo, S0, Mg,

Conditions 7 and 8 involve the model of covariance functions {ky¢;60 € ©}
and the sequence of observation locations (s;);en but not the transformation 7.
They are further discussed, in a different context, in [13]. We believe that these
conditions are mild. For instance, Conditions 7 and 8 hold when the sequence
of observation locations (s;);en is a randomly perturbed regular grid, as in [7].

Lemma 3 (see [7]). For i € N, let s; = g; + €;, where (g;)ien 1S a sequence
with, for N € N, {gl,...,gNd,} = {(il,...,id);il =1,...,N,... g = 1,...,]\7}
and where (€;)ien 18 a sequence of i.i.d. random variables with distribution on
[~1/2 4 6,1/2 — 8]¢ with 0 < § < 1/2. Then, Condition 7 holds almost surely,
provided that, for 6 # 0y, there exists i € Z\{0} for which ky (i +€; — €2) and
ky g, (i + €1 — €2) are not almost surely equal.

Furthermore, Condition 8 holds almost surely, provided that for (x1,-..,Xp)
# (0,...,0), there exists i € Z\{0} for which >_)_, xeOky,g,(i + €1 — €2) /00,
s mot almost surely equal to zero.

5.3. Cross Validation

We consider the cross validation estimator consisting of minimizing the average
of the leave-one-out square errors.

Since the leave-one-out errors do not depend on the variance ky (0), we intro-
duce some additional notation. In Sections 5.3 and 5.4, we let © = [02 ¢, 02,,] xS
where 0 < 0 < 02,, < 0o are fixed and where S is compact in RP~'. We let
0 = (02,¢) with o < 0* < 02, and ¢ € S. We assume that for § € ©,
kyg = o?cy.y, with ¢y, a stationary correlation function. Similarly, we let
b = (08, %0). For ¢ € S, we let Cy = (cy,y(s; — s5)) . Cross validation

is defined for n € N by ij=1,....,n
&CV € argmin C'Vy, (8)
PES
with
-
where diag(M) is obtained by setting the off-diagonal elements of a square

matrix M to zero. The criterion C'V;, is the average of the leave-one-out square
errors, as is shown for instance in [25, 6]. More precisely, if we let g;  be the
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best linear predictor of y; based on (y1, ..., Yi—1,Yit1,---,Yn), assuming that Y’

has covariance function JZCY#,, for any choice of 0% € [Jiznf, afup], then we have

n

1 N
CVy = n Z (yi — yiﬂb)z'

i=1

In particular, we point out that g; , does not depend on o2, because the best
linear predictors from the two covariance functions oicy., and o3cy,y are the
same, for any 07,03 € [07¢, 02,,]-

Let us insist on the fact that we consider here a cross validation estimator
of the correlation parameter 1y but that we do not consider a cross validation
estimator of 2. Indeed, we consider a cross validation estimator obtained by
minimizing the average of the leave-one-out square errors, that depends only
on v, not on o2,

The asymptotic behaviour of 1/AJCV was studied in the Gaussian framework in
[7] and under increasing-domain asymptotics.

The next identifiability condition is also made in [7].
Condition 9. For all x > 0, we have

n

1 2
liminf  inf — E cy(8; —Si) — Cya,(S; —s5))” > 0.
n— o0 Hw,wouzxnij:1( 71#'( ? j) 71110( 7 J))

The next theorem provides the consistency of the cross validation estimator.

Theorem 5. Consider the setting of Section 5.1 for Z, T, Y and (S;)ien-
Assume that Conditions 4, 5, 6 and 9 hold. Then, as n — oo,

dov 5 vo.
The next condition is a local identifiability condition.

Condition 10. For any (x1,--.,Xp—1) 7 (0,...,0), we have

1 n p—1 a 2
hnrglgf - Z <; Xea—w (CY,wo(Si - SJ))) > 0.

i,j=1

In the next theorem, we provide the asymptotic normality of the cross val-
idation estimator. In this theorem, the matrices Ny, and I'y, depend on the
number of observation locations.

Theorem 6. Consider the setting of Section 5.1 for Z, T, Y and (8;)ien.
Assume that Conditions 4, 5, 6, 9 and 10 hold. Let Ny, be the (p—1) x (p—1)
matriz defined by

(Nago )ij =
8 0Cyy ~—1 . Z1\—3 - —19Cy, 1\ -1
~u(5 20y ding(CL) ding (€7, 5 ey, )eid)
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+ %tr(aac;;’(’ ;) diag(C1) 20y aacf )
+ g tr (dlag(C 1~ diag (Cwol agfo Cy. ) (Cd) ! aazwo Cy, )Cwol)
Let Ty, be the (p — 1) x (p — 1) covariance matriz defined by
(T )ij = Cov(n'/20CVy, |0;, n*/20CVy, |9i);).
Let Quy n be the distribution of /n(hov — o). Then, asn — oo,
du (Qwo,n,/\/[o, NJ:F%NJ;]) 0. 9)
In addition,
limsup Ay (N ' Ty N ) < +oc. (10)

n—oo

Similarly as for maximum likelihood, Condition 9 is a global identifiability
condition for the correlation function. In the same way, Condition 10 is a local
identifiability condition for the correlation function around .

We remark that the conditions for cross validation imply those for maximum
likelihood.

Lemma 4. Condition 9 implies Condition 7 and Condition 10 implies Condi-
tion 8.

Finally, similarly as for maximum likelihood, we point out that Conditions 9
and 10 hold in the case of a randomly perturbed regular grid, as in [7].

Lemma 5 (see [7]). Let (s;)ien and (€;)ien be as in Lemma 3. Then, Condition 9
holds almost surely, provided that, for 1 # 1y, there exists i € Z4\{0} for which
ey, (i + €1 —€2) and cy .y, (1 + €1 — €2) are not almost surely equal.

Furthermore, Condition 10 holds almost surely, provided that for (xi,..-.,
Xp—1) # (0,...,0), there exists i € Z4\{0} for which z:g;ll XeOcy p, (1 + €1 —
€2)/0vy is not almost surely equal to zero.

Remark 7. Here we have provided the asymptotic properties of cross validation
by minimization of the average of the square leave-one-out errors for estimating
o. This corresponds to an extension of [7] to the transformed Gaussian frame-
work. We remark that there exist other cross wvalidation methods that provide
estimators of both 1y and o3 [6, 14, 40, 59] but their asymptotic properties are
not established under increasing-domain asymptotics, even for Gaussian pro-
cesses (note that [14] provides the fized-domain asymptotic properties of one of
these other cross validation methods for the exponential covariance function in
dimension one). It would be interesting to extend the results of Section 5.3 to
these other cross validation methods in future work.
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5.4. Joint asymptotic normality

From Theorems 4 and 6, both the maximum likelihood and cross validation
estimators converge at the standard parametric rate n'/2. Let us write N
(6%, ¥mr). In the case where T is the identity function (that is, where we
observe Gaussian processes instead of transformed Gaussian processes), numer-
ical experiments tend to show that UAJML is more accurate than zﬁcv [7]. Indeed,
when T is the identity function, maximum likelihood is based on the Gaussian
probability density function of the observation vector.

In contrast, when T is not the identity function, iML is an M-estimator based
on a criterion which does not coincide with the observation probability density
function anymore. Hence, it is conceivable that QZAJCV could become more accurate
than 1[)ML. Furthermore, it is possible that using linear combinations of these
two estimators could result in a third one with improved accuracy [35, 16].

Motivated by this discussion, we now provide a joint central limit theorem
for the maximum likelihood and cross validation estimators.

Theorem 7. Consider the setting of Section 5.1 for Z, T, Y and (8;)ien.

Assume that Conditions 4, 5, 6, 9 and 10 hold. Let Dy, be the (2p—1) x (2p—1)

block diagonal matriz with first pxp block equal to My, and second (p—1)x (p—1)

block equal to Ny,, with the notation of Theorems 4 and 6. Also let Wy, be the

(2p — 1) x (2p — 1) covariance matriz of the vector n*/2(9Lg, /00,00 Vy, /O).
Let Qg .n be the distribution of

éML - 00
Vi <'([}CV - ¢o) '

Then, as n — oo,

dw (6o, N[0, Dy "W, Dy 1) — 0. (11)
In addition,
lim sup Al(D;()I\IIQOD;ol) < 400. (12)
n—oo

Remark 8. From Theorem 7, considering any C* function f from S* — S such
that f(¢,v) = ¥ for any ¢ € S, and applying the classical delta method, we
obtain the asymptotic normality of the new estimator f(1/A1ML,1/AJCV). A classical
choice for fis f(¢1,v2) = Mp1 + (1 — MN)apa, which leads to linear aggregation
[35, 16]. We remark that selecting an optimal X\ leading to the smallest asymp-
totic covariance matriz necessitates an estimation of the asymptotic covariance
matriz in Theorem 7. We leave this as an open problem for further research.

Remark 9. In all the results of Section 5, the condition that F' is non-decreasing
in Condition 3 i) is actually not needed. It can indeed be verified that all the
proofs for Section 5 do not use this condition. In fact, Condition 3 i) is used
in Lemma 1 to show that covariance matrices have their smallest eigenvalues
bounded away from zero. This is already the case in Section 5, thanks to Con-
dition 5.



1978 F. Bachoc et al.

Remark 10. The results and proofs in Section 5 rely significantly on the as-
sumption that the set of covariance parameters © is compact. This is a common
assumption in the literature [7, 34, 44]. Nevertheless, this assumption is, in some
aspects, unnatural. For instance, the domain of allowed values of estimators of
the (constant) variance of a stationary random field is often [0, 00).

An extension of the results of this paper to non-compact sets © of covariance
parameters, while valuable, could turn out to be very challenging, and would
definitely require new proof arguments. For instance, we remark that letting cor-
relation length parameters go to zero or infinity may yield asymptotic situations
and techniques that are qualitatively different from the ones tackled in this paper,
see for instance [42, 54].

6. Discussions of extensions
6.1. Nugget effect

In Section 5, Condition 5 implies that the covariance function ky g is continuous
for any 6 € ©. Furthermore the true covariance function ky = kyg, of Y is
also continuous. Hence, the results of Section 5 hold for models of continuous
covariance functions and with error-free observations of continuous transformed
Gaussian processes.

Here, we provide an extension of the results of Section 5 to a nugget effect on
the covariance function ky,g. We assume that for § € O, the covariance function
ky.g is of the form ky g(s) = kyg(s)+n9ls=0, s € R, where ky g is a continuous
stationary covariance function on R? and 7¢ > 0. In this case, Condition 5 does
not hold, but it can be replaced by the following condition.

Condition 11. We have infgeg 19 > 0.

We also assume that, for s € R%, Y (s) = T(Z(s)) + N(s), where Y and Z still
have zero-mean and where there exists 7' : R — R satisfying Condition 3, such
that, for s € R?, N(s) = T(¢(s)), where C is a centered Gaussian random field,
independent of Z, with Cov(¢(u),((v)) = kly—, for u,v € R?, with k > 0. We
also assume that N has zero-mean. We still assume that & satisfies Condition 2.
Note that kz is thus not necessarily continuous and can also include a nugget
effect as described in Remark 2.

In this setting, the results of Section 5 can be extended in a relatively straight-
forward way.

Proposition 1. Consider the setting of Section 6.1. Let Condition 5 be replaced
by Condition 11. Let Conditions 4, 6, 7, 8, 9 and 10 be unchanged and applied
to the new form of ky,g given in this section. Then Theorems 3, 4, 5, 6 and 7
still hold.

We remark that in Proposition 1 we still address the well-specified case. In
particular, there exists 8y € © such that

ky.0,(0) = Ky, (0) + 19, = Var(T(Z(s))) + Var(T(¢(s))),
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for all s € R%. We also remark that the setting considered here is equivalent to
additive i.i.d. observation errors on a transformed Gaussian process, since the
observation points are two-by-two distinct.

6.2. Unknown mean

Throughout Section 5, we assume that the mean function of Y is constant,
known and equal to zero (in particular, the maximum likelihood estimator in (5)
is based on the density of a centered Gaussian vector). The results of Section 5
also apply to the case of any constant known mean vy € R for Y, since one can
then also observe the centered process Y — 1. However, the results of Section 5
do not apply to the case of a constant unknown mean 1 for Y.

In fact, even for (non-transformed) Gaussian processes, there exist very few
results on the joint estimation of a constant mean and of covariance parameters
by maximum likelihood or cross validation. For instance, the reference [7], that
we extend from the Gaussian to transformed Gaussian case, considers a con-
stant known mean. Among these few results, one can mention [22, 36], but the
conditions there are more difficult to check and to interpret that those given in
[7].

In future work, it would be interesting to extend the results of Section 5 to
transformed Gaussian processes with constant unknown mean. For instance, one
may consider a likelihood criterion to minimize of the form

(log(det(Rg)) + (y — v,) Ry 'y —v,))

S|

where 6 is still the covariance parameter, v is the mean parameter and v, =
(vy...,v)T is of size n. In this case a first task is to extend the results of [7]
to show the consistency and asymptotic normality of the maximum likelihood
estimators éML and oy, when Y is Gaussian. A second task is to further extend
these results to the case where Y is transformed Gaussian.

Finally, in the case where Z or Y has non-zero constant mean, Theorem 2
can be extended as follows.

Corollary 3. Consider the setting of Theorem 2, with the only modification
that the Gaussian process Z has a constant mean function ug € R and that the
transformed process Y = T(Z) has a constant mean function vg € R. Then the
conclusion of Theorem 2 holds, with y replaced by y — vy, .

This extension of Theorem 2 can be relevant and useful to the question of
extending the results of Section 5, as discussed above.

7. Illustration

In this section we numerically illustrate the convergence of different estimators
as stated in Corollary 1 and Theorems 4, 6 and 7. We use the following sim-
ulation setup in dimension d = 2. For n = 4(m + 1/2)? we define the grid



1980 F. Bachoc et al.

<
- <
3 © S ]
o | ™
3 1 c S
o~ N N
R s S ]
5 5 5
< < <
e n T T T T e n T T T T e n T T T T
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4
Standardized variance Standardized variance Standardized variance
2]
2
© <
c 7 < o
5
< o 3
o o
N
S Ch
o
c 7 - -
= s 7
< < <
e T T T T 1 e T T T T T e T T T T T
0 2 4 6 8 10 -2 0 2 4 6 -2 0 2 4 6
Standardized variance Studentized variance Studentized variance

Fi1Gc 1. Histograms of standardized and studentized variance mazimum likelihood estimates.
Blue: empirical density (kernel density estimates), red: asymptotic density, green: asymptotic
density based on the empirical variance. The top row shows results for the process Z (the
Gaussian case), the bottom row for the transformed process Y = Z? — 0(2) (the non-Gaussian
case). The columns are for n = 100,400,900. All panels are based on N = 2500 replicates.

{—m,...,m}? and add i.i.d. variables with uniform distribution on [—0.4,0.4]?
to obtain n observation points. Thus, we have a distance of at least A = 0.2
between the individual observation locations. The zero-mean Gaussian process
Z has stationary covariance function kz(s) = of exp(—||s||/po), s € R? and
we will denote this reference case as the Gaussian case throughout. We define
the zero-mean process Y = T(Z) = Z? — 0% and we will denote this case as
the non-Gaussian case. Recall that ky (s) = 2kz(2s) = 203 exp(—2||s||/po) (see
Remark 5). We set the marginal variance to 03 = 1.5 and the range to pg = 2.
Hence, in the non-Gaussian case, the marginal variance of Y is 20§ = 4.5 with
a range of pg/2 which is equal to a half of that of Z.

To start, we consider the maximum likelihood estimates of the marginal vari-
ance parameters, when the range of Y or Z is assumed to be known, i.e.,
Corollary 1. Figure 1 illustrates the empirical densities of £,, in Corollary 1
for n = 100,400 and 900 observation locations based on N = 2500 replicates.
For moderate n sizes and in the non-Gaussian case, the asymptotic variance
o2, = nVar(63; — 208) (Corollary 1) can be calculated based on (26) and

o0
using

Cov(yay;, yrwn) = 4(k7 o3, + k2 k7 1)
+ 16(ks ik ikj ki + ki jkiki ckieg + ki ki kkiike),

with k; ; = kz(s; — s;). The above display follows from tedious computations
based on Isserlis’ theorem. The densities in red in Figure 1 are based on the
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Fia 2. Scatter plots of variance and range mazimum likelihood estimates. Blue: contour lines
of kernel density estimates; green: contour lines of asymptotic density based on the empirical
bivariate covariance matriz; red cross: true mean (true parameter values). The top row shows
results for the process Z (Gaussian case), the bottom row for the transformed process Y =
zZ? - 03 (non-Gaussian case). The columns are for n = 100,400, 900. All panels are based on
N = 2500 replicates.

asymptotic distribution N[0, 02]. In the non-Gaussian case and for n > 400,
the calculation of 02, is computationally prohibitive, so o2, has instead been
approximated by the empirical variance with the corresponding densities indi-
cated in green. As expected, the convergence for the Gaussian case is faster than
for the non Gaussian case. But in both situations, the results behave nicely.

We now turn to Theorem 4 and consider the bivariate variance and range
maximum likelihood estimation. That is, we consider the two-dimensional max-
imum likelihood estimates of (02, po) in the Gaussian case and of (207, po/2)
in the non-Gaussian case. Again, we do not observe many surprises. Skewness
of the empirical distribution is slightly higher compared to the single variance
parameter estimation, and convergence is slightly slower, as is illustrated in
Figure 2.

For the general setting, when estimating jointly the variance and range pa-
rameter, the asymptotic bivariate covariance matrix is challenging to compute
(see Theorem 4) and thus Figure 2 illustrates the empirical densities and den-
sities based on the empirical bivariate covariance matrix.

We now consider not only maximum likelihood estimation of the variance and
range, but also cross validation estimation of the range (see the beginning of
Section 5.3). We have observed that the range estimates based on cross valida-
tion are much more variable, and in many situations the maximum was attained
at the (imposed) boundary. Here we used the bound [2/15, 12], i.e., smaller than
the minimal distance between two observation locations and 6 (resp. 12) times
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F1G 3. Mean squared error (top left), squared bias (middle column) and variance (right col-
umn) as a function of n for different settings in log-scale. The variance parameter is rep-
resented in dashed lines, the range parameter in solid lines. Process Z is shown by reddish

colors (Gaussian case), transformed process Y = Z2 — crg in blueish colors (non-Gaussian

case). The panels are based on N = 250 replicates that did not reveal any convergence issues.

the diameter of the observation points of Z (resp. Y). Estimates at or close to
the boundary indicate convergence issues and would imply a second, possibly
manual, inspection. For the reported results, we eliminated all cross validation
cases that yielded estimates outside [0.14,11.4].

Figure 3 shows the mean squared error, squared bias and variance of 63,
pmr and poy under different settings. For maximum likelihood, we consider the
univariate case (one parameter is estimated while the other is known) and the
bivariate case (both parameters are jointly estimated). For cross validation, only
the range parameter is estimated (see the beginning of Section 5.3), and thus
only the univariate case is considered. The mean squared error is dominated by
the variance component. Univariate maximum likelihood estimation for Gaus-
sian cases have low bias and the lowest variance (top left and right panel). Joint
maximum likelihood estimation has a somewhat larger variance than individ-
ual estimation. Surprisingly, cross validation for Gaussian cases has a higher
variance compared to cross validation for non-Gaussian cases.

Recall that Theorems 4, 6 and 7 show that, as n increases, the distribution
of the standardized estimation error is close to a Gaussian distribution in terms
of the metric d,,. In Figure 4, we illustrate this by computing one-dimensional
Wasserstein distances between the empirical distribution of the standardized
estimation errors and Gaussian distributions. The figure shows the Wasserstein
distance (p = 1) as a function of the number of observation locations n for
individual parameters and for specific bivariate settings (similarly as for Fig-
ure 3). In each case, the samples have been centered around the true mean
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Fic 4. Wasserstein distance (p = 1). Top left: marginal for each parameter. Center panels:
bivariate estimation of range and variance by maximum likelihood as in Theorem 4 and linear
combinations thereof; right panels: univariate estimation of the range parameter by mazximum
likelihood and cross validation and with linear combinations of these two estimators as in
Theorem 7. Top middle and right panels: Gaussian cases. Lower row panels: non-Gaussian
case. The colors and line styles follow those in Figure 3. The gray lines are Wasserstein
distances for estimates based on linear combinations of maximum likelihood (center column)
and of mazimum likelihood and cross validation (right column). The panels are based on
N = 250 replicates that did not reveal any convergence issues. The small boxplot on the right
in each panel shows the Wasserstein distance for sample size n = 250 of 10000 realizations
of N[0, 1]; the horizontal dotted line shows the median thereof.

(true parameter values) and standardized by an empirical standard deviation
(n-weighted average over all the samples). Their empirical distribution is com-
pared to the standardized Gaussian distribution. The top left panel shows that
the densities of the cross validation parameters are converging slowest whereas
their mean squared error is comparable (see Figure 3); the densities are highly
skewed and thus lead to much larger Wasserstein distances compared to the
distributions of the maximum likelihood derived parameters. For the bivariate
maximum likelihood estimation the marginal distributions have very similar
Wasserstein distances; in the center panels: the dashed and solid colored lines
are visually hardly separable. As suggested by the individual panels of Figures 1
and 2, convergence in the Gaussian case is much faster compared to the non-
Gaussian case. The right column of Figure 4 illustrates the joint asymptotic
normality of the range parameter estimators by maximum likelihood and cross
validation. The gray lines there illustrate Theorem 7 and are Wasserstein dis-
tances for linear combinations of the range estimates by maximum likelihood
and cross validation, i.e., Apmr, + (1 — A)pey for A = 5/10, j = 1,...,9. The
highly skewed distribution of the cross validation-estimated range parameter for
Gaussian processes is clearly visible. In the non Gaussian case, the effect of the
skewness is less pronounced since the maximum likelihood is skewed as well.
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8. Conclusion

We have shown that the covariance parameters of transformed Gaussian pro-
cesses can be estimated by cross validation and Gaussian maximum likelihood,
with the same rate of convergence as in the case of non-transformed Gaussian
processes. In particular, Gaussian maximum likelihood works well asymptot-
ically, despite the fact that the observations do not have a Gaussian distri-
bution. Hence Gaussian maximum likelihood is here robust with respect to
non-Gaussian data. This provides the first step of a theoretical validation of
the use of Gaussian maximum likelihood in frequent cases where the data are
non-Gaussian.

In future research, it would be interesting to extend the results of this paper
to other classes of non-Gaussian random fields rather than only transformed
Gaussian processes. In addition, the asymptotic analysis of estimators of the
transformation of transformed Gaussian processes is of great interest.

Appendix A: Proofs
A.1. Technical results

Lemma 6. Let g € N be fized. Let g : RY — RT be fived and satisfy g(x)
Csup €xp(Csuplz|). Let W be a Gaussian vector of dimension gq. Then E[g(W)]
00.

<
<

Proof. Without loss of generality, we can assume that W; has variance 1 for
t=1,...,q. We let w; be the mean of W, for i =1,...,q. We have, for ¢t > 1,

P(g(W) >t) < P(CSUP exp(Csup .Hllax [Wil) > t)
i=1,...,

-

@
Il
s

P(Csup exp(Csup|Wi]) > 1)

I
'M“‘

P(IWil = (1/Csup) l0g(t/Csup))

i=1

<2 P(W > (1/Cuup) log(t/Canp) — [wi),

i=1

where W ~ N0, 1]. From the Gaussian tail inequality, we obtain, for

t> C’sup eXp(Osup(A HllaX ‘wz‘ + 1))7
i=1,...,q

P(g(W) > 1) < \/257 exp(—(1/2) ((1/Cuup) 108(t/ Conp) ~ max_ fuil)?).

The function of ¢ above is clearly summable as ¢ — +4o00. Hence, we have
Elg(W)] = fooo P(g(W) > t) < 4o0. O
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Lemma 7. Let X be a centered Gaussian process with covariance function kx

satisfying Condition 2. Let F' satisfy Condition 3. Let W be the spatial process

F(X(-)) and assume that W is centered. Let (x;);en satisfy Condition 1.
Then, we have, for any r1,79 € N and A > 0,

~sup ’Cov(W(xil) Wi, ), Wi(wg,) .. W(xjrz))’
01500050 EN
jlwuvereN

ming=1,...,ry ,b=1,...,7o ‘ﬂcia —Tjy [>A

S Csupe_Ci“fA7

where Csyp and Cine depend on ri,72 but not on A.

Proof. Let A >0, 41,...,ir, € Nand j1,...,7r, € N such that

min |x;, — x5, > A.
la Jb
a=1,...,r1,b=1,...,72

Let €3 ~ N0, I,,] and €4 ~ N[0, I,,], €3 and €4 being independent. Let R be
the ro x ry matrix (kx (z;,, %4, ))a,p, let C1 be the ry X matrix (kx (zs,,4,))ab
and let Cy be the 7o X ro matrix (kx(z;,,%j,))aq,s. Let M = RCfl. Let K be a
matrix square root of Cy — RC 'RT. Let K, be the unique symmetric matrix
square root of Cf.

Then the vector ((Kie3)',(MKjes + Key)') has the same distribution as

(X(,Til), e ,X(:Ci,,,l),X(le), e 7X($j,,_2)).

Fori=1,2, for z = (z1,...,2,,) € R, let fi(z) = F(z1) - F(x,,) € R. Then
we have

Cov(W (zs,) -+ Wz, ), W(zj,) - Wizj,))
= Cov (fi1(K1€3), fa(MKie3 + Key)) .

By a Taylor expansion, there exists a random vector €5 belonging to the
segment with endpoints Key and M Kjez + Key such that, with Ga(es) the
gradient column vector of fy at €5, we have

fo(MKye3 + Key) = fo(Kes) + (MKye3) " Gales).
This yields
|Cov(W (i) ... W (@i, ), W (z5,) ... W(xj,,))|
= [Cov(fi(Kies),e5 K M Gales))|
< VEU(E es)]\El(e] KT MTGales))?).

From Condition 2 ii) and from the equivalence of norms, we obtain ||M||,p <
C’supe’C‘“fA and || K1||op < Csup, where Cgyp and Cins do not depend on

Zla"'vzr17jl,'~'aJT2,A~
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By equivalence of norms, we then obtain, with Cy,p and Ciys not depending on
ilw <. 7iT17 jla e 7j7’2aAa

|Cov(W(xi1) . W(xirl ), Wi(zj,)... W(xjw))|

=< Csupffc‘“fA\/E[ff(Kles)]E[(Hesll [1Ga(es)l1)?]-

Now,
lles|| < [IMEKyes|| + |[Keal| < Coup (Iles]| + [leall)

from Condition 2 ii), where, again, Csy,, does not depend on
il; .. -ai'flvjlw .. 7j7"27A'
Furthermore, ||Kyes|| < Csuplles||- Eventually, we have

| Cov(W (wi,) - W (xi,, ), W(xj,) - Wia,,))|

< Cuupexp(—Cir &)y B2 (K1 63) \/E[(Hesn wp [[Ga@))?]

1z <Csup ([lea|[+leall)

From Condition 3 i), we have |f;(K12)| < Csupe®=!l7ll and ||Go(2)]] < Cuup

eCawllzll where Csup does not depend on z and iy,...,%,J1,...,Jr, A. Hence
the above square roots are finite from Lemma 6 and do not depend on iy, ..., %, ,
Jis---,Jr, and A. This concludes the proof. O
Lemma 8. Consider the setting of Section 3.1, that is kz satisfies Condition 2
and T satisfies Condition 3. Forn € N and i,j =1,...,n we have
Z ‘COV (yiyja ykyl)| S Csup7
kl=1,...,n

where Cgyp does not depend on n, 4, 5.

Proof. We let d(a, (b, c)) = min(|a — b|, |a — ¢|) for a,b,c € R9. Tt is enough to
show that

|Cov(yiyj, yeyi)| < Csup €Xp ( — Cinrmax (d(sk, (i, s5)), d(s, (si, Sj)))>~ (13)

Indeed, let, for t > 0, N; ;; be the number of pairs (k,1), with 1 <k, < n such
that

t < max(d(sg, (si,85)),d(s1,(8:,85))) <t+ 1.
From Condition 1, we can show that we have sup,, ey ; j—1 Nijt < Csuthd.

Hence, we have

peeesTl

ZGXP(—Cinf max(d(sk, (S’ia Sj))v d(sla ('S’L'a S]))))
ig=1

+oo
< Z Csup(k + 1)2d exp (—Cintk) < +00.

k=0
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Thus, (13) implies the result of the lemma and it suffices to prove (13).

Let 4,5,k 1 € {1,...,n} and let A = max(d(sg, (si,s;)),d(ss, (si,s;))). By
symmetry, we can consider that d(sg, (s;,s;)) = A.

If [sp — si| < |si — 51| and [sp — si] < |s; — s1], then [s; — s;] > A/2 and
|sj — si] > A/2. Hence, we can apply Lemma 7 with distance A/2 to obtain
| Cov(yryr, ¥iy;)| < Coup exp(—CingA/2), where Cgyp and Cine do not depend on
n,i, 74, k, 1, A.

If |s; — s1] < |sp — si] and |s; — s1] < |s; — 4], then |si — s;| > A/2. We then
have

Cov(yiys, yewr) = Elviyivey) — Elviy; 1 Elyeyi]
= Cov(yiy;y1, yx) — Cov(yi, y;) Cov(yr, yr) (14)

since it is assumed that Y has zero-mean. In (14), the first and third covari-
ances are bounded in absolute value by Csypexp(—CinrA/2) from Lemma 7,
because |si — 51| > A/2, |sk — s;| > A/2 and |s; — s;| > A/2. Hence we have
| Cov(yryr, ¥iy;)| < Coup exp(—CingA/2), where Cyyp and Cine do not depend on
n,i, 7, k, 1, A

If |s; — s1] < |sk — 51| and |s; — 51| < |s; — 51|, we obtain the same bound by
symmetry. We have thus considered all possible cases and the proof of (13) is
concluded. |

In the context of Theorem 2, the following lemma provides an approxima-
tion of V,,, based on replacing A by a sparse matrix. We remark that a similar
approximation was shown in a time series context in [38]. Nevertheless, we find
that our assumptions on the random field Y are more transparent and inter-
pretable than the assumptions in [38], where cumulants are used. Because of
these differences of assumptions, our proof of the following lemma differs from
that in [38].

Lemma 9. Let, for K,n € N, A¥) be the n x n matriz defined by

(K) _
A = Ailis—s; 1<K

Then, under the same assumptions as in Lemma 8, we have
1 1
suanar(—yTAy — —yTA(K)y) — Koo 0.
neN n n
Proof. For any K,n € N we have
1 1
nVar(—yTAy — —yTA(K)y>
n n

(A — AB)Y; (A — AYOY, Cov(yiy, yryi)-
i,j,k,1=1

We observe that |(A—A)), ;| is equal to 0 or is smaller than Cyy, /(14K @+Cinr)
by assumption. Hence we have

I
S|k

1 1
nVar(—yTAy — —yTA(K)y)
n n
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1 1 o
WP a4 Ot gy D 1A= ATl Covlyiys, yryw)|
iyg.k,l=1

< Cs

1 1

< C’supmﬁ Z (A= AKD), 5
ig=1

1 Z" 1
< — T~ hax
= TSP 4 Kd+Cine =1, 4 - 14+ |3i — sj‘d-‘rc'mf
J:

1
< Csupmv
where we have used Lemma 8 and where we have observed that (4 — A()), /|
is equal to 0 or is smaller than Cyyp/(1 + |s; — s;/7%nf). We have also used
Lemma 4 in [28] for the last inequality above. All the above constants Cy,, and
Cins naturally do not depend on n, so the lemma is proved. O

Lemma 10. Consider the setting of Section 3.1, that is kz satisfies Con-
dition 2 and T satisfies Condition 3. Let a,b € N. For i € {1,...,a}, let
a; € N and let 1(i,1),...,1(i,0q) € {1,...,n}. For j € {1,...,b}, let B; € N
and let J(4,1),...,J(4,8;) € {1,...,n}. For i = 1,...,a, let f; be a func-
tion from RY to R. For j = 1,...,b, let g; be a function from R% to R.
Fori=1,...,a, let v = fi(Z(s1i1))s- -+ Z(S1(i,0)))- For j = 1,...,b, let

wld) = 9i(Z(s3G,1))s -+ Z(85(.8,)))- Let
a({v(l), e v(“)}, {w(l), e ,w(b)}) =
sup{|IP>(A NB) —PAPB);Aco({v,....v}),B e o({w,... ,w(b)})},

(15)
where, for any set of random variables {e1,... €.}, o({€1,...,€-}) is the sigma
algebra generated by the random variables {e1,...,€.}. Let

A= inf s — S
el lsren T 8065
je{l,...,b}
EE{L...,O@}
Je{1,....85}
Then, we have
a({fo® 0@ {w® L w®Y) < Ogpe @,
where Csup and Cing may depend on a,aq,...,a, bul do not depend on b,

(J(j’j))j:LH.,bJ:L,“,ﬁj and A.

Proof. Let T = {I(i,i);i = 1,...,a,0 = 1,...,a;} and let J = {J(4,7);j =
1,...,b,5=1,...,5;}. In (15), any of the events A (resp. B) is an event defined
on the set of random variables {Z(s;)}iez (vesp. {Z(s;)}jes). We thus obtain

a({v(l), T S P 1E0 N w(b)})
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< a({Z(Si)}iely {Z(Sj)}jej)
= sup{ [P(A 1 B) = P(A)P(B)|; A € o({Z(s0)}iex). B € o({Z(5;)}e0) |-

Let Iy < --- < I5 be such that {I1,...,15} =Z and let
Vg = (Z(S[l),. . .,Z(S[a))—r.

Let Ji <--- < Jz be such that {Jl,...,JB}:jand let

Wz = (Z(Seh)7 sy Z(SJ/;))T'

From Lemma 1 in Section 2.1 of [23], we have

a({Z(si)}ier. {Z(s))}jea)
< sup{|COV(vTvz,wTwZ)‘;Var(vTvZ) =1, Var(w wy) = 1}. (16)

Let v and w be vectors belonging to the set in (16). The smallest eigenvalues
of the covariance matrices of vy and wy are larger that a constant Cj,¢, not
depending on Z and J, since kz satisfies Condition 2. Thus we have

1=Var(v'vg) =v" Cov(vz)v > Cinl|v|.

It follows that |[v|]? < Csup, where Cyy, does not depend on Z, J and A.
Similarly ||w||? < Csup.
We have

Covz(v—rvz,w—rwz) </ Cov(vTvz7wZ)||2Hw||2

< Csup Z COV(’UTUZ, Z(SJJ. ))2

Jj=1,....8

< Caupllll* ) Z Cov(Z(s1,), Z(s1,))*

i=1,...,0 j=1,.

70‘{8[.7s~
> sup § E € m‘ ¢ '7‘7

i=1,...,a j=1,...,
‘SJ751‘>A

by definition of A, since k; satisfies Condition 2 and where Cgy,, and Ciye do
not depend on b, J and A. For any i € {1,...,n}, the number of 1ndices
j € {1,...,n} such that A< lsi — s;] < A+ 1 is smaller than Cy,p, A9, from
Condition 1 and where Cg,, only depends on d. This yields

—+oo
COV2(UT’Uz, wTwZ) < Csuplar + ...+ aq) Z Csup (A + k)de_C‘“fIA"’kl
k=0
+oo
< Csupe—cmf|A\/2(a1 o+ aa) Z(A + k)de_ci11f|A+k|/2
k=1
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< C’supeicinf‘A‘

where the different Cyyp and Cine do not depend on b, J and A. This concludes

the proof from (16).

O

Lemma 11. Consider a sequence (;);en of points in R? satisfying Condition 1.
Let 7 > 0 be fized. For n € N, let (Ag)oco and (By)oco be families of n x n

matrices. Assume that for allm € N, i,j=1,...,n and 6 € O,
Cs Cs

A) | < s (B | < sup

|( 0)z,j| > 1+|$i7$j|d+'r an |< 0)27]| = 1+‘I¢*Ij‘d+‘r

where Cgyp does not depend on n,i,7,0. Then we have for all n € N, 4,5 =

1,....,n and 6 € O,

C,
AgBy); | < ————2
‘( 0 9) ,J|— 1+|xi_l.j|d+r

where Cgyp does not depend on n, 1,3, 0.

Proof. We have,

ZAG i.0(Bo)e,

(=1
n

|(A9Ba)ij| =

< Z sup C(aup
1 [ — | T L |y — T

S Z C’sup C(sup
L fm =@ 1+ (|l — ] /2) 0

\wz \<Irrre\

Csup C’sup

+
@:;,n 1+(|x2 7xj|/2)d+7 1+|l’j 7(L’g|d+7—
lzj—ze|<|@s—me]

Cosup 1
< . wsub - - @@
_Csup1+|x . |d+"'a 1aX Zl+|$ —Ib|d+7

< Csup
— 1+ |J?z — 1‘j|d+T

from Lemma 4 in [28].

O

Lemma 12. Consider the setting of Section 5.1. Under Conditions 4 and 5, we

have
sup Ay (R 1) <
0eo

sup A1 (Rg) < Coup,
feO

< Csupa

(17)

(18)
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and
ORy

sup A (—
0c6 '\ o6, ...06,,
(=1,2,3
i1,..50g=1,...,p
Proof. Conditions 1, 4 and 5 imply (17) from Theorem 5 in [12]. Conditions 1
and 4 imply (18) and (19) from Lemma 6 in [28]. O

) < Cop. (19)

Lemma 13. Consider the setting of Section 5.1. Under Conditions 4 and 5, we
have, forn € N and i,j € {1,...,n},

C,
R_l < sup
Slelg ‘( 0 )17J| = 14 — 3j|d+cinf’

where Csup and Cine do not depend on n,1,7,0.

Proof. One can show that the proof of Theorem 1 can be made uniform over
0 € ©, thus yielding Lemma 13. |

Lemma 14. Consider the setting of Section 5.1. Under Conditions 4 and 5, we
have,

. S
euelg An(RG) = Olnf7 (20)
i i 1)) > Cing.

Inf An(diag(Ry ")) = Cint (21)

Proof. Equation (20) holds from (17). Then, (21) follows from (20) as in Lemma
D.6 in [7]. O

A.2. Proofs of the main results

Proof of Lemma 1. As a special case of Lemma 7, &k’ satisfies Condition 2 i).

Let us now show that &’ satisfies Condition 2 ii). Let (x;) satisfy Condition 1.
Let n € N be fixed and let R be the n x n covariance matrix k(z; — 2;); j=1,....n-
Let aq,...,a, € R. We have

z”: a;a;R; ; = Var (Z:L: aiF(X(a:i)))

ij=1

We now let z = (X(x1),...,X(z,))" and g : R® — R be defined by g(t) =
S, a;F(t;). The gradient of g at ¢ is Vg(t) = (a1 F'(t1),...,anF'(t,))". We
use the inequality in Theorem 3.7 in [19]. This yields

> aia;R;i; > E[Vg(2)]" Cov(2)E[Vg(2)].

ij=1

From Condition 2 ii), we have A;(Cov(z)) > Ciys. This yields

Z a;a;R; j > Cint ZE2 [(Vg(2)),]

i,5=1 i=1
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n

= Cinr )_ a7E[F'(z))]?

=1

— Ciur (3 ) BIF ().

i=1

From Condition 3, the above expectation is non-zero, which concludes the proof.
O

Proof of Lemma 2. The fact that k satisfies Condition 2 ii) follows from The-
orem 4 in [12].

Let us now consider the case where F is defined by F(z) = 2?" + u. Since
we consider a covariance function we can assume that v = 0 without loss of
generality. Assume also that k£(0) = 1 without loss of generality. From Lemma 7,
k' satisfies Condition 2 i). Let us show that Condition 2 ii) is satisfied. Let
a,b € RY let ¢ = k(a —b) and let A = (1 — ¢*)Y/2. With (A;, Ay) ~ N0, L], we
have

K (a —b) = Cov(A2", (cA; + AA2)*")

2r
= Cov (A%r, Z <2ir> c")\Qr_iAiAgrfi)

i=0
2r 2r . . .
= Z ( ; >cz/\2rl Cov(A%T,AiAir_l).
i=0
By independence of A; and A, we obtain, for i =0,...,2r,
Cov (A", A AZ~) = E[AF~|(E[A?] - E[AZ]E[AL)).  (22)

From Isserlis’ theorem, one can show that (22) is zero if ¢ is odd and is strictly
positive if 7 is even. As a consequence, we have

K(a—b) =Y ak(a—b)*
=0

with a1,...,a, > 0. Hence, the Fourier transform of £’ is a linear combination
of multiple convolutions of the Fourier transform of k, with strictly positive
components. Since the Fourier transform of k is strictly positive everywhere,
then also the Fourier transform of k' is strictly positive everywhere. Hence,
from Theorem 4 in [12], k&’ satisfies Condition 2 ii). O

Proof of Theorem 1. Condition 1 and Lemma 6 in [28] imply that the spec-
tral norms of R~1 and R are bounded functions of n. Let Cysyp, = sup,, A1(R) <
oo and Ciyr = inf,, A, (R) > 0.

We write

C1 i(l - cip)e' (23)

R -1
o, U-g)) =,
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We remark that the above sum is well-defined because the eigenvalues of I —
R/Cqup are between 0 and 1 — Cins/Csup-

We denote M = I —C_ R and h; j = |s; — s;|. Let 1 < A < co and a > 0 be
fixed such that M; ; < Ae=2%ii. Let § = inf; jen izj |s; —s;| > 0 (Condition 1).
Let D < oo be a constant such that D > 1 and, for any L > § and ¢ € N, the
set {j € N;|s; — s;| < L} has no more than (D/2)L¢ elements.

Let 0 < u < oo be fixed. We show by induction over £ € N that there exists
a constant 1 < ¢ < oo, depending on p but not depending on ¢, 1, j, such that

for £ < ulog(hw-),
[(M©); | < A% D ndemahis, (24)

In the case log(h; ;) < 0, there is nothing to prove in (24), so we consider 4, j
such that log(h; ;) > 0 when proving (24).
For ¢ =1, (24) holds. Assume that (24) holds for some ¢ € N. We have

n

(M50 = (M) M,

r=1

n
< E AécpZDeh%’de_“hWAe‘2ahm'
r=1

n
VAR SN dl—d —ah; . ,—2ah, ;
=A"¢o'D E i, e "re ™.
r=1

Let now B; = {z € R% |z —s;| < |s;—s;|} and B; = {x € RY; |z —s;| < |s;—s;|}.
From the triangle inequality we obtain

|(MZ+1)ij| S A€+1Q0€De E hglé’fde—ahime—Qahhj
reN;s,.€ B;UB;
+ AZH(,OZDZ E h%f‘ie_“h”e_%hm
TEN;STEB,?HBJC-

< A€+1@6D€2(D/2)hd _hdffde—ahw

4,J"7,5
=+ AZ+1¢€DZ672ahid E h?l;—defahim
reN;s,€B¢

S Ae-‘rlQDKD[+1h?(J_£+1)7de—ahi,j

+ AL Dleahi (efahi,j Z Qrv log(hi,j)efa(rfl)),
reN

where for the last inequality we let Qr?% be an upper bound on the cardinality of
{beN;|sy —s;| € [r—1,7]} for all ¢ € N. The constant @ is finite and depends
only on d and ¢ from Condition 1. We also let ¢ < plog(h; ;) to show the last
above inequality. Hence, in order to finish the proof of (24), it remains to show
that the term (.) in the above display is a bounded function of h; ;, and to let
©/2 > 1 be a bound for the term (.).
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We have, for h; ; large enough, with [-] the integer ceiling,

(e—ahi,j S Qrin 1og(hi,_7»)e—a<r—1))

reN
Qeae_ahi‘j Z T[du log(hi ;)] e ar
reN
[dplog(hi, ;)] -
a,—ah; ; g 7 g [dplog(hi ;)1 —ar
= Qe ' <a> %( 2 ) c
9\ [drlog(hi ;)]
< Qeem i (—) [dp log(hi7j)1!Zear/26_”
a reN
o —ahs. 2 [dplog(hi, ;)] | 1
= Qe (E) ’Vd‘LL log(hmﬂm

The above function of h; ; clearly goes to 0 as h; ; goes to co. Thus, the above
term (.) is bounded and thus (24) is proved.

Coming back to (23), using (24) and using the triangle inequality, we obtain,
letting A =1 — Cing/Csup, and for h; ; large enough,

|(R71)i,j| S ( Z Alszeh?’g‘—defahi,j) + Z AZ
1<t<plog(hi, ;) plog(hi ;) <f<oo

wlog(hi,j)
< plog(i 5) (A Dyr1osthi) pitostha) —any s B E

1-A
hulog(A)
_ ulog( ”)(Ach)“log(hlJ)hd“bg(h? ) 7ah” + ﬁ (25)

In the above display, for any 7 < oo in the statement of Theorem 1, we can
choose u such that plog(A) < —d — 7. Then, it is clear that the first summand
n (25) is also smaller than a constant (depending on 7) time hf;liT. This

concludes the proof of Theorem 1, since also sup,cymax; j—1, ., |(R71); ] is
bounded by Csyp. O
Proof of Theorem 2. We have
1 n
nVar(V,) = — Z A; Ak, Cov(viys, Yryr)- (26)
4.k, 1=1

From Lemma 8, we obtain

nVar(V,,) < Csup Z |A;

3,7=1

Coup mf”fnz 1+ |s; — S]|d+01nf

< CYsup
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from Lemma 4 in [28]. Hence, n Var(V},) is bounded as n — oo.
Assume now that

dy (L, N [0,n Var(V,,)]) A 0 (27)

as n — 00. Because n Var(V},) is bounded, there exists a subsequence ¢(n) such
that

as n — oo and ¢(n) Var(Vy(,)) — V € [0,00) as n — oc. It is then simple to
show that this implies

dw (Lpn), N[0, V]) 40 (29)

as n — oo. If V"= 0, then, from Chebyshev inequality, L4,) converges to a
Dirac mass at zero and so (29) does not hold, yielding a contradiction.

Hence it remains to consider the case ¢(n) Var(Vye,)) — V € (0,00) as
n — oo and where (29) holds.

To reach a contradiction, we will show that

o (Fe—Zel) e wo)

To simplify notations in the sequel, without loss of generality, we will consider
that ¢(n) = n and show that

Vn - E[Vn] L
v <T> LE N1, (30)

where n Var(V,,) = V € (0,00) as n — oco. From Slutsky’s lemma it is sufficient
to show that

Vn B E[Vn] L
vn <7nVar(Vn)> 0o N0, 1]. (31)

For K > 0, let
1
Vit = —y T Ay,

with the notation of Lemma 9. We have

A2 - (S

neN n Var(V, nVar(VéK))
(K)

< 2sup Var| vn| ————=

o neg (f( n Var(V,,)

1 1
+ 2 sup Var(ﬁV,EK)< — ))
neN V/n'Var(V,,) \/nVar(VTEK))

—n—oo 0
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from Lemma 9 and because V' > 0. Hence, from Theorem 4.2 in [18] (as in
[38]), it is sufficient to show that there exists L € (0, 00) such that for any fixed
K > L, we have

TEK) _E| 751()]

NG —£ NT0,1]

nVar(Ver))

asn — 00, in order to prove (31) and thus to conclude the proof. We remark that,
because of Lemma 9, we have ’ liminf, ..o n Var(VTEK)) —liminf,,_, . n Var(V,)

goes to 0 as K — oco. Hence, we may take L such that liminf,, nVar(VTEK)) >
0 for K > L. Hence, up to extracting a subsequence, it is sufficient to show

Vi (ViF) —E[VIOT) = Mo, v, (32)

where n Var(Vi5)) = VE) > 0 as n — co. We have
Vi (Vi — E[V])

= — (ivj — Elyiy;]) Aijlisi—s, 1<K

-
I
—
X
|
u)—‘
3

say, where X, can be interpreted as a centered random field defined on (s;);en.
We will now show that the sequence of random fields (X, )nen satisfies the
conditions of Corollary 1 of [32].

We let, for k,l e Nand r >0

i1(r) = sup sup { [B(A 1 B) ~ B(A)P(B)];
neN
Aco(Xn(s,), - Xn(s1,)), Be€a(Xn(s5), -, Xn(s1)),
E<kl<lLi... I Ji,....,J;€{l,...,n},
_ min sr, = sl 27‘}.
k=1,... k=1,
Let Nx = Sup,,cy max;—1,..n 2?21 Lis,—s,|<k- Then Ng < Cyyp, where Cyyp
depends only on K, d and § from Condition 1. We remark that fori =1,... n,
Xn(s;) is a function of the variables Z(s7(n,i,1));- - - Z(51(n,iy(n,)))s With v(n, 1)
< Nk and with |s;(, ;) — 8| < K for v = 1,...,7(n,i). Furthermore, for
|si — sj] > r we have for v, = 1,...,79(n,i) and for v; = 1,...,7v(n,j) that
IS1(n,iyi) = SI(n,jsy;)| = 7 — 2K. Hence, form Lemma 10, we have, for any k € N

_ —Cins
sup g g (T) S CVsupe fra
leN
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where Cy,p and Cips may depend on k£ and K.

We now let D = (8;)ien, Dn = (81,--+,8n), Zin = n~12X,(s;) for n € N
andi=1,...,n. Wealsolet ¢; , = n~Y2forn e Nandi=1,...,n. Weremark
that Z; ,/¢; n, can be written as f(w) where w is a Gaussian vector of dimension
less than Ny, with variances 1 and where | f ()| < Csupe®=»!?l, where Cyy,, does
not depend on n € N and 4 = 1,...,n. One can thus show, from the Cauchy-
Schwarz inequality and with the same techniques as in Lemma 6, that for any
q>0

M1~I>H4}OO ilég ’i=Illlva-J-).<,7z E |:|Zi7”/ci7”|2+q1|Z1\n/Ci,n|2M] =0. (33)
With the previous notation and with (33), one can show that all the assumptions
of Corollary 1 in [32] are satisfied. This shows (32) and thus concludes the
proof. O

Proof of Theorem 3. Let 6 € O be fixed. We have
Var(Lg) = anar 1 (yTR_ly)
"0 n 0 ’

From Lemma 13 and Theorem 2, applied with A,, = R, ! we obtain Var(Ly)
—0asn—o0. Fori=1,...,p,

which can be rewritten for convenience as

oLy 1 1,
0, Etr(Pe,z) +o (v' Qo,iv)
with oR oR
_ 0 — 0 15—
Pyi=R,* 50, and  Qgi=—Ry' 2, R,

The matrices R;l and ORy/06; are both valid choices for Ag and By in
Lemma 11. From Gerschgorin Circle Theorem (GCT) and Lemma 4 in [28], we
obtain supgeg A1(Py;Poi) < Coup and supgeg A1(Qpi) < Caup. This, in turn
implies that supgcg p1(FPo,i) < Csup. It follows that

0Ly 1 1
“max sup —’ <sup|—tr(Py;)+ — (yTQg’iy)
i=1,...,n gcO pco | n
2
< CVsup + C'sup Hgﬁ'

= 0,(1).

Hence, Theorem 3 can be proved by proceeding as in the proof of Proposition
3.1 in [7]. |
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Proof of Theorem 4. From the proof of Theorem 3, we have fori=1,...,p

OLo /00 =~ tr(Po) + (s Qo)
where Py, is a n x n matrix satisfying supgceo |(Po,i)ab] < Csup/(1 + [Sq —
sp|4TCn1) and Qo,; is a n X n symmetric matrix satisfying supgeg [(Q0,i)a,p] <
Coup/ (14 |34 — sp]#+C0nr).

One can check that dLg,/00; has mean zero for i = 1,...,p, since the mean
value of OLg,/00; is calculated as if Y were a Gaussian process with zero-mean
and covariance function ky,g,. Let 9Lg, /06 be the gradient column vector of Ly
at 0y. From Theorem 2, with Ly, g, , the distribution of \/ndLg, /00, as n — oo,

dw(ﬁz,eo,naN[(), 290]) — 0. (34)

In addition, for ¢ € {1,...,p}, the sequence (n Var(9Lg,/00;)) is bounded,
which implies that the elements of ¥y, are bounded too.

One can check that the mean value of dLg,/00;00; is (Mp, ) ; (also because
this mean value is calculated as if Y were a Gaussian process with zero-mean
and covariance function ky.g, ).

Also, for 7,5 =1,...,p, we have

8L9/89i89j = %tl‘(C@’i,j) + %(yTDg’i)jy),
where Cy; ; and Dy ; ; are sums of products of the matrices R, "', Ry and the
first and second derivative matrices of Ry (see e.g., [7]). Hence, from Condition 4
and Lemma 13 used inside Lemma 11, we have supgcg [(Co,i,5)ab| < Csup/(1+
|5 — sp|"TCn0) and supgee |(Do,i,j)ab] < Csup/(1+ [sa — 55|+ ).
Thus, the variance of 9Lg,/d0,00; goes to zero as n — oo from Theorem 2.
Hence

8L90/891‘893‘ —P (M90)i7j (35)

as n — 00.
It can be shown, similarly as in the proof of Proposition 3.3 in [7] that

hnnl)gf Ap(Ma,) > 0. (36)

Hence, (7) follows.
Then, for i,7,¢ € {1,...,p}, we have

0Lg/00;00;00, = %tr(Ee,i,j,é) + %(yTFe,i,j,Ky)v
where Eg ; ;¢ and Fy ; j, are sums of products of the matrices R;l, Ry and the
first, second and third derivative matrices of Ry. Hence, from Condition 4 and
Lemma 13 used inside Lemma 11, we have supgeg |(Eo,i)a,b| < Csup/(1 + |50 —
sp|4Fn) and supgeg (Fo.i)ab] < Csup/ (14|80 — 85| Cn1). Then, from GCT and
Lemma 4 in [28], we have supgeg p1(E9;) < Csup and supgeg p1(Foi) < Caup.
Hence, as in the proof of Theorem 3, we can show
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OLyg
00;00;00,

Also, A1(Mpy,) is clearly bounded as n — oo. From Theorem 2, A1 (Zg,) is
bounded as n — oco. Hence, by considering subsequences along which My, and
Y9, converge, and using (34), (35), (36) and (37), we can proceed as in the proof
of Proposition D.10 in [7] and show (6). O

sup
6co

= 0p(1). (37)

Proof of Theorem 5. Let 1) € S be fixed. We have
1
Var(CVy) = —nVar ( TC’ diag(C,, )_QC’wly) .

From Lemmas 11, 13 and 14 (that can be trivially adapted by replacing 6 by
1), as well as Theorem 2, applied with A4,, = C;l diag(CJl)_QQf, we obtain
Var(C'Vy) — 0 as n — oo.

Fori=1,...,p—1,

8¢L - ny ¥y
with
Ay, =
1 g Ciy— . oC, . 1y - _,0C .
Cw1 dlag(Cwl) 2 (dlag (Cwl 81/ch ) dlag(Cwl) - Cw1 61/11:}) C¢1.

As in the proof of Theorem 3, GCT and Lemma 4 in [28] lead us to

sup )\1(Aw iAui) < Csups
PES

which in turn implies sup,ecg p1(Ay,i) < Csup- It follows that

C'Vy 2, T
_max su < su Ay
e e B R
2
SCsupHyH
:Op(l)-

Hence, Theorem 5 can also be proved by proceeding as in the proof of Propo-
sition 3.4 in [7]. O

Proof of Theorem 6. From Condition 4 and Lemma 13 used inside Lemma 11,
we have fori=1,...,p—1

ocv, 2
- _ A iV,
0; n? ¥
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where Ay ; is a n x n matrix satisfying sup,cs [(Ayi)apb| < Csup/(1 + [50 —
sp|¥FCmt). As in the proof of Theorem 4, one can check that dCVy, /01, has
mean zero for i =1,...,p— 1. Let dCV,,, /0y be the gradient column vector of
CVy at 1. From Theorem 2, with Lr 4, the distribution of \/ndCVy, /0v, as
n — oo,

dw(£p7¢07n,N[0, Fﬂlo]) — 0. (38)

In addition, for ¢ € {1,...,p—1}, the sequence (n Var(9CV,,/0v;)) is bounded
and thus, the elements of I'y, are bounded too.

One can check that the mean value of dCVy,, /0¢;0; is (Ny, )i ;. Further-
more, from Theorem 2, the variance of 0CVy, /01;0v; goes to zero as n — oo.
Hence, as n — oo,

OCViyo [ 005 —P (Nyg )i, j- (39)

It can be shown, similarly as in the proof of Proposition 3.7 in [7] that

lim inf )\pfl(NwO) > 0. (40)

n—oo
Hence, (10) follows. On the other hand, for é,j =1,...,p — 1, we have

ocv, 1
= - D 1,79
awlaw] ny P, Jy

where Dy, ; ; is computed as a sum of products of the matrices CJ L Cy, the
first and second derivative matrices of Cy and the diag operator (see e.g.,
[7]). Hence, from Condition 4 and Lemma 13 used inside Lemma 11, we have
suPyes |(Dy,i)abl < Csup/ (1 +[sq — sp| 7).

Similarly, for ¢,5,¢ € {1,...,p — 1}, we have

aCVy, 1+
;e m? T

where Ey; ;¢ is a sum of products of the matrices C};', Cy, the first, second
and third derivative matrices of Cy and the diag operator. Hence, from Con-
dition 4 and Lemma 13 used inside Lemma 11, we have sup,,cs [(Eyp,i.j.0)ab| <
Caup/(1 + |84 — sp|4TCnt). Then, from GCT and Lemma 4 in [28], we have
supyes P1(Ey,ije) < Csup- Hence, as in the proof of Theorem 3, we can show,
for¢,5,0 € {1,...,p— 1},

aCv,
0vY; 0001

Also, A\ (Ny,) is clearly bounded as n — oo. From Theorem 2, A;(T'y,) is
bounded as n — oco. Hence, by considering subsequences along which N, and
I'y, converge, and using (38), (39), (40) and (41), we can proceed as in the proof
of Proposition D.10 in [7] and show (9). O

sup
PeS

= 0,(1). (41)
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Proof of Lemma 4. We have, with § = (¢2,1) € © and 0y = (03, 0),

1 — 2
- D (evau(si— s5) = eva(si —5)))

=
L1 (Bl b))
n o= ky,(0) ky,6,(0)
g zn: (kye si—8j) kv, (s _SJ'))2
n A= ky,0(0) ky,6(0)
g z": <k‘y90 $i—85) kv, (si —Sj)>2
n . kYG ) kyﬂo(o)

. 1 1 2
2 32 thvatos =) b=+ (g~ ) O
i,jzl ’ »vo
(42)

where the second Cgyp comes from Lemma 12 and from the classical control of
the square Frobenius norm by n times the largest square eigenvalue, for n x n
symmetric matrices. If Condition 9 holds, then for all x > 0,

n

1
liminf inf — Z (cyp(8i — 85) — Cy g (85 — sj))2 > 0.

n—00 ||gh—iho|>x N “—
7,7=1

Consider a sequence 0,, = (02,1,) € © such that [|0,, — 6p|| > x. If we can
extract a subsequence n,, such that lim infmqoo(aim — 00)2 > 0, then clearly

Mm

NN 2
timint == 3 (kvio,,, (51 = 55) — bvian (5i = 5))" > 0

ij=1

by considering the diagonal terms in the above double sum. If we can not extract
such a subsequence, then we can extract a subsequence n,, such that ||¢,, —
Yol| > x/2 and 02— 03 as m — co. Along this subsequence

Mm,

NP | 2
timint - 3 (kvio,,, (51 = 5) ~ byan(si = 5))" > 0

ij=1

from (42). Hence, Condition 7 holds.
Let us now assume that Condition 8 does not hold. We have, with 8 =

(0271/’) S @7 with 00 = (0'3,1/10) and with (/617"-5610) = (/Blaxla"'aXp—l)a
where $; € R is arbitrary,
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1 9 (kyp,(si —s5) i
> (Zﬁ o, | ka,90<0> ))

2
3(% le% Si — zp:ﬁ( kY@o Sj)aiezky)go (O)
kY 90 kYae(] (0)2

I
SRS
NE
7/~
N
E

2 « P aiglkY,Og(si*Sj) ?
<52 (Z o e (0) )
2 — / kY,Go(Si_Sj)aigzkY,ao(O) ?
+ n Z (Z Be ky. 6, (0)2
2

Cop o (I~ D ’ LI
< n Z Zﬁla_egky’%(&_sj) +Csup ;ﬂfa—eekyﬁo(()) R

(43)

where the second Cgyp comes from Lemma 12 and from the classical control of
the square Frobenius norm by n times the largest square eigenvalue, for n x n

symmetric matrices. If Condition 8 does not hold, there exists (57,...,3;) #
(0,...,0) and a subsequence n,, such that
2
5 (Sarggint =) oo

and thus, considering the diagonal elements in the double sum above,

p
0
pi = Zﬁ?a—wkxeo(o) =0.
=1

Hence, from (43), letting (87, ...,8;) = (0,x7,---,Xp_1), we have

1 Nm p—1 . a
n Z (; Xt a—WCY,dJo(Si - 5j)> —0

=1

and thus Condition 10 does not hold. |

Proof of Theorem 7. Let A and v be two column vectors in R? and RP~!.
Let also . .
W, = AT (Oumr, — 00) + 7" (Yov — o),
for n € N.
From the proofs of Theorems 4 and 6 (see also the proof of Proposition D.10
in [7] that is referred to there), we know

V(b — 0o) = v/nMj, 89L90+op(1)
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and
Va(doy — vo) = VN, v (%)C'Vw0 + 0, (1).
Also, from Condition 4 and Lemma 13 used inside Lemma 11, we have for
1=1,...,p,
0L, /06 = (4" Agy ) + co,

where cg, € R is deterministic and, fori =1,...,p — 1,

1
acvﬂ’o/awi = E(yTBwo,iy)7

where Ag ; is a n X n symmetric matrix satisfying supgcg [(4g,i)a,b] < Csup/(1+
|sq — sp|¢FCmt) and By, is a n x n matrix satisfying suPyes [(By,i)ab| <
Ciup/ (14|84 — 8p|97Cnt). As in the proofs of Theorems 4 and 6, one can check
that 0Lg,/00; has mean zero for i = 1,...,p and 9CVy,, /0v; has mean zero for
i=1,...,p— 1. Thus, we can rewrite

W, = Jp — E[J,] + 0,(n"Y/?)

with
]‘ " 1 - T 1
In yT Z(/\TMQ_O )i Agyi + 2(7 NJO )i Buyoi |y
i=1 i=1

As the vectors A and 7 as well as the matrices M, ! and leol are fixed, the
bound

i=1

p
Csup
(Z( A901+Z me )kl S 1+|5k _Sl|d+cmf

holds for all k,1 € {1,...,n}.
Let then L, ., be the distribution of n'/2(J,, — E[J,]). Then, from Theo-
rem 2, as n — 0o,
dy (L.7,69.n:N [0,n Var(J,,)]) — 0.

The variance can be written as

P P
n Var(J, ZZ )\TM )\TM )j (o0 )i,
i=1 j=1
p—1p—1
+Y 2 TG (TN T
i=1 j=1
p p—1
-1
+2ZZ ATMy Y (v NG5 (0,
Jj=1

=1
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with

Q,’J = Cov (\/H%Lgo, \/ﬁaiwc‘@,o) .
g J

Hence, by applying product by blocks we get the matrix form expression

nVar(J,) = ()\T,'yT) D0_01\I/90D9_01 ( i ) .

We conclude the proof by applying the Wald Theorem. O

Proof of Proposition 1. The proofs of the new versions of the theorems are
direct extensions of the proofs of these theorems above. In particular, Condi-
tion 11 implies (17) in Lemma 12. Furthermore, Theorem 2 can be shown to
hold. For instance, one can write, for s € R%, Y(s) = T(Z(s)) + T(((s)) =
T(Z(s)), where Z = (Z,¢) is a bivariate zero-mean Gaussian process and
where 7' : R? — R satisfies |T'(x)| < Cuup exp(Ceupl|z||) and [0/0z,T(x)| <
Cisup €xp(Cosup||z]|) for € R? and i = 1,2. We recall that Z and ¢ are indepen-
dent and Cov(((u),((v)) = kly—y, for u,v € R%, with a constant 0 < k < co.
Then one can check that the proof of Theorem 2 can be repeated, almost
identically, by simply replacing Z by Z and T by T'. Finally, we remark that for
(non-transformed) Gaussian processes with a nugget effect, [11, 13] address the
asymptotic properties of maximum likelihood. They observe that the arguments
for Gaussian processes without nugget effect in [7] can be extended directly to
Gaussian processes with nugget effect. O

Proof of Corollary 3. When Y has constant mean vy and Z has constant
mean ji, then we can apply Theorem 2 to the Gaussian process Z = Z —
Lo, to the transformation T defined by T'(x) = T(x + o) for z € R and to
the transformed process Y = T(Z) — vy. This yields a central limit theorem
for quadratic forms based on the centered observation vector y — v,,, which
concludes the proof.

Note that when 7 satisfies Condition 3, then 7" also satisfies Condition 3. [
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