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1. Introduction

Motivation. A fundamental task in computational science and statistics is the
computation of expectations w.r.t. a partially unknown probability measure μ
on a measurable space (G,G) determined by

dμ

dμ0
(x) =

ρ(x)

Z
, x ∈ G, (1.1)

where μ0 denotes a σ-finite reference measure on G and where the normaliz-
ing constant Z =

∫
G
ρ(x)μ0(dx) ∈ (0,∞) is typically unknown. Thus, given

a function f : G → R the goal is to compute Eμ(f) =
∫
G
f(x)μ(dx) only by

using evaluations of f and ρ. Here, a plain Monte Carlo estimator for the ap-
proximation of Eμ(f) based on independent μ-distributed random variables is,
in general, infeasible due to the unknown normalizing constant Z and the fact
that we only have access to function evaluations of ρ. However, a possible and
very common approach is the construction of a Markov chain for approximate
sampling w.r.t. μ. In particular, the well-known Metropolis–Hastings (MH) al-
gorithm provides a general scheme for simulating a Markov chain (Xn)n∈N with
stationary distribution μ. Under appropriate assumptions the distribution of Xn

of such a MH Markov chain converges to μ and the classical MCMC estimator
for Eμ(f) is then given by the sample average

Sn(f) =
1

n

n∑
k=1

f(Xk). (1.2)

The statistical efficiency of Sn(f) highly depends on the autocorrelation of
the time series (f(Xn))n∈N. In particular, a large autocorrelation diminishes
the efficiency of Sn(f). An essential part in the MH algorithm is the accep-
tance/rejection step: Given Xn = x, a sample y of Yn+1 ∼ P (x, ·) is drawn,
where P denotes a proposal transition kernel. But only with a certain probabil-
ity this y is accepted as the next state, that is Xn+1 := y, and otherwise it is
rejected, such that Xn+1 := x. This indicates that a potential reason for a high
autocorrelation is the rejection of proposed states. Hence, the question arises
whether it is possible to derive a more efficient estimator for Eμ(f) based on
the potentially less correlated time series (f(Yn))n∈N determined by the sample
of proposals Yn.

Main result. In this paper we consider and analyze a modification of the
classical estimator from (1.2) of the form

An(f) =

∑n
k=1 w(Xk, Yk)f(Yk)∑n

k=1 w(Xk, Yk)
,

which we call MH importance sampling estimator. The (importance) weight w
is chosen in such a way that we obtain a consistent estimator. More detailed,
we set w(x, y) := dμ0

dP (x,·) (y) · ρ(y) assuming the existence of the density dμ0

dP (x,·)
for each x ∈ G. The appeal of the modified estimator is that it is still based
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on the MH algorithm and needs no additional function evaluations of ρ and
f , while, after appropriate tuning in scenarios of moderate dimensions, it can
outperform the classical estimator as we illustrate in a few numerical examples
in Section 4. Moreover, it can be seen and studied as an importance sampling
corrected MCMC estimator, or as an importance sampling estimator using an
underlying MH Markov chain for providing the importance distributions. In
this paper we have chosen the first point of view and exploit the fact that the
augmented MH Markov chain (Xn, Yn)n∈N inherits several desirable1 proper-
ties of the original MH Markov chain (Xn)n∈N such as Harris recurrence, see
Lemma 3.1. By using those properties we prove the following results for the
estimator An:

• Theorem 3.1: A strong law of large numbers (SLLN), i.e., for functions
f ∈ L1(μ) we have almost surely An(f) → Eμ(f) as n → ∞;

• Theorem 3.2: A central limit theorem (CLT), that is, for any f ∈ L2(μ) the
scaled error

√
n(An(f)− Eμ(f)) converges in distribution to a mean-zero

normal distribution N (0, σ2
A(f)) with asymptotic variance σ2

A(f) given by

σ2
A(f) :=

∫
G

∫
G

(f(y)− Eμ(f))
2 dμ

dP (x, ·) (y)μ(dy)μ(dx);

• Theorem 3.3: An estimate of the mean squared error E |An(f)− Eμ(f)|2
for bounded functions f : G → R.

Here, we denote by Lp(μ), p ∈ [1,∞) the Lebesgue space of functions f : G → R

which are p-integrable w.r.t. μ. It is remarkable that in the asymptotic variance
σ2
A(f) of the CLT there is no covariance or correlation term. However, there

appears the density of μ w.r.t. P (x, ·) which quantifies the difference of the
employed importance distribution given by the proposal transition kernel P (x, ·)
and the desired distribution μ.

Related literature. Importance sampling is a well-established technique for
approximating expectations, see [4, 27] for textbook introductions, which has
recently attracted considerable attention in terms of theory and application,
see for example [1, 6, 15, 34]. In particular, its combination with Markov chain
Monte Carlo methods is exploited by several authors. For example, Botev et al.
[3] use the MH algorithm in order to approximately sample from the minimum
variance importance distribution. Vihola et al. [39] consider general importance
sampling estimators based on an underlying Markov chain and Martino et al.
[22] propose a hierarchical approach where a mixture importance distribution
close to μ is constructed based on the (accepted) samples Xk in the MH algo-
rithm. Schuster and Klebanov [35] follow a similar idea to the latter, but rather
use the proposals Yk of the MH algorithm and their asymptotic distribution as
the importance distribution. Indeed, the idea of using all proposed states gen-
erated in the MH algorithm for estimating expectations such as Eμ(f) is not
new. For instance, Frenkel suggests in [11, 12] an approximation scheme which

1Surprisingly, the augmented MH Markov chain is in general not reversible but still has a
stationary distribution.
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recycles the rejected states in a MH algorithm. In the work of Delmas and Jour-
dain [8] this method is used in a control variate variance reduction approach
and it is analyzed in a general framework. It turns out that for the Barker-
algorithm the method is indeed beneficial, whereas for the MH-algorithm this is
not necessarily the case. In particular, an estimator similar to An(f) as above
but for sampling from normalized densities was already introduced by Casella
and Robert [5]. However, besides some numerical examples it was not further
studied in [5] whereas their main focus, variance reduction of sampling methods
by Rao-Blackwellization, got extended by [2, 9]. In particular, the theoretical
results of Douc and Robert [9] provide variance reduction guarantees for their
MH based estimator while keeping the additional computation cost under con-
trol. In contrast to that, using the estimator An does not increase the number
of function evaluations, but we also do not provide a guarantee of improvement.

Outline. First, we provide some basic preliminaries on Markov chains and
the corresponding classical MCMC estimator Sn. In Section 3 we introduce
the MH importance sampling estimator, study properties of the aforementioned
augmented MH Markov chain (Xn, Yn)n∈N and state the main results. In Sec-
tion 4 we compare the classical MCMC estimator Sn with An numerically in
two representative examples and draw some conclusions in Section 5.

2. Preliminaries on Markov chain Monte Carlo

Let (Ω,F ,P) be a probability space. The random variables considered through-
out the paper (mainly) map from this probability space to a measurable space
(G,G). A (time-homogeneous) Markov chain is a sequence of random variables
(Xn)n∈N which satisfy for any A ∈ G and any n ∈ N that P-almost surely

P(Xn+1 ∈ A | X1, . . . , Xn) = K(Xn, A),

where K : G×G → [0, 1] denotes a transition kernel, i.e., K(x, ·) is a probability
measure for any x ∈ G and the mapping x �→ K(x,A) is measurable for any
A ∈ G. Our focus is on Markov chains designed for approximate sampling of
the distribution μ. Such Markov chains typically have μ as their stationary
distribution, i.e., their transition kernels K satisfy μK = μ, where μK(A) :=∫
G
K(x,A) μ(dx) for any A ∈ G.

2.1. The Metropolis–Hastings algorithm

Let P : G × G → [0, 1] be a proposal transition kernel satisfying the following
structural assumption.

Assumption 2.1. For any x ∈ G the proposal P (x, ·) possesses a density p(x, ·)
w.r.t. μ0 and for any y ∈ G assume

ρ(y) > 0 =⇒ p(x, y) > 0 ∀x ∈ G.
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This condition has some useful implications, see Proposition 2.1. Moreover,
for example for G ⊆ R

d, G = B(G) and μ0 being the Lebesgue measure, any
Gaussian proposal, such as a Gaussian- or Langevin-random walk, satisfies it.
Assumption 2.1 allows us to define the finite “acceptance ratio” r(x, y) for the
MH algorithm for any x, y ∈ G according to [38, Section 2] by

r(x, y) :=

{
ρ(y)p(y,x)
ρ(x)p(x,y) ρ(x)p(x, y) > 0,

1 otherwise.

Then, theMH algorithm, which provides a realization of a Markov chain (Xn)n∈N,
works as follows:

Algorithm 2.1. Assume that Xn = x, then the next state Xn+1 is generated
by the following steps:

1. Draw Yn ∼ P (x, ·) and U ∼ Unif[0, 1] independently, call the result y and
u, respectively.

2. Set α(x, y) := min {1, r(x, y)}.
3. Accept y with probability α(x, y), that is, if u < α(x, y), then set Xn+1 =

y, otherwise set Xn+1 = x.

The Markov chain generated by the MH algorithm is called MH Markov
chain, and its transition kernel, which we also call MH (transition) kernel, is
given by

K(x,A) :=

∫
A

α(x, y)P (x, dy) + 1A(x)

∫
G

αc(x, y)P (x, dy), A ∈ G, (2.1)

where αc(x, y) := 1 − α(x, y). It is well-known that the transition kernel K in
(2.1) is reversible w.r.t. μ, that is, K(x, dy)μ(dx) = K(y, dx)μ(dy). In particu-
lar, this implies that μ is a stationary distribution of K.

2.2. Strong law of large numbers, central limit theorem and mean
squared error bound

For convergence, in particular the strong law of large numbers, we need the
concepts of φ-irreducibility and Harris recurrence: Given a σ-finite measure φ
on (G,G), a Markov chain (Xn)n∈N is φ-irreducible if for each A ∈ G with
φ(A) > 0 and each x ∈ G there exists an n = n(x,A) ∈ N such that P(Xn ∈ A |
X1 = x) > 0. Furthermore, a Markov chain (Xn)n∈N is Harris recurrent if it is
φ-irreducible and satisfies for each A ∈ G with φ(A) > 0 that for any x ∈ G

P(Xn ∈ A infinitely often | X1 = x) = 1.

It is proven in [37, Corollary 2] that μ-irreducibility of a MH Markov chain
(Xn)n∈N implies Harris recurrence. Moreover, it is known that Assumption 2.1
ensures μ-irreducibility and, thus, Harris recurrence:
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Proposition 2.1 ([25, Lemma 1.1]). Given Assumption 2.1 the Markov chain
(Xn)n∈N realized by the MH algorithm is μ-irreducible.

We recall the SLLN of the classical MCMC estimator Sn(f) given in (1.2)
based on the concept of Harris recurrence.

Theorem 2.1 (SLLN for Sn, [26, Theorem 17.0.1]). Let (Xn)n∈N be a Harris
recurrent Markov chain with stationary distribution μ on G and let f ∈ L1(μ).
Then,

Sn(f)
a.s.−−−−→

n→∞
Eμ(f),

for any initial distribution, i.e., any distribution of X1.

This theorem justifies that the classical MCMC method based on the MH
algorithm yields a consistent estimator. Moreover, for Sn(f) also a central limit
theorem can be shown. Deriving a CLT is an important issue in studying MCMC
and a lot of conditions which imply a CLT are known, for an overview we refer
to the survey paper [16] and the references therein. We require some further
terminology. Let K: L2(μ) → L2(μ) be the transition operator associated to the
transition kernel K of a Markov chain (Xn)n∈N given by

(Kf)(x) :=

∫
G

f(y)K(x, dy), f ∈ L2(μ).

For n ≥ 2 and f ∈ L2(μ) we have

Knf(x) =

∫
G

f(y)Kn(x, dy),

where Kn is the n-step transition kernel, which is recursively defined by

Kn(x,A) :=

∫
G

K(y,A)Kn−1(x, dy), A ∈ G.

Note that the transition operator recovers the transition kernel, namely, for
n ≥ 1 we have

(Kn1A)(x) = Kn(x,A), x ∈ G, A ∈ G.
We also need the concept of the asymptotic variance: Let (X∗

n)n∈N denote a
Markov chain with transition kernel K starting at stationarity, i.e., the station-
ary distribution μ is also the initial one. Then, for f ∈ L2(μ) the asymptotic
variance of the classical MCMC estimator Sn(f) for Eμ(f) is given by

σ2
S(f) := lim

n→∞
n ·Var

(
1

n

n∑
k=1

f(X∗
k)

)
whenever the limit exists. One can easily see that the asymptotic variance admits
the following representation in terms of the autocorrelation of the time series
(f(X∗

n))n∈N. Namely,

σ2
S(f) = Varμ(f)

(
1 + 2

∞∑
k=1

Corr(f(X∗
1 ), f(X

∗
1+k))

)
, (2.2)
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where Varμ(f) := Eμ(f−Eμ(f))
2 denotes the variance of f w.r.t. μ and Corr(·, ·)

the correlation between random variables.

Theorem 2.2 (CLT for Sn). Let (Xn)n∈N be a Harris recurrent Markov chain
with transition kernel K and stationary distribution μ. For f ∈ L2(μ), if either

1.
∑∞

k=1 k
−3/2

(
Eμ[

∑k−1
j=0 K

j(f − Eμ(f))]
2
)1/2

< ∞ or

2. K is reversible w.r.t. μ and σ2
S(f) < ∞,

then we have for any initial distribution

√
n(Sn(f)− Eμ(f))

D−−−−→
n→∞

N (0, σ2
S(f))

with σ2
S(f) as in (2.2).

The theorem is justified by the following arguments. First, by [25, Propo-
sition 17.1.6] it is sufficient to have a CLT when the initial distribution is a
stationary one. In that case the Markov chain is an ergodic stationary process.
Under condition 1., where no reversibility is necessary, the statement follows
then by arguments derived in the introduction of [24]. Under condition 2. the
statement follows based on [18, Corollary 1.5]. Although MH Markov chains
are μ-reversible by construction, we encounter in the following a non-reversible
Markov chain and derive a CLT by verifying condition 1.

The SLLN and the CLT only contain asymptotic statements, but one might
be interested in explicit error bounds. For f ∈ L2(μ) the mean squared error of

the classical MCMC estimator Sn(f) is given by E |Sn(f)− Eμ(f)|2. Depending
on different convergence properties of the underlying Markov chain different
error bounds are known, see for example [17, 20, 21, 31, 32, 33]. In particular,
there is a relation between the asymptotic variance σ2

S(f) and the mean squared
error of Sn: If X1 ∼ μ, then

lim
n→∞

n · E |Sn(f)− Eμ(f)|2 = σ2
S(f),

and some of the error bounds have the same asymptotic behavior, see [20] and
also [33].

3. The MH importance sampling estimator

The CLT for the MCMC estimator Sn(f) shows that its statistical efficiency
determined by the asymptotic variance σ2

S(f) is diminished by a large auto-
correlation of (f(X∗

n))n∈N or (f(Xn))n∈N, respectively. A reason for a large
autocorrelation is the rejection of proposed states. In particular, the sequence
of proposed states (f(Yn))n∈N is potentially less correlated than the MH Markov
chain itself, since no rejection is involved. For example, if a proposal kernel P
on G = R

d is absolutely continuous w.r.t. the Lebesgue measure, and Xn ∼ μ,
then we have

0 = P(Yn+1 = Yn) ≤ P(Xn+1 = Xn) =

∫
G

αc(x, y)P (x, dy) μ(dx).
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Thus, one may ask whether it is beneficial, in terms of a higher statistical effi-
ciency, to consider an estimator based on (f(Yn))n∈N rather than (f(Xn))n∈N.
Such an estimator might be of the form

An(f) =

∑n
k=1 wkf(Yk)∑n

k=1 wk

with suitable weights wk. The reason for the latter is the fact that Yn ∼ P (Xn, ·)
does not follow the distribution μ. In fact, even if Xn ∼ μ, then Yn ∼ μP ,
hence, we need to apply an importance sampling correction in order to obtain a
consistent estimator An(f). To this end, Assumption 2.1 ensures the existence
of:

ρ̄(x, y) := Z
dμ

dP (x, ·) (y) ∀x, y ∈ G. (3.1)

Indeed, by the fact that p(x, y) = 0 implies ρ(y) = 0 (Assumption 2.1) we have

ρ̄(x, y) =

{
ρ(y)/p(x, y), ρ(y) > 0,

0, ρ(y) = 0.

Moreover, the acceptance ratio r(x, y) can be expressed only in terms of ρ̄:

r(x, y) =

{
ρ̄(y,x)
ρ̄(x,y) ρ̄(x, y) > 0,

1 otherwise.

As it turns out, ρ̄ provides the correct weights wk for an estimator An(f), as
indicated by the next result.

Proposition 3.1. Let Assumption 2.1 be satisfied. Then, for any f ∈ L1(μ),
we have

Eμ(f) =

∫
G

∫
G
f(y)ρ̄(x, y)P (x, dy)μ(dx)∫

G

∫
G
ρ̄(x, y)P (x, dy)μ(dx)

with ρ̄ as in (3.1).

Proof. We have

Eμ(f) =

∫
G

f(y)
ρ̄(x, y)

Z
P (x, dy) =

∫
G

∫
G

f(y)
ρ̄(x, y)

Z
P (x, dy)μ(dx)

=

∫
G

∫
G
f(y)ρ̄(x, y)P (x, dy)μ(dx)∫

G

∫
G
ρ̄(x, y)P (x, dy)μ(dx)

,

where the last equality follows from

Z =

∫
G

ρ(y)μ0(dy) =

∫
G

dμ0

dP (x, ·) (y)ρ(y)P (x, dy)

=

∫
G

∫
G

dμ0

dP (x, ·) (y)ρ(y)P (x, dy)μ(dx)

=

∫
G

∫
G

ρ̄(x, y)P (x, dy)μ(dx).
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Proposition 3.1 motivates the following estimator.

Definition 3.1. Let Assumption 2.1 be satisfied and let (Xn)n∈N be a MH
Markov chain, where (Yn)n∈N denotes the corresponding proposal sequence.
Then, given f ∈ L1(μ), the MH importance sampling estimator for Eμ(f) is

An(f) :=

∑n
k=1 ρ̄(Xk, Yk)f(Yk)∑n

k=1 ρ̄(Xk, Yk)
(3.2)

with ρ̄ defined in (3.1).

Remark 3.1. The dependence on ρ in An is explicitly given within ρ̄, whereas
the dependence on ρ of the classical estimator Sn realized with the MH algorithm
is rather implicit. Namely, it appears only in the acceptance probability of the
MH algorithm. However, in many situations the computational cost for function
evaluations of ρ are much larger than for function evaluations of f , such that it
seems counterintuitive to use the information of the value of ρ at the proposed
state, which was expensive to compute, not any further.

Remark 3.2. The estimator An(f) is related to self-normalizing importance
sampling estimators for Eμ(f) of the form∑n

k=1 wkf(ξk)∑n
k=1 wk

,

where (ξk)k∈N is an arbitrary sequence of random variables ξk ∼ φk and where
wk = dμ0

dφk
(ξk)ρ(ξk) are the corresponding importance weights. For (ξk)k∈N =

(Yk)k∈N being the proposal sequence in the MH algorithm for realizing a μ-
reversible Markov chain (Xk)k∈N, we recover An(f) with φk = P (Xk, ·). In
other words, An(f) can be viewed as an importance sampling estimator where
the importance distributions φk are determined by a MH Markov chain.

Remark 3.3. Related to the previous remark we highlight a recent approach
similar but slightly different to ours. Namely, the authors of [35] propose and
study a self-normalizing importance sampler where the importance distribution
is φk = μP , i.e., the stationary distribution of the proposal sequence in the MH
algorithm. Moreover, we remark that the particular form of the estimator An(f)
in the case of already normalized weights appeared in [5, Section 5], but without
any further analysis. Since self-normalizing is rather inevitable in practice, we
continue studying An(f) as given in (3.2).

3.1. The augmented MH Markov chain and its properties

In order to analyze the MH importance sampling estimator An we consider the
augmented MH Markov chain (Xn, Yn)n∈N on G × G consisting of the original
MH Markov chain (Xn)n∈N and the associated sequence of proposals (Yn)n∈N.
The transition kernel Kaug of the augmented MH Markov chain is given by

Kaug ((x, y), dudv) := δy(du)P (y, dv)α(x, y) + δx(du)P (x, dv)αc(x, y)
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for x, y ∈ G, where δz denotes the Dirac-measure at z ∈ G. Now we derive
a useful representation of Kaug and the MH kernel K, which simplify several
arguments. To this end, we define the probability measure

ν(dxdy) := P (x, dy)μ(dx) (3.3)

on (G×G,G ⊗ G) and let L2(ν) be the space of functions g : G×G → R which
satisfy

‖g‖ν :=

(∫
G×G

|g(x, y)|2ν(dxdy)
)1/2

< ∞.

By Kaug the transition operator Kaug : L
2(ν) → L2(ν) is induced. Furthermore,

for a given proposal transition kernel P we define a linear operator P̂ : L2(ν) →
L2(μ) by

(P̂g)(x) :=

∫
G

g(x, y)P (x, dy).

It is easily seen that its adjoint operator P̂∗ : L2(μ) → L2(ν) is given by

(P̂∗f)(x, y) = f(x),

i.e., 〈P̂g, f〉μ = 〈g, P̂∗f〉ν , where 〈·, ·〉μ and 〈·, ·〉ν denote the inner products in
L2(μ) and L2(ν), respectively. Let H be the transition kernel on G × G given
by

H((x, y), dudv) := α(x, y)δ(y,x)(dudv) + αc(x, y)δ(x,y)(dudv)

and let H: L2(ν) → L2(ν) denote the associated transition operator. The fol-
lowing properties are useful for the subsequent analysis.

Lemma 3.1. With the above notation we have that

1. H is self-adjoint and ‖H‖L2(ν)→L2(ν) = 1;

2. P̂∗P̂ : L2(ν) → L2(ν) is a projection and

‖P̂‖L2(ν)→L2(μ) = ‖P̂∗‖L2(μ)→L2(ν) = 1;

3. K = P̂HP̂∗ and Kaug = HP̂∗P̂;
4. ν given in (3.3) is a stationary distribution of Kaug;

5. Kn
aug = HP̂∗Kn−1P̂ and Kn = P̂Kn−1

aug HP̂
∗ for n ≥ 2.

Proof. To 1.: Let g1, g2 ∈ L2(ν). Then, by the choice of α(x, y) we have
α(x, y)ν(dxdy) = α(y, x)ν(dydx), and self-adjointness follows from

〈Hg1, g2〉ν =

∫
G×G

(α(x, y)g1(y, x) + αc(x, y)g1(x, y))g2(x, y)ν(dxdy)

=

∫
G×G

g1(y, x)g2(x, y)α(x, y)ν(dxdy)

+

∫
G×G

αc(x, y)g1(x, y)g2(x, y)ν(dxdy)
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=

∫
G×G

g1(x, y)g2(y, x)α(y, x)ν(dxdy)

+

∫
G×G

αc(x, y)g1(x, y)g2(x, y)ν(dxdy)

= 〈g1,Hg2〉ν .

Since H is induced by the transition kernel H the operator norm is one.
To 2.: It is easily seen that P̂∗P̂ is a projection. Moreover, it is well-known

that the norm of an operator and its adjoint coincide, which yields the statement
in combination with

1 =
∥∥∥P̂∗P̂

∥∥∥
L2(ν)→L2(ν)

= ‖P̂‖L2(ν)→L2(μ).

To 3.: The representations can be verified by a straightforward calculation.
To 4.: For any A,B ∈ G we have

νKaug(A×B) =

∫
G2

(HP̂∗P̂1A×B)(x, y)P (x, dy)μ(dx)

=

∫
G

(P̂HP̂∗P̂1A×B)(x)μ(dx)

=

∫
G

(KP̂1A×B)(x)μ(dx)

=

∫
G

(P̂1A×B)(x)μ(dx) = ν(A×B),

where the last-but-one equality follows from the fact that μ is a stationary
distribution of K. Since the Cartesian products A × B provide a generating
system of G ⊗ G the result follows by the uniqueness theorem of probability
measures.

To 5.: These representations are a direct consequence of 3.

Note that statement 5 of Lemma 3.1 yields for n ≥ 1 and g ∈ L2(ν) that

(Kn
aug g)(x, y) = α(x, y)

∫
G2

g(u, v)P (u, dv)Kn−1(y, du)

+ αc(x, y)

∫
G2

g(u, v)P (u, dv)Kn−1(x, du).

(3.4)

Remark 3.4. In general, the transition kernel Kaug is not reversible w.r.t. ν.
Since reversibility is equivalent to self-adjointness of the Markov operator this
can be seen by the fact that K∗

aug = P̂ ∗P̂H, which does not necessarily coincides
with Kaug. For convenience of the reader we also provide a simple example which
illustrates the non-reversibility. Consider a finite state space G = {1, 2} equipped
with the counting measure μ0 with ρ(i) = 1/2 and P (i, j) = 1/2 for all i, j ∈ G
such that α(i, j) = 1. Then the transition matrix Kaug is given by

Kaug((i, j), (k, 	)) =
δj({k})

2
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for any i, j, k, 	 ∈ G. Here reversibility is equivalent to Kaug((i, j), (k, 	)) =
Kaug((k, 	), (i, j)) for all i, j, k, 	 ∈ G, which is not satisfied for i = j = 	 = 1
and k = 2.

Now, using Lemma 3.1 we show that stability properties of the MH kernel K
pass over to Kaug. The proof of the following result is adapted from [39, Lemma
24].

Lemma 3.2. Assume that φ is a σ-finite measure on (G,G) and let K denote
the MH kernel as in (2.1).

• If K is φ-irreducible, then Kaug is φP -irreducible on G × G, where the
σ-finite measure φP is given by φP (dxdy) := P (x, dy)φ(dx).

• If K is Harris recurrent (w.r.t. φ), then Kaug is also Harris recurrent
(w.r.t. φP ).

Proof. For A ∈ G ⊗ G and x ∈ G define

A2(x) := {y ∈ G : (x, y) ∈ A} ∈ G,
A1 := {x ∈ G : A2(x) �= ∅} ∈ G,

so that A2(x) is the slice of A for fixed first component x and A1 is the “pro-
jection” of the set A on the first component space. For ε > 0 let

A1(ε) := {x ∈ G : P (x,A2(x)) > ε}.

By the use of (3.4) we prove the irreducibility statement: Assume that A ∈ G⊗G
with φP (A) > 0. Then, φ(A1) > 0, since otherwise

φP (A) =

∫
A

P (x, dy)φ(dx) =

∫
A1

P (x,A2(x))φ(dx)

is zero. By the same argument, one obtains that there exists an ε > 0 such that
φ(A1(ε)) > 0, since otherwise

φP (A) =

∫
⋃

ε>0 A1(ε)

P (x,A(x))φ(dx)

is zero. Because of the φ-irreducibility of K, we have for x, y ∈ G that there
exist nx, ny ∈ N such that Knx(x,A1(ε)) > 0 and Kny(y,A1(ε)) > 0. Hence, if
α(x, y) > 0, then

Kny+1
aug ((x, y), A)

(3.4)

≥ α(x, y)

∫
A

P (u, dv)Kny (y, du)

= α(x, y)

∫
A1

P (u,A2(u))K
ny (y, du)

≥ α(x, y)

∫
A1(ε)

P (u,A2(u))K
ny (y, du)

≥ α(x, y) εKny (y,A1(ε)) > 0.
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Otherwise, if αc(x, y) = 1, we obtain analogously

Knx+1
aug ((x, y), A) ≥ αc(x, y)

∫
A

P (u, dv)Knx(x, du) ≥ εKnx(x,A1(ε)) > 0.

In other words, for (x, y) ∈ G×G we find an n ∈ N (depending on α(x, y)) such
that Kn

aug((x, y), A) > 0, which proves the φP -irreducibility.
We turn to the Harris recurrence: Let K be Harris recurrent w.r.t. φ and let

φP (A) > 0. As above, we can conclude that there exists an ε > 0 such that
φ(A1(ε)) > 0. Furthermore, for the augmented Markov chain (Xn, Yn)n∈N with
transition kernel Kaug we have

P ((Xn, Yn) ∈ A) = P (Yn ∈ A2(Xn)) = P (Xn, A2(Xn)).

By φ(A1(ε)) > 0 and the fact that (Xn)n∈N is Harris recurrent w.r.t. φ, with
probability one there are infinitely many distinct times (τk)k∈N, such that Xτk ∈
A1(ε) for any k ∈ N. Hence

P

( ∞∑
n=1

1A(Xn, Yn) = ∞
)

= P

( ∞∑
n=1

1A2(Xn)(Yn) = ∞
)

≥ P

( ∞∑
k=1

1A2(Xτk
)(Yτk) = ∞

)
.

Note that by construction 1A2(Xτk
)(Yτk) are Bernoulli random variables with

success probability of at least ε. Moreover, they are conditionally independent
given (Xτk)k∈N. Hence,

P

( ∞∑
k=1

1A2(Xτk
)(Yτk) = ∞

∣∣∣∣ (Xτk)k∈N

)
= 1 P-a.s.

yields

P

( ∞∑
k=1

1A2(Xτk
)(Yτk) = ∞

)
= E

[
P

( ∞∑
k=1

1A2(Xτk
)(Yτk) = ∞

∣∣∣∣ (Xτk)k∈N

)]
= 1,

which shows that the augmented MH Markov chain is Harris recurrent.

Remark 3.5. Another consequence of Lemma 3.1 interesting on its own is that
also geometric ergodicity is inherited by the augmented MH Markov chain. How-
ever, since this fact is not relevant for the remainder of the paper, we postpone
the discussion of geometric ergodicity and its inheritance to Appendix A.

3.2. Strong law of large numbers and central limit theorem

A consistency statement in form of a SLLN of the MH importance sampling
estimator defined in (3.2) is stated and proven in the following. A key argument
in the proofs is the inheritance of Harris recurrence of (Xn)n∈N to the augmented
MH Markov chain (Xn, Yn)n∈N.
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Theorem 3.1. Let Assumption 2.1 be satisfied. Then, for any initial distribu-
tion and any f ∈ L1(μ) we have

An(f) =
1
n

∑n
k=1 ρ̄(Xk, Yk)f(Yk)

1
n

∑n
k=1 ρ̄(Xk, Yk)

a.s.−−−−→
n→∞

Eμ(f). (3.5)

Proof. Assumption 2.1 implies μ-irreducibility and Harris recurrence of the MH
Markov chain (Xn)n∈N due to Proposition 2.1. This yields, due to Lemma 3.2,
that also the transition kernel Kaug is Harris recurrent. Hence, by Theorem 2.1
we have for each h ∈ L1(ν) that

1

n

n∑
k=1

h(Xk, Yk)
a.s.−−−−→

n→∞
Eν(h).

Define h1(x, y) := ρ̄(x, y)f(y) and h2(x, y) := ρ̄(x, y). Since Eν(h2) = Z < ∞
and Eν(h1) = Eμ(f) · Z < ∞, we have h1, h2 ∈ L1(ν) and, thus, the numerator
and denominator on the left-hand side of (3.5) converge a.s. to Eν(h1) and
Eν(h2). The assertion follows then by the continuous mapping theorem and
Eν(h1)/Eν(h2) = Eμ(f).

The next goal is to derive a CLT, which provides a way to quantify the
asymptotic behavior of An. Since the augmented Markov chain (Xn, Yn)n∈N is,
in general, not reversible w.r.t. ν, we aim to use condition 1 of Theorem 2.2.

Theorem 3.2. Let Assumption 2.1 be satisfied and assume for f ∈ L1(μ) that

σ2
A(f) :=

∫
G

∫
G

(f(y)− Eμ(f))
2 dμ

dP (x, ·) (y)μ(dy)μ(dx)

is finite. Then, for any initial distribution, we have

√
n(An(f)− Eμ(f))

D−−−−→
n→∞

N (0, σ2
A(f)).

Proof. We frequently use the identity∫
G

g(x, y)ρ̄(x, y)P (x, dy) = Z

∫
G

g(x, y)μ(dy), (3.6)

for any x ∈ G and any g : G2 → R for which one of the two integrals exist. Define
the centered version of f by fc(y) := f(y)−Eμ(f) and set h3(x, y) := ρ̄(x, y)fc(y)
for x, y ∈ G. Note that Eν(h3) = 0 and h3 ∈ L2(ν), since

Eν(h
2
3) =

∫
G

∫
G

fc(y)
2ρ̄(x, y)2P (x, dy)μ(dx)

(3.6)
= Z

∫
G

∫
G

fc(y)
2ρ̄(x, y)μ(dy)μ(dx)

= Z2

∫
G

∫
G

fc(y)
2 dμ

dP (x, ·) (y)μ(dy)μ(dx) = Z2σ2
A(f) < ∞.
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With the representation (3.4) one obtains for any k ≥ 2 that

Kk
augh3(x, y) =

∫
G×G

ρ̄(u, v)fc(v)K
k
aug(x, y, du dv)

= α(x, y)

∫
G

∫
G

ρ̄(u, v)fc(v)P (u, dv)Kk−1(y, du)

+ αc(x, y)

∫
G

∫
G

ρ̄(u, v)fc(v)P (u, dv)Kk−1(x, du)

= 0,

where the last equality follows from∫
G

fc(v)ρ̄(u, v)P (u, dv)
(3.6)
= Z Eμ(fc) = 0 ∀u ∈ G.

By the same argument we obtain Kaugh3 = 0. Hence, for the augmented MH
Markov chain (Xn, Yn)n∈N condition 1. of Theorem 2.2 is satisfied for the func-
tion h3 and by the inheritance of the Harris recurrence from K to Kaug, see
Lemma 3.2, we get

1√
n

n∑
k=1

h3(Xk, Yk)
D−−−−→

n→∞
N (0, σ2

S(h3)).

Here

σ2
S(h3) = Var(h3(X1, Y1)) + 2

∞∑
k=1

Cov(h3(X1, Y1), h3(Xk+1, Yk+1)).

By exploiting again the fact that Kk
augh3 = 0 for k ≥ 1 we obtain

Cov(h3(X1, Y1), h3(Xk+1, Yk+1)) =

∫
G×G

(Kk
augh3)(x, y)h3(x, y)ν(dxdy) = 0,

such that

σ2
S(h3) = Var(h3(X1, Y1)) = Z2σ2

A(f).

Further,

√
n(An(f)− Eμ(f)) =

n−1/2
∑n

j=1 h3(Xj , Yj)
1
n

∑n
j=1 ρ̄(Xj , Yj)

.

The denominator converges by Theorem 2.1 to Z as well as

n−1/2
n∑

k=1

h3(Xk, Yk)
D−−−−→

n→∞
N (0, Z2σ2

A(f)),

such that by Slutsky’s Theorem the assertion is proven.
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Remark 3.6. It is remarkable that the asymptotic variance σ2
A(f) of An(f)

coincides with the asymptotic variance of the importance sampling estimator∑n
k=1 ρ̄(Xk, Yk)f(Yk)∑n

k=1 ρ̄(Xk, Yk)

given independent random variables (Xk, Yk) ∼ ν for k ∈ N, see [1, Sec-
tion 2.3.1] or [27, Section 9.2]. Here, ν denotes the stationary measure of
the augmented MH Markov chain given in (3.3). Hence, the fact that An(f)
is based on the, in general, dependent sequence (Xk, Yk)k∈N of the augmented
MH Markov chain, does surprisingly not effect its asymptotic variance.

Remark 3.7. Often it is of interest to estimate the asymptotic variance ap-
pearing in a CLT. For a given f ∈ L1(μ) the corresponding quantity, given by
Theorem 3.2, can be rewritten as

σ2
A(f) =

∫
G×G

(f(y)− Eμ(f))
2ρ̄(x, y)2P (x, dy)μ(dx)(∫

G×G
ρ̄(x, y)P (x, dy)μ(dx)

)2 .

Given this representation of σ2
A(f) we suggest estimating it by

n ·
∑n

k=1

[
f(Yk)− 1

n

∑n
j=1 f(Xj)

]2
ρ̄(Xk, Yk)

2

(
∑n

k=1 ρ̄(Xk, Yk))
2

where 1
n

∑n
j=1 f(Xj) can also be replaced by An(f).

Now we turn to a non-asymptotic analysis, where the error criterion is the
mean squared error.

3.3. Mean squared error bound

In this section we provide explicit bounds for the mean squared error of An.
Those estimates are an immediate consequence of the following two lemmas,
which are similar to the arguments in [23, Theorem 2] and [1, Theorem 2.1].

Lemma 3.3. Let (Xn, Yn)n∈N denote an augmented MH Markov chain. For
f : G → R define

D(f) :=

∫
G×G

f(y)ρ̄(x, y)P (x, dy)μ(dx),

Dn(f) :=
1

n

n∑
j=1

ρ̄(Xj , Yj)f(Yj).

Then, for bounded f , i.e., ‖f‖∞ := supx∈G |f(x)| < ∞, we have

E |An(f)− Eμ(f)|2 ≤ 2

D(1)2

(
‖f‖2∞ E |D(1)−Dn(1)|2 + E |Dn(f)−D(f)|2

)
.
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Proof. Observe that D(1) = Z. Further

E |An(f)− Eμ(f)|2 = E

∣∣∣∣Dn(f)

Dn(1)
− D(f)

Z

∣∣∣∣2
= E

∣∣∣∣Dn(f)

Dn(1)
− Dn(f)

Z
+

Dn(f)

Z
− D(f)

Z

∣∣∣∣2 .
Using the fact that (a+ b)2 ≤ 2a2 + 2b2 for any a, b ∈ R gives

E |An(f)− Eμ(f)|2 ≤ 2E

∣∣∣∣Dn(f)

Dn(1)
− Dn(f)

Z

∣∣∣∣2 + 2E

∣∣∣∣Dn(f)

Z
− D(f)

Z

∣∣∣∣2
=

2

Z2
E

∣∣∣∣Dn(f)

Dn(1)
(Dn(1)− Z)

∣∣∣∣2 + 2E |Dn(f)−D(f)|2

Z2

≤ 2

Z2

(
‖f‖2∞ E |Dn(1)− Z|2 + E |Dn(f)−D(f)|2

)
.

Lemma 3.4. Assume that the initial distribution is the stationary one, that is,
X1 ∼ μ. Then, with the notation from Lemma 3.3, we have

n · E |Dn(f)−D(f)|2 =

∫
G2

f(y)2ρ̄(x, y)2P (x, dy)μ(dx)− Z2
Eμ(f)

2.

Proof. Observe that

D(f) =

∫
G

∫
G

f(y)ρ̄(x, y)P (x, dy)μ(dx)
(3.6)
= Z · Eμ(f).

Define the centered function gc(x, y) := ρ̄(x, y)f(y)−Z ·Eμ(f) for any x, y ∈ G.
We have

E |Dn(f)−D(f)|2 =
1

n2

n∑
j=1

E
[
gc(Xj , Yj)

2
]

+
2

n2

n−1∑
j=1

n∑
i=j+1

E [gc(Xi, Yi)gc(Xj , Yj)] .

Exploiting the fact that the initial distribution is the stationary one we obtain
for i ≥ j that

E [gc(Xi, Yi)gc(Xj , Yj)] =

∫
G×G

gc(x, y) (K
i−j
aug gc)(x, y)P (x, dy)μ(dx).

In the case k := i− j > 1 we have by representation (3.4) that

Kk
auggc(x, y) = α(x, y)

∫
G

∫
G

gc(u, v)P (u, dv)Kk−1(y, du)

+ αc(x, y)

∫
G

∫
G

gc(u, v)P (u, dv)Kk−1(x, du)
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and ∫
G

gc(u, v)P (u, dv) =

∫
G

f(v)ρ̄(u, v)P (u, dv)− Z · Eμ(f)
(3.6)
= 0

leads to Kk
auggc(x, y) = 0. By similar arguments we obtain Kauggc(x, y) = 0.

Hence,

E |Dn(f)−D(f)|2 =
1

n
E
[
gc(X1, Y1)

2
]

=
1

n

(∫
G2

f(y)2ρ̄(x, y)2P (x, dy)μ(dx)− Z2
Eμ(f)

2

)
.

By the combination of both lemmas we derive the following theorem.

Theorem 3.3. Assume that the initial distribution of an augmented MH Markov
chain (Xn, Yn)n∈N is the stationary one, i.e., X1 ∼ μ. Then, for bounded
f : G → R we obtain

E |An(f)− Eμ(f)|2 ≤ 4

n
‖f‖2∞

∫
G×G

dμ

dP (x, ·) (y)μ(dy)μ(dx).

Remark 3.8. Let us mention here two things: First, we assumed that the initial
distribution is the stationary one. This assumption is certainly restrictive, we
refer to [20, 33] for techniques to derive explicit error bounds for more general
initial distribution. Second, the factor

4 ‖f‖2∞
∫
G×G

dμ

dP (x, ·) (y)μ(dy)μ(dx)

in the estimate is an upper bound of the asymptotic variance σ2
A(f) derived in

Theorem 3.2. We conjecture that the estimate actually holds with σ2
A(f) instead

of this upper bound.

3.4. Optimal calibration of proposals

Given the explicit expression for the asymptotic variance σ2
A(f) involving the

proposal kernel P , we can ask for an optimal choice of the kernel P : G× G →
[0, 1] in order to minimize σ2

A(f). However, finding an optimal kernel among
all admissible kernels is, in general, an infeasible task. In practice, one often
considers common types of proposal kernels P = Ps with a tunable step size
parameter s > 0 and ask for the optimal value of s. For example, given a measure
μ on G ⊆ R

d, we can use the random walk proposal

Ps(x, ·) = N (x, s2C), s > 0, (3.7)

where x ∈ R
d and C ∈ R

d×d denotes a covariance matrix, within a MH algo-
rithm. For this proposal and the classical path average estimator Sn(f) it is
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widely known that a good step size s�S is chosen in such a way that the average
acceptance rate is ∫

G

α(x, y)Ps�S
(x, dy)μ(dx) ≈ 0.234.

For a justification and further details we refer to [29]. For the MH importance
sampling estimator An(f) we look for an optimal step size s�A. Optimal in the
sense that it minimizes the asymptotic variance of An(f), thus, we ask for

s�A := argmin
s>0

V (s), V (s) :=

∫
G

∫
G

(f(y)− Eμ(f))
2 ρ(y)

ps(x, y)
μ(dy)μ(dx),

where ps(x, ·) denotes the density of Ps(x, ·) w.r.t. the reference measure μ0. If
we assume that the mapping s �→ ps(x, y) is differentiable for each (x, y) ∈ G×G
with derivative d

dsps(x, y), then any s minimizing V (s) satisfies

0 =
d

ds
V (s) =

∫
G

∫
G

(f(y)− Eμ(f))
2ρ(y)

d
dsps(x, y)

p2s(x, y)
μ(dy)μ(dx). (3.8)

By the fact that μ(dy)μ(dx) ∝ ρ̄s(x, y) Ps(x, dy)μ(dx), where ρ̄s(x, y) =
ρ(y)

ps(x,y)
,

we can rewrite (3.8) and approximate d
dsV (s) by using (Xk, Yk), k = 1, . . . , n,

from the augmented Markov chain. Thus

0 =

∫
G

∫
G

(f(y)− Eμ(f))
2 ρ̄2s(x, y)

d
dsps(x, y)

ps(x, y)
Ps(x, dy)μ(dx)

≈ 1

n

n∑
k=1

⎛⎝f(Yk)−
1

n

n∑
j=1

f(Xj)

⎞⎠2

ρ̄2s(Xk, Yk)
d
dsps(Xk, Yk)

ps(Xk, Yk)
.

In practice we can calibrate s such that the empirical average on the right-hand
side is close to zero. We demonstrate the feasibility of this approach for two
common proposals.

Example 3.1 (Optimal calibration of the random walk-MH). We consider μ0

as the Lebesgue measure on G ⊆ R
d and Ps as in (3.7). Thus,

ps(x, y) =
1

sd
√
det(2πC)

exp

(
−‖y − x‖2C

2s2

)
where ‖y − x‖2C := (y − x)�C−1(y − x), and

d

ds
ps(x, y) =

(
−ds−d−1 + s−d−3‖y − x‖2C

) exp(−‖y−x‖2
C

2s2

)
√

det(2πC)

=
(
−ds−1 + s−3‖y − x‖2C

)
ps(x, y).
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Hence, the necessary condition (3.8) boils down to

0 =

∫
G

∫
G

(f(y)− Eμ(f))
2 ρ̄2s(x, y)

(
−ds−1 + s−3‖y − x‖2C

)
Ps(x, dy)μ(dx),

which can be rewritten as

s2 =

∫
G

∫
G
(f(y)− Eμ(f))

2 ρ̄2s(x, y) ‖y − x‖2C Ps(x, dy)μ(dx)

d
∫
G

∫
G
(f(y)− Eμ(f))2 ρ̄2s(x, y)Ps(x, dy)μ(dx)

.

In practice, we then can seek an s� > 0 such that for n states (Xk, Yk) of the
augmented MH Markov chain generated by the proposal Ps�(x, ·) = N (x, s2�C)
we have

s2� ≈
∑n

k=1

(
f(Yk)− 1

n

∑n
j=1 f(Xj)

)2

ρ̄2s�(Xk, Yk) ‖Yk −Xk‖2C

d
∑n

k=1

(
f(Yk)− 1

n

∑n
j=1 f(Xj)

)2

ρ̄2s�(Xk, Yk)
. (3.9)

Example 3.2 (Optimal calibration of the MALA). Another common proposal
on G = R

d is the one of the Metropolis-adjusted Langevin algorithm (MALA),
given by

Ps(x, ·) = N
(
x+

s2

2
∇ log ρ(x), s2Id

)
, (3.10)

where we assume that log ρ : G → R is differentiable and Id denotes the identity
matrix in R

d. The resulting proposal density is

ps(x, y) =
1

sd(2π)d/2
exp

(
−‖y −ms(x)‖2

2s2

)
,

with ms(x) := x + s2

2 ∇ log ρ(x). In order to compute the derivative d
dsps(x, y)

we first obtain

d

ds
‖y −ms(x)‖2 = −2s(y −ms(x))

�∇ log ρ(x),

which then yields

d

ds
ps(x, y) =

(
−ds−1+s−3‖y −ms(x)‖2+s−1(y −ms(x))

�∇ log ρ(x)
)
ps(x, y).

Thus, in the case of MALA the necessary condition (3.8) is equivalent to

s2 =

∫
G

∫
G
(f(y)− Eμ(f))

2 ρ̄2s(x, y) ‖y −ms(x)‖2 Ps(x, dy)μ(dx)∫
G

∫
G
(f(y)− Eμ(f))2 ρ̄2s(x, y) [d− (y −ms(x))�∇ log ρ(x)]Ps(x, dy)μ(dx)

.

Again, in practice we seek for an s� > 0 such that given n states (Xk, Yk) of the
augmented MH Markov chain generated by the MALA proposal Ps� in (3.10)
we have s2� close to∑n

k=1

(
f(Yk)− 1

n

∑n
j=1 f(Xj)

)2

ρ̄2s�(Xk, Yk) ‖Yk −ms�(Xk)‖2∑n
k=1

(
f(Yk)− 1

n

∑n
j=1 f(Xj)

)2

ρ̄2s�(Xk, Yk) [d− (Yk −ms�(Xk))�∇ log ρ(Xk)]
.

(3.11)
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4. Numerical examples

We want to illustrate the benefits as well as the limitations of the MH importance
sampling estimator An(f) at two simple but representative examples. To this
end, we compare the considered An(f) to the classical path average estimator
Sn(f) as well as to two other established estimators using also the proposed
states Yk generated in the MH algorithm. Namely

• the waste-recycling Monte Carlo estimator, for further details we refer to
[11, 12, 8], given by

WRn(f) :=

n∑
k=1

(1− α(Xk, Yk)) f(Xk) + α(Xk, Yk)f(Yk);

• another Markov chain importance sampling estimator also based on the
proposed states, see [35], given by

Bn(f) :=

∑n
k=1 w̃n(X1:n, Yk)f(Yk)∑n

k=1 w̃n(X1:n, Yk)
, w̃n(X1:n, Yk) :=

ρ(Yk)∑n
j=1 p(Xj , Yk)

.

The notation X1:n within Bn(f) stands for X1, . . . , Xn. In the following we
provide two comments w.r.t. Bn and the other estimators.

Remark 4.1. For the convenience of the reader we justify heuristically that
Bn(f) approximates Eμ(f). For this let νY be the marginal distribution of the
stationary probability measure ν on G × G of the augmented Markov chain
(Xk, Yk)k∈N, that is,

νY (dy) :=

∫
G

ν(dxdy) =

∫
G

P (x, dy)μ(dx).

Intuitively, νY can be considered as the asymptotic distribution of the proposed
states. The empirically computed weights w̃n(X1:n, Yk) in Bn(f) approximate
importance sampling weights w̃(Yk) ∝ dμ

dνY
(Yk) resulting from the asymptotic

distribution νY of the proposed states Yk. Now if we substitute w̃n(X1:n, Yk)
within Bn(f) by w̃(Yk) we have an importance sampling estimator based on the
proposed states which approximates Eμ(f).

Remark 4.2. By the fact that within the estimators Sn(f), An(f), and WRn(f)
only one or two separate sums over k = 1, . . . , n appear, the number of arith-
metic operations and therefore the complexity is O(n). In contrast to that, within
the alternative Markov chain importance sampling estimator Bn(f) an addi-
tional summation of complexity O(n) is required for the computation of each
weight w̃n(X1:n, Yk), k = 1, . . . , n, such that the overall number of arithmetic
operations is O(n2) for Bn(f). To take this into account, we often compare the
former three estimators to B√

n(f). Besides that an optimal tuning of the pro-
posal step size of the estimator Bn(f) is left open in [35], however, the authors
suggest to simply use the usual calibration rule for the classical path average
estimator Sn(f) from [29].
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Fig 1. Contour plot of the normal prior and the resulting posterior density for the example
of Section 4.1.

4.1. Bayesian inference for a differential equation

We consider a boundary value problem in one spatial dimension x ∈ [0, 1] which
serves as a simple model for, e.g., stationary groundwater flow:

− d

dx

(
exp(u1)

d

dx
p(x)

)
= 1, p(0) = 0, p(1) = u2. (4.1)

Here, the unknown parameters u = (u1, u2) involving the log-diffusion coeffi-
cient u1 and the Dirichlet data u2 at the righthand boundary x = 1 shall be
inferred given noisy observations y ∈ R

2 of the solution p at x1 = 0.25 and
x2 = 0.75. This inference setting has been already applied as a test case for
sampling and filtering methods in [10, 13, 14]. We place a Gaussian prior on
u = (u1, u2), namely, μ0 ∼ N(0, I2) where I2 denotes the identity matrix in R

2.
The observation vector is given by y = (27.5, 79.7) and we assume an additive
measurement noise ε ∼ N(0, 0.01I2), i.e., the likelihood L(y|u) of observing y
given a fixed value u ∈ R

2 is

L(y|u) := 100

2π
exp

(
−100

2
‖y − F (u)‖2

)
where ‖·‖ denotes the Euclidean norm and F : R2 → R

2 the mapping (u1, u2) �→
(p(x1), p(x2)) with

p(x) = u2x+
exp(−u1)

2
(x− x2), x ∈ [0, 1].

The resulting posterior measure for u given the observation y follows then the
form (1.1) with ρ(u) := L(y|u). The negative log prior and posterior density are
presented in Figure 1.

For approximate sampling of the posterior μ we apply now the random walk-
MH algorithm and MALA, see Section 3.4, with various values of the step size s.
We let the Markov chains run for n = 104 iterations after a burn-in of n0 = 103

iterations. Then, we use the generated path of the (augmented) MH Markov
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Fig 2. RMSE for computing the posterior mean w.r.t. average acceptance rate for the example
of Section 4.1.

chain in order to estimate the posterior mean Eμ(f) where f(u) := (f1(u), f2(u))
with fi(u) := ui. We approximate Eμ(f) by the various estimators En(f) dis-
cussed at the begining of this section, that is,

En(f) ∈ {Sn(f), An(f), Bn(f), B√
n(f),WRn(f)}.

The true value Eμ(f) of the posterior mean is computed by Gauss quadra-
ture employing 1500 Gauss–Hermite nodes in each dimension which ensures a
quadrature error smaller than 10−4. For each choice of the step size s we run
M = 1, 200 independent Markov chains and, thus, compute M realizations of
the estimators Sn(f), An(f), Bn(f), B√

n(f), and WRn(f), respectively. We use
these M realizations in order to empirically estimate the root mean squared
error (RMSE)

RMSEEn(f) :=
(
E ‖En(f)− Eμ(f)‖2

)1/2

,

of the various estimators En(f) ∈ {Sn(f), An(f), Bn(f), B√
n(f),WRn(f)} for

each chosen step size s of the proposal kernels. The results are displayed in
Figure 2 and Figure 3, respectively.2

Comparison of An(f) to Sn(f): In Figure 2 we observe that for a certain range
of s, the MH importance sampling estimator An(f) provides a significant error
reduction for both proposal kernels, the random-walk and MALA. In particular,
the global minimum for the error of An(f) is smaller than for Sn(f). In fact, it
is roughly half the size for both proposals. Hence, given the optimal step size s
the MH importance sampling method can indeed outperform the classical path
average estimator. In this example, we could reduce the RMSE by 50% without

2We note that in each setting the squared norm of the bias of the estimators En(fi) is
roughly the same size as their variance, i.e., the magnitude of the displayed RMSE coincides
basically with

√
2 times the standard deviation of the corresponding estimator. For a larger

sample size n the percentage of the bias in the RMSE would have decreased, however, the
computation of Bn(f) would have become unfeasible.
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a significant additional cost. We comment below on how to find this optimal
step size for An(f).

Comparison of An(f) to other estimators: We observe in Figure 2 that the
waste recycling estimator WRn(f) basically coincides with the classical path
average estimator Sn(f) for both proposals and all chosen step sizes s, i.e., it
yields no improvement and is outperformed by An(f). Concerning the Markov
chain importance sampling estimators Bn(f) we obtain a further improvement
on An(f) and nearly can reduce the RMSE by an order of magnitude compared
to Sn(f). However, this performance comes at the price of a signicant larger
complexity. If we consider the Markov chain importance sampling estimators
B√

n(f) with the same complexity as the other estimators Sn(f), An(f), and
WRn(f), we in fact observe a worse performance to the other estimators for all
chosen step sizes. Thus, in the error-vs-complexity sense the estimator An(f)
performs best among all considered estimators if calibrated correctly.

Optimal calibration of An(f): Concerning the optimal step size for An(f) we
present in Figure 3 a verification of the approach outlined in Section 3.4. For
both MH algorithms, the random walk-MH and MALA, we display in the top
row the RMSE of Sn(f) and An(f) w.r.t. the chosen step sizes. In the bottom
row we display for each step size value s the relation of s2 to the empirical
functionals

Jf (s) :=

∑n
k=1

∥∥∥f(Yk)− 1
n

∑n
j=1 f(Xj)

∥∥∥2 ρ̄2s(Xk, Yk) ‖Yk −Xk‖2C

d
∑n

k=1

∥∥∥f(Yk)− 1
n

∑n
j=1 f(Xj)

∥∥∥2 ρ̄2s(Xk, Yk)

and

J(s) :=

∑n
k=1 ρ̄

2
s(Xk, Yk) ‖Yk −Xk‖2C

d
∑n

k=1 ρ̄
2
s(Xk, Yk)

for the random walk-MH and the corresponding Jf (s) and J(s) for MALA based
on (3.11). In Section 3.4 we derived as a necessary condition for the optimal
step size s� that s2� ≈ Jf (s�) for both kind of proposals. Here, we can indeed
verify this condition: the optimal s�, which was calibrated by hand following
the rule s2� ≈ Jf (s�), shows indeed also the smallest RMSE in the top row.
The optimal s�, Jf (s�), and its RMSE are highlighted by a green marker in
Figure 3. Besides that, choosing the rather “objective” functional J(s), which
is independent of the particular quantity of interest f , and apply the alternative
calibration rule s2� ≈ J(s�) does not yield to a step size with minimal RMSE for
An(f) — although the alternatively calibrated step size and the resulting RMSE
are not that far off from the true optimum. In summary, Figure 3 verifies that
the approach in Section 3.4 can indeed be applied in practice for finding the
optimal step size for the MH importance sampling estimator An(f).

4.2. Bayesian inference for probit regression (PIMA data)

The second example is a test problem for logistic regression, see, e.g., [7] for a
discussion. Here, nine predictors xi ∈ R

9 such as diastolic blood pressure, body
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Fig 3. RMSE for mean w.r.t. step size s for the example of Section 4.1.

mass index, or age are fitted to the binary outcome yi ∈ {−1, 1} for diagnosing
diabetes for N = 768 members i = 1, . . . , N , of the Pima Indian tribe. For more
details about the data we refer to [36]. Following [7] the likelihood L(y|β) for
the outcome y ∈ {−1, 1}N of the diagnosis is modeled by

L(y|β) :=
N∏
i=1

Φ(yiβ
�xi),

where Φ denotes the cumulative distribution function of a univariate standard
normal distribution and β ∈ R

9 the unknown regression coefficients (includ-
ing the intercept). Moreover, we take independent Gaussian priors for each
component of β as suggested in [7], i.e., the prior is μ0 = N (0,Λ) where
Λ = diag(λ1, . . . , λ9) with λ1 = 20 and λi = 5 for i ≥ 2. Given the data
set (xi, yi)

N
i=1 ∈ R

10×N the resulting posterior for β is of the form (1.1) with
μ0 = N (0,Λ) and

ρ(β) :=

N∏
i=1

Φ(yiβ
�xi).

For this example we test the performance of the MH importance sampling
estimator in several dimensions d = 2, . . . , 9. To this end, we modify the re-
gression model for each d by setting β = (β1, . . . , βd, 0, . . . , 0) ∈ R

9 and only
infer the values of the components βi for i = 1, . . . , d. Hence, the posterior
from which we would like to sample is a measure on R

d, d = 2, . . . , 9. For
each d = 2, . . . , 9 we perform the same simulations as in the first example, i.e.,
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Fig 4. Total variances of estimators w.r.t. average acceptance rate in various dimensions for
the example from Section 4.2.

we generate Markov chains by the MH algorithm using the Gaussian random
walk proposal from Section 4.1 with varying step size parameter s. Then, we
compute the estimates En(f) := (En(fi))i=1,...,d for f(β) = (fi(β))i=1,...,d with
fi(β) = βi where En(f) is again a placeholder for the particular estimator at
choice, i.e., En(f) ∈ {Sn(f), An(f), Bn(f),WRn(f), B√

n(f)} as in Section 4.1.
For each choice of the step size s we repeat this procedure M = 1, 200 times
and use the results to compute empirical estimates for the total variance of the
estimators En(f) given by

Var(En(f)) :=
d∑

i=1

Var(En(fi)).

The number of iterations of the MH Markov chain as well as the burn-in length
are the same as in Section 4.1. In Figure 4 we present for several choices of d the
resulting plots for the total variance of the estimators w.r.t. average acceptance
rate in the MH algorithm, similar to Figure 2 in the previous section. Further-
more, Table 1 displays the ratios of the total variances Var(En(f))/Var(Sn(f))
for various estimators En(f)) (each one with its optimal step size) in dimensions
d = 2, . . . , 9. Our results can be summarized as follows.

Performance of An(f): For small dimensions, like d = 2, . . . , 5, we observe
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Table 1

Ratio of the minimal total variances Var(En(f))/Var(Sn(f)) for various estimators En and
dimensions d for the example of Section 4.2.

Dimension d
Var(An(f))
Var(Sn(f))

Var(Bn(f))
Var(Sn(f))

Var(WRn(f))
Var(Sn(f))

Var(B√
n(f))

Var(Sn(f))

2 0.30 0.02 0.98 12.68
3 0.41 0.02 0.98 14.56
4 0.59 0.03 0.99 18.63
5 0.79 0.03 0.99 24.19
6 1.40 0.03 0.99 31.98
7 2.11 0.04 0.99 43.59
8 2.98 0.06 0.99 48.84
9 3.86 0.07 1.00 55.10

that the minimal total variance of An(f) is smaller or at most as large as the
minimal total variance of Sn(f), see also Table 1. However, for dimensions d ≥ 6
the MH importance sampling estimator An(f) shows a higher total variance than
the classical path average estimator Sn(f). In particular, we observe in Table 1
that the performance of An(f) compared to Sn(f) seems to decline more and
more for increasing dimension.

Performance of other estimators: As in Section 4.1 the waste recycling es-
timator WRn(f) basically coincides with the path average estimator Sn(f) for
any considered dimension d. Also for the Markov chain importance sampling
estimators Bn(f) and B√

n(f) the performance compared to Sn(f) and An(f) is
similar to Section 4.1, i.e., Bn(f) outperformes all other estimators — but at a
higher cost — whereas its cost-equivalent version B√

n(f) performes worse than
any other estimator. However, also Bn(f) and B√

n(f) seem to suffer from higher
dimensions of the state space as indicated in Table 1, i.e., their total variance
relative to the total variance of Sn(f) becomes larger as d increases.

Optimal calibration: We observe that for Sn(f) the total variance becomes
minimal for average acceptance rates between 0.2 and 0.25. This is in accordance
with the well-known asymptotic result on optimal a-priori step size choices, see
[29]. The same optimal calibration holds true for the waste recycling estima-
tor WRn(f). For MH importance sampling estimator An(f) the minimal total
variance is obtained for smaller and smaller average acceptance rates as the
dimension d increases. In fact, the numerical results indicate that the optimal
proposal step size s for An(f) remains constant w.r.t. the dimension d. This
is in contrast to the classical MCMC estimator where the optimal asymptotic
a-priori step size s behaves for a product density ρ like d−1 for the Gaussian ran-
dom walk proposal, see [29]. Moreover, for each dimension d the minimal total
variances of An(f) where obtained for step sizes satisfying the optimal calibra-
tion rules outlined in Section 3.4. Concerning the estimators Bn(f) and B√

n(f)
we also observe that the optimal performance occurs for decreasing acceptance
rates as the dimension d increases. Here, the numerical results suggest that the
optimal proposal step size s even increases mildly with the dimensions d.
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5. Conclusion

In this work we studied a MH importance sampling estimator An for which we
showed a SLLN, a CLT, and an explicit estimate of the mean squared error.
A remarkable property of this estimator is that its asymptotic variance does
not contain any autocorrelation term, in fact

Corr(ρ̄(Xk, Yk)f(Yk), ρ̄(Xm, Ym)f(Ym)) = δk({m}).

This is in sharp contrast to the asymptotic variance of the classical MCMC es-
timator Sn, see (2.2). Additionally, we performed numerical experiments which
indicate that the MH importance sampling estimator can outperform the clas-
sical one. This requires the correct tuning of the underlying MH Markov chain
in terms of the proposal step size where the estimator An seems to benefit from
rather small average acceptance rates in contrast to optimal scaling results for
the MCMC estimator. However, we exhibit a decreasing efficiency of the MH
importance sampling estimator for increasing dimension in the numerical ex-
periments. Indeed, the classical MCMC estimator performs better for larger di-
mensions. This is very likely related to the well-known degeneration of efficiency
for importance sampling in high dimensions, see for example the discussion [1,
Section 2.5.4].

Appendix A: Inheritance of geometric ergodicity

A transition kernel K : G × G → [0, 1] with stationary distribution μ is L2(μ)-
geometrically ergodic if there exists a constant r ∈ [0, 1) such that for all prob-
ability measures η on G with dη

dμ ∈ L2(μ) there is Cη ∈ [0,∞) satisfying

dTV(μ, ηK
n) ≤ Cη r

n ∀n ∈ N, (A.1)

where dTV denotes the total variation distance. Note that if dη
dμ exists, then

dTV(μ, η) := sup
A∈G

|μ(A)− η(A)| = 1

2

∫
G

∣∣∣∣dηdμ (x)− 1

∣∣∣∣μ(dx).
In addition to the exponential convergence, L2(μ)-geometric ergodicity also
yields advantages concerning the CLT for the classical MCMC estimator Sn(f)
for Eμ(f).

Proposition A.1 ([28, Corollary 2.1]). Let (Xn)n∈N be a Markov chain with
μ-reversible, L2(μ)-geometrically ergodic transition kernel. Then, for f ∈ L2(μ)

we have σ2
S(f) < ∞ and

√
n(Sn(f)− Eμ(f))

D−→ N (0, σ2
S(f)) as n → ∞.

A further important aspect, see e.g. [28], is the relation between L2(μ)-
geometric ergodicity of a μ-reversible transition kernel K and spectral proper-
ties of the associated self-adjoint transition operator. To this end, we introduce
L2
0(μ) as the space of all g ∈ L2(μ) satisfying Eμ(g) = 0.
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Proposition A.2 ([28, Theorem 2.1], [19, Proposition 1.5]). Let the transition
kernel K : G×G → [0, 1] be μ-reversible. Then, K is L2(μ)-geometrically ergodic
if and only if

‖K‖L2
0(μ)→L2

0(μ)
< 1. (A.2)

The condition (A.2) is often referred to as the existence of a positive L2(μ)-
spectral gap of K:

gapμ(K) := 1− ‖K‖L2
0(μ)→L2

0(μ)
> 0.

By Lemma 3.1 we obtain easily the following relation between the norms of
K: L2

0(μ) → L2
0(μ) and the corresponding operator Kaug : L

2
0(ν) → L2

0(ν) of the
augmented MH Markov chain.

Lemma A.1. With the same notation introduced in Section 3.1 we have that

1. ‖Kn‖L2
0(μ)→L2

0(μ)
≤

∥∥Kn−1
aug

∥∥
L2

0(ν)→L2
0(ν)

and

∥∥Kn
aug

∥∥
L2

0(ν)→L2
0(ν)

≤
∥∥Kn−1

∥∥
L2

0(μ)→L2
0(μ)

for n ≥ 2;
2. ‖K‖L2

0(μ)→L2
0(μ)

≤ ‖Kaug‖L2
0(ν)→L2

0(ν)
and the spectrum of Kaug is non-

negative and real as well as the spectral radius r(Kaug | L2
0(ν)) of Kaug on

L2
0(ν) satisfies

r(Kaug | L2
0(ν)) ≤ ‖K‖L2

0(μ)→L2
0(μ)

.

Proof. To 1.: Note that P̂∗f ∈ L2
0(ν), Hg ∈ L2(ν) and P̂g ∈ L2

0(μ) for any
f ∈ L2

0(μ) and g ∈ L2
0(ν). By applying Lemma 3.1 we have

‖Kn‖L2
0(μ)→L2

0(μ)
=

∥∥∥P̂Kn−1

aug HP̂∗
∥∥∥
L2

0(μ)→L2
0(μ)

≤
∥∥Kn−1

aug

∥∥
L2

0(ν)→L2
0(ν)

,

since∥∥∥P̂∥∥∥
L2

0(ν)→L2
0(μ)

≤
∥∥∥P̂∥∥∥

L2(ν)→L2(μ)
= 1 and

∥∥∥HP̂∗∥∥∥
L2

0(μ)→L2
0(ν)

≤ 1.

Similarly∥∥Kn
aug

∥∥
L2

0(ν)→L2
0(ν)

=
∥∥∥HP̂∗K

n−1
P̂
∥∥∥
L2

0(ν)→L2
0(ν)

≤
∥∥Kn−1

∥∥
L2

0(μ)→L2
0(μ)

.

To 2.: By the fact that K: L2
0(μ) → L2

0(μ) is self-adjoint, properties of the
spectral radius formula for self-adjoint operators and statement 1 we have

‖K‖L2
0(μ)→L2

0(μ)
= lim

n→∞
(‖Kn‖L2

0(μ)→L2
0(μ)

)1/n ≤ lim
n→∞

(
∥∥Kn−1

aug

∥∥
L2

0(ν)→L2
0(ν)

)1/n

= ‖Kaug‖L2
0(ν)→L2

0(ν)
.
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Unfortunately, Kaug is in general not reversible, see Remark 3.4, such that
Kaug is not self-adjoint. Thus, we can only estimate the spectral radius of
Kaug : L

2
0(ν) → L2

0(ν), but not the operator norm. The same argument yields to

r(Kaug | L2
0(ν)) ≤ ‖K‖L2

0(μ)→L2
0(μ)

.

Finally, since Kaug is a product of two self-adjoint operators and, additionally,

the projection P̂∗P̂ is positive, we obtain by [30, Proposition 4.1] that the spec-
trum of Kaug : L

2
0(ν) → L2

0(ν) is real and non-negative.

Since Kaug is not reversible, we can not argue that a positive L2(ν)-spectral
gap of Kaug, which due to statement 2 of Lemma A.1 is implied by a positive
L2(μ)-spectral gap of K, yields the L2(ν)-geometric ergodicity of the augmented
MH Markov chain. However, by using also statement 1 of Lemma A.1 we indeed
obtain the inheritance of geometric ergodicity.

Corollary A.1. Assume that the MH transition kernel K with stationary dis-
tribution μ on G is L2(μ)-geometrically ergodic. Then, the augmented MH tran-
sition kernel Kaug is L2(ν)-geometrically ergodic with ν as in (3.3).

Proof. By Proposition A.2 and the μ-reversibility of K we have that r :=
‖K‖L2

0(μ)→L2
0(μ)

< 1. Let η be a probability distribution on G × G such that
dη
dν ∈ L2(ν). With the notation of the adjoint operator we use (for details we
refer to [33, Lemma 3.9]) that

d(ηKn
aug)

dν
(x, y) = (Kn

aug)
∗
[
dη

dν

]
(x, y), ν-a.e.

as well as ∥∥(Kn
aug)

∗∥∥
L2

0(ν)→L2
0(ν)

=
∥∥Kn

aug

∥∥
L2

0(ν)→L2
0(ν)

.

Then, for n ≥ 2 we have

2dTV(ν, ηK
n
aug) =

∫
G×G

∣∣∣∣d(ηKn
aug)

dν
(x, y)− 1

∣∣∣∣ ν(dxdy)
=

∫
G×G

∣∣∣∣(Kn
aug)

∗
[
dη

dν

]
(x, y)− 1

∣∣∣∣ ν(dxdy)
=

∫
G×G

∣∣∣∣(Kn
aug)

∗
[
dη

dν
(x, y)− 1

]∣∣∣∣ ν(dxdy)
≤

∥∥∥∥(Kn
aug)

∗
[
dη

dν
− 1

]∥∥∥∥
ν

≤
∥∥Kn

aug

∥∥
L2

0(ν)→L2
0(ν)

∥∥∥∥dηdν − 1

∥∥∥∥
ν

≤ ‖K‖n−1
L2

0(μ)→L2
0(μ)

∥∥∥∥dηdν − 1

∥∥∥∥
ν

≤ Cη rn

with Cη := 1
r

∥∥∥dη
dν − 1

∥∥∥
ν
, where we used the fact that (dηdν − 1) ∈ L2

0(ν) as well

as statement 1 of Lemma A.1.
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