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Long paths in first passage percolation
on the complete graph I. Local PWIT dynamics
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Abstract

We study the random geometry of first passage percolation on the complete graph
equipped with independent and identically distributed edge weights. We find classes
with different behaviour depending on a sequence of parameters (sn)n≥1 that quanti-
fies the extreme-value behavior of small weights. We consider both n-independent as
well as n-dependent edge weights and illustrate our results in many examples.

In particular, we investigate the case where sn → ∞, and focus on the exploration
process that grows the smallest-weight tree from a vertex. We establish that the
smallest-weight tree process locally converges to the invasion percolation cluster on
the Poisson-weighted infinite tree, and we identify the scaling limit of the weight of
the smallest-weight path between two uniform vertices. In addition, we show that
over a long time interval, the growth of the smallest-weight tree maintains the same
volume-height scaling exponent – volume proportional to the square of the height
– found in critical Galton–Watson branching trees and critical Erdős-Rényi random
graphs.
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1 Model and summary of results

In this paper, we study first passage percolation on the complete graph equipped
with independent and identically distributed positive and continuous edge weights. In
contrast to earlier work [10, 11, 12, 15, 20], we consider the case where the extreme
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Long paths I. Local PWIT dynamics

values of the edge weights are highly separated. We start by introducing first passage
percolation (FPP). Given a graph G = (V (G), E(G)), let (Y (G)

e )e∈E(G) denote a collection of
positive edge weights. Thinking of Y (G)

e as the cost of crossing an edge e, we can define
a metric on V (G) by setting

dG,Y (G)(i, j) = inf
π : i→j

∑
e∈π

Y (G)
e , (1.1)

where the infimum is over all paths π in G that join i to j, and Y (G) represents the
edge weights (Y (G)

e )e∈E(G). We will always assume that the infimum in (1.1) is attained
uniquely, by some (finite) path πi,j . We are interested in the situation where the edge
weights Y (G)

e are random, so that dG,Y (G) is a random metric. In particular, when the
graph G is very large, with |V (G)| = n say, we wish to understand the scaling behavior of
the following quantities for fixed i, j ∈ V (G):

(a) The local structure – the shape of the random neighborhood of a point;

(b) The distance or total weight Wn = dG,Y (G)(i, j) – the total edge cost of the optimal
path πi,j;

(c) The hopcount Hn – the number of edges in the optimal path πi,j .

In this paper our motivation is threefold: First, we aim to establish that the smallest-
weight tree process locally converges to the invasion percolation cluster on the Poisson-
weighted infinite tree (PWIT) and we identify the scaling limit of the weight of the
smallest-weight path between two uniform vertices. Secondly, we aim to show that over
a long time interval, the growth of the smallest-weight tree maintains the same volume-
height scaling exponent found in critical Galton–Watson branching trees and critical
Erdős-Rényi random graphs. Finally, we use the previous items related to problem
(a), to study the FPP on the complete graph with a focus on problem (b). One could
consider (a) and (b) to be mesocopic or local properties, while (c) is a macroscopic or
global property. In the companion paper [14], we will use these results to investigate
the hopcount problem in (c). We will often refer to results in [14], and write, e.g., [Part
II, Section 6.2] to refer to [14, Section 6.2]. We also refer to [Part II, Section 2.2] for
an extended discussion of the results in these two papers and their relations to the
literature.

In [10], the question was raised what the universality classes are for this model. We
bring the discussion substantially further by describing a way to distinguish several
universality classes and by identifying the limiting behavior of first passage percolation
in one of these classes. The cost regime introduced in (1.1) uses the information from
all edges along the path and is known as the weak disorder regime. By contrast, in the
strong disorder regime the cost of a path π is given by maxe∈π Y

(G)
e . We establish a firm

connection between the weak and strong disorder regimes in first passage percolation.
Interestingly, this connection also establishes a strong relation to invasion percolation
(IP) on the PWIT, which is the scaling limit of IP on the complete graph. This process
also arises as the scaling limit of the minimal spanning tree on Kn (see also [1] for the
local limit of the minimal spanning tree on the complete graph).

Our main interest is in the case G = Kn, the complete graph on n vertices V (Kn) =

[n] := {1, . . . , n}, equipped with independent and identically distributed (i.i.d.) edge

weights (Y (Kn)
e )e∈E(Kn). We write Y for a random variable with Y

d
= Y (G)

e , and assume
that the distribution function FY of Y is continuous. For definiteness, we study the
optimal path π1,2 between vertices 1 and 2; by exchangeability, π1,2 has the same law
as πu,v for any other u, v ∈ [n]. In [10] and [15] this setup was studied for the case that
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Long paths I. Local PWIT dynamics

Y (Kn)
e

d
= Es where E is an exponential mean 1 random variable, and s > 0 constant and

s = sn > 0 a null-sequence, respectively. First, we introduce some notation:

Notation All limits in this paper are taken as n tends to infinity unless stated otherwise.
A sequence of events (An)n happens with high probability (whp) if P(An) → 1. For

random variables (Xn)n, X, we write Xn
d−→ X, Xn

P−→ X and Xn
a.s.−→ X to denote

convergence in distribution, in probability and almost surely, respectively. For real-
valued sequences (an)n, (bn)n, we write an = O(bn) if the sequence (an/bn)n is bounded;
an = o(bn) if an/bn → 0; an = Θ(bn) if the sequences (an/bn)n and (bn/an)n are both
bounded; and an ∼ bn if an/bn → 1. Similarly, for sequences (Xn)n, (Yn)n of random
variables, we write Xn = OP(Yn) if the sequence (Xn/Yn)n is tight; Xn = oP(Yn) if
Xn/Yn

P−→ 0; and Xn = ΘP(Yn) if the sequences (Xn/Yn)n and (Yn/Xn)n are both tight.
Moreover, E denotes an exponentially distributed random variable with mean 1, and U
denotes a random variable uniformly distributed on [0, 1].

1.1 First passage percolation with heavy-tailed edge weights

In this paper, we will consider edge-weight distributions with a heavy tail near 0, in
the sense that the distribution function FY (y) decays slowly to 0 as y ↓ 0. It will prove
more convenient to express this notion in terms of the inverse F−1Y (u) – i.e., the quantile
function for Y – since we can write

Y (Kn)

e
d
= F−1Y (U), (1.2)

where U is uniformly distributed on [0, 1]. Expressed in terms of F−1Y , saying that the
edge-weight distribution is heavy-tailed near 0 means that F−1Y (u) decays rapidly to 0 as
u ↓ 0. We will quantify this notion in terms of the logarithmic derivative of F−1Y , which
will become large as u ↓ 0.

In this section, we will assume that

u
d

du
logF−1Y (u) = u−αL(1/u), (1.3)

where α ≥ 0 and t 7→ L(t) is slowly varying as t→∞. In other words, we assume that
u 7→ u d

du logF−1Y (u) = d
d(log u) logF−1Y (u) is regularly varying as u ↓ 0.

Define a sequence sn by setting u = 1/n in (1.3):

sn = u
d

du
logF−1Y (u)

∣∣∣∣
u=1/n

=
(F−1Y )′(1/n)

nF−1Y (1/n)
. (1.4)

The asymptotics of the sequence (sn)n quantify how heavy-tailed the edge-weight distri-
bution is. For instance, an identically constant sequence, say sn = s, corresponds to a
pure power law FY (y) = y1/s, F−1Y (u) = us; larger values of s correspond to heavier-tailed
distributions.

In this paper, we are interested in the regime where sn →∞, which corresponds to a
very heavy-tailed distribution function FY (y) that decays to 0 slower than any power of
y, as y ↓ 0. Our first theorem gives the scaling of the FPP distance Wn in this regime.

Theorem 1.1 (Weight – regularly varying edge weights). Suppose that the edge-weight
distribution satisfies (1.3). If the sequence (sn)n from (1.4) satisfies

sn
log log n

→∞ as n→∞, (1.5)

then
nFY (Wn)

d−→M (1) ∨M (2), (1.6)
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Long paths I. Local PWIT dynamics

where M (1),M (2) are i.i.d. random variables for which P(M (j) ≤ x) is the survival
probability of a Poisson Galton–Watson branching process with mean x.

To understand the scaling in the left-hand side of (1.6), consider n i.i.d. random
variables (Yi)

n
i=1. Then

nFY

(
min

i=1,...,n
Yi

)
d−→ E, (1.7)

where E is Exponential with mean 1. We can therefore interpret the scaling in (1.6) as
saying that the distance Wn lies in the same scaling regime as some of the typical values
for the minimal edge weight adjacent to vertex 1. Indeed, as we shall see later, there is a
single edge that makes most of the contribution to the total distance Wn. The condition
sn/ log log n→∞ from Theorem 1.1 ensures that the contribution to Wn from all other
smaller edge weights is negligible.

We now turn to the local structure. To understand the random neighbourhood of a
vertex in the complete graph, we study the first passage exploration process. Recall from
(1.1) that dKn,Y (Kn)(i, j) denotes the total cost of the optimal path πi,j between vertex
i and j. For a vertex i ∈ V (Kn), let the smallest-weight tree SWT(i)

t be the connected
subgraph of Kn defined by

V (SWT(i)

t ) =
{
j ∈ V (Kn) : dKn,Y (Kn)(i, j) ≤ t

}
,

E(SWT(i)

t ) =
{
e ∈ E(Kn) : e ∈ πi,j for some j ∈ V (SWT(i)

t )
}
.

(1.8)

Note that SWT(i)

t is indeed a tree: if two optimal paths πi,k, πi,k′ pass through a common
vertex j, then both paths must contain πi,j since the minimizers of (1.1) are unique.

To visualize the process (SWT(i)

t )t≥0, think of the edge weight Y (Kn)
e as the time

required for fluid to flow across the edge e. Place a source of fluid at i and allow it to
spread through the graph. Then V (SWT(i)

t ) is precisely the set of vertices that have been
wetted by time t, while E(SWT(i)

t ) is the set of edges along which, at any time up to t,
fluid has flowed from a wet vertex to a previously dry vertex. Equivalently, an edge is
added to SWT(i)

t whenever it becomes completely wet, with the additional rule that an
edge is not added if it would create a cycle.

In the sequel, for a subgraph G = (V (G), E(G)) of Kn, we write G instead of V (G) for
the vertex set when there is no risk of ambiguity. We will also write SWTt instead of
SWT(i)

t when the choice of starting vertex i is immaterial.
To study the local structure of SWT separately from the weight Wn, we convert to

discrete time by defining

T (Kn)

size k = inf {t : |SWTt| ≥ k + 1} , SWTsize k = SWT
T

(Kn)
size k

, (1.9)

for k < n. (That is, T (Kn)

size k is the time when the kth vertex, not including the starting
vertex, is added to SWT.) The next theorem, which for now we state somewhat informally,
says that the discrete-time FPP exploration process behaves like invasion percolation in
the limit n→∞, at least in finite discrete-time windows:

Theorem 1.2. Suppose that the edge-weight distribution satisfies (1.3). If the sequence
(sn)n from (1.4) satisfies

sn →∞ as n→∞ (1.10)

then, for each fixed k0 ∈ N, the sequence of trees (SWTsize k)k0k=1, as well as the weights
along its edges, converges in distribution as n → ∞ to the first k0 steps of invasion
percolation on the Poisson-weighted infinite tree.

We will formalize Theorem 1.2 in Theorem 2.11 below, where we will give an explicit
coupling linking the two processes. The definition of the Poisson-weighted infinite tree
will be given in Section 2.2.
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Long paths I. Local PWIT dynamics

The next result shows that, asymptotically, SWT grows so that its size is the square of
its volume, at least until it reaches diameter of order sn ∧n1/3 and size of order s2n ∧n2/3.
To state the result, define T (Kn)

height k to be the first time that SWT(j)

t contains a vertex whose

graph distance in SWT(j)

t from the starting vertex j, is at least k. Abbreviate (recall (1.9))

SWTheight k = SWT
T

(Kn)
height k

. (1.11)

Theorem 1.3. Suppose that the edge-weight distribution satisfies (1.3). If the sequence
(sn)n from (1.4) satisfies

sn →∞ as n→∞, (1.12)

and if (σn)n is another sequence satisfying

σn →∞, σn = O(sn), σn = o(n1/3) as n→∞, (1.13)

then
nFY

(
T (Kn)

heightσn

)
d−→M (1) and nFY

(
T (Kn)

sizeσ2
n

) d−→M (1), (1.14)

where P(M (1) ≤ x) is the survival probability of a Poisson Galton–Watson branching
process with mean x. Furthermore, SWTheightσn contains ΘP(σ

2
n) vertices, and the

diameter of SWTsizeσ2
n

is ΘP(σn).

In Theorem 1.3, the scaling of SWTheightσn and SWTsizeσ2
n

– volume of the order of the
square of the height – is reminiscent of critical Erdős-Rényi random graphs, or critical
branching processes. This result does not apply when the spatial scale reaches heights
of order n1/3; this is the spatial scale that arises in the minimal spanning tree for the
complete graph, see [2]. Likewise, the result ceases to be true when σn � sn: in our
companion paper [14], we show that a continuous-time branching process dynamics
takes over for the growth of the first passage percolation smallest-weight tree. The limit
in (1.14) is the analogue of (1.6) from Theorem 1.1, but does not require the assumption
(1.5).

We next give some examples of edge-weight distributions that satisfy (1.3), together

with their associated sequences (sn)n defined by (1.4). In view of (1.2), if Y
d
= g̃(U)

for an increasing function g̃ : (0, 1) → (0,∞) then automatically g̃ = F−1Y . Using the

distributional identity E
d
= log(1/U), it follows that if h : (0,∞)→ (0,∞) is a decreasing

function and Y
d
= h(E), then F−1Y (u) = h(log(1/u)).

Example 1.4 (Examples of weight distributions).

(a) Let a, γ > 0. Take Y (Kn)
e

d
= exp(−aEγ), for which logF−1Y (u) = −a(log(1/u))γ and

sn = aγ(log n)γ−1. (1.15)

The hypotheses of Theorems 1.1–1.3 are satisfied whenever γ > 1.

(b) Let a, γ > 0. Take Y (Kn)
e

d
= Ua(log(1+log(1/U)))γ , for which logF−1Y (u) = a log u(log(1 +

log(1/u)))γ and

sn = a(log(1 + log n))γ + aγ
log n

1 + log n
(log(1 + log n))γ−1. (1.16)

We note that sn ∼ a(log log n)γ as n→∞. The hypotheses of Theorems 1.2–1.3 are
always satisfied, but the hypotheses of Theorem 1.1 are only satisfied for γ > 1.

(c) Let a, β > 0. Take Y (Kn)
e

d
= exp(−aU−β/β), for which logF−1Y (u) = −au−β/β and

sn = anβ . (1.17)

The hypotheses of Theorems 1.1–1.3 are always satisfied, but if β ≥ 1/3 then we
cannot apply Theorem 1.3 with σn = sn.
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Long paths I. Local PWIT dynamics

1.2 First passage percolation with n-dependent edge weights

In Theorems 1.1–1.3, we started with a fixed edge-weight distribution and extracted a
specific sequence (sn)n. For an essentially arbitrary distribution (subject to the relatively
modest regular variation assumption in (1.3)), its FPP properties are fully encoded, at
least for the purposes of the conclusions of Theorems 1.1–1.3, by the scaling properties
of this sequence (sn)n. Thus, Theorems 1.1–1.3 show the common behaviour of a
universality class of edge-weight distributions, and show that this universality class is
described in terms of a sequence of real numbers (sn)n and its scaling behaviour.

In this section, we reverse this setup. Indeed, we now take as input a sequence (sn)n
and consider the n-dependent edge-weight distribution

Y (Kn)

e
d
= Usn , (1.18)

where U is uniformly distributed on [0, 1]. (For legibility, our notation will not indicate
the implicit dependence of Y (Kn)

e on n.) Then the conclusions of Theorems 1.1–1.3 hold
verbatim:

Theorem 1.5 (n-dependent edge weights). Let (sn)n be a sequence of positive numbers
and consider first passage percolation with n-dependent edge weights given by (1.18).

(a) If sn/ log log n→∞ as n→∞, then

nW 1/sn
n

d−→M (1) ∨M (2). (1.19)

where M (1),M (2) are i.i.d. random variables for which P(M (j) ≤ x) is the survival
probability of a Poisson Galton–Watson branching process with mean x.

(b) If sn → ∞ as n → ∞, then for each fixed k0 ∈ N, the sequence of trees
(SWTsize k)k0k=1, as well as the weights along its edges, converges in distribution as
n→∞ to the first k0 steps of invasion percolation on the Poisson-weighted infinite
tree.

(c) If sn → ∞ as n → ∞, and if (σn)n is another sequence satisfying σn → ∞,
σn = O(sn) and σn = o(n1/3), then

n
(
T (Kn)

heightσn

)1/sn d−→M (1) and n
(
T (Kn)

sizeσ2
n

)1/sn d−→M (1), (1.20)

where P(M (1) ≤ x) is the survival probability of a Poisson Galton–Watson branching
process with mean x. Moreover SWTheightσn contains ΘP(σ

2
n) vertices, and the

diameter of SWTsizeσ2
n

is ΘP(σn).

The distribution function FY corresponding to (1.18) satisfies

FY (y) = y1/sn , F−1Y (u) = usn , u
d

du
logF−1Y (u) = sn. (1.21)

Thus, for each fixed n, the edge-weight distribution in (1.18) is the one for which
u d
du logF−1Y (u) = sn holds for all u ∈ [0, 1] (instead of holding only when u = 1/n, as in

(1.4) before).
To see the relationship between Theorems 1.1–1.3 and Theorem 1.5, suppose we

start with a fixed edge-weight distribution Y satisfying (1.3). Define the sequence (sn)n
according to (1.4), and use that sequence as the input to Theorem 1.5. Then replacing
the original edge-weight distribution by the n-dependent edge weights from (1.3) does
not affect the conclusions of Theorems 1.1–1.5.
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Long paths I. Local PWIT dynamics

In the next section, we will explain how to prove Theorems 1.1–1.5 together by
considering them in a common framework: a fixed set of underlying edge weights (which
will come from the Poisson-weighted infinite tree) to which an n-dependent function is
applied.

In the next section, we give a more precise setting of our results. We discuss precisely
the class of weights to which our results apply, including both the Usn edge weights from
(1.18), as well as the heavy-tailed edge weights in (1.2). We give an extensive outline of
the proof, and formulate several results that are of independent interest.

The current paper raises the question what the precise universality classes are for
first passage percolation on the complete graph. This is discussed in full detail in [Part
II, Section 2.2], as it also involves the scalings of the hopcount that is not discussed
further here, to which we refer the reader. A discussion of our precise results is given in
Section 2.6 below.

2 Detailed results, overview and classes of edge weights

In this section, we argue that the optimal path between two vertices can be divided
into two parts: The local neighbourhoods of the two endpoints that follow IP dynamics by
Theorem 1.2 and 1.5 (b), and the main part of the path which is characterized in terms
of a branching process. The main results of this paper connect the maximal weight M (1)

in IP to the transition time between these two regimes, and give a detailed description
of the topology of the neighbourhood contained in the IP part.

This section is organised as follows. In Section 2.1, we state the conditions on general
edge weights such that our results apply. The class of such edge weights contains our
key examples of Esn as well as heavy-tailed edge weights as in (1.2). In Section 2.2, we
couple the first passage percolation dynamics to a continuous-time branching process,
and relate it to the Poisson-weighted infinite tree (PWIT). In Section 2.3, we use this
coupling to relate the first passage percolation dynamics to invasion percolation on the
PWIT, which applies only to short time scales. In Section 2.4, we extend this comparison
to medium time scales, and give volume estimates on the branching process up to this
time scale. In Section 2.5, we explain how the first passage percolation dynamics transits
from an IP dynamics up to medium time scales, to branching dynamics on the long time
scale. We close this section with discussion of our detailed results in Section 2.6.

2.1 Description of the class of edge-weights to which our results apply

For fixed n, the edge weights (Y (Kn)
e )e∈E(Kn) are independent for different e. However,

there is no requirement that they should be independent over n, and in Section 3, we
will produce Y (Kn)

e using a fixed source of randomness not depending on n. Therefore, it
will be useful to describe the randomness on the edge weights ((Y (Kn)

e )e∈E(Kn) : n ∈ N)

uniformly across the sequence. It will be most useful to give this description in terms of
exponential random variables.

Fix independent exponential variables (E(Kn)
e )e∈E(Kn) of mean 1. We suppose that our

FPP edge weights are expressed as

Y (Kn)

e = g(E(Kn)

e ), (2.1)

where g : (0,∞) → (0,∞) is a strictly increasing function. The relation between g and
the distribution function FY is given by

FY (y) = 1− e−g
−1(y) and g(x) = F−1Y

(
1− e−x

)
. (2.2)

Define
fn(x) = g(x/n) = F−1Y

(
1− e−x/n

)
. (2.3)
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Long paths I. Local PWIT dynamics

Let Y1, . . . , Yn be i.i.d. with Yi = g(Ei) as in (2.1). Since g is increasing,

min
i∈[n]

Yi = g
(
min
i∈[n]

Ei
) d

= g(E/n) = fn(E). (2.4)

Because of this convenient relation between the edge weights Y (Kn)
e and exponential

random variables, we will express our hypotheses about the distribution of the edge
weights in terms of conditions on the functions fn(x) as n→∞.

From now on, we suppose that the relations (2.1)–(2.3) hold. For each n, the choice

of function fn determines the distribution of Y by Y
d
= fn(nE). Since the functions fn(x)

already depend explicitly on n, it will impose no extra burden to allow the distribution of
Y , and the functions g and FY , to depend implicitly on n, although we will suppress this
from the notation. Indeed, in the remainder of the paper we will refer almost exclusively
to fn rather than g or FY . We refer to Section 5 for a relation between the assumptions
on FY and fn.

We now state a general version of Theorems 1.1 and 1.5 (a), expressed in terms of the
functions fn(x). For the general version of Theorems 1.2 and 1.5 (b), see Theorem 2.11
below.

Theorem 2.1. If

lim
n→∞

fn(x+ δ)

fn(x) log n
=∞ for all x ≥ 1 and all δ > 0, (2.5)

then
f−1n (Wn)

d−→M (1) ∨M (2), (2.6)

where M (1),M (2) are i.i.d. random variables for which P(M (j) ≤ x) is the survival
probability of a Poisson Galton–Watson branching process with mean x.

Theorem 2.1 implies Theorem 1.1 because (2.5) follows from the assumptions of
Theorem 1.1; see Lemma 5.4. Theorem 2.1 is proved in Section 4.

Theorem 2.1 gives the scaling of the FPP distance Wn in terms of fn, describing the
edge weights, as well as the random variables M (1) and M (2), describing the time it takes
IP to leave an arbitrary neighborhood in two i.i.d. PWITs.

In the next theorem, we quantify the degree of heavy-tailedness of the edge-weight
distribution using a sequence (sn)n. In contrast to Theorems 1.1–1.3 (where sn is defined
in terms of fn(·)) or Theorem 1.5 (where fn(·) is defined in terms of sn), we take as input
a sequence of pairs (fn(·), sn)n linked by the following scaling assumptions:

Condition 2.2. There exists a sequence of numbers ξn < 1 such that snfn(ξn) = o(fn(1))

and

inf
n∈N

inf
x∈[ξn,C]

1

sn

xf ′n(x)

fn(x)
> 0 for all C ∈ (1,∞). (2.7)

Condition 2.3. There exists a number η > 0 such that

lim sup
n→∞

fn(1 + C/sn)

fn(1− η/sn)
<∞ for all C ∈ (0,∞). (2.8)

The ratio xf ′n(x)/fn(x) from Condition 2.2 is the derivative of log fn(x) with respect
to log x; an equivalent expression is xg′(x)/g(x) with x replaced by x/n. In turn, g and
F−1Y have asymptotically similar behaviour (see (2.2)) so xf ′n(x)/fn(x) is the analogue of
the quantity (F−1Y )′(1/n)/nF−1Y (1/n) from (1.4).

In words, Condition 2.2 requires that xf ′n(x)/fn(x) grows at least as fast as order sn,
uniformly over fixed windows. Condition 2.3 can be understood as saying that, within
a much smaller window, xf ′n(x)/fn(x) does not grow much faster than order sn. In the
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regularly-varying setting of Theorems 1.1–1.3, Conditions 2.2–2.3 hold with (sn)n defined
as in (1.4), see Lemma 5.4.

The next result extends Theorem 1.3 to edge weights satisfying Conditions 2.2 and
2.3:

Theorem 2.4. Suppose (fn(x))n and (sn)n satisfy Conditions 2.2 and 2.3. If (σn)n is
another sequence satisfying

σn →∞, σn = O(sn), σn = o(n1/3) as n→∞, (2.9)

then
f−1n

(
T (Kn)

heightσn

)
d−→M (1) and f−1n

(
T (Kn)

sizeσ2
n

) d−→M (1), (2.10)

where P(M (1) ≤ x) is the survival probability of a Poisson Galton–Watson branching
process with mean x. Furthermore, SWTheightσn contains ΘP(σ

2
n) vertices, and the

diameter of SWTsizeσ2
n

is ΘP(σn).

Theorem 2.4 is a generalization of Theorems 1.3 and 1.5 (c) because Conditions 2.2–
2.3 hold in both settings: see Lemma 5.4 and the proof of these theorems in Section 7.5.

2.2 Coupling FPP to a continuous-time branching process

To study the smallest-weight tree SWT from a vertex, say vertex 1, let us consider

the time until the first vertex is added. By construction, mini∈[n]\{1} Y
(Kn)

{1,i}
d
= fn( n

n−1E)

(cf. (2.4)), where E is an exponential random variable of mean 1. We next extend this to
describe the distribution of the order statistics of the weights of edges from vertex 1 to
all other vertices.

Denote by Y (Kn)

(k) the kth smallest weight from (Y (Kn)

{1,i} )i∈[n]\{1}. Then

(Y (Kn)

(k) )k∈[n−1]
d
= (fn(Sk,n))k∈[n−1], (2.11)

where Sk,n =
∑k
j=1

n
n−jEj and (Ej)j∈[n−1] are i.i.d. exponential random variables with

mean 1. The fact that the distribution of Sk,n depends on n is awkward, and can be
changed by using a thinned Poisson point process. Let X1 < X2 < · · · be the points of a

Poisson point process on (0,∞) with intensity 1, so that Xk
d
=
∑k
j=1Ej = limn→∞ Sk,n.

To each k ∈ N, we associate a mark Mk which is chosen uniformly at random from [n],
different marks being independent. We thin a point Xk when Mk = 1 (since 1 is the
initial vertex) or when Mk = Mk′ for some k′ < k. Then

(Y (Kn)

(k) )k∈[n−1]
d
= (fn(Xk))k∈N, Xk unthinned. (2.12)

See also [Part II, Section 3.2.1] for another way of presenting this result. In the next step,
we extend this result to the smallest-weight tree SWT using a relation to FPP on the
Poisson-weighted infinite tree. Before giving the definitions, we recall the Ulam–Harris
notation for describing trees.

Define the tree T as follows. The vertices of T are given by finite sequences of
natural numbers headed by the symbol ∅1, which we write as ∅1j1j2 · · · jk. The sequence
∅1 denotes the root vertex of T . We concatenate sequences v = ∅1i1 · · · ik and w =

∅1j1 · · · jm to form the sequence vw = ∅1i1 · · · ikj1 · · · jm of length |vw| = |v|+ |w| = k+m.
Identifying a natural number j with the corresponding sequence of length 1, the jth

child of a vertex v is vj, and we say that v is the parent of vj. Write p (v) for the (unique)
parent of v 6= ∅1, and pk(v) for the ancestor k generations before, for k ≤ |v|.

We can place an edge (which we could consider to be directed) between every v 6= ∅1

and its parent; this turns T into a tree with root ∅1. With a slight abuse of notation, we
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will use T to mean both the set of vertices and the associated graph, with the edges
given implicitly according to the above discussion, and we will extend this convention
to any subset τ ⊂ T . We also write ∂τ = {v /∈ τ : p (v) ∈ τ} for the set of children one
generation away from τ .

The Poisson-weighted infinite tree is an infinite edge-weighted tree in which every
vertex has infinitely many (ordered) children. To describe it formally, we associate
weights to the edges of T . By construction, we can index these edge weights by non-root
vertices, writing the weights as X = (Xv)v 6=∅1

, where the weight Xv is associated to the
edge between v and its parent p(v). We make the convention that Xv0 = 0.

Definition 2.5 (Poisson-weighted infinite tree). The Poisson-weighted infinite tree (PWIT)
is the random tree (T , X) for which Xvk−Xv(k−1) is exponentially distributed with mean
1, independently for each v ∈ T and each k ∈ N. Equivalently, the weights (Xv1, Xv2, . . .)

are the (ordered) points of a Poisson point process of intensity 1 on (0,∞), independently
for each v.

Motivated by (2.12), we study FPP on T with edge weights (fn(Xv))v:

Definition 2.6 (First passage percolation on the Poisson-weighted infinite tree). For FPP
on T with edge weights (fn(Xv))v, let the FPP edge weight between v ∈ T \ {∅1} and
p (v) be fn(Xv). The FPP distance from ∅1 to v ∈ T is

Tv =

|v|−1∑
k=0

fn(Xpk(v)) (2.13)

and the FPP exploration process BP = (BPt)t≥0 on T is defined by BPt = {v ∈ T : Tv ≤ t}.
Note that the randomness in BP comes from the PWIT edge weights (Xv)v 6=∅1 , which

do not depend on n. However, the FPP edge weights on T , Tv = fn(Xv), do depend on
n, and consequently the law of BP varies with n. Here and elsewhere, we will mainly
suppress this n-dependence from our notation.

Note that the FPP edge weights (fn(Xvk))k∈N are themselves the points of a Poisson
point process on (0,∞), independently for each v ∈ T . The intensity measure of this
Poisson point process, which we denote by µn, is the image of Lebesgue measure on
(0,∞) under fn. Since fn is strictly increasing by assumption, µn has no atoms and we
may abbreviate µn((a, b]) as µn(a, b) for simplicity. Thus µn is characterized by

µn(a, b) = f−1n (b)− f−1n (a),

∫ ∞
0

h(y)dµn(y) =

∫ ∞
0

h(fn(x))dx, (2.14)

for any measurable function h : [0,∞)→ [0,∞).

Clearly, and as suggested by the notation, the FPP exploration process BP is a
continuous-time branching process:

Proposition 2.7. The process BP is a continuous-time branching process (CTBP), started
from a single individual ∅1, where the ages at childbearing of an individual form a Poisson
point process with intensity µn, independently for each individual. The time Tv is the
birth time Tv = inf {t ≥ 0: v ∈ BPt} of the individual v ∈ T .

Similar to the analysis of the weights of the edges containing vertex 1, we now
introduce a thinning procedure. Define M∅1 = 1 and to each other v ∈ T \{∅1} associate
a mark Mv chosen independently and uniformly from [n].

Definition 2.8 (Thinning). The vertex v ∈ T \ {∅1} is thinned if it has an ancestor
v0 = pk(v) (possibly v itself) such that Mv0 = Mw for some unthinned vertex w ∈ T with
Tw < Tv0 .
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Note that whether or not a vertex v is thinned can be assessed recursively in terms
of earlier-born vertices1 and therefore Definition 2.8 is not circular.

Write B̃Pt for the subgraph of BPt consisting of unthinned vertices. If a vertex v ∈ T
is thinned, then so are all its descendants, and this implies that B̃Pt is a tree for all t.

Definition 2.9. Given a subset τ ⊂ T and marks M = (Mv : v ∈ τ) with Mv ∈ [n], define
πM (τ) to be the subgraph of Kn induced by the mapping τ → [n], v 7→Mv. That is, πM (τ)

has vertex set {Mv : v ∈ τ}, with an edge between Mv and Mp(v) whenever v, p (v) ∈ τ .

Note that if the marks (Mv)v∈τ are distinct then πM (τ) and τ are isomorphic graphs.
The following theorem establishes a close connection between FPP on Kn and FPP

on the PWIT with edge weights (fn(Xv))v:

Theorem 2.10 (Coupling to FPP on PWIT). The law of (SWTt)t≥0 is the same as the law

of
(
πM
(
B̃Pt

))
t≥0

.

Theorem 2.10 is based on an explicit coupling between the edge weights (Y (Kn)
e )e on

Kn and (Xv)v on T . A general form of such couplings and the proof of Theorem 2.10 are
given in Section 3.

2.3 Relation to invasion percolation on the PWIT: short time scales

Under our scaling assumptions, FPP on the PWIT is closely related to invasion
percolation (IP) on the PWIT which is defined as follows. Set IP(0) to be the subgraph
consisting of ∅1 only. For k ∈ N, form IP(k) inductively by adjoining to IP(k − 1) the
boundary vertex v ∈ ∂IP(k − 1) connected by the boundary edge of minimal weight. We
note that, since we consider only the relative ordering of the various edge weights, we
can use either the PWIT edge weights (Xv)v or the FPP edge weights (fn(Xv))v.

We can now state the precise version of Theorems 1.2 and 1.5 (b).

Theorem 2.11 (Coupling to IP on the PWIT). If

lim
n→∞

fn(x+ δ)

fn(x)
=∞ for all x > 0 and all δ > 0, (2.15)

then the smallest-weight tree SWT on Kn can be coupled to invasion percolation IP on
one copy of the PWIT such that, for any fixed k0 ∈ N,

P
(
SWTsize k = πM (IP(k)) for all k ≤ k0

)
= 1− o(1). (2.16)

The convergence in Theorem 2.11 is the local weak convergence in the sense of
Benjamini and Schramm [9] for appropriately chosen metrics, see also Aldous and Steele
[7].

We prove Theorem 2.11 by first proving the analogous statement for the branching
process approximation. Similar to (1.9), define

Tsize k = inf {t : |BPt| ≥ k + 1} , BPsize k = BPTsize k
. (2.17)

Theorem 2.12 (Invasion percolation and branching processes). If (2.15) holds then, for
any fixed k0 ∈ N,

P
(
BPsize k = IP(k) for all k ≤ k0

)
= 1− o(1). (2.18)

Theorem 2.11 follows from Theorems 2.10 and 2.12 and the observation that, whp,
all of the vertices of BPsize k0 have distinct marks and are therefore unthinned.

1At least up until the time t = supx≥0 fn(x) when BPt ceases to be finite a.s. However, before time t, the
root ∅1 has had infinitely many children, a.s., so all available marks have been used and all vertices born after
time t are thinned, a.s.
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Write IP(∞) =
⋃∞
k=1 IP(k) for the limiting subgraph. We remark that IP(∞) is a strict

subgraph of T in which every vertex has finite degree a.s. (in contrast to FPP, which
eventually explores every vertex of T ).

Define

M (1) = sup {Xv : v ∈ IP(∞) \ {∅1}} , (2.19)

the largest weight of an invaded edge. Then P(M (1) ≤ x) is the survival probability of
a Poisson Galton–Watson branching process with mean x, as in Theorem 2.1. Indeed,
define

PGWx =
{
v ∈ T : Xpk(v) ≤ x for all k = 0, 1, . . . , |v| − 1

}
, (2.20)

the subset of T consisting of all vertices connected to the root ∅1 by a path all of whose
edge weights are x or smaller. (In other words, PGWx is the connected component
containing ∅1 in the subgraph of T where we remove all edges of weight exceeding x.)
Then PGWx has the law of a Poisson Galton–Watson tree with offspring mean x, and the
event {M (1) ≤ x} coincides with the event {|PGWx| =∞}.

We remark that, a.s., the supremum in (2.19) is attained, and the unique edge of
weight M is invaded after a finite number of steps. Indeed, the edge of weight M (1)

belongs to what is called the backbone:

Definition 2.13 (The IP backbone). The backbone of the IP cluster IP(∞) is the unique
infinite oriented path in IP(∞) starting at the root. That is, the backbone is the unique
(random) infinite sequence of vertices V BB

0 , V BB
1 , . . . ∈ IP(∞) with V BB

0 = ∅1 and p (V BB

k ) =

V BB

k−1 for all k ∈ N. The PWIT edge weight between V BB

k−1 and V BB

k is denoted XBB

k .

The statement that the edge weight M (1) is found along the backbone can be ex-
pressed by M (1) = maxkX

BB

k a.s.
The value x = 1 acts as a critical value for the PWIT. Indeed, if we remove all edges

of weight Xvk > x, then the subtree containing the roots is a branching process with
Poi(x) offspring distribution. Hence for x ≤ 1 the tree is finite a.s., while for x > 1 the
tree is infinite with positive probability. As a result, IP on the PWIT will have to accept
edges of weight Xvk > 1 infinitely often, and we have M (1) > 1 a.s.

For more detailed properties of the IP cluster, see Proposition 7.1 below.

2.4 Relation to invasion percolation on the PWIT: medium time scales

Theorems 2.11–2.12 state that FPP behaves like IP at short time scales. Our next two
results state that this similarity is maintained over longer time scales, whose duration is
given in terms of sn.

To formalize this, recall the definition of Tsize k from (2.17), and define

Theight k = inf {t : ∃v ∈ BPt with |v| ≥ k} . (2.21)

We also introduce

TBB k = inf {t : V BB

k ∈ BPt} = TV BB
k
, (2.22)

the first time that the FPP exploration process reaches the vertex at height k along
the backbone. For v ∈ T (1), write BP(v) for the branching process of descendants of v,
re-rooted and time-shifted to start at t = 0. That is,

BP(v)

t = {w ∈ T : vw ∈ BPTv+t} . (2.23)

For instance, BP = BP(∅1); and the branching processes (BP(v))p(v)=∅1
are independent

of each other and of (Tv)p(v)=∅1
.

Definition 2.14 (k-lucky). Given k ∈ N, a vertex v ∈ T is k-lucky if
∣∣BP(v)

fn(1)

∣∣ ≥ k.
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That is, a k-lucky vertex has k descendants by the time it reaches age fn(1). We
discuss k-lucky vertices in more detail in Section 2.5, including bounds on the probability
that v is k-lucky as well as the time that the first rs2n-lucky vertex appears for several r.

We write
Tk-lucky = fn(1) + inf {Tv : v is k-lucky} (2.24)

for the first time that a k-lucky vertex reaches age fn(1). (Thus Tsize k ≤ Tk-lucky by
definition.) Similar to (2.17), write BPheight k, BPBB k, BPk-lucky for BPt when t = Theight k,
t = TBB k or t = Tk-lucky. The analogue of Theorems 1.3, 1.5 (c) and 2.4 states that, at size
scales up to order s2n and distance scales up to order sn, all these times behave similarly:

Theorem 2.15. Suppose (fn(x))n and (sn)n satisfy Conditions 2.2 and 2.3. If (σn)n is
another sequence satisfying

σn →∞, σn = O(sn) as n→∞, (2.25)

then(
f−1n

(
Tsizeσ2

n

)
, f−1n (Theightσn) , f−1n (TBBσn) , f−1n

(
Tσ2

n-lucky

))
P−→ (M (1),M (1),M (1),M (1))

(2.26)
where M (1) is defined by (2.19). Moreover BPsizeσ2

n
, BPheightσn , BPBBσn and BPσ2

n-lucky

all contain ΘP(σ
2
n) vertices and have diameter ΘP(σn).

Note that in Theorem 2.15 we no longer need the assumption σn = o(n1/3) from
Theorem 2.4, which is only needed to ensure that vertices of BPsizeσ2

n
, BPheightσn , BPBBσn

or BPσ2
n-lucky are whp unthinned. Indeed, given a vertex v with height OP(σn), the

conditional probability that v or any of its OP(σn) ancestors shares a mark with any of
OP(σ

2
n) other vertices can be upper bounded by (1/n) ·OP(σn) ·OP(σ

2
n) = OP(σ

3
n/n), and

the assumption σn = o(n1/3) ensures that this upper bound tends to 0.
Theorem 2.15 asserts that the branching process maintains the same scaling expo-

nents as invasion percolation – size of order the square of the height – at least until
size of order s2n and height of order sn. The next result makes a stricter comparison –
that FPP only explores vertices that belong to the invasion cluster – but on a somewhat
shorter time scale. Define

Tnoninvaded = inf {t : BPt * IP(∞)} , (2.27)

the first exploration time of a vertex that does not belong to the infinite invasion cluster.
Write BPnoninvaded for BPt with t = Tnoninvaded.

Theorem 2.16. Suppose (fn(x))n and (sn)n satisfy Condition 2.2. Then |BPnoninvaded| is
at least of order s4/3n , i.e., |BPnoninvaded|−1 = OP(s

−4/3
n ).

The proof of Theorem 2.16, which we give in Section 7.3, is based on estimating the
exploration time Tv of suitably chosen vertices v. This bound is given in terms of the
largest edge weight along a path leading to v, with the contribution of smaller edge
weights bounded by a conditional expectation. Because of the scaling properties of the
function fn(x), such expectations are overestimates of the typical size, and consequently
the bound in Theorem 2.16 is not expected to be sharp.

2.5 The transition from IP to branching dynamics

Theorem 2.15 shows that the branching process BPt, which depends implicitly on n,
follows a non-standard scaling over a varying window given in terms of sn. Eventually,
however, it begins to grow in a typical branching process manner. As we shall see,
this crossover occurs when k-lucky vertices, with k of order s2n, begin to appear (recall
Definition 2.14). The following proposition investigates how likely a vertex is to be
k-lucky:
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Proposition 2.17 (Probability of k-luckiness). Suppose (fn(x))n and (sn)n satisfy Con-
dition 2.2. Fix K ∈ (0,∞). Then there exists δ > 0 such that for all k, n ∈ N with
k ≤ Ks2n,

P(v is k-lucky) ≥ δ√
k
. (2.28)

Proposition 2.17 is proved in Section 6.2. We remark that the reverse inequality

P(v is k-lucky) ≤ C/
√
k (2.29)

is also true (and in fact holds without any assumptions on fn; to see this, compare BPfn(1)
to a critical Poisson Galton–Watson tree), although we will not need this result.

Taking k = brs2nc, we see from Proposition 2.17 that a vertex has probability of order
1/sn of being rs2n-lucky. Once an rs2n-lucky vertex v is born (for some r > 0), another
Rs2n-lucky vertex (for some possibly larger R > 0) is likely to be born soon thereafter.
Indeed, Condition 2.3 implies that between ages fn(1) and 2fn(1), the number of new
children of v will be Poisson with mean of order 1/sn. The same is true for the order
s2n initial descendants of v, so that a total of order sn children is expected to be born
during this time. Among these, of order 1 can be expected to repeat the unlikely event
performed by v and thereby perpetuate the growth.

To formalize this statement, fix r > 0, R <∞ and suppose that there is a (random)
vertex V such that P(V is rs2n-lucky) = 1 and TV + fn(1) is a stopping time with respect
to the filtration generated by BPt. Let D be the set of descendants v of V satisfying
Tv ≤ TV + fn(1), so that |D| = |BP(V )

fn(1)
| ≥ rs2n by definition. Let

C =
{
w : w is Rs2n-lucky, p (w) ∈ D and Tw − Tp(w) > fn(1)

}
(2.30)

be the set of Rs2n-lucky vertices born to a parent in D of age greater than fn(1). Write
V1, V2, . . . for the vertices in C, ordered by their birth times.

Lemma 2.18. Suppose (fn(x))n and (sn)n satisfy Conditions 2.2 and 2.3. Then, with the
notation above, for any fixed k ∈ N and uniformly over the random choice of vertex V ,

TVk − TV = OP(fn(1)). (2.31)

Lemma 2.18 is proved in Section 6.3. It shows that, starting from time Trs2n-lucky,
the CTBP BPt grows (at least) exponentially in the timescale fn(1). Indeed, we can
consider each rs2n-lucky vertex V , together with its associated set D of descendants, as a
composite individual. The composite children of this composite individual are the vertices
V1, V2, . . ., together with their own associated sets of descendants. Then Lemma 2.18
states that the number of composite children born to one composite individual within
time tfn(1) diverges in probability to infinity as t→∞. Because this happens uniformly
in n and uniformly in the choice of composite individual, we can repeat the argument
for each composite child, obtaining a supercritical CTBP of composite individuals in the
timescale fn(1).

In short, once rs2n-lucky vertices begin to appear, BPt evolves (at least) exponentially
in the usual manner of a supercritical CTBP, but with composite individuals of size of
order s2n. In [Part II, Section 3.3.1], we show (subject to mild additional assumptions
about the asymptotics of fn(x) for x→∞) that this heuristic essentially finds the true
rate of growth: for instance, the Malthusian parameter is asymptotically of order fn(1)−1,
and first and second moments of |BPt| scale consistently with the observation that BPfn(1)
is either of order s2n with probability of order of 1/sn, or else negligible if the initial
vertex ∅1 fails to be rs2n-lucky.

By contrast, before rs2n-lucky vertices appear, BPt may take a very long time to
grow. For instance, Theorem 2.15 says that, starting from a single vertex (i.e., starting
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from a small fraction of a composite individual), it takes a much longer time, of order
fn(M (1))� fn(1), for even one composite individual to appear.

2.6 Discussion of our detailed results

In this section we briefly discuss our results and state open problems. For a more
detailed discussion of the results in this paper and in our companion paper [14], as
well as an extensive discussion of the relations to the literature, we refer to [Part II,
Section 2.2].

First passage percolation (FPP) on the complete graph is closely approximated by
invasion percolation (IP) on the Poisson-weighted infinite tree (PWIT), studied in [4],
whenever sn → ∞. See Theorem 2.11 and the discussion in Section 2.2. However,
this relationship is a local one, and the scaling of sn relative to n controls whether the
two objects are globally comparable. Theorem 2.1 shows that the weights are globally
comparable provided sn/ log log n→∞. For the hopcount, the appropriate comparison
is to the minimal spanning tree (MST) on the complete graph, obtained from running IP
with a simple no-loops constraint. Path lengths in the MST scale as n1/3 (see [3] and [2]).
We conjecture that, for s3n/n→∞, FPP on the complete graph is in the same universality
class as IP. It would be of great interest to make this connection precise when s3n/n→∞
by showing, for example, that Hn/n

1/3 converges in distribution, and that the scaling
limit of Hn is the same as the scaling limit of the graph distance between two uniform
vertices in the MST.

The local graph convergence from Theorem 2.11 and weight convergence from
Theorem 2.1 are the first two in a hierarchy of possible comparisons between FPP
and the MST. Strengthening the previous statement about the scaling limit of Hn, we
can ask whether the optimal path between vertices i, j ∈ [n] equals (under a suitable
coupling) the unique path in the MST from i to j; whether the union of the optimal
paths2 from vertex i to every other vertex j 6= i equals the entire MST; and whether
these unions agree simultaneously for every i ∈ [n]. Assuming hypotheses similar to
Conditions 2.2–2.3, it would be of interest to know how sn must grow relative to n in
order for each of these events to occur whp.

3 Coupling Kn and the PWIT

In Theorem 2.10, we indicated that two random processes, the first passage explo-
ration processes SWT(1) and BP(∅1) on Kn and T , respectively, could be coupled. In
Section 3.1 we explain how this coupling arises as a special case of a general family
of couplings between Kn, understood as a random edge-weighted graph with i.i.d. ex-
ponential edge weights, and two copies of the PWIT. In Section 3.2 we define minimal
rule exploration processes and discuss the coupling in this context. In Section 3.3 and
Section 3.4 we prove Theorems 2.10 and 2.11, respectively.

3.1 Exploration processes and the definition of the coupling

We consider the disjoint union T (1,2) = T (1) ∪ T (2) of two copies of the PWIT, with
roots ∅1 and ∅2, and we assume n ≥ 2. (In fact, the coupling we next describe works
with any number of copies of the PWIT, up to a maximum of n.) As in Section 2.2, we
define M∅j = j, for j = 1, 2, and to each other v ∈ T (1,2) \ {∅1,∅2}, we associate a mark
Mv chosen uniformly and independently from [n]. We next define an exploration process
on T (1,2):

Definition 3.1 (Exploration process on two PWITs). Let F0 be a σ-field containing all

2This union of optimal paths will be the smallest-weight tree SWT
(i)
t from Section 2 in the limit t→ ∞.
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null sets, and let (T (1,2), X) be independent of F0. We call a sequence E = (Ek)k∈N0
of

subsets of T an exploration process if, with probability 1, E0 = {∅1,∅2} and, for every
k ∈ N, either Ek = Ek−1 or else Ek is formed by adjoining to Ek−1 a previously unexplored
child vk ∈ ∂Ek−1, where the choice of vk depends only on the weights Xw and marks Mw

for vertices w ∈ Ek−1 ∪ ∂Ek−1 and on events in F0.

Examples for exploration processes are given by FPP and IP on T (1,2). For FPP, as
defined in Definition 2.6, it is necessary to convert to discrete time by observing the
branching process at those moments when a new vertex is added, as in Theorem 2.12.
The standard IP on T (1,2) is defined as follows. Set IP(0) = {∅1,∅2}. For k ∈ N, form
IP(k) inductively by adjoining to IP(k− 1) the boundary vertex v ∈ ∂IP(k− 1) of minimal
weight. However, an exploration process is also obtained when we specify at each step
(in any suitably measurable way) whether to perform an invasion step in T (1) or in T (2).

For k ∈ N, let Fk be the σ-field generated by F0 together with the weights Xw and
marks Mw for vertices w ∈ Ek−1 ∪ ∂Ek−1. Note that the requirement on the choice of vk
in Definition 3.1 can be expressed as the requirement that E is (Fk)k-adapted.

For v ∈ T (1,2), define the (discrete) exploration time of v by

Nv = inf {k ∈ N0 : v ∈ Ek} . (3.1)

Definition 3.2 (Thinning). The vertex v ∈ T (1,2) \{∅1,∅2} is thinned if it has an ancestor
v0 = pk(v) (possibly v itself) such that Mv0 = Mw for some unthinned vertex w with
Nw < Nv0 . Write Ẽk for the subgraph of Ek consisting of unthinned vertices.

Recall the remark below Definition 2.8 that explains that the definition above is not
circular.

We define the stopping times

N(i) = inf
{
k ∈ N0 : Mv = i for some v ∈ Ẽk

}
. (3.2)

at which i ∈ [n] first appears as a mark in the unthinned exploration process. Note that,
on the event {N(i) <∞}, Ẽk contains a unique vertex in T (1,2) whose mark is i, for any
k ≥ N(i); call that vertex V (i). On this event, we define

X(i, i′) = min
w∈T (1,2)

{Xw : Mw = i′, p (w) = V (i)} . (3.3)

Lemma 3.3. Conditional on FN(i), and on the event {N(i) <∞}, the distribution of
X(i, i′) is exponential with mean n, independently for every i′. Moreover, X(i, i′) is
FN(i)+1 measurable.

Proof. The event {N(i) = k, V (i) = v} is measurable with respect to the σ-field generated
by F0 together with all edge weights Xv, Xw and marks Mv,Mw for which w is not a de-
scendant of v. On the other hand, on {V (i) = v}, X(i, i′) = min {Xw : Mw = i′, p (w) = v}
depends only on the marks and edge weights of children of v. Therefore, the distribution
of X(i, i′) and the independence for different i′ follow from the thinning property of
Poisson point processes. Since the marks and edge weights of the children of V (i) are
measurable with respect to FN(i)+1, X(i, i′) is measurable with respect to this σ-field.

We define, for an edge {i, i′} ∈ E(Kn),

X(Kn)

{i,i′} =


1
nX(i, i′) if N(i) < N(i′),
1
nX(i′, i) if N(i′) < N(i),

E{i,i′} if N(i) = N(i′) =∞ or N(i) = N(i′) = 0,

(3.4)

where (Ee)e∈E(Kn) are exponential variables with mean 1, independent of each other
and of (Xv)v.
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Theorem 3.4. If E is an exploration process on the union T (1,2) of two PWITs, then the
edge weights X(Kn)

e defined in (3.4) are exponential with mean 1, independently for each
e ∈ E(Kn).

The idea underlying Theorem 3.4 is that, by Lemma 3.3, each variable 1
nX(i, i′) is

exponentially distributed conditionally on the past up to the moment N(i) when it may
be used to set the value of X(Kn)

{i,i′}. However, formalizing this notion requires careful

attention to the relative order of the stopping times N(i) and to which of the N(i) are
infinite.

Proof. Let (he)e∈E(Kn) be an arbitrary collection of bounded, measurable functions, and
abbreviate 〈he〉 = E[he(E)], where E is exponential with mean 1. It suffices to prove that

E
( ∏
e∈E(Kn)

he(X
(Kn)

e )
)

=
∏

e∈E(Kn)

〈he〉. (3.5)

We proceed by induction. To begin, we partition (3.5) according to the number ` ∈
{0, 1, . . . , n− 2} of indices i 6= 1, 2 for which N(i) = ∞, as well as the relative order of
the finite values of N(i). Define i1 = 1, i2 = 2 and, given ` ∈ [n− 2] and i = (i3, . . . , in−`),
abbreviate S`,i = [n] \ {i1, . . . , in−`}.

Note that, on the event {N(i) =∞∀i ∈ S`,i}, we have X(Kn)

{i,j} = E{i,j} for {i, j} ⊂ S`,i
by (3.4). The E{i,j} are exponential, independently from everything else, so we may
perform the integration over these variables separately. We conclude that

E
( ∏
e∈E(Kn)

he(X
(Kn)

e )
)

=
∑

(i3,...,in)

E
(
1{N(i3)<···<N(in−1)<N(in)≤∞}

∏
e∈E(Kn)

he(X
(Kn)

e )
)

+

n−2∑
`=2

∑
i=(i3,...,in−`)

∏
{i,j}⊂S`,i

〈h{i,j}〉 (3.6)

· E
(
1{N(i3)<...<N(in−`)<∞,N(i)=∞∀i∈S`,i}

∏
{i,j}6⊂S`,i

h{i,j}(X
(Kn)

{i,j})
)
,

where the first sum corresponds to ` = 0 and ` = 1. The sums are over vectors of
distinct indices i3, . . . , in ∈ {3, . . . , n} and i3, . . . , in−` ∈ {3, . . . , n}, respectively, and
the notation {i, j} 6⊂ S`,i means that {i, j} is an edge with at least one endpoint in
[n] \ S`,i = {i1, . . . , in−`}.

In general, for i = (i3, . . . , in−`) given, define the events

A`,i = {N(i3) < · · · < N(in−`) <∞} , B`,i = {N(i) > N(in−`)∀i ∈ S`,i} . (3.7)

We claim that, for all `0 ∈ [n− 2],

E
( ∏
e∈E(Kn)

he(X
(Kn)

e )
)

=
∑

i=(i3,...,in−`0 )

E
(
1A`0,i1B`0,i

∏
{i,j}6⊂S`0,i

h{i,j}(X
(Kn)

{i,j})
) ∏
{i,j}⊂S`0,i

〈h{i,j}〉 (3.8)

+

n−2∑
`=`0+1

∑
i=(i3,...,in−`)

E
(
1A`,i1{N(i)=∞∀i∈S`,i}

∏
{i,j}6⊂S`,i

h{i,j}(X
(Kn)

{i,j})
) ∏
{i,j}⊂S`,i

〈h{i,j}〉.

When `0 = n− 2, by convention, the second sum vanishes, while in the first sum i is the
empty sequence.
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The case `0 = 1 reduces to (3.6): then S`0,i contains only one element, which we
called in but which is in fact uniquely determined by the values i3, . . . , in−1, and the
product

∏
{i,j}⊂S`0,i

〈h{i,j}〉 is empty. This initializes the induction hypothesis.

We remark that in the right-hand sides of (3.6) and (3.8), the indicators already allow
us to determine which of the three cases from (3.4) occurs. For notational simplicity, we
will introduce this information gradually as we proceed.

Now suppose (3.8) has been proved for a given `0 < n − 2. In the first summand
of the right-hand side of (3.8), we condition on FN(in−`0 )

. By Lemma 3.3 and the

presence of the indicators, each factor h{i,j}(X
(Kn)

{i,j}) is equal to a factor h{i,j}(
1
nX(i, j))

(or h{i,j}(
1
nX(j, i)), if N(j) < N(i)) that is FN(in−`0 )

-measurable, with the exception of

the factors h{in−`0 ,j}(
1
nX(in−`0 , j)) for j ∈ S`0,i, which are conditionally independent

given FN(in−`0 )
, again by Lemma 3.3. Note furthermore that A`0,i, B`0,i ∈ FN(in−`0 )

,
A`0,i = A`0+1,i ∩ {N(in−`0−1) < N(in−`0) <∞} and S`0,i ∪ {in−`0} = S`0+1,i. Thus,

E
(
1A`0,i1B`0,i

∏
{i,j}6⊂S`0,i

h{i,j}(X
(Kn)

{i,j})
) ∏
{i,j}⊂S`0,i

〈h{i,j}〉 (3.9)

= E
(
1A`0,i1{N(i)>N(in−`0 ) ∀i∈S`0,i}

∏
{i,j}6⊂S`0,i∪{in−`0}

h{i,j}(X
(Kn)

{i,j})
)

·
∏

{i,j}⊂S`0,i∪{in−`0}

〈h{i,j}〉

= E
(
1A`0+1,i

1{N(in−`0−1)<N(in−`0 )<N(i) ∀i∈S`0,i}
∏

{i,j}6⊂S`0+1,i

h{i,j}(X
(Kn)

{i,j})
)

·
∏

{i,j}⊂S`0+1,i

〈h{i,j}〉.

Leaving i3, . . . , in−`0−1 fixed, we now sum (3.9) over all in−`0 ∈ [n]\{i1, . . . , in−`0−1}. This
rewrites the first sum in (3.8) as∑

i=(i3,...,in−`0−1)

E
(
1A`0+1,i

1B`0+1,i
1{N(i)<∞ for some i∈S`0+1,i}

∏
{i,j}6⊂S`0+1,i

h{i,j}(X
(Kn)

{i,j})
)

·
∏

{i,j}⊂S`0+1,i

〈h{i,j}〉. (3.10)

However, (3.10) combines with the summand ` = `0 + 1 from the second sum in (3.8)
(since we can rewrite 1A`0+1,i

1{N(i)=∞∀i∈S`0+1,i} as 1A`0+1,i
1B`0+1,i

1{N(i)=∞∀i∈S`0+1,i})
to produce the first sum in (3.8) for `0 replaced by `0 + 1. This advances the induction
hypothesis, and thus completes the proof of (3.8) for all `0 ≤ n− 2.

We therefore conclude that (3.8) holds when `0 = n− 2. In this case the second sum
vanishes, while in the first sum i is the empty sequence, Sn−2,i = [n] \ {1, 2} and the
events An−2,i, Bn−2,i always occur (note that N(i2) = 0). Therefore

E
( ∏
e∈E(Kn)

he(X
(Kn)

e )
)

(3.11)

= E
( ∏
{i,j}∩{1,2}6=∅

h{i,j}(X
(Kn)

{i,j})
) ∏
{i,j}∩{1,2}=∅

〈h{i,j}〉

= E
(
h{1,2}(E{1,2})

n∏
i=3

h{1,i}(
1
nX(1, i))h{2,i}(

1
nX(2, i))

) ∏
{i,j}∩{1,2}=∅

〈h{i,j}〉.
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By Lemma 3.3, ( 1
nX(1, i))i≥3 and ( 1

nX(2, i))i≥3 are each families of independent expo-
nential random variables with mean 1. Moreover they are mutually independent, since
they are determined from the independent Poisson point processes of edge weights
corresponding to ∅1 and ∅2, respectively. Since furthermore E{1,2} is independent of
everything, we conclude that (3.5) holds.

3.2 Minimal-rule exploration processes

An important class of exploration processes, which includes both FPP and IP, are
those exploration processes determined by a minimal rule in the following sense:

Definition 3.5 (Minimal-rule exploration process). A minimal rule for an exploration
process E on T (1,2) is an (Fk)k-adapted sequence (Sk,≺k)∞k=1, where Sk ⊂ ∂Ek−1 is a
(possibly empty) subset of the boundary vertices of Ek−1 and ≺k is a strict total ordering
of the elements of Sk (if any) such that the implication

w ∈ Sk, p (v) = p (w) ,Mv = Mw, Xv < Xw =⇒ v ∈ Sk, v ≺k w (3.12)

holds. An exploration process is determined by the minimal rule (Sk,≺k)∞k=1 if Ek = Ek−1
whenever Sk = ∅ and otherwise Ek is formed by adjoining to Ek−1 the unique vertex
vk ∈ Sk that is minimal with respect to ≺k.

In words, in every step k there is a set of boundary vertices Sk from which we can
select for the next exploration step. The content of (3.12) is that, whenever a vertex
w ∈ Sk is available for selection, then all siblings of w with the same mark but smaller
weight are also available for selection and are preferred over w.

For FPP on T (1,2) with edge weights fn(Xv), we take v ≺k w if and only if Tv < Tw
(recall (2.13)) and take Sk = ∂Ek−1. For IP on T (1,2), we have v ≺k w if and only if
Xv < Xw; the choice of subset Sk can be used to enforce, for instance, whether the kth

step is taken in T (1) or T (2).
Recall the subtree Ẽk of unthinned vertices from Definition 3.2 and the subgraph

πM (Ẽk) from Definition 2.9. That is, πM (Ẽk) is the union of two trees with roots 1 and 2,
respectively, and for v ∈ Ẽk \ {∅1,∅2}, πM (Ẽk) contains vertices Mv and Mp(v) and the
edge

{
Mv,Mp(v)

}
.

For any i ∈ [n] for which N(i) < ∞, recall that V (i) is the unique vertex of Ẽk
(k ≥ N(i)) for which MV (i) = i. Define V (i, i′) to be the first child of V (i) with mark i′.

Recalling (3.3), an equivalent characterization of V (i, i′) is

X(i, i′) = XV (i,i′). (3.13)

The following lemma shows that, for an exploration process determined by a minimal
rule, unthinned vertices must have the form V (i, i′):

Lemma 3.6. Suppose E is an exploration process determined by a minimal rule (Sk,≺k
)∞k=1 and k ∈ N is such that Ẽk 6= Ẽk−1. Let ik = Mp(vk) and i′k = Mvk . Then vk = V (ik, i

′
k).

Proof. By construction, p (vk) ∈ Ẽk−1 and Mp(vk) = ik, so V (ik) = p (vk) by definition.
Moreover, V (ik) = p (V (ik, i

′
k)) and MV (ik,i′k)

= i′k = Mvk . Suppose to the contrary that
V (ik, i

′
k) 6= vk. By the definition of V (ik, i

′
k), it follows that XV (ik,i′k)

< Xvk and (3.12)
yields V (ik, i

′
k) ∈ Sk and V (ik, i

′
k) ≺k vk, a contradiction since vk must be minimal for

≺k.

If E is an exploration process determined by a minimal rule, then we define

S(Kn)

k =
{
{i, i′} ∈ E(Kn) : i ∈ πM (Ẽk−1), i′ /∈ πM (Ẽk−1), V (i, i′) ∈ Sk

}
, (3.14)
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and
e1 ≺̃k e2 ⇐⇒ V (i1, i

′
1) ≺k V (i2, i

′
2), e1, e2 ∈ S(Kn)

k , (3.15)

where ej =
{
ij , i
′
j

}
and ij ∈ πM (Ẽk−1), i′j /∈ πM (Ẽk−1) as in (3.14).

Proposition 3.7 (Thinned minimal rule). Suppose E is an exploration process determined
by a minimal rule (Sk,≺k)∞k=1. Then, under the edge-weight coupling (3.4), the edge
weights of πM (Ẽk) are determined by

X(Kn)

{Mv,Mp(v)} = 1
nXv for any v ∈ ∪∞k=1Ẽk \ {∅1,∅2} , (3.16)

and generally

X(Kn)

{i,i′} = 1
nXV (i,i′) whenever i ∈ πM (Ẽk−1), i′ /∈ πM (Ẽk−1) for some k ∈ N. (3.17)

Moreover, for any k ∈ N for which Ẽk 6= Ẽk−1, πM (Ẽk) is formed by adjoining to πM (Ẽk−1)

the unique edge ek ∈ S(Kn)

k that is minimal with respect to ≺̃k.

Proposition 3.7 asserts that the subgraph πM (Ẽk) of Kn, equipped with the edge
weights (X(Kn)

e )e∈E(πM (Ẽk)), is isomorphic as an edge-weighted graph to the subgraph

Ẽk of T (1,2), equipped with the rescaled edge weights ( 1
nXv)v∈Ẽk\{∅1,∅2}. Furthermore,

the subgraphs πM (Ẽk) can be grown by an inductive rule. Thus the induced subgraphs
(πM (Ẽk))∞k=0 themselves form a minimal-rule exploration process on Kn, with a minimal
rule derived from that of E , with the caveat that ≺̃k may depend on edge weights from
Ek−1 \ Ẽk−1 as well as from πM (Ẽk−1).

Proof of Proposition 3.7. We first prove (3.17). By assumption, N(i) ≤ k − 1 < N(i′), so
(3.17) is simply the first case in (3.4) (see also (3.13)).

Take v ∈ ∪∞k=1Ẽk \ {∅1,∅2}, and assume that v = vk, i.e., set k = Nv ≥ 1. Set
ik = Mp(vk) and i′k = Mvk . By construction, ik ∈ πM (Ẽk−1) but i′k /∈ πM (Ẽk−1), and
according to Lemma 3.6, vk = V (ik, i

′
k). So (3.16) is a special case of (3.17).

By construction, πM (Ẽk) is formed by adjoining to πM (Ẽk−1) the vertex i′k = Mvk ∈ [n]

via the edge ek = {ik, i′k}. By Lemma 3.6, vk = V (ik, i
′
k), and by the definition of a

minimal rule, the vertex vk belongs to Sk and is minimal for ≺k. It follows from the
definitions (3.14)–(3.15) that ek ∈ S(Kn)

k is minimal for ≺̃k.

3.3 Coupling SWT(1) and BP(1): proof of Theorem 2.10

In this section, we prove Theorem 2.10: that is, we couple the smallest-weight
tree SWT(1) on Kn to a single branching process BP(1) on T (1). Since this statement is
concerned with processes starting from only one source, we use exploration processes
on T (1) instead of T (1,2). All results from Sections 3.1 and 3.2 carry over (indeed, the
results hold for any finite number of copies of the PWIT) and the edge-weight coupling
formula (3.4) becomes

X(Kn)

e =


1
nX(i, i′) if N(i) < N(i′),
1
nX(i′, i) if N(i′) < N(i),

E{i,i′} if N(i) = N(i′) =∞,
(3.18)

with N(i) = N(i′) = 0 no longer possible. We are actually proving a more specific
statement:

Theorem 3.8 (Coupling to FPP on PWIT). Couple the edge weights Xv and X(Kn)
e accord-

ing to (3.18), where the exploration process on T is the discrete-time FPP exploration
process (BPsize k)∞k=0. Then the branching process BP and the smallest-weight tree SWT
are related by

πM (B̃Pt) = SWTt for all t ≥ 0, a.s. (3.19)
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By Theorem 3.4, the edge weights X(Kn)
e are i.i.d. exponential with mean 1. Hence,

as discussed in Section 2.1, the edge weights Y (Kn)
e = g(X(Kn)

e ) have the distribution
function FY . In particular, SWT has the correct marginal law under this coupling, and
Theorem 3.8 contains the result of Theorem 2.10.

In the following proof we use the notation B̃Psize k to mean B̃Pt when t = Tsize k, the
time when BPt first contains k + 1 vertices (including the starting vertex). Because of
thinning, B̃Psize k may in general have fewer than k + 1 vertices, and k 7→ B̃Psize k will not
be strictly increasing.

Proof of Theorem 3.8. It is easy to verify that the discrete-time exploration process
(BPsize k)∞k=0 is determined by the minimal rule where Sk = ∂BPsize k−1 and v ≺FPP

k w if
and only if Tv < Tw.

The smallest-weight tree SWT = SWT(1) evolves in discrete time as follows. At time
0, SWT0 contains only vertex 1 and no edges. The time T (Kn)

size k′−1 is the time that the
(k′ − 1)st vertex, not including vertex 1, is added. After time T (Kn)

size k′−1, the next edge
added will be the minimizer e′k′ of dKn,Y (Kn)(1, i) + Y (Kn)

e over the set of boundary edges
e = {i, j} with i ∈ SWTsize k′−1, j /∈ SWTsize k′−1, and moreover e′k′ = {i′k′ , j′k′} will be
added at time T (Kn)

size k′ = dKn,Y (Kn)(1, i′k′) + Y (Kn)

e′
k′

. It is easy to verify by induction that for

any i ∈ SWTsize k′ , dKn,Y (Kn)(1, i) equals the sum of edge weights Y (Kn)
e for e belonging

to the unique path in SWTsize k′ from 1 to i.
Both B̃P and SWT are increasing jump processes and πM (B̃P0) = SWT0. By an

inductive argument, it suffices to show that if k, k′ are such that B̃Psize k 6= B̃Psize k−1 and
πM (B̃Psize k−1) = SWTsize k′−1 then (a) the edge e′k′ next added to SWTsize k′−1 is the same
as the edge ek = {ik, i′k} that is minimal with respect to ≺̃k′ and therefore next added to

πM (B̃Psize k−1); and (b) T (Kn)

size k′ = Tsize k.

Let i ∈ V (πM (B̃Psize k−1)). The unique path in SWTsize k′−1 = πM (B̃Psize k−1) from i to

1 is the image of the unique path in B̃Psize k−1 from V (i) to ∅1 under the mapping v 7→Mv

(recall Definition 2.9). According to (3.16), (2.1) and (2.3), the edge weights along this
path are

Y (Kn)

{Mpm−1(V (i)),Mpm(V (i))} = g(X(Kn)

{Mpm−1(V (i)),Mpm(V (i))}) = g( 1
nXpm−1(V (i))) = fn(Xpm−1(V (i))),

(3.20)
for m = 1, . . . , |V (i)|. Summing gives dKn,Y (Kn)(1, i) = TV (i).

In addition, let i′ /∈ V (πM (B̃Psize k−1)) and write e = {i, i′}. By (3.17), X(Kn)
e =

1
nXV (i,i′), so that Y (Kn)

e = fn(XV (i,i′)). Thus e′k′ is the edge e that minimizes

dKn,Y (Kn)(1, i) + Y (Kn)

e = TV (i) + fn(XV (i,i′)) = TV (i,i′) (3.21)

over all choices of i′ /∈ V (πM (B̃Psize k−1)). By Proposition 3.7, so is ek; thus (a) follows
since the minimizer is unique. Moreover T (Kn)

size k′ is the corresponding minimum value,
namely T (Kn)

size k′ = TV (ik,i′k)
. According to Lemma 3.6, vk = V (ik, i

′
k) and (b) follows.

3.4 Comparing FPP and IP: proof of Theorems 2.11 and 2.12

In this section, we prove Theorems 2.11 and 2.12 by comparing the FPP and IP
dynamics on the PWIT.

Proof of Theorem 2.12. It is easy to see that IP is an exploration process determined
by a minimal rule. For instance, we may take Sk = ∂IPk−1 and v ≺k w if and only if
Xv < Xw.

In fact, it will be more convenient to use a different characterization of IP. For
v ∈ T , write O(v) = (X(v,1), . . . , X(v,|v|)) for the vector of edge weights Xv′ along the
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path from ∅1 to v, ordered from largest to smallest. Set v ≺IP
k w if and only if O(v) is

lexicographically smaller than O(w). It is an elementary exercise that this minimal rule
(Sk,≺IP

k )∞k=1 also determines IP.
Let ε > 0 be given. Write Bk0 for the collection of all vertices of the form ∅1j1 · · · jr

with 1 ≤ r ≤ k0 and j1, . . . , jr ≤ k0. (That is, Bk0 consists of all vertices in T within k0
generations for which each ancestor is at most the kth

0 child of its parent.) Note that the
first k0 explored vertices v1, . . . , vk0 necessarily belong to Bk0 , for both (BPsize k)k0k=0 and
IP. Let δ > 0 and write Aδ for the event that inf {Xv : v ∈ Bk0} ≥ δ, sup {Xv : v ∈ Bk0} ≤
1/δ, and inf {|Xv −Xw| : v, w ∈ Bk0 , v 6= w} ≥ δ. We may choose δ > 0 sufficiently small
that P(Aδ) ≥ 1− ε.

Choose x0 < x1 < · · · < xN such that x0 = δ, xN = 1/δ and xj − xj−1 ≤ δ/2 for all
j ∈ [N ]. By assumption, there is an n0 ∈ N such that fn(xj)/fn(xj−1) > k0 for all j ∈ [N ]

and n ≥ n0. Hence, for any x, x′ ∈ [δ, 1/δ] with x′ ≥ x+ δ, the monotonicity of fn implies

fn(x′)

fn(x)
≥ fn(xj)

fn(xj−1)
> k0, (3.22)

since we may choose j such that [xj−1, xj ] ⊂ [x, x′]. From now on assume n ≥ n0.
Consider any v, w ∈ Bm such that v 6= w and neither v nor w is an ancestor of the

other. Then there is a smallest index j with X(v,j) 6= X(w,j). If X(v,j) < X(w,j) then, on
Aδ,

|v|∑
i=j

fn(X(v,i)) ≤ k0fn(X(v,j)) < fn(X(w,j)) ≤
|w|∑
i=j

fn(X(w,i)), (3.23)

and similarly if X(v,j) > X(w,j). Hence v ≺FPP
k w if and only if O(v) is lexicographically

smaller than O(w), i.e. v ≺IP
k w, for any of the vertices v, w that may be relevant to

(BPsize k)k0k=0 or (IP(k))k0k=1. Since BPsize 0 = IP(0), it follows that, on Aδ for n sufficiently
large, we have (BPsize k)k0k=1 = (IP(k))k0k=1, and since P(Aδ) ≥ 1 − ε with ε > 0 arbitrary,
this completes the proof.

Proof of Theorem 2.11. Couple the edge weights on Kn according to (3.4), where the
exploration process is (BPsize k)∞k=0. Fix k0 ∈ N. By Theorem 2.12, (BPsize k)k0k=0 =

(IP(k))k0k=1 whp. On the other hand, since k0 is fixed, none of the first k0 vertices explored

by (BPsize k)∞k=0 is thinned, whp, so that πM (B̃Psize k) = SWTsize k whp by Theorem 2.10.

4 A strong disorder result: proof of Theorem 2.1

Proof of Theorem 2.1. The proof of (2.6) proceeds via stochastic upper and lower bounds
on Wn based on couplings with IP where we use two different exploration processes. For
the lower bound, consider the minimal-rule exploration process E = (Ek)k∈N0

given by
IP on T (1,2) that alternates between an invasion step in T (1) and an invasion step in T (2)

as explained below Definition 3.5. By Theorem 3.4 the edge weights Y (Kn)
e = fn(X(Kn)

e )

derived from this exploration process as in (3.4) are i.i.d. with distribution function FY
and it suffices to consider the FPP problem on Kn with these edge weights. Let V (j)

denote the set of vertices in the invasion cluster on T (j) explored before the edge of
weight M (j) is invaded. (In the language of [4, 13, 17, 21], V (j) is the first pond, not
including the first outlet.) Let V (j)

+ consist of V (j) together with all adjacent vertices
connected by an edge of weight at most M (1) ∨M (2).

Let An be the event that none of the vertices in V (1)

+ ∪ V (2)

+ are thinned, and that the
exponential variable X(Kn)

{1,2} = E{1,2} from (3.4) satisfies X(Kn)

{1,2} ≥
1
n (M (1) ∨M (2)). Since

V (j)

+ is finite and the vertices in V (j) are explored after a finite number of steps (not
depending on n), An holds with high probability.
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On An, let W (j) denote the image in [n] of V (j) under the mapping πM : v 7→Mv from
Definition 2.9. Then every edge e between W (j) and [n] \ (W (1) ∪W (2)) satisfies Y (Kn)

e ≥
fn(M (j)), and every edge e between W (1) and W (2) satisfies Y (Kn)

e ≥ fn(M (1) ∨M (2)).
Since every path between vertices 1 and 2 has to leave W (1) and W (2), this therefore
proves that Wn ≥ fn(M (1) ∨M (2)) on An, i.e., whp.

For the upper bound, let ε > 0 and let N ∈ N denote a constant to be chosen later.
Modify the minimal-rule exploration process above by stopping after N steps in each
subtree T (j), i.e., set E ′k = Ek∧2N , and couple the edge weights according to (3.4). Denote
by X(j)

max the largest edge weight in T (j) so invaded, so that X(j)
max ≤M (j) by definition.

Let U (j) = {v ∈ ∂E2N1
∩ T (j) : X(j)

max < Xv < X(j)
max + ε} denote the collection of bound-

ary vertices joined to invaded vertices by an edge of weight at most X(j)
max+ε. Conditional

on X(1)
max, X

(2)
max and E ′, the number |U (j)| of such boundary vertices is Poisson with mean

εN , independently for j ∈ {1, 2}. (This holds because the event that the exploration
process E ′ explores a given sequence of vertices v1, . . . , v2N1

can be expressed solely
in terms of the numbers |{vw ∈ ∂E ′k : Xvw < Xvi}| of boundary edges of smaller weight,
over all k, i = 1, . . . , 2N .)

Let A′n denote the event that none of the vertices in E ′2N ∪U (1) ∪U (2) have the same
mark. Condition on the occurrence of A′n and on the values of the disjoint vertex sets
πM (E ′2N ), πM (U (1)), πM (U (2)). Consider the induced subgraph K ′n−2N−2 of Kn obtained
by excluding the 2N + 2 explored vertices in πM (E ′2N ). Since no other vertices are
explored, the edge weights in this induced subgraph are the independent exponential
random variables Ee from (3.4).

The random subgraph G′n−2N−2 =
{
e ∈ E(K ′n−2N−2) : Ee ≤ 1

n (1 + ε)
}

has the (condi-
tional) law of the Erdős-Rényi random graph G(n−2N−2, p) with p = P(Ee ≤ 1

n (1+ε)) ∼
1
n (1 + ε) as n→∞. As is well known, in the supercritical regime, the giant component
has diameter OP(log n) and contains a positive asymptotic fraction of vertices (see e.g.,
[16]). Suppose U (1), U (2) are two disjoint subsets of vertices in G′n−2N−2 (possibly random
but independent of the randomness in G′n−2N−2). If U (1) and U (2) are sufficiently large,
each of them is likely to contain at least one vertex from the giant component. Hence
we may choose N1 ∈ N such that, given the event {|U (1)| , |U (2)| ≥ N1}, there will exist
a pair of vertices u1 ∈ U (1), u2 ∈ U (2) connected by a path in G′n−2N−2 of length at most
N1 log n, with conditional probability at least 1− ε for n sufficiently large.

Since the sizes |U (j)| are independent Poisson random variables with mean εN , we
may choose N large enough that |U (j)| ≥ N1 with probability at least 1− ε. Moreover,
since E ′2N ,U (1),U (2) are finite and do not depend on n, it follows that An occurs with
high probability and we can choose N2 large enough that the diameters of E ′2N ,U (1),U (2)

are at most N2 with probability at least 1− ε.
Because of conditional independence, we may choose the vertex sets U (j) = πM (U (j))

in the preceding discussion. Taking the intersection of all the events above, it follows
that, with probability at least 1−2ε− o(1), there is a path in Kn between vertices 1 and 2
consisting of at most N2 edges of FPP weight at most fn(X(1)

max); a single edge of weight
at most fn(X(1)

max + ε); at most N1 log n edges of weight at most g( 1
n (1 + ε)) = fn(1 + ε);

a single edge of weight at most fn(X(2)
max + ε); and at most N2 edges of weight at most

fn(X(2)
max). Therefore, with probability at least 1− 2ε− o(1),

Wn ≤ (2N2 + 2 +N1 log n)fn ((X(1)

max ∨X(2)

max ∨ 1) + ε)

≤ (2N2 + 2 +N1 log n)fn ((M (1) ∨M (2)) + ε) . (4.1)

To complete the proof, it suffices to show that the right-hand side of (4.1) is at
most fn((M (1) ∨M (2)) + 2ε) with high probability. Since M (1) and M (2) do not depend
on n and satisfy M (j) ≥ 1 a.s., it suffices to show that, for each fixed x ≥ 1, we have
(2N2 + 2 +N1 log n)fn(x) ≤ fn(x+ ε) for n sufficiently large. But the assumptions on fn
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in (2.5) imply that the ratio fn(x + ε)/(2N2 + 2 + N1 log n)fn(x) diverges to infinity as
n→∞ and therefore exceeds 1 for n sufficiently large.

5 Consequences of the scaling assumptions on fn

In this section, we state the principal technical estimates that follow from Condi-
tion 2.2, as well as two results relating the function fn to the assumptions on FY from
Section 1.1.

Condition 2.2 gives a uniform lower bound on f ′n. If we rearrange and integrate this
bound, we conclude that for any m0 > 1, there exists δ > 0 such that

fn(x1)

fn(x0)
≥ exp (δsn log(x1/x0)) =

(
x1
x0

)δsn
for ξn ≤ x0 ≤ x1 ≤ m0. (5.1)

Lemma 5.1. Suppose (fn(x))n and (sn)n satisfy Condition 2.2. Then, given m0 ∈ (1,∞),
there exists K <∞ such that

f−1n (y1)− f−1n (y0) ≤ K

sn
· y1 − y0

y0
for fn(1) ≤ y0 ≤ y1 ≤ fn(m0). (5.2)

Lemma 5.2. Suppose (fn(x))n and (sn)n satisfy Condition 2.2. Then, given m0 ∈ (1,∞),
there exists K <∞ such that(

f−1n (y1)− f−1n (y0)
)2 ≤ K

s2n
· y1 − y0

y0
for fn(1) ≤ y0 ≤ y1 ≤ fn(m0). (5.3)

Proof of Lemmas 5.1–5.2. Condition 2.2 implies that fn is differentiable with positive
derivative, and therefore continuous and strictly increasing, on [1,∞]. In particular, we
can replace yi by fn(xi), i = 0, 1, where 1 ≤ x0 ≤ x1 ≤ m0. By (5.1),

fn(x1)− fn(x0)

fn(x0)
≥ exp (δsn log(x1/x0))− 1 ≥ exp (δsn(x1 − x0)/m0)− 1 (5.4)

since d
dx log x ≥ 1/m0 on [1,m0]. Apply the inequalities ez − 1 ≥ z and ez − 1 ≥ 1

2z
2 and

rearrange to prove both statements.

Lemma 5.3. Suppose (fn(x))n and (sn)n satisfy Condition 2.2. Then, given any m0 ∈
[1,∞), there exists K ∈ (0,∞) such that∫ m

0

fn(x)dx ≤ Kfn(m)

sn
for all m ∈ [1,m0] and n ∈ N. (5.5)

Proof. Apply (5.1) with x1 = m to conclude∫ m

0

fn(x)dx ≤
∫ ξn

0

fn(ξn)dx+

∫ m

ξn

fn(m)
( x
m

)δsn
dx

≤ fn(ξn) +
fn(m)

δsn + 1
≤ fn(ξn) + δ−1s−1n fn(m). (5.6)

Since fn(ξn) = o(fn(1)/sn), and a fortiori fn(ξn) = o(fn(m)/sn) for any m ≥ 1, the result
follows.

The next lemma shows that the hypotheses of Theorems 1.1–1.3 imply those of
Theorems 2.1 and 2.11:
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Lemma 5.4. With the notation of (2.2)–(2.3), the relation (1.3) (with t 7→ L(t) slowly
varying as t→∞) holds if and only if

x
d

dx
log g(x) = x−αL̃(1/x) (5.7)

with t 7→ L̃(t) slowly varying as t→∞. If either of these two equivalent conditions hold,
then L(t) ∼ L̃(t) as t→∞ and the sequences (sn)n, (s̃n)n defined by (1.4) and

s̃n =
f ′n(1)

fn(1)
(5.8)

satisfy sn ∼ s̃n as n→∞. Moreover if in addition sn →∞ (or equivalently s̃n →∞) then
Conditions 2.2–2.3 hold for the sequences (fn(x), sn) or (fn(x), s̃n), and (2.15) holds. If
the stronger statement sn/ log log n→∞ (or equivalently s̃n/ log log n→∞) holds, then
(2.5) holds.

Proof. The equivalence follows by noting that L̃(1/x) = e−x( x
1−e−x )1+αL(1/(1− e−x)), so

that L(t) ∼ L̃(t) as t → ∞ and L̃(t) is slowly varying as t → ∞ if and only if L(t) is. As
observed after Conditions 2.2–2.3, we have

xf ′n(x)

fn(x)
=

(x/n)g′(x/n)

g(x/n)
(5.9)

so s̃n is obtained by setting x = 1/n in (5.7). Since sn is obtained by setting u = 1/n in
(1.3), s̃n ∼ sn follows from L(t) ∼ L̃(t).

We prove Conditions 2.2–2.3 for the sequence (fn(x), s̃n). Since Conditions 2.2–2.3
are insensitive to replacing sn by an asymptotically equivalent sequence, this will prove
the result for the sequence (fn(x), sn) also.

We compute
1

s̃n

xf ′n(x)

fn(x)
=

g(1/n)

(1/n)g′(1/n)

x
ng
′( xn )

g( xn )
= x−α

L̃(n/x)

L̃(n)
. (5.10)

By properties of slowly-varying functions, the right-hand side of (5.10) is bounded away
from 0 as n→∞, and indeed converges to x−α, uniformly over x in a compact subset of
(0,∞). Set ξn = 1/2, say. To prove s̃nfn(1/2) = o(fn(1)), we can apply (5.1) (which only
uses the assumption that (5.10) is bounded away from 0) with x0 = 1/2, x1 = 1 to find

fn(1)

s̃nfn(1/2)
≥ 2δs̃n

s̃n
→∞ (5.11)

since s̃n →∞. This proves Condition 2.2.
To prove Condition 2.3, note that (5.10) is also bounded above uniformly over x in

a compact subset of (0,∞). Since s̃n →∞, we may choose η sufficiently small that the
intervals [1− η/s̃n, 1 +C/s̃n] belong to such a compact subset for all n. Similarly to (5.1),
we obtain the matching upper bound

fn(1 + C/s̃n)

fn(1− η/s̃n)
≤
(

1 + C/s̃n
1− η/s̃n

)Ks̃n
. (5.12)

Since s̃n →∞, the right-hand side converges to eK(C+η) as n→∞.
When sn, s̃n → ∞, (2.15) follows immediately from (5.1). When sn/ log log n → ∞,

(2.5) follows from (5.1) because exp (δsn log((x+ δ)/x)− log log n)→∞.

The last result, valid without any scaling assumptions on fn, states that scaling by
f−1n or by nFY are equivalent.
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Lemma 5.5. With the notation of (2.2)–(2.3), where FY may depend implicitly on n, and
with (0,∞)-valued random variables Wn and M (1),

f−1n (Wn)
P−→M (1) if and only if nFY (Wn)

P−→M (1). (5.13)

The same result is true if convergence in probability is replaced by convergence in
distribution or convergence a.s.

Proof. It suffices to show that for every sequence (wn) of finite positive numbers and
every finite positive number m, f−1n (wn) → m if and only if nFY (wn) → m. This is
immediate from the relations

nFY (wn) = n
(

1− e−f
−1
n (wn)/n

)
, f−1n (wn) = −n log (1− FY (wn)) (5.14)

(which follow from (2.2)–(2.3)) and the asymptotics 1− e−x ∼ x ∼ − log(1− x) as x ↓ 0,
together with the observation that, since m is finite, both f−1n (wn)/n and FY (wn) must
tend to 0 as n→∞.

6 Poisson Galton–Watson trees and lucky vertices

In this section, we prove Proposition 2.17 and Lemma 2.18. We begin with preliminary
results on Poisson Galton–Watson trees.

6.1 Properties of Poisson Galton–Watson trees

Proposition 6.1. Write θ(m) = P(|PGWm| =∞) for the survival probability of a Poisson
Galton–Watson tree of mean m. For r ∈ (0,∞), we denote by PGW(≤r)

m and PGW(≥r)
m the

subgraph of PGWm consisting of the vertices within distance r and with distance at least
r, respectively, from the root.

(a) θ : (0,∞) → [0, 1] is non-decreasing with θ(m) = 0 for m ≤ 1, θ(m) > 0 for m > 1,
and

1− θ(m) = e−mθ(m) for all m ∈ (0,∞). (6.1)

(b) As m ↓ 1,

θ(m) ∼ 2(m− 1) and 1−m(1− θ(m)) ∼ m− 1, (6.2)

and, uniformly over m ≥ 1, θ(m) = O(m− 1) and 1−m(1− θ(m)) = O(m− 1).

(c) The derivative θ′(m) exists and satisfies θ′(m) ≤ 2 uniformly in m > 1.

(d) Form > 1, P
(
PGWm ∈ ·

∣∣ |PGWm| <∞
)

= P(PGWm̂ ∈ ·), where m̂ = m(1−θ(m)) <

1 and

1− m̂ ∼ m− 1 as m ↓ 1. (6.3)

(e) Uniformly over m ∈ (0,∞),

P(|PGWm| = k) =
1

m
√

2πk3
e−(m−1−logm)k+O(1). (6.4)

(f) Let K ∈ (0,∞). Then there exists c ∈ (0,∞) such that for every m ≥ 1/K and every
k ∈ N with k ≤ K/ |m− 1|2,

P(k ≤ |PGWm| ≤ 2k) ≥ c√
k
. (6.5)
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(g) Let ε > 0. Then there exists δ1 > 0 such that for all r, k ∈ N with r2 ≥ εk, and for
all m > 0,

P(|PGW(≤r)
m | ≥ k) ≥ δ1P(k ≤ |PGWm| ≤ 2k). (6.6)

(h) Uniformly in m, r ∈ [1,∞),

P
(∣∣PGW(≥r)

m

∣∣ ≥ 1
)
≤ θ(m) +O(1/r). (6.7)

Proof. (a) Identity (6.1) is obtained by considering the individuals in the first generation.
The remaining statements are standard facts about survival probabilities of Galton–
Watson processes.
(b) For θ(m) > 0, i.e., m > 1, we can solve (6.1) for m in terms of θ:

m =
− log(1− θ(m))

θ(m)
. (6.8)

The function θ 7→ − log(1−θ)
θ increases from 1 to∞ as θ increases from 0 to 1, and hence

limm↓1 θ(m) = 0. Expanding − log(1− θ) as a Taylor series around θ = 0 gives m− 1 =
1
2θ(m) + O(θ(m)2) ∼ 1

2θ(m) and similarly 1 −m(1 − θ(m)) = (θ(m) + (1 − θ(m)) log(1 −
θ(m)))/θ(m) ∼ 1

2θ(m). The uniform bounds follow because θ(m)
m−1 and 1−m(1−θ(m))

m−1 are
continuous and vanish in the limit m→∞.
(c) By (6.8), the function m 7→ θ(m), 1 < m < ∞, is the inverse of the function θ 7→
− log(1−θ)

θ , 0 < θ < 1, so θ′(m) = 1/(dmdθ ). We compute

dm

dθ
=

1

θ2

(
θ

1− θ
+ log(1− θ)

)
=

1

θ2

∫ θ

0

(
1

(1− u)2
− 1

1− u

)
du =

1

θ2

∫ θ

0

u

(1− u)2
du.

(6.9)
The last integral is bounded below by

∫ θ
0
u du = 1

2θ
2 so dm

dθ ≥ 1/2 and θ′(m) ≤ 2.
(d) See for example Theorem 3.15 in [19]. The asymptotics in (6.3) follows from (6.2).
(e) It is well known (see for example the first display on page 951 in [4]) that

P(|PGWm| = k) =
e−mk(mk)k−1

k!
. (6.10)

Stirling’s formula yields the claim.
(f) A Taylor expansion shows that m− 1− logm ≤ 2(m− 1)2 for 1/2 ≤ m ≤ 3/2, so that
(m− 1− logm)k ≤ 2K for all the applicable values of k,m. Hence the probability in (6.4)
is at least c′/

√
k3 for some small c′ > 0. Replacing k by i and summing over i ∈ [k, 2k]

yields the claim.
(g) Denote by (Gi,P) the uniform labelled rooted tree on i nodes after the labels of the
children have been discarded and by h(Gi) the height of Gi. Then h(Gi)/

√
i converges, as

i → ∞, to the maximum of 2B where B = (Bt)t∈[0,1] is a standard Brownian excursion
[5, 6].

For all m > 0 and i ∈ N, the distribution of PGWm conditioned on having i nodes is
the same as the distribution of Gi. Letting G (≤r)

i denote the subtree of Gi consisting of
vertices within distance r, we deduce that for all i ≤ 2k,

P(
∣∣PGW(≤r)

m

∣∣ = i) ≥ P(|PGWm| = i)P(h(Gi) ≤ r)

≥ P(|PGWm| = i)P

(
h(Gi)√

i
≤ r√

i

)
≥ P(|PGWm| = i)P

(
h(Gi)√

i
≤ r√

2n

)
≥ P(|PGWm| = i)P

(
h(Gi)√

i
≤
√
ε/2

)
. (6.11)

EJP 25 (2020), paper 81.
Page 27/45

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP484
http://www.imstat.org/ejp/


Long paths I. Local PWIT dynamics

Write pi for the last probability on the right-hand side of (6.11). Then limi→∞ pi > 0 and
there is some δ > 0 such that pi ≥ δ for all sufficiently large i. Since P(h(Gi) ≤ r) > 0

for each i, we can assume that P(
∣∣PGW(≤r)

m

∣∣ = i) ≥ δ1P(|PGWm| = i) for all i by taking δ1
sufficiently small. Summing over i ∈ [k, 2k] yields the claim.
(h) Using (d), we obtain

P
(∣∣PGW(≥r)

m

∣∣ ≥ 1
)

= P(|PGWm| =∞) + P(|PGWm| <∞)P
(
|PGW(≥r)

m | ≥ 1
∣∣ |PGWm| <∞

)
= θ(m) + (1− θ(m))P(

∣∣PGW(≥r)
m̂

∣∣ ≥ 1)

≤ θ(m) + P(
∣∣PGW(≥r)

1

∣∣ ≥ 1). (6.12)

The claim now follows from a standard result on critical Galton–Watson processes (see
for example [18, Lemma I.10.1]).

6.2 The probability of luckiness: proof of Proposition 2.17

In the proof of Proposition 2.17 we use the following estimates:

Lemma 6.2. Suppose 0 ≤ X ≤ Y are random variables such that E (X |Y ) ≥ pY a.s.
Then P(X ≥ m) ≥ 1

2pP(Y ≥ 2m/p) for any m ∈ [0,∞).

Proof. Markov’s inequality applied to Y − X gives P
(
Y −X > (1− 1

2p)Y
∣∣Y ) ≤ (1 −

p)/(1− 1
2p), so P

(
X ≥ 1

2pY
∣∣Y ) ≥ 1

2p/(1−
1
2p) ≥

1
2p and the result follows.

For later use, it will be convenient to prove a slight strengthening of Proposition 2.17:

Lemma 6.3. Suppose (fn(x))n and (sn)n satisfy Condition 2.2, and let m0 ∈ (1,∞) and
K ∈ (0,∞). Then there exists δ > 0 such that for all m ∈ [1,m0] and for all k, n ∈ N with
k ≤ K(s2n ∧ |m− 1|−2),

P
( ∣∣BPfn(1)∣∣ ≥ k ∣∣ |PGWm| <∞

)
≥ δ√

k
. (6.13)

When m = 1, we interpret |m− 1|−2 as ∞, so that the condition on k reduces to
k ≤ Ks2n.

Proof. Let m0 ∈ (1,∞) and K ∈ (0,∞) be given and let m ∈ [1,m0]. We consider
PGWm as a rooted labelled tree equipped with edge weights, but with the vertex labels
from the PWIT forgotten.3 Then, conditional on PGWm, the PWIT edge weights Xw,
w ∈ PGWm \ {∅1}, are uniformly distributed on [0,m], conditionally independent across
different edge weights.

By Proposition 6.1 (d), the conditional distribution of PGWm given {|PGWm| <∞} is
that of a Poisson Galton–Watson tree with mean m̂. Under this conditioning, the PWIT
edge weights along edges of PGWm are still uniformly distributed on [0,m]. So the
conditional law of PGW1 given {|PGWm| <∞} is that of a Poisson Galton–Watson tree
with mean

m′ =
m̂

m
. (6.14)

From Proposition 6.1 (d),

1−m′ ∼ 2(m− 1) as m ↓ 1, (6.15)

3Formally, we should consider instead of PGWm the subset ˜PGWm where we replace each vertex w ∈
PGWm \ {v} by an arbitrary label `(w) drawn independently from some continuous distribution. By a
slight abuse of notation, we will refer to PGWm and Xw, w ∈ PGWm \ {v} instead of ˜PGWm and X`−1(w),

w ∈ ˜PGWm. This procedure avoids the complication, implicit in our Ulam–Harris notation, that the vertex
w = ∅1k1k2 . . . kr ∈ T automatically gives information about the number of its siblings with smaller edge
weights.
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and therefore there is a constant K ′ such that k ≤ K |m− 1|−2 implies k ≤ K ′ |1−m′|−2.
Increasing K ′ if necessary, we may also assume that m′ ≥ 1/K ′ for m ≤ m0.

Let C be the constant from Lemma 5.3 with m = 1, and define

r =
sn
2C

. (6.16)

By Proposition 6.1 (f) and (g) (with m replaced by m′ and K replaced by K ′, and with
ε = 1/(16C2K), respectively) there are constants c, δ1 > 0 such that

P
(
|PGW(≤r)

1 | ≥ 4k
∣∣ |PGWm| <∞

)
≥ δ1P(4k ≤ |PGWm′ | ≤ 8k) ≥ δ1c√

4k
(6.17)

whenever r2 ≥ 4εk, or equivalently (by the definition of ε and r) whenever k ≤ Ks2n.
Conditional on PGW1, the PWIT edge weights Xw, w ∈ PGW1 \ {∅1}, are uniformly

distributed on [0, 1]. Therefore the first passage edge weights Yw = fn(Xw) satisfy

E (Yw |w ∈ PGW1 \ {∅1} , |PGWm| <∞) =

∫ 1

0

fn(x)dx ≤ Cfn(1)

sn
. (6.18)

By the definition of PGW(≤r)
1 , the height of v ∈ PGW(≤r)

1 is at most r. Hence, (6.18) and
(6.16) give

E
(
Tv
∣∣ v ∈ PGW(≤r)

1 , |PGWm| <∞
)
≤ rCfn(1)

sn
≤ 1

2fn(1). (6.19)

By Markov’s inequality P
(
Tv > fn(1)

∣∣ v ∈ PGW(≤r)
1 , |PGWm| <∞

)
≤ 1

2 and consequently

P
(
v ∈ BPfn(1)

∣∣ v ∈ PGW(≤r)
1 , |PGWm| <∞

)
≥ 1

2
, (6.20)

so that

E
( ∣∣BPfn(1)∣∣ ∣∣∣ ∣∣PGW(≤r)

1

∣∣) ≥ 1

2

∣∣PGW(≤r)
1

∣∣ on {|PGWm| <∞} . (6.21)

By Lemma 6.2 with X =
∣∣BPfn(1)∣∣, Y =

∣∣PGW(≤r)
1

∣∣ and p = 1/2, we obtain

P
( ∣∣BPfn(1)∣∣ ≥ k ∣∣ |PGWm| <∞

)
≥ 1

4
P
( ∣∣PGW(≤r)

1

∣∣ ≥ 4k
∣∣ |PGWm| <∞

)
≥ δ1c

4
√

4k
.

Proof of Proposition 2.17. Clearly P(v is k-lucky) does not depend on v, so Proposi-
tion 2.17 is the special case m = 1 in Lemma 6.3, where |PGWm| <∞ already holds a.s.
and the conditional probability reduces to an ordinary probability.

6.3 Emergence of lucky vertices

Define

Tlate k−lucky = inf
{
Tv : v ∈ T \ {∅1} is k-lucky and Tv > Tp(v) + fn(1)

}
, (6.22)

the first time that a lucky vertex is born to a parent of age greater than fn(1).

Lemma 6.4. The distribution of∑
v∈BPTlate k−lucky

(
f−1n (Tlate k−lucky − Tv)− 1

)+
(6.23)

is exponential with rate P(v is k-lucky).
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Since Tv − Tp(v) = fn(Xv), the condition Tv > Tp(v) + fn(1) in the definition of
Tlate k−lucky is equivalent to Xv > 1. On the other hand, the event {v is k-lucky} depends
only on the evolution of BP(v) until time fn(1) and is therefore determined by those
descendants v′ of v for which Xv′ ≤ 1. Because these two conditions on edge weights
are mutually exclusive, it will follow that Tlate k−lucky is the first arrival time of a certain
Cox process. We now formalize this intuition, which requires some care.

Proof of Lemma 6.4. To avoid complications arising from our Ulam–Harris notation, we
modify our description of vertices as follows. Instead of the vertex v = ∅1k1k2 . . . kr
we will consider the modified vertex w(v) = ∅1Xk1Xk1k2 . . . Xk1k2...kr formed out of
the edge weights along the path from ∅1 to v. We can extend our usual notation for
parents, length, concatenation, edge weight, and birth times to vertices of the form
w = ∅1x1 · · ·xr, xi ∈ (0,∞): for instance, |w| = r, Xw = xr and Tw = fn(x1)+ · · ·+fn(xr).

Form the point measureM =
∑
v∈T δw(v) on ∪∞r=0 {∅1} × (0,∞)r. GivenM, we can

recover the PWIT (T , X): for instance, X∅1k1 = inf {x > 0: M({∅1} × (0, x]) ≥ k1} and
X∅1k1k2 = inf {x > 0: M({∅1} × {X∅1k1} × (0, x]) ≥ k2}. The point measureM has the
advantage that a value such asM({∅1}× (a, b)) (the number of children of ∅1 with edge
weights in the interval (a, b)) does not reveal information about the number of sibling
edges of smaller edge weight.

The Poisson property of the PWIT can be expressed in terms ofM by saying that,
conditional on the restriction M

∣∣
{∅1}×(0,∞)r

to the first r generations, the (r + 1)st

generationM
∣∣
{∅1}×(0,∞)r+1 is formed as a Cox process with intensityM

∣∣
{∅1}×(0,∞)r

⊗
1{x>0}dx, where 1{x>0}dx denotes Lebesgue measure on (0,∞).

We next rearrange the information contained in M. Given w = ∅1x1 . . . xr, let
M(w) =

∑
w′ :M({ww′})=1 δw′ denote the point measure corresponding to all descendants

of w (thusM(w) = 0 ifM({w}) = 0, and the point measuresM(w(v)), v ∈ T , are identically
distributed and non-zero)4. Further, writeM(w)

≤ for the restriction ofM(w) to ∪∞k=0 (0, 1]
k.

Since luckiness only depends on descendants explored within time fn(1), it follows that
whether or not v is k-lucky can be determined solely in terms ofM(w(v))

≤ . Indeed, call a

point measure m on ∪∞k=0 (0, 1]
k
k-lucky if m({w′ : Tw′ ≤ fn(1)}) ≥ s2n/ε1; then v is k-lucky

if and only ifM(w(v))

≤ is k-lucky.

Define A to be the collection of vertices w(v), v ∈ T , that are born before time
Tlate k−lucky. That is, for any non-root ancestor v′ of v, including v itself, it is not the case
that Tv′ > Tp(v′) + fn(1) and v′ is k-lucky. To study A, we decompose the PWIT according
to vertices v′ that are born late (i.e., Tv′ > Tp(v′) + fn(1)) and keep track of their early

explored descendants (i.e.,M(w(v′))
≤ ).

For w = ∅1x1 . . . xr, let i1 < · · · < ik denote those indices (if any) for which xi > 1,
and write w` = ∅1x1 . . . xi` , ` = 1, . . . , k. Set q(w,M) to be the sequence of measures
M(∅1)

≤ M(w1)

≤ . . .M(wk)

≤ . Define the rearranged point measure

R =

∫
{∅1}∪

⋃∞
k=1{∅1}×(0,∞)k−1×(1,∞)

δ(w,q(w,M))dM(w). (6.24)

(That is, R is a point measure on pairs (w, q) such that w satisfies w = ∅1 or Xw > 1, and
q is a sequence of measures on ∪∞r=0 (0, 1]

r. Considering R instead ofM corresponds to
partitioning vertices according to their most recent ancestor (if any) having edge weight
greater than 1.)

The Poisson property of the PWIT implies that, conditional on R
∣∣
{(w,q) : |w|≤r}, the

4In this instance, we assume that w′ does not have a ∅j symbol for convenience of notation.

EJP 25 (2020), paper 81.
Page 30/45

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP484
http://www.imstat.org/ejp/


Long paths I. Local PWIT dynamics

restriction R
∣∣
{(w,q) : |w|=r+1} forms a Cox process with intensity measure∫

{(w,q) : |w|≤r}
dR(w, q)

∫
{w′ : |ww′|=r}

dM(w)

≤ (w′)
[
δww′ ⊗ 1{x>1}dx

]
⊗
[
δq ⊗ dP(M(∅1)

≤ ∈ ·)
]
,

(6.25)
where δww′ ⊗ 1{x>1}dx means the image of Lebesgue measure on (1,∞) under the
concatenation mapping x 7→ ww′x. The formula (6.25) expresses the fact that every
vertex in the (r + 1)st generation has a parent uniquely written as ww′, with (w, q(w,M))

corresponding to a point mass in R, w′ corresponding to a point mass in the last entry
M(w)

≤ of the sequence q(w,M), and r = |w|+ |w′|.
Now, it is easy to verify that A is measurable with respect to the restriction of R to

pairs (w, q) such that q = m0 . . .mk with m` not k-lucky for each ` 6= 0.
Because of the Poisson property of the PWIT, as expressed via R in (6.25), it follows

that, conditional on A, the point measure L =
∑
w′′ /∈A,p(w′′)∈A δTw′′ forms a Cox process

on (0,∞). Furthermore, the first point of L is precisely Tlate k−lucky. To determine
the intensity measure of L, we note that for a vertex ww′ ∈ A, w′′ = ww′x satisfies
w′′ 6∈ A if and only if Xw′′ > 1 and M(w′′)

≤ is k-lucky. Furthermore, the condition
Tw′′ = Tww′ + fn(Xw′′) ≤ t is equivalent to Xw′′ ≤ f−1n (t− Tww′). Using (6.25), it follows
that the cumulative intensity measure of L on (0, t] is given by∫{

(w,q) : q=m0...mk,
m` not k-lucky for any ` 6=0

}dR(w, q)

∫
{w′ : Tww′≤t}

dM(w)

≤ (w′)
(
f−1n (t− Tww′)− 1

)+
(6.26)

× P(M(∅1)

≤ is k-lucky).

The vertices ww′ from the integral in (6.26) are in one-to-one correspondence with the
vertices u ∈ A satisfying Tu ≤ t. Consequently we may re-write the cumulative intensity
as ∑

u∈A : Tu≤t

(
f−1n (t− Tu)− 1

)+ · P(u is k-lucky). (6.27)

Finally we note that P(v is k-lucky) times the sum in (6.23) is exactly the sum in (6.27)
evaluated at t = Tlate k−lucky. (The vertex v for which Tv = Tlate k−lucky does not con-
tribute to (6.23).) The cumulative intensity in (6.27) is a.s. continuous as a function of t
(since f−1n is continuous and the jumps at the times Tu are zero). But for any Cox process
with continuous cumulative intensity function and infinite total intensity, it is elementary
to verify that when the cumulative intensity is evaluated at the first point of the Cox
process, the result is exponential with mean 1. This completes the proof.

Proof of Lemma 2.18. The argument in the proof of Lemma 6.4 shows that, conditionally
on V and (BPt)t≤TV +fn(1), the children of a vertex v ∈ D born after time Tv + fn(1)

appear as a Poisson point process, conditionally independent over the choice of v ∈ D.
In particular, the number of children of a vertex v ∈ D born in the time interval
(Tv + fn(1), Tv + fn(1 + C/sn)) is Poisson with mean C/sn, conditionally independently
over the choice of v ∈ D, and the number of those children that are Rs2n-lucky is
Poisson with mean CP(w is Rs2n-lucky)/sn. Summing over v ∈ D, it follows that by time
TV + fn(1) + fn(1 + C/sn), the number of Rs2n-lucky children w born to vertices v ∈ D
after time Tv + fn(1) is at least as large as a Poisson random variable with mean

C

sn
P(w is Rs2n-lucky)(rs2n) = CrsnP(w is Rs2n-lucky). (6.28)

By Proposition 2.17, the mean in (6.28) is at least δC, uniformly in n. Hence, given ε > 0

and k ∈ N, we may ensure that a Poisson random variable with mean (6.28) has value at
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least k with probability at least 1− ε by taking C > 0 sufficiently large. We conclude that
TVk − TV ≤ fn(1) + fn(1 + C/sn) with probability at least 1− ε. But this completes the
proof because Condition 2.3 implies that fn(1 + C/sn) = O(fn(1)) for each fixed C.

7 IP and the geometry of the exploration process

In this section, we compare the branching process BPBBσn to the IP cluster IP(∞) –
the set of all vertices ever invaded in the IP process. The structure of the IP cluster is
encoded in a single infinite backbone and an associated process of maximum weights,
with off-backbone branches expressed in terms of Poisson Galton–Watson trees. See
Proposition 7.1 below.

The proofs in this section rely on showing that BPBBσn cannot be significantly larger
than the part of IP(∞) within distance σn along the backbone. Specifically, we show
that (a) the time to explore a section of backbone is not much larger than the time
to explore the largest edge along it (Lemma 7.3); (b) the number of uninvaded edges
on the boundary of IP(∞) that are explored by time TBBσn is small (Lemma 7.6); (c)
by time TBBσn , it is likely that δσ2

n-lucky vertices have been explored, for δ > 0 small
(Lemma 7.9); and (d) the likelihood of exploring very long paths that do not belong to
the IP cluster is moderate. Assertions (a)–(c) will allow us to prove Theorem 2.16, and
assertion (d) will be made precise in Lemma 7.11 and in the proofs of Lemma 7.12 and
Theorem 2.15.

7.1 Structure and scaling of the IP cluster

Our description of IP(∞) is based on [4], which examines the structure of the IP
cluster on the PWIT, and the scaling limit results in [8], which proves similar results for
regular trees. As remarked in [4], the scaling limit results of [8] can be transferred to
the PWIT without difficulty.

Recall the backbone and the backbone edge weights XBB

k introduced in Definition 2.13.
We define the forward maximum MCk by

MCk = sup
i>k

XBB

i . (7.1)

In the notation of Definition 2.13, the maximum invaded edge weight M (1) from (2.19) is
now MC0. (This amounts to the observation, elementary to verify, that the largest edge
weight M (1) must occur as one of the backbone edge weights XBB

k .)

The off-backbone branch at height k means the subtree of IP(∞) consisting of
vertices that are descendants of V BB

k but not descendants of V BB

k+1, and is denoted by τk.
We consider τk as a rooted labelled tree, but with the edge weights and vertex labels
from the PWIT forgotten5.

Proposition 7.1 ([4, 8]). The backbone is well defined, and MCk > 1 for each k, a.s.
Furthermore:

(a) The maximum in (7.1) is attained uniquely, for each k, a.s. Writing Ik for the
random height at which the maximum in (7.1) is attained, it holds that Ik = OP(k∨1)

uniformly over k ∈ N0.

5As in the proof of Proposition 2.17, we should consider instead of τk the set τ̃k where we replace each
vertex v ∈ τk \

{
V BB
k

}
by an arbitrary label `(v) drawn independently from some continuous distribution. By a

slight abuse of notation, we will refer to τ and Xv , v ∈ τk \
{
V BB
k

}
instead of τ̃k and X`−1(v), v ∈ τ̃k. This

procedure avoids the complication, implicit in our Ulam–Harris notation, that the vertex v = ∅1k1k2 . . . kr ∈ T
automatically gives information about the number of its siblings with smaller edge weights.
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(b) The sequence (MCk)∞k=0 is non-increasing and forms a Markov chain with initial
distribution P(MC0 ≤ m) = θ(m) and transition mechanism

P (MCk+1 = m |MCk = m) = m(1− θ(m)), m > 1,

P (MCk+1 < m′ |MCk = m) =
θ(m′)

θ(m)
(1−m(1− θ(m))), 1 ≤ m′ ≤ m.

(7.2)

(c) MCk = 1 + ΘP(1/k) and indeed k(MCk − 1) converges weakly to an exponential
distribution with mean 1 as k →∞.

(d) Conditionally on (MCk)∞k=0, the off-backbone branches (τk)∞k=0 are distributed as
subcritical Poisson Galton–Watson trees with means MCk(1−θ(MCk)), conditionally
independent (but not identically distributed) for each k.

(e) Conditionally on (MCk)∞k=0, the PWIT edge weight XBB

k either (i) equals MCk−1,
if MCk < MCk−1; or (ii) has the Uniform[0,MCk] distribution, if MCk = MCk−1.
Furthermore the weights are conditionally independent for each k.

(f) Conditionally on (MCk)∞k=0 and (τk)∞k=0, the PWIT edge weight of an edge between
two vertices of τk has the Uniform[0,MCk] distribution, conditionally independent
over the choice of edge and of k.

(g) Conditionally on (MCk)∞k=0 and (τk)∞k=0, the collection of PWIT edge weights be-
tween a vertex v ∈ τk and all child vertices vi for which vi /∈ τk, forms a Poisson
point process of intensity 1 on the interval (MCk,∞). Moreover these Poisson point
processes are conditionally independent for every k and every v ∈ τk.

(h) Conditionally on the IP cluster IP(∞) and all its internal and boundary edge
weights, the edge weights (Xwk)k∈N associated to a vertex w /∈ IP(∞) ∪ ∂IP(∞)

form a Poisson point process of rate 1, conditionally independent over the choice
of w.

(i) The part of IP(∞) not descended from V BB

k has size OP(k
2) and diameter OP(k).

Proof. The backbone is well defined by Corollary 22 in [4]. The same paper proves (a) in
Theorems 21 and 30, (b) in Section 3.3, (d) in Theorem 31, and (e) in Theorem 3. It has
been observed on the top of page 954 in [4] that the methodology of [8] can be applied
to show that [8, Proposition 3.3] holds for the PWIT, proving (c).

For parts (f) and (g), notice that the event that τk equals a particular finite tree τ
requires that the children of V BB

k should consist of (i) the child V BB

k+1 with edge weight
consistent with the process (MCl)l≥0; and (ii) other children, and their descendants,
joined to V BB

k by edges of weight less than MCk, in numbers corresponding to the
structure specified by τ . However, conditioning on (MCk)∞k=0 and (τk)∞k=0 does not
impose any constraint on the precise value of the edge weights less than MCk, the
uninvaded edge weights that exceed MCk, or the edge weights outside of IP(∞) and
its boundary. Parts (f), (g) and (h) therefore follow from properties of Poisson point
processes.

For the bound on the size in (i), it suffices to note that the expected size conditionally
on (MCk′)

∞
k′=0 is at most k · 1/(1 − M̂Ck) by (d) and the formula for the total expected

offspring in a Galton–Watson tree of mean M̂Ck. By (c), the conditional expectation of
this size is OP(k

2).
For the bound on the diameter, it suffices to notice that (d) implies that the maximum

distance from the root to a vertex of
⋃k−1
j=0 τj is stochastically dominated by k plus the max-

imum of k extinction times from k independent critical Poisson Galton–Watson branching
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processes. Since the probability that a critical Poisson Galton–Watson branching process
lives to generation ` is O(1/`), the claim follows.

We next give a lemma for later use in bounding expectations of functions of the
backbone edge weights XBB

k .

Lemma 7.2. There is a constant C <∞ such that, for every non-negative measurable
function h and every k, k0 ∈ N with k0 < k,

E
(
h(XBB

k )1{XBB
k <MCk0}

∣∣∣MCk0 = m
)
≤ C

∫ m

0

h(x)dx. (7.3)

Proof. There are three possibilities: either (a) MCk < MCk−1 = MCk0 ; (b) MCk = MCk−1;
or (c) MCk < MCk−1 < MCk0 . Recalling Proposition 7.1 (e), we see that in case (a) we
have XBB

k = MCk−1 = MCk0 , which does not contribute to the expectation. In case (b),
the conditional distribution of XBB

k is Uniform[0,MCk] and

E
(
h(XBB

k )
∣∣MCk = MCk−1,MCk0 = m

)
= E

(∫ MCk

0

h(x)dx/MCk

∣∣∣∣∣MCk = MCk−1,MCk0 = m

)
≤
∫ m

0

h(x)dx (7.4)

since 1 ≤ MCk ≤ m. For case (c), define K ′ = max {k′ : MCk′ > MCk−1}, which is well
defined since MCk0 > MCk−1. Partition according to the value of K ′, noting that

{K ′ = k′} = {MCk−1 = MCk′+1 < MCk′} , {MCk−1 < MCk0} = {k0 ≤ K ′ < k − 1} .
(7.5)

Since XBB
k = MCk−1 under case (c), we find

E
(
h(XBB

k )1{MCk<MCk−1<MCk0}
∣∣∣MCk0 = m

)
=

k−2∑
k′=k0

E
(
h(MCk−1)1{MCk<MCk−1}1{MCk−1=MCk′+1<MCk′}

∣∣∣MCk0 = m
)

=

k−2∑
k′=k0

E
(
h(MCk−1)P (MCk < MCk−1 |MCk−1)1{MCk−1=MCk′+1<MCk′}

∣∣∣MCk0 = m
)

=

k−2∑
k′=k0

E
(
h(MCk−1)

[
1−MCk−1(1− θ(MCk−1))

]
1{MCk−1=MCk′+1<MCk′}

∣∣∣MCk0 = m
)

=

k−2∑
k′=k0

E
(
h(MCk′+1)

[
1−MCk′+1(1− θ(MCk′+1))

]
· P (MCk−1 = MCk′+1 |MCk′+1)1{MCk′+1<MCk′}

∣∣∣MCk0 = m
)

=

k−2∑
k′=k0

E

(∫ MCk′

1

θ′(m̃)dm̃
1−MCk′(1− θ(MCk′))

θ(MCk′)
h(m̃)

·
[
1− m̃(1− θ(m̃))

] [
m̃(1− θ(m̃))

]k−k′−2∣∣∣MCk0 = m
)

(7.6)

by Proposition 7.1 (b). The fraction (1−x(1−θ(x)))/θ(x) can be rewritten as 1−(x−1)(1−
θ(x))/θ(x), which is clearly at most 1 for x > 1, and we can bound MCk′ ≤ MCk0 = m.
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Inserting this bound, we obtain

E
(
h(XBB

k )1{MCk<MCk−1<MCk0}
∣∣∣MCk0 = m

)
≤
∫ m

1

θ′(m̃)h(m̃)dm̃

k−2∑
k′=k0

[
1− m̃(1− θ(m̃))

] [
m̃(1− θ(m̃))

]k−k′−2
≤
∫ m

1

θ′(m̃)h(m̃)dm̃ (7.7)

by bounding the geometric series. By Proposition 6.1 (c) this completes the proof.

7.2 First passage times and the IP backbone

In this section, we study TBB k, the time at which the kth backbone vertex is found.
From now until the end of Section 7, we suppose that (fn(x))n and (sn)n satisfy Con-
dition 2.2. We do not assume Condition 2.3 except where specifically noted. Write
y+ = max(y, 0).

Lemma 7.3. Given m0 ∈ (1,∞), there is a constant K <∞ such that

E
(

(TBB k1 − TBB k0 − fn(m))
+
∣∣∣MCk0 = m

)
≤ K(k1 − k0)fn(m)

sn
(7.8)

whenever m ∈ (1,m0] and k0, k1 ∈ N with k0 ≤ k1.

Proof. The backbone edge weights XBB

k0+1, . . . , X
BB

k1
include at most one edge weight equal

to MCk0 . Consequently, (TBB k1 − TBB k0 − fn(m))
+ ≤

∑k1
k=k0+1 fn(XBB

k )1{XBB
k <MCk0}, so

that

E
(

(TBB k1 − TBB k0 − fn(m))
+
∣∣∣MCk0 = m

)
≤

k1∑
k=k0+1

E
(
fn(XBB

k )1{XBB
k <MCk0}

∣∣∣MCk0 = m
)

≤
k1∑

k=k0+1

C

∫ m

0

fn(x)dx (7.9)

by Lemma 7.2. Lemma 5.3 completes the proof.

Corollary 7.4. If σn = O(sn) then

f−1n (TBBσn) ≤ MC0 +OP(1/sn) as n→∞. (7.10)

Proof. Apply Lemma 7.3 with k1 = dσne and k0 = 0 (so that TBB k0 = 0) to find that

E (TBBσn |MC0 = m) ≤ fn(m) +O(fn(m)) (7.11)

for m ∈ (1,m0]. In particular, TBBσn ≤ OP(fn(MC0)) conditional on {MC0 ∈ (1,m0]}. By
Lemma 5.1 with y0 = fn(m) and y1 = TBBσn , we conclude that (7.10) holds conditional
on {MC0 ∈ (1,m0]}. Since MC0 does not depend on n, we can make P(MC0 ∈ (1,m0])

arbitrarily close to 1 by taking m0 large enough, and it follows that (7.10) holds uncondi-
tionally.

Corollary 7.5. If σn →∞ and σn = O(sn), then

f−1n (TBBσn)
P−→ MC0 as n→∞. (7.12)
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Proof. In view of Corollary 7.4, it suffices to prove the matching lower bound TBBσn ≥
fn(MC0) whp. It suffices to show that σn ≥ I0 whp, where I0 is the random height at
which the maximum defining MC0 is attained; in this case, TBBσn will be a sum of FPP
edge weights one of which is fn(MC0). But by Proposition 7.1 (a) I0 is finite a.s. and does
not depend on n, whereas σn →∞ by assumption.

7.3 First passage times and the IP cluster: proof of Theorem 2.16

In this section, we investigate how many children of the off-backbone tree τk are
invaded before time TBBk1 . Further, we study the length of the backbone at the time
Tnoninvaded (recall (2.27)) at which the first difference appears between the branching
process and IP dynamics, as well as various estimates on lucky vertices.

Given k ∈ N ∪ {0} , k1 ∈ N with k < k1, define

N(k, k1) = |{v ∈ ∂τk : Tv ≤ TBB k1}| . (7.13)

That is, N(k, k1) is the number of uninvaded children v /∈ τk of invaded vertices from τk
that are explored before the backbone vertex at height k1.

Lemma 7.6. Let m0 ∈ (1,∞) be given. Then there exists a constant C <∞ such that

E
(
N(k, k1)

∣∣ (MCk′ , τk′)
∞
k′=0

)
≤ C(k1 − k) |τk|

s2n
on {TBB k1 ≤ fn(m0)} . (7.14)

Proof. Define

X̃(k, k1) = f−1n (TBB k1 − TBB k) = sup {x : fn(x) ≤ TBB k1 − TBB k} . (7.15)

By construction, any descendant of V BB

k that is explored by time TBB k1 must be connected
to V BB

k by a path whose PWIT edge weights are at most X̃(k, k1). In particular, N(k, k1)

is bounded above by the number of vertices w ∈ ∂τk with edge weights Xw in the
interval (MCk, X̃(k, k1)). By Proposition 7.1 (g), the number of such vertices has a
Poisson distribution, and summing over the choice of parent v = p (w) ∈ τk gives

E
(
N(k, k1)

∣∣ (MCk′ , τk′)
∞
k′=0

)
≤ |τk|E

((
X̃(k, k1)−MCk

)+ ∣∣∣∣ (MCk′ , τk′)
∞
k′=0

)
. (7.16)

Applying Lemma 5.1 and Lemma 7.3 yields

E
(
N(k, k1)

∣∣ (MCk′ , τk′)
∞
k′=0

)
≤ |τk|E

(
K

snfn(MCk)

(
fn(X̃(k, k1))− fn(MCk)

)+ ∣∣∣∣ (MCk′ , τk′)
∞
k′=0

)
≤ K |τk|
snfn(MCk)

E
(

(TBB k1 − TBB k − fn(MCk))
+
∣∣∣ (MCk′ , τk′)

∞
k′=0

)
≤ K |τk|
snfn(MCk)

K ′(k1 − k)fn(MCk)

sn
on {TBB k1 ≤ fn(m0)} .

Lemma 7.7. Let Rnoninvaded = min {k : TBB k > Tnoninvaded}, the height of the lowest un-

explored backbone vertex by time Tnoninvaded. Then Rnoninvaded is at least of order s2/3n ,
i.e., R−1noninvaded = OP(s

−2/3
n ).

Proof. It suffices to show that if (σn)n is any sequence satisfying σn = o(s
2/3
n ), then

Rnoninvaded > σn whp. The latter event can be written as {N(k, σn) = 0 for all k =

0, 1, . . . , σn − 1}: for if, to the contrary, the first non-invaded vertex is born before time
TBBσn , it must have a parent in some τk with k < σn.
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Let ε > 0 be given. By Corollary 7.5 and the fact that MC0 does not depend on n, we
may choose m0 so that P(TBBσn ≤ m0) ≥ 1 − ε for all n. Applying Markov’s inequality
and Lemma 7.6,

P (Rnoninvaded ≤ σn | (MCk′ , τk′)
∞
k′=0) = P

(
σn−1∑
k=0

N(k, σn) ≥ 1

∣∣∣∣∣ (MCk′ , τk′)
∞
k′=0

)

≤
σn−1∑
k=0

E (N(k, σn) | (MCk′ , τk′)
∞
k′=0)

≤ Cσn
s2n

σn−1∑
k=0

|τk| (7.17)

on {TBBσn ≤ m0}. The last sum in (7.17) is the size of that part of IP(∞) not descended
from V BB

σn , and is therefore OP(σ
2
n) by Proposition 7.1 (i). Consequently the upper bound

in (7.17) is OP(σ
3
n/s

2
n) and is therefore oP(1) by assumption.

To complete the proof of Theorem 2.16, we will show that BPBBKσn is likely to contain
a σ2

n-lucky backbone vertex if K is sufficiently large, uniformly in the choice of (σn)n.
In order to achieve (conditional) independence between different backbone vertices
(which are randomly chosen and impose a conditioning on their neighbouring edges)
we strengthen the definition of lucky vertex. We say that a backbone vertex XBB

k is
q-backbone-lucky if

∣∣τk ∩ BPTBB k+fn(1)

∣∣ ≥ q – i.e., if XBB
k has at least q descendants by

age fn(1) when we exclude descendants of XBB
k+1. Evidently, a q-backbone-lucky vertex is

also q-lucky.

Lemma 7.8. Conditional on the backbone vertices and weights (MCk′ , V
BB
k′ , X

BB
k′ )∞k′=0,

the probability of being q-backbone-lucky is

P
(
XBB
k is q-backbone-lucky

∣∣ (MCk′ , V
BB
k′ , X

BB
k′ ),MCk = m

)
= P

( ∣∣BPfn(1)∣∣ ≥ q ∣∣ |PGWm| <∞
)
, (7.18)

the conditional probability from Lemma 6.3. Moreover, for any choice of natural numbers
(qk)k, the events

{
XBB
k is qk-backbone-lucky

}
, k ≥ 0, are conditionally independent.

Proof. This follows immediately from the fact that, conditionally on {MCk = m}, the
subtree τk equipped with its edge weights (considered relative to V BB

k ) has the same
distribution as the PWIT (considered relative to the root ∅1) under the conditioning
|PGWm| <∞. See Proposition 7.1 (d) and (f) and Proposition 6.1 (d).

Lemma 7.9. Let ε > 0 and K < ∞ be given. Then there exists K ′ < ∞ such that, for
any sequence (σn)n with 1 ≤ σn ≤ Ksn,

P(Tσ2
n-lucky ≤ TBBK′σn) ≥ 1− ε. (7.19)

In particular, since Tk-lucky ≥ Tsize k, Lemma 7.9 shows that |BPBBσn | has size of order
at least σ2

n.

Proof. By Proposition 7.1 (c), there is a constant C <∞ such that

P(MCdσne ≤ 1 + C/σn) ≥ 1− 1
2ε (7.20)

for any choice of σn ≥ 1. Apply Lemmas 7.8 and 6.3 (with m0 = 1 + C and with the
constant K6.3 from that lemma chosen large enough so that the conclusion applies with
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k replaced by dσ2
ne and m ∈ [1, 1 + C/σn]; we may choose such a constant because

dσ2
ne ≤ 2σ2

n ≤ 2Ks2n and |m− 1|−2 ≥ σ2
n/C

2) to find

P
(
Tσ2

n-lucky ≤ TBBK′σn
∣∣MCdσne ≤ 1 + C/σn

)
≥ P

(
some XBB

k , σn ≤ k ≤ K ′σn, is dσ2
ne-backbone-lucky

∣∣MCdσne ≤ 1 + C/σn
)

≥ 1−
(

1− δ√
dσ2
ne

)bK′σnc−dσne
. (7.21)

The lower bound in (7.21) can be made at least 1 − 1
2ε by choosing K ′ large enough,

uniformly over σn ≥ 1. Together with (7.20), this completes the proof.

Proof of Theorem 2.16. As in the proof of Lemma 7.7, it suffices to show that if (σn)n
is any sequence satisfying σn = o(s

2/3
n ), then |BPnoninvaded| > σ2

n whp, or equivalently
Tsizeσ2

n
< Tnoninvaded whp.

Let ε > 0 be given. Applying Lemma 7.9 (with K = 1 and with a term o(1) to account
for the fact that σn ≤ sn might fail for small n),

P
(
Tsizeσ2

n
< Tnoninvaded

)
≥ P (TBBK′σn < Tnoninvaded)− ε− o(1)

= P (Rnoninvaded > K ′σn)− ε− o(1). (7.22)

Since K ′σn is still o(s2/3n ), the last probability tends to 1 by Lemma 7.7. Since ε > 0 was
arbitrary, this completes the proof.

7.4 Proof of Theorem 2.15

In this section, we prove Theorem 2.15, which yields detailed estimates on the times
when the sizes and heights of the branching process tree reach σ2

n and σn, respectively,
as well as the times where the backbone contains σn vertices and the first σ2

n-lucky
vertex is found. Further, the sizes and heights of the branching process tree at those
times is bounded. This is achieved by using appropriate couplings to Poisson branching
processes. The first key step will be to show that BPBBσn contains OP(σ

2
n) vertices

and has diameter OP(σn), as formulated in Lemma 7.12. We start by proving some
preliminary estimates that build up towards the proof of Lemma 7.12. After that, we
complete the proof of Theorem 2.15.

Define

B(k, k1) = {v ∈ ∂τk : Tv ≤ TBB k1} ,
D(v)(k, k1) =

{
w : Tw ≤ TBB k1 and p`(w) = v for some ` ≥ 0

}
, (v ∈ B(k, k1)).

(7.23)

Thus, the random variable N(k, k1) from (7.13) equals |B(k, k1)|, and D(v)(k, k1) is the
subtree of descendants of v ∈ B(k, k1) explored by time TBB k1 . Write D(v,≥r)(k, k1)

(respectively, D(v,≤r)(k, k1)) for the parts of the tree D(v)(k, k1) at least r generations
away from v (respectively, within r generations of v). Define

N (≥r)(k, k1) =
∣∣ {v ∈ B(k, k1) : D(v,≥r)(k, k1) 6= ∅}

∣∣ ,
U (≤r)(k, k1) =

∑
v∈B(k,k1)

∣∣D(v,≤r)(k, k1)
∣∣ , (7.24)

i.e., N (≥r)(k, k1) is the number of vertices from ∂τk with at least one descendant at
distance at least r that is explored before time TBB k1 , and U (≤r)(k, k1) is the total number,
among vertices v ∈ B(k, k1) and their descendants within at most r generations, that
are explored before time TBB k1 . (Thus N (≥r)(k, k1) reduces to N(k, k1) when r = 0.) To
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bound the diameter of BPBBσn , we will show that if r is sufficiently large compared to
σn, then N (≥r)(k, σn) = 0 for all k < σn with probability close to 1. Having done so, we
will then show that

∑
k<σn

U (≤r)(k, σn) = OP(σ
2
n) using moment bounds.

These estimates are made by comparing D(v)(k, k1) to appropriate Poisson Galton–
Watson branching trees. For m ≥ 0 and v ∈ T , define

PGW(v)

m =
{
w ∈ T : p`(w) = v for some ` and Xpj(w) ≤ m for j = 0, . . . , `

}
, (7.25)

i.e., the subtree of descendants of v connected to v by a path of PWIT edge weights at
most m. (Thus Proposition 7.1 (h) implies that, other than being rooted at v instead
of ∅1, the trees PGW(v)

m , v ∈ B(k, k1), are i.i.d. Poisson Galton–Watson trees with mean
m, conditionally independent over the choice of v and k.) The key observation for our
purposes is that

D(v)(k, k1) ⊂ PGW(v)

X̃(k,k1)
(v ∈ B(k, k1)) (7.26)

where X̃(k, k1) was defined in (7.15).

We begin by showing that whp, all the Poisson Galton–Watson trees PGW(v), v ∈
B(k, k1), remain finite until we reach diameter of order sn:

Lemma 7.10. Let ε > 0 and K <∞ be given. Then there exists δ > 0 such that

P
(∣∣PGW(v)

X̃(k,Ksn)

∣∣ <∞ for all v ∈ B(k,Ksn) and for all k ≤ δsn
)
≥ 1− ε (7.27)

for all n sufficiently large.

Proof. For notational convenience, consider a fixed k < Ksn and abbreviate X̃(k,Ksn)

as X̃. Denote

Ñ =
∣∣∣{v ∈ B(k,Ksn) :

∣∣PGW(v)

X̃

∣∣ <∞}∣∣∣ . (7.28)

Similar to the proof of Lemma 7.6, we use moment bounds on Ñ ; this time, the bounds
will be essentially uniform over k.

By Proposition 7.1 (h), each of the N(k,Ksn) vertices v ∈ B(k,Ksn) has probability
θ(X̃) of surviving forever, and therefore

E
(
Ñ
∣∣∣ (MCk′ , Xk′ , τk′)

)
= θ(X̃)E

(
N(k,Ksn)

∣∣ (MCk′ , Xk′ , τk′)
)

≤ C(X̃ − 1)+(X̃ −MCk)+ |τk|

= C
(
(X̃ −MCk)+

)2 |τk|+ C(X̃ −MCk)+(MCk − 1) |τk| , (7.29)

where we used θ(x) ≤ C(x− 1)+ by Proposition 6.1 (b).

By Corollary 7.5, we may choose m0 ∈ (1,∞) so that the event {MC0 ≤ m0, TBBKsn ≤
fn(m0)} has probability at least 1− ε/4. In the remainder of the proof we assume that
this event occurs.

To bound the second term in (7.29), recall from Proposition 7.1 (d) that, conditionally
on MCk, |τk| is the total progeny of a Poisson Galton–Watson branching process with

mean M̂Ck. In particular,

E
(
|τk|

∣∣MCk
)

=
1

1− M̂Ck
. (7.30)

Since 1− m̂ ∼ m− 1 as m ↓ 1 (see Proposition 6.1 (d)) it follows that

E
(

(MCk − 1) |τk|
∣∣MCk

)
≤ C ′ on {MCk ≤ m0} (7.31)
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for some C ′ < ∞. As in the proof of Lemma 7.6, we can apply Lemmas 5.1 and 7.3 to
conclude that

E
(
C(X̃ −MCk)(MCk − 1) |τk|

∣∣∣MCk
)
≤ C ′′(Ksn)

s2n
on {MC0 ≤ m0, TBBKsn ≤ fn(m0)} .

(7.32)
To bound the first term in (7.29), use instead Lemmas 5.2 and 7.3 to conclude that

E
(
C
(
(X̃ −MCk)+

)2 |τk| ∣∣∣MCk, τk
)
≤ K ′

s2n

E ( (TBBKsn − TBB k − fn(MCk))+ |MCk)

fn(MCk)
|τk|

≤ K ′′sn |τk|
s3n

=
K ′′ |τk|
s2n

. (7.33)

By Proposition 7.1 (i), there is a constant C ′′′ such that P(
∑
k≤δsn τk ≤ C

′′′dδsne2) ≥
1 − ε/4 for all δ > 0. Assuming that this event occurs, we may sum (7.32)–(7.33) over
k ≤ δsn to obtain

E
(
Ñ1A

)
≤ C ′′′′

(
dδsne2

s2n
+
δsn + 1

sn

)
, (7.34)

where A =
{
MC0 ≤ m0, TBBKsn ≤ fn(m0),

∑
k≤δsn τk ≤ C ′′′dδsne2

}
is an event of proba-

bility at least 1− ε/2. Since sn →∞, we can make the upper bound smaller than ε/2 for
sufficiently large n by taking δ > 0 small enough. By Markov’s inequality, this completes
the proof.

Lemma 7.10 shows that the trees PGW(v)

X̃(k,Ksn)
can be assumed to be finite for

v ∈ B(k,Ksn), k ≤ δsn. For such k, we may use Proposition 6.1 (d) and facts about
critical Poisson Galton–Watson trees to bound the size and diameter of the subtrees
D(v)(k,Ksn). For larger k, Proposition 7.1 (c) and Lemma 7.3 imply that MCk and
X̃(k,Ksn) are close to 1, and we can bound the probability of a large diameter in
D(v)(k,Ksn) in terms of critical Poisson Galton–Watson trees.

For 0 < x < 1 ≤ m and ` ∈ N, let P (v)(m, `, x) denote the subtree of PGW(v)

m consisting
of descendants w connected to v by a path containing at most ` PWIT edge weights in
the interval (x,m]. Write P (v,≥r)(m, `, x) for the subtree of P (v)(m, `, x) within distance r
of v.

Lemma 7.11. There is a constant C such that

P
(
|P (v,≥r)(m, `, x)| > 0

)
≤ C

r

(
m− x
1− x

)`
(7.35)

for all 0 < x < 1 ≤ m and ` ∈ N.

Proof. On the event {|P (v,≥r)(m, `, x)| > 0}, let W be chosen uniformly from the vertices
of P (v,≥r)(m, `, x) at distance exactly r from v. Let L denote the collection of vertices w
along the path from v to W for which x < Xw ≤ m, so that |L| ≤ ` by definition. By the
Poisson point process property, conditionally on the occurrence of {|P (v,≥r)(m, `, x)| > 0}
and the values of W and L, the edge weights Xw, w ∈ L, are uniformly distributed
on (x,m]. In particular, x < Xw ≤ 1 for each w ∈ L with conditional probability
[(1− x)/(m− x)]|L|, which is at least [(1− x)/(m− x)]` by construction. If this additional
event occurs then

∣∣PGW(≥r)
1

∣∣ > 0, so

P
(
|P (v,≥r)(m, `, x)| > 0

)
· [(1− x)/(m− x)]` ≤ P

(∣∣PGW(≥r)
1

∣∣ > 0
)

(7.36)

and (7.35) follows by the bound P
(∣∣PGW(≥r)

1

∣∣ > 0
)

= O(1/r) from Proposition 6.1 (h).

Lemma 7.12. Let K < ∞ be given. Then BPBBσn contains OP(σ
2
n) vertices and has

diameter OP(σn), uniformly over the choice of sequence (σn)n with 1 ≤ σn ≤ Ksn.
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Proof. Let K < ∞ be given. By Proposition 7.1 (i), the part of IP(∞) not descended
from V BB

dσne has size OP(σ
2
n) and diameter OP(σn), uniformly over the choice of (σn)n. So

it suffices to show that the non-invaded subtrees D(v)(k, σn), v ∈ B(k, σn), k ≤ σn, have
total size OP(σ

2
n) and maximum diameter OP(σn), uniformly over the choice of (σn)n with

σn ≤ Ksn.

Let ε > 0 be given and choose m0 ∈ (1,∞) such that

P(M0 ≤ m0, TBBKsn ≤ fn(m0)) ≥ 1− ε. (7.37)

We assume that this event occurs for the rest of the proof.

Let δ > 0 be the constant from Lemma 7.10. We consider first k ≤ δsn. Since
D(v)(k, σn) ⊂ D(v)(k,Ksn) for any k, it will suffice to consider the case

∣∣PGW(v)

X̃(k,Ksn)

∣∣ <
∞ for k ≤ δsn. Define

N (≥r,finite)(k, k1) =
∣∣∣ {v ∈ B(k, k1) : D(v,≥r)(k, k1) 6= ∅ and

∣∣PGW(v)

X̃(k,Ksn)

∣∣ <∞}∣∣∣ ,
U (≤r,finite)(k, k1) =

∑
v∈B(k,k1)

∣∣D(v,≤r)(k, k1)
∣∣1{∣∣PGW(v)

X̃(k,Ksn)

∣∣<∞}. (7.38)

By (7.26), Proposition 6.1 (d) and (h), and Lemma 7.6,

E (N (≥r,finite)(k,Ksn) | (MCk′ , τk′))

≤ E (N(k,Ksn) | (MCk′ , τk′))P
(
PGW(v,≥r)

X̃(k,Ksn)
6= ∅,

∣∣PGW(v)

X̃(k,Ksn)

∣∣ <∞)
≤ C(Ksn) |τk|

s2n
P
(
PGW(v,≥r)

X̃(k,Ksn)
6= ∅

∣∣∣ ∣∣PGW(v)

X̃(k,Ksn)

∣∣ <∞)
≤ C(Ksn) |τk|

s2n
P
(
PGW(v,≥r)

1 6= ∅
)
≤ C ′ |τk|

rsn
. (7.39)

Sum over k ≤ σn ∧ (δsn) and use Proposition 7.1 (i) to find that

E

 ∑
k≤σn∧(δsn)

N (≥r,finite)(k,Ksn)

∣∣∣∣∣∣ (MCk′ , τk′)


≤ O(1/rsn)

∑
k≤σn

|τk| = OP

(
σ2
n

rsn

)
= OP

(σn
r

)
, (7.40)

uniformly over the choice of the as-yet-unspecified constant r. Hence, by taking r = C ′′σn
for C ′′ large enough, we may assume that

P (N (≥r,finite)(k,Ksn) = 0 for all k ≤ δsn) ≥ 1− 2ε. (7.41)

With the same choice of r,

E (U (≤r,finite)(k,Ksn) | (MCk′ , τk′))

≤ E (N(k,Ksn) | (MCk′ , τk′))E

(∣∣∣PGW(v,≤r)

X̃(k,Ksn)

∣∣∣1{∣∣PGW(v)

X̃(k,Ksn)

∣∣<∞}
)

≤ C(Ksn) |τk|
s2n

E
(∣∣∣PGW(v,≤r)

X̃(k,Ksn)

∣∣∣ ∣∣∣ ∣∣PGW(v)

X̃(k,Ksn)

∣∣ <∞)
≤ C(Ksn) |τk|

s2n
E
(∣∣PGW(v,≤r)

1

∣∣) ≤ C(Ksn) |τk|
s2n

(r + 1), (7.42)
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since each generation of a critical Galton–Watson branching process has average size 1.
Summing, we conclude similarly that∑

k≤σn∧(δsn)

U (≤r,finite)(k,Ksn) = OP

(
rσ2
n

sn

)
= OP

(
σ2
n

)
, (7.43)

since r = O(sn).
We now turn to k > δsn. Since k parametrizes height along the backbone, we only

need to consider this range of k when σn > δsn, passing, if necessary, to an appropriate
subsequence of (σn)n. In particular, it will suffice to prove that the subtrees D(v)(k,Ksn)

have total size OP(s
2
n) and maximum diameter OP(sn), since sn = O(σn) along the

subsequence with σn > δsn.
By Proposition 7.1 (c) and the fact that k 7→ MCk is non-increasing a.s., there exists

K ′ <∞ such that

P
(
MCk ∨ X̃(k,Ksn) ≤ 1 +K ′/sn for all k > δsn

)
≥ 1− ε. (7.44)

Apply Condition 2.3 to find ` ∈ N such that

fn(1 +K ′/sn) ≤ `fn(1− η/sn) (7.45)

for all n sufficiently large. In the rest of the proof, assume that the event from (7.44)
occurs and that n is so large that (7.45) holds. Then D(v)(k,Ksn) ⊂ P (v)(m, `, x) for all
k > δsn with m = 1 +K ′/sn and x = 1− η/sn. In particular, for this choice of m and x,
the ratio (m − x)/(1 − x) is bounded, so Lemma 7.11 implies that P(D(v,≥r′)(k,Ksn) 6=
∅) ≤ C ′′′/r′ for some C ′′′ <∞. We can then repeat the argument from (7.39)–(7.40) to
conclude that

E

 ∑
δsn<k≤Ksn

N (≥r′)(k,Ksn)

∣∣∣∣∣∣ (MCk′ , τk′)

 = OP

(sn
r′

)
, (7.46)

uniformly over the choice of r′, and we may assume that

P
(
N (≥r′)(k,Ksn) = 0 for all δsn < k ≤ Ksn

)
≥ 1− 2ε (7.47)

by taking r′ = C ′′′′sn for C ′′′′sn sufficiently large. With this choice of r′, note that

(1 +K ′/sn)r
′

is bounded as n→∞. Since E
(∣∣∣PGW(v,≤r′)

1+K′/sn

∣∣∣) ≤ (r′ + 1)(1 +K ′/sn)r
′
, we

can repeat the argument from (7.42)–(7.43) to conclude that∑
δsn<k≤Ksn

U (≤r′)(k,Ksn) = OP(s
2
n).

Finally, Theorem 2.15 follows from Corollary 7.5, Lemma 7.9, and the fact that the
upper bounds on BPBBσn in Lemma 7.12 are uniform over (σn)n:

Proof of Theorem 2.15. Lemma 7.9 allows us to bound Tσ2
n-lucky by TBBK′σn apart from an

event of small probability. Since Tsizeσ2
n
≤ Tσ2

n-lucky and Theightσn ≤ TBBσn by construction,
the same holds true for the other times from Theorem 2.15. Writing T for any one of
these other times, Corollary 7.5 implies that f−1n (T ) ≤ MC0 + ε whp. For the matching
lower bound, we argue as in the proof of Corollary 7.5. It suffices to observe that σn →∞
implies that |BPT |

P−→ ∞, whereas
∣∣BPfn(MC0)

∣∣ is bounded by the number of vertices
invaded before the edge of PWIT weight MC0. This latter quantity is tight since it does
not depend on n, and therefore fn(MC0) ≥ T whp.
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The upper bounds on the size and diameter of BPBBσn follow from Lemma 7.12.
For the lower bound on the diameter, note that BPBBσn has diameter at least σn by
construction. For the lower bound on the size, let ε > 0 be given and let K ′ be the
constant from Lemma 7.9. If σn ≥ K ′, we can apply Lemma 7.9 with σn replaced by
σn/K

′ to conclude that BPBBσn contains at least (σn/K
′)2 vertices with probability at

least 1−ε. If not, then σn is bounded by K ′ and we can use the trivial bound |BPBBσn | ≥ 1.
Upper bounds on the size and diameter of BPT follow from the upper bounds on

BPBBσn and the fact mentioned above that T ≤ TBBσn with probability close to 1, as
above.

For the other lower bounds, note first that BPsizeσ2
n

has size at least σ2
n by definition.

It suffices to show that BPsizeσ2
n

contains a vertex of height at least δσn with a probability
that can be made arbitrarily close to 1, uniformly over n, by taking δ small enough. More
precisely, let K <∞ and ε > 0 be given, and consider any sequence (σn)n with σn ≤ Ksn.
By Lemma 7.12, there is a constant C such that

P
(
|BPBB σ̃n | ≥ Cσ̃2

n

)
≤ ε (7.48)

whenever 1 ≤ σ̃n ≤ Ksn. Now notice that if all vertices of BPsizeσ2
n

have heights
strictly less than δσn, then BPheight δσn has size at least σ2

n. Then, taking σ̃n = δσn and
δ = min{1/

√
C, 1} (so that σ̃n ≤ σn ≤ Ksn),

P
(
height(BPsizeσ2

n
) < δσn

)
≤ P(|BPheight σ̃n | ≥ Cσ̃2

n) ≤ P(|BPBB σ̃n | ≥ Cσ̃2
n) ≤ ε, (7.49)

at least if σ̃n ≥ 1; on the other hand, if σ̃n = δσn < 1 then there is nothing to prove
because BPsizeσ2

n
must always have diameter at least 1.

The lower bounds for BPσ2
n-lucky follow because BPsizeσ2

n
⊂ BPσ2

n-lucky.
For BPheightσn , note that BPheightσn has diameter at least σn by construction. For the

size, we reverse the argument above by noticing that if |BPheightσn | < δσ2
n, then BPsize δσ2

n

has diameter at least σn. Let K < ∞ and ε > 0 be given, let K ′ be the constant from
Lemma 7.9, and consider any sequence (σn)n with σn ≤ Ksn. From Lemma 7.12 we may
choose C ′ <∞ such that

P (diameter(BPBB σ̂n) ≥ C ′σ̂n) ≤ ε (7.50)

whenever 1 ≤ σ̃n ≤ Ksn. Then, writing σ̃n =
√
δσn and σ̂n = K ′σ̃n = K ′

√
δσn, and

setting δ = min
{

(C ′K ′)−2, (K ′)−2, 1
}

(so that max {σ̃n, σ̂n} ≤ σn ≤ Ksn),

P
(
|BPheightσn | < δσ2

n

)
≤ P

(
diameter(BPsize σ̃2

n
) ≥ σn

)
≤ P

(
Tsize σ̃2

n
> TBBK′σ̃n

)
+ P (diameter(BPBPK′σ̃n) ≥ σn)

≤ ε+ P (diameter(BPBP σ̂n) ≥ σn) ≤ 2ε, (7.51)

since σn ≥ C ′σ̂n by construction.

7.5 Remaining proofs: Theorems 2.4, 1.1–1.3 and 1.5

In this section, we complete the proof of our main results Theorems 1.1–1.3 and 1.5.
We start by proving Theorem 2.4, which applies to the most general edge weights.

Proof of Theorem 2.4. We may use Theorem 2.10 to bound SWT in terms of BP and B̃P.
In fact, for definiteness, we may assume that BP and SWT are coupled as in (3.4), with
SWTt = πM (B̃Pt) for all t ≥ 0.

Consider a time T depending only on the edge weights Xv, v ∈ T \ {∅1}, but not on
the marks Mv. For instance, any of the four times from Theorem 2.15 have this property.
On {v ∈ BPT }, we can upper-bound the event {v is thinned} by the event that v or any
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of its |v| ancestors has the same mark as some other vertex w ∈ BPT . (This is an upper
bound because we ignore the possibility that w is itself thinned or is explored after
v.) Since any two vertices have conditional probability 1/n of having the same mark,
Markov’s inequality implies

1{v∈BPT }P (v is thinned |T,BPT ) ≤ 1{v∈BPT }(|v|+1)
|BPT |
n
≤ |BPT | (diameter(BPT ) + 1)

n
.

(7.52)
Now consider T = Theightσn , T = Tsizeσ2

n
or T = Tsize 2σ2

n
. By Theorem 2.15, the upper

bound in (7.52) is OP(σ
3
n/n), which is oP(1) by the assumption σn = o(n1/3). Hence, if V

denotes a vertex of BPT having maximal height, we conclude that

height(BPT ) = height(B̃PT ) whp. (7.53)

Likewise, summing over v gives

E
(∣∣BPT \ B̃PT ∣∣ ∣∣∣T,BPT) = oP(|BPT |). (7.54)

In particular, we infer that

T (Kn)

heightσn
= Theightσn and Tsizeσ2

n
≤ T (Kn)

sizeσ2
n
≤ Tsize 2σ2

n
whp. (7.55)

In view of (7.53)–(7.55), Theorem 2.4 follows from Theorem 2.15.

Proof of Theorems 1.1–1.3. These follow immediately from Theorems 2.1, 2.11 and 2.4,
respectively, together with Lemmas 5.4–5.5.

Proof of Theorem 1.5. The function fn(x) is given by

fn(x) = (1− e−x/n)sn (7.56)

(compare (2.2)–(2.3) and (1.21)). We find

xf ′n(x)

fn(x)
= sn

x
ne−x/n

1− e−x/n
(7.57)

and notice that the fraction in the right-hand side of (7.57) is bounded away from 0
and ∞ for x in compact subsets of [0,∞). As in the proof of Lemma 5.4, this implies
Conditions 2.2–2.3, (2.15) and (2.5). Therefore Theorem 1.5 follows from Theorems 2.1,
2.11 and 2.4 and Lemma 5.5.
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