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We consider statistical estimation of superhedging prices using historical
stock returns in a frictionless market with d traded assets. We introduce a
plug-in estimator based on empirical measures and show it is consistent but
lacks suitable robustness. To address this, we propose novel estimators which
use a larger set of martingale measures defined through a tradeoff between
the radius of Wasserstein balls around the empirical measure and the allowed
norm of martingale densities. We then extend our study, in part, to estimation
of risk measures, to the case of markets with traded options, to a multi-period
setting and to settings with model uncertainty. We also study convergence
rates of estimators and convergence of super-hedging strategies.

1. Introduction. Computation of risk associated to a given financial position is one of
the fundamental operations market participants have to perform. For institutional players,
like banks, it is regulated by the Basel Committee [39] which dictates rules and require-
ments for such risk assessments. A golden standard has long been given by Value-at-Risk
(VaR), however, more recently this is being replaced by convex risk measures like Average
VaR (Expected Shortfall) or more sophisticated approaches which include market modelling.
Consequently, there is an abundant literature on VaR estimation and some more recent works
related to statistical estimation of law-invariant risk measures; see [5, 11, 12, 28–30, 41]. All
of these works consider a static situation with no trading involved.

In contrast, in this paper we consider estimation of risk for an agent who can trade in
the market to offset her risk exposure. To put in evidence the novelty and relevance of our
setting, we concentrate on one, simple but canonical, way to assess risk: the superhedging
price. Consider a one-period frictionless market with prices (St , St+1) denominated in units
of a fixed numeraire. The current stock prices St are known and the future prices St+1 are
modelled as random variables, say with return r := St+1/St drawn from a distribution P on
Rd+. For a payoff g :Rd+ →R, its superhedging price is given by

(1.1) πP(g) := inf
{
x ∈R|∃H ∈Rd s.t. x + H(r − 1) ≥ g(r) P-a.s.

}
.

In this simple setting, an arbitrage strategy is H ∈ Rd such that P(H(r − 1) ≥ 0) = 1 and
P(H(r −1) > 0) > 0 and if no such strategy exists we say that no-arbitrage NA(P) holds. By
the fundamental theorem of asset pricing, absence of arbitrage is equivalent to existence of
a probability measure Q, equivalent to P, under which S is a martingale, that is, EQ[r] = 1.
There might be more than one such measure and they can all be used for pricing. Taking the
supremum over EQ[g] enables to compute the maximal feasible price for g and this, by the
fundamental pricing-hedging duality, is the same as the superhedging price of g:

(1.2) πP(g) = sup
Q∼P,EQ[r]=1

EQ[g]
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for all Borel g; cf. [13], Theorem 1.31. Despite its theoretical importance and practical rele-
vance, to the best of our knowledge, there has been no attempt to study statistical estimation
of the superhedging price. Our paper fills this important gap. Instead of postulating a measure
P, we build estimators of πP(g) directly from historical observations of returns r1, . . . , rN
and study their properties. Furthermore, we extend the estimators to take into account also
the option price data. This is practically relevant and methodologically novel in that it allows
a coherent and simultaneous use of historical time-series data with current option price data
or, in mathematical finance jargon, the physical measure data and the risk neutral measure
data.

In contrast, in existing approaches historical returns are, if at all, only used indirectly to
compute πP(g). In classical mathematical finance, one first postulates a family of plausi-
ble models {Pθ : θ ∈ �}. Such choice may be influenced by stylised features of historical
returns; see [16] for a recent example, as well as by other considerations, for example, of
computational tractability. Thereon, historical returns are not used and only the “future fac-
ing” options price data is exploited to select a candidate pricing measure Qθ . More recently,
pioneered by Mykland [35–37] in a continuous-time setting and pursued within the so-called
robust approach to pricing and hedging, it was suggested to use historical returns to select a
prediction set, that is, the set of paths on which the superhedging property is required, and
then to compute the resulting cheapest superhedge which trades in stocks and options; see [1,
21]. Our approach inherits from that perspective but takes a statistical viewpoint and evolves
it into a dynamic and asymptotically consistent methodology.

To describe our approach, suppose we observe d-dimensional historical returns r1 =
S1/S0, . . . , rN = SN/SN−1 and for simplicity assume that these are nonnegative i.i.d. real-
isations of a distribution P which satisfies the no-arbitrage condition. We can equivalently
represent the observations through their associated empirical measures

P̂N = 1

N

N∑
i=1

δri ,

which are well known to converge weakly to P as N → ∞; see [47], Theorem 19.1, p. 266.
This suggests a very natural way to approximate the superhedging price by simply using P̂N

in place of P. We show in Theorem 2.1 below that the resulting plugin estimator π̂N (g) :=
π P̂N (g) is asymptotically consistent:

lim
N→∞ π̂N(g) = πP(g) P∞-a.s.,

where P∞ denotes the law of the process (rN)N≥1. However, we also show that π̂N has
serious shortcomings. First, it is not (statistically) robust: small perturbations of P can lead to
large changes in the distribution of π̂N . We argue that the Lévy–Prokhorov metric used in the
classical definition of statistical robustness, Definition 2.6, is not appropriate when looking
at the financial context of derivatives pricing. We propose and study alternative metrics and
ensuing notions of statistical robustness in Section 4.

Second, the plug-in estimator also lacks robustness from the financial point of view of risk
management. In fact, π̂N is monotone in N and converges from below so it is always a lower
estimate of the risk: π̂N ≤ πP. In Theorem 2.11, and in more detail in [38], Section B.8,
we study the convergence rates for the plug-in estimators. This, in the one-dimensional case
d = 1, could be exploited to build conservative estimates for the superhedging price πP.

A first intuition to improve the plug-in estimator could be to turn to estimators of the sup-
port of P. Indeed, the superhedging price πP(g), say for a continuous g, only depends on P

via its support. We could thus replace the P̂N -a.s. inequality in the plug-in estimator by an
inequality on an estimator of the support of P. Such estimators are well studied in statistics,
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going back to [3, 8, 17, 18]; see also [6, 7, 20, 26, 33, 42, 44, 46]. Unfortunately, this approach
does not seem to hold any ground. First, convergence of support estimators usually imposes
strong conditions on P, for example, compactness and convexity of the support and/or ex-
istence of a density. Second, for the convergence of the superhedging prices we would also
need to impose some uniform continuity assumptions on g. However, under such conditions
on P and g, we could directly improve the plug-in estimator and consider a suitable π̂N +aN ;
see Section 2.4.

Instead, to address the shortcomings of the plug-in estimator, we propose novel estimators,
which we introduce in Section 3. They exploit the dual formulation of the superhedging price
in (1.2). In order to achieve financial robustness and to increase our point estimates, we need
to consider a larger class of martingale measures. Thus we consider

πQN
(g) = sup

Q∈QN

EQ[g],

where QN is a subset of all martingale measures M. The plug-in estimator corresponds to
taking QN = {Q ∈ M :Q∼ P̂N } and it is natural to replace it with

QN = {Q ∈ M : ∃P̃ ∈ BN(P̂N) s.t. Q∼ P̃
}
,

where BN(P̂N) is some “ball” in the space of probability measures around the empirical
measure P̂N . We show that this can lead to a consistent estimator if we use a sufficiently
strong metric, for example, the Wasserstein infinity metric W∞. In general, however, such
QN is too large. Instead, our main insight is to consider a tradeoff between the radius of the
balls and the behaviour of martingale densities:

Q̂N := {Q ∈ M|‖dQ/dP̃‖∞ ≤ kN for some P̃ ∈ Bp
εN

(P̂N)
}
,

where B
p
εN (P̂N) denotes the p-Wasserstein ball of radius εN around P̂N and εN → 0 as well

as kN → ∞. With a suitable choice of εN, kN , we establish consistency of πQ̂N
(g) for a

regular g; see Theorem 3.6, and also their financial robustness, see Corollary 3.7. This also
allows us to study the cases when the estimator naturally extends to the setting of superhedg-
ing under model uncertainty about P; see Corollary 3.8. The statistical robustness of πQ̂N

(g)

is shown in Section 4; see Theorem 4.2. In Section 5, we extend our analysis to the case
when risk is assessed not using the superhedging capital but rather via a generic risk measure
ρ admitting a Kusuoka representation ([31], see (5.1) for a definition). We stress that this is
substantially different to all the works recalled at the beginning of this Introduction since we
consider an agent who can trade and optimises her position to offset the risk. We propose an
estimator, inspired by πQ̂N

(g), and show its consistency.
Finally, we also propose another estimator:

sup
Q∈M

(
EQ[g] − CN

(
inf

Q̂∼P̂N,Q̂∈M

∥∥∥∥dQ̂dQ

∥∥∥∥∞ − 1
))

,

which is inspired by penalty methods used in risk measures and their representations as non-
linear expectations. Asymptotic consistency of this estimator is shown in Thereom 3.12 and
holds for an arbitrary measurable bounded g.

The rest of the paper is organised as follows. In Section 2, we study the plug-in estima-
tor π̂N : its consistency, convergence rates and robustness, both statistical and financial. In
Section 3, we propose improved estimators and establish consistency for all of them, under
different sets of assumptions. Subsequently, in Section 4, we discuss statistical robustness
of all the estimators. We show in particular that no estimator can be robust in the classical
sense of Tukey–Huber–Hampel, and suggest ways to amend the classical definition to make
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it more appropriate to the superhedging price estimation. Appendix A contains proofs of the
most important results from the main body of the paper. Other proofs, along with auxiliary
results and supplementary discussion, are presented in [38], including convergence of super-
hedging strategies, extensions to a multi-period setting and arbitrage considerations.

Notation. We write P(A) for the set of probability measures on A ⊂ Rd . Pn ⇒ P denotes
weak convergence of measures. P ∈ P(Rd+) is a generic distribution for returns r so that
EP[r] = ∫Rd+ xP(dx). We let M = {Q ∈ P(Rd+) : EQ[r] = 1} denote the set of martingale
measures for the stock prices (St , St+1), where St > 0 is fixed and St+1 = rSt . We write MA

for the set of martingale measures supported on A. We say that P ∈ P(Rd+) does not admit
arbitrage, or that NA(P) holds, if {Q ∈ M :Q∼ P} �=∅. Above, and throughout, H is a row
vector, r is a column vector and 1 denotes either a scalar or a column vector (1, . . . ,1)T. We
write span(A) for the linear hull of A.

2. The plug-in estimator. Recall that we want to build an estimator for the superhedging
price πP(g). The easiest and possibly most natural way to do this is simply to replace the
measure P with the empirical measures P̂N . This yields the plug-in estimator:

(2.1) π̂N (g) := π P̂N (g).

In this section, we develop the necessary tools to show asymptotic consistency of this es-
timator and understand its properties. The main proofs are reported in Appendix A with
supplementary proofs in [38], Section B.1.

2.1. Consistency. We now state the main result of this section.

THEOREM 2.1. Let P1,P ∈ P(Rd+) and g : Rd+ → R be Borel measurable. Assume
that r1, r2, . . . are realisations of a time-homogeneous ergodic Markov chain with initial
distribution P1 and unique invariant distribution P such that P1 
P. Then

lim
N→∞ π̂N(g) = πP(g) P∞-a.s.,(2.2)

where P∞ denotes the law of the Markov process started from P1.

REMARK 2.2. The assumptions in the above theorem are standard in econometric theory
and cover a variety of models frequently used for modelling of financial returns data. We refer
to Corollary B.3 in [38] for sufficient conditions for stationarity (with exponential decay rates)
for various random coefficient autoregressive models, for example, linear and power GARCH
and stochastic autoregressive volatility models, which are frequently used for option pricing.
Nevertheless, we remark that this assumption rules out deterministic trends, structural breaks
and seasonalities, which need to be treated separately.

The proof for a general g follows by Lusin’s theorem from the case of a continuous claim
g which in turn depends on the characterisation of the superhedging price using concave
envelopes, which we now recall.

DEFINITION 2.3. Let g : Rd+ → R be Borel. For A ⊆ Rd+ and x ∈ A, we define the
pointwise concave envelope

ĝA(x) = inf
{
u(x)|u : Rd+ →R concave, u ≥ g on A

}
.

We define the P-a.s. concave envelope as

ĝP(x) = inf
{
u(x)|u :Rd+ →R concave, u ≥ g P-a.s.

}
.
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It is well known that in the definition of concave envelopes above we could take infimum
over affine functions instead of concave functions. It follows from the definition of the super-
hedging price in (1.1) that we have

(2.3) πP(g) = ĝP(1) and π̂N (g) = ĝ
P̂N

(1) = ĝ{r1,...,rN }(1).

Properties and computational methods for concave envelopes, or more generally for con-
vex hulls of a set of discrete points, have been studied in many applied sciences and there
are a number of efficient numerical routines available for their calculation. Naturally com-
putational complexity increases with higher dimensions. Nevertheless, there exist algorithms
determining approximative convex hulls, whose complexity is independent of the dimension;
see, for instance, [45].

To establish a dual formulation for the plug-in estimator, assume now that P1 
P as well
as no-P-arbitrage, NA(P), holds and recall this implies the pricing-hedging duality; cf. (1.2).
It turns out that since supp(P̂N) ⊆ supp(P) this already implies that NA(P̂N) holds for N

large enough. More generally, we have the following.

PROPOSITION 2.4. Let P ∈ P(Rd+) and (PN)N∈N be a sequence of probability mea-
sures on Rd+ such that PN ⇒ P and supp(PN) ⊆ supp(P). Then

NA(P) ⇔ ∃N0 ∈N s.t. NA
(
PN ) for all N ≥ N0.

In particular, if NA(P) holds then in the setup of Theorem 2.1 we also have

lim
N→∞ π̂N (g) = lim

N→∞ sup
Q∼P̂N,Q∈M

EQ[g] = πP(g) P∞-a.s.(2.4)

We close this section considering an extended setup where in addition to the traded assets
S, whose historical prices we observe, there also exist options in the market, which can be
used for hedging g. If the market enlarged with those options does not allow for an arbitrage,
the superhedging price of g in this market is again approximated by the plugin estimator,
which now also allows for trading in the options. More precisely, we have the following.

COROLLARY 2.5. Let P ∈ P(Rd+) and g :Rd+ →R be Borel-measurable. In addition to
the assets S, assume that there are d̃ traded options with continuous payoffs f1(r) and prices
f0 in the market. Define the evaluation map

e(r) = (r1, . . . , rd, f 1
1 (r)/f 1

0 , . . . , f d̃
1 (r)/f d̃

0
)T

and P̃ := P ◦ e−1. Finally, assume no arbitrage, NA(P̃), holds. Then, under the assumptions
of Theorem 2.1, we have P∞-a.s.,

lim
N→∞ inf

{
x ∈ R|∃H ∈ Rd+d̃ s.t. x + H

(
e(r) − 1

)≥ g(r) ∀r ∈ {r1, . . . , rN }}
= inf
{
x ∈R|∃H ∈ Rd+d̃ s.t. x + H

(
e(r) − 1

)≥ g(r) P-a.s.
}

= sup
Q∼P,Q∈M,EQ[f1]=f0

EQ[g].

It is worth stressing that in the classical approach to pricing and hedging, the historical
returns are seen as physical measure inputs and might be used, for example, for extracting
stylised features which models should exhibit. In contrast, option prices f0 are risk-neutral
measure inputs and would be used to calibrate the pricing measures. To the best of our knowl-
edge consistent use of both in one estimator has not been achieved before.
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2.2. Statistical robustness. Robustness of estimators is concerned with their sensitivity
to perturbation of the sampling measure P. To formalise this, suppose we have a sequence
of estimators TN which can be expressed as a fixed functional T : P(Rd+) → R evaluated

on the sequence of empirical measures, that is, TN = T (P̂N). This is clearly the case with
the plug-in estimator of the superhedging price in (2.1). Hampel [19] proposed the following
definition of statistical robustness.

DEFINITION 2.6 ([22], p. 42). Let r1, r2, . . . be i.i.d. from P ∈ P(Rd+). The sequence of

estimators TN = T (P̂N) is said to be robust at P if for every ε > 0 there is δ > 0 and N0 ∈ N
such that for all P̃ ∈ P(Rd+) and N ≥ N0 we have

dL(P, P̃) ≤ δ =⇒ dL

(
LP(TN),L

P̃
(TN)
)≤ ε,

where dL is the Lévy–Prokhorov metric

dL(P, P̃) := inf
{
δ > 0|P(B) ≤ P̃

(
Bδ)+ δ for all B ∈ B

(
Rd+
)}

.(2.5)

We sometimes say that TN is robust with respect to dL to stress the dependency on the
particular choice of the metric. A classical result of Hampel (see [22], Theorem 2.21) states
that if T is asymptotically consistent, that is,

TN = T (P̂N) −→ T (P) for all P ∈ P
(
Rd+
)

then TN is robust at P if and only if T (·) is continuous at P. The following theorem charac-
terises weak continuity of the superhedging price, and hence also robustness of its estimators.
In particular, it implies that even for i.i.d. returns π̂N is robust only for special combinations
of g and P.

THEOREM 2.7. Let g be continuous and P ∈ P(Rd+). Then the functional P̃ �→ π P̃(g)

is lower semicontinuous at P. It is continuous if and only if

πP(g) = sup
Q∈M

EQ[g].(2.6)

In consequence, any asymptotically consistent estimator TN is robust at P only if the above
equality holds true.

In particular, we see that, in general, the plug-in estimator π̂N(g) is not robust w.r.t. dL.
The fact that this holds for any asymptotically consistent estimator suggests strongly that
the classical definition of robustness is not adequate in the present context. The superhedg-
ing price πP(g) is concerned with the support of P in the sense that for P1,P2 ∈ P(Rd+)

with equal supports, and for a continuous g, we have πP1(g) = πP2(g). In contrast, any
δ-perturbation in the Lévy–Prokhorov sense allows for arbitrary changes to the support; see
Lemma A.1. In particular, even if P satisfies no-arbitrage, measures in its neighbourhood
may not and one may not employ (1.2) for these. To control the support, we can consider
dH (supp(P), supp(P̃)), for P, P̃ ∈ P(Rd+) and where dH denote the Hausdorff metric on
closed subsets of Rd+.

PROPOSITION 2.8. Let g : Rd+ → R be uniformly continuous and let P ∈ P(Rd+) such

that NA(P) holds and span(supp(P)) = Rd . Then the functional P(Rd+) � P̃ → π P̃(g) is
continuous w.r.t. the pseudo-metric dH (supp(P), supp(P̃)).

Alas, this does not allow us to recover statistical robustness of the plug-in estimator as the
pseudometric above does not admit control over the tails of P. Instead, in Section 4.2, we
consider a stronger W∞ metric which allows to obtain an analogue to Hampel’s robustness
result.
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2.3. Financial robustness. The plug-in estimator π̂N not only lacks statistical robustness,
as seen above, but is also not a financially robust estimate of risk. In fact, if P1 
 P, it
converges to the superhedging price from below, that is, π̂N ↗ πP. From a risk-management
perspective one would like to find a consistent estimator for the P-a.s. superhedging price
converging from above. However, as we now show, this is not possible in general. As a
direct consequence of the discontinuity of the superhedging functional with respect to the
Lévy–Prokhorov metric dL, the convergence from above at some confidence level cannot be
achieved in practical applications.

PROPOSITION 2.9. Let P ∈ P(Rd+) satisfy NA(P) and g be bounded and Lipschitz con-
tinuous. Then there exists no consistent estimator TN of πP(g) such that for a confidence
level α ∈ [0,1] there exists N0 ∈ N and

P∞(TN ≥ sup
Q∈M,Q∼P

EQ[g] for all N ≥ N0

)
≥ α(2.7)

for all P ∈ P(Rd+).

Thus, in order to achieve the above property (2.7) it is necessary to make additional reg-
ularity assumptions on P and g. We show that this is possible for suitably conservative es-
timators; see Section 3.2 below. In the case of the plug-in estimator, we can never achieve
convergence from above but we can develop an understanding of the order of magnitude of
the difference πP(g) − π̂N (g). We first do this by studying the convergence rates; see also
[38], Section B.8. Second, we achieve this via notions of statistical robustness suited for the
plug-in estimator; see Section 4.2.

2.4. Convergence rates. We now investigate the convergence rate in (2.4). While moti-
vated by financial considerations, the question is of independent interest. We focus on the
one-dimensional case. We let FP be the cumulative distribution function of P ∈ P(R+)

and dN = supr∈R+ |F
P̂N

(r)−FP(r)| denote the Kolmogorov–Smirnov distance between P̂N

and P.

DEFINITION 2.10. For N ∈ N and k = 1, . . . , �1/(3dN)�, we define the interquantile
distance

κN
k = F−1

P (3kdN) − F−1
P

(
3(k − 1)dN ∨ 0+) for k = 1, . . .

⌊
1/(3dN)

⌋
.

Furthermore, we set

κN
0 =
{
F−1
P (1) − F−1

P (1 − dN) if P has bounded support,

0 otherwise,

and let κN = supk∈{0,...,�1/(3dN )�} κN
k .

We can now establish the speed of convergence for the plug-in estimator.

THEOREM 2.11. In the setup of Theorem 2.1 assume d = 1, NA(P) holds and g is
bounded and uniformly continuous with |g(r) − g(r̃)| ≤ δ(|r − r̃|) for some δ : R+ → R+
such that δ(r) → 0 for r → 0. Then, as N → ∞,

πP(g) − π̂N (g) = sup
Q∼P,Q∈M

EQ[g] − sup
Q∼P̂N ,Q∈M

EQ[g]

=
⎧⎪⎨
⎪⎩
O
(
δ
(
κN )) if P has bounded support,

O
(
δ
(
κN )+ 1

F−1
P (1 − dN)

)
otherwise.
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REMARK 2.12. When the support of P is bounded, the above result holds for all contin-
uous g. Furthermore, κN tends to 0 as N → ∞.

LEMMA 2.13 (Dvoretzky–Kiefer–Wolfowitz, cf. [27], Theorem 11.6). Suppose the re-
turns r1, r2, . . . are i.i.d. samples from P ∈ P(R+). Then for every ε > 0,

P∞(dN > ε) ≤ 2e−2Nε2
.

Theorem 2.11 and Lemma 2.13 yield probabilistic bounds on the distribution of πP(g) −
π̂N (g). This is explored in [38], Section B.8, where we also prove Theorem 2.11 and provide
extensions of Lemma 2.13.

3. Improved estimators for the P-a.s. superhedging price. In the last section, we have
seen that the plug-in estimator is asymptotically consistent but has important shortcomings
from a statistical and financial point of view. To address these, we propose now new estima-
tors and investigate their asymptotic behaviour as well as their robustness. To construct these,
we consider “balls” around the empirical measure P̂N and we rely on recent convergence rate
results of P̂N to P for the choice of the radii.

We start by considering balls in the Wasserstein−∞ metric, which offers a very good con-
trol over the support but where we need to make strong assumptions on P to control the rate
of convergence for P̂N . Subsequently, in Section 3.2, we consider Wasserstein-p metrics,
p ≥ 1. The use of weaker metrics allows us to treat all measures admitting suitable finite
moments but requires a penalisation over the dual (pricing) measures. In fact, our estimators
rely on a suitable combination of results on convergence of empirical measures with insights
into pricing and control over martingale densities. Similar to the spirit of Corollary 2.5 above,
we combine the physical measure—and the risk neutral measure—arguments; see (3.4). We
note that using Wasserstein metrics, as opposed to weaker metrics, allows us to control the
first moment which is important for no-arbitrage reasons; see [38], Section B.7. Finally, in
Section 3.3, we consider much larger balls, indeed all of M, and let penalisation select the ap-
propriate measures. Short proofs are given here, the main proofs are reported in Appendix A.2
while supplementary proofs are given in [38], Section B.2.

3.1. Wasserstein W∞ balls. When considering robustness of the plug-in estimator we
saw that to consider measures in a ball around P̂N we have to consider a notion of distance
which, unlike the Lévy–Prokhorov metric, controls the supports. This is achieved by the
Wasserstein-∞ distance

W∞(P, P̃) := inf
γ∈�(P,P̃)

γ -ess-sup |x − y|

= inf
{
ε > 0|P(B) ≤ P̃

(
Bε), P̃(B) ≤P

(
Bε) ∀B ∈ B

(
Rd+
)}

,

(3.1)

where �(P, P̃) denotes the set of all probability measures γ with marginals P and P̃ and
where the equality between the definition and the second representation is a consequence of
the Skorokhod representation theorem. A direct comparison of (3.1) with (2.5) reveals that
W∞ controls the support in a way that dL does not. However, one immediate issue with
considering W∞ is that if P has unbounded support then W∞(P, P̂N) = ∞ for all N ∈ N

since P̂N are finitely supported. For this reason, and also to obtain appropriate confidence
intervals, in order to build a good estimator using W∞-balls we have to impose relatively
strong assumptions on P.
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ASSUMPTION 3.1. The measure P is an element of P(A) for a connected, open and
bounded set A ∈ B(Rd+) with a Lipschitz boundary. Furthermore, P admits a density ρ :
A → (0,∞) such that there exists α ≥ 1 for which 1/α ≤ ρ(r) ≤ α on A.

Under the above assumption, we have explicit bounds on W∞(P, P̂N). The case d = 1
follows from Kiefer–Wolfowitz bounds while the case d ≥ 2 was established in [15], Theo-
rem 1.1.

LEMMA 3.2. Assume that P fulfils Assumption 3.1 and NA(P) holds. Furthermore,
let r1, r2, . . . be i.i.d. samples from P. If d = 1, then except on a set with probability
O(exp(−2

√
N)), W∞(P, P̂N) ≤ lN (1, α,A) := αN−1/4. If d ≥ 2, then except on a set with

probability O(N−2),

W∞(P, P̂N) ≤ lN (d,α,A) := C(α,A)

⎧⎪⎪⎨
⎪⎪⎩

log(N)3/4

N1/2 if d = 2,

log(N)1/d

N1/d
if d ≥ 3.

We let B∞
ε (P) denote a W∞-ball of radius ε around P. The above lemma allows to deduce

consistency of the estimator based on such W∞ balls.

PROPOSITION 3.3. Consider P ∈ P(Rd+) satisfying NA(P) and Assumption 3.1, and let
α, lN := lN (d,α,A) be as in Lemma 3.2. Let g be a continuous function and r1, r2, . . . be
i.i.d. samples from P. Then

π̂∞
N (g) := sup

P̃∈B∞
lN

(P̂N)

π P̃(g) ↘ πP(g) as N → ∞,P∞-a.s.

REMARK 3.4. The practical use of W∞ estimators requires a good handle on lN . Its
dependence on the set A is mild; from [15], we see that if a bi-Lipschitz homeomorphism
φ : A → [0,1]d exists, then the constant C depends on the domain A only via the Lipschitz
constant of φ. However, the knowledge of α requires uniform a priori estimates on the density
of P on A. This should be contrasted with Wp estimators below, which only require finiteness
of certain moments.

PROOF OF PROPOSITION 3.3. From Lemma 3.2, an application of Borel–Cantelli shows
that, P∞-a.s., for N large enough P ∈ B∞

lN
(P̂N) and, in particular, π̂∞

N ≥ πP. Further, as

dH (supp(P), supp(P̃)) ≤ W∞(P, P̃) by (3.1), for all P̃ ∈ B∞
lN

(P̂N) we have supp(P̃) ⊆
supp(P)2lN , a compact on which g is uniformly continuous. For measures supported on this
compact, Proposition 2.8 yields continuity of P̃ �→ π P̃ with respect to W∞ at P, which in
turn implies consistency of π̂∞

N and concludes the proof. �

Thus π̂∞
N is not only consistent but also financially robust. We shall see in Corollary 4.6

below, that it is also statistically robust with respect to W∞. However, these results only hold
for measures P which satisfy Assumption 3.1. In the next section, we introduce a family of
estimators which exhibit similar desirable properties for a much larger class of measures P.
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3.2. Wasserstein Wp balls and martingale densities. We assume no-arbitrage NA(P)
holds and exploit (1.2) to consider estimators of the form

(3.2) πQN
(g) := sup

Q∈QN

EQ[g]

for different specifications of the sets of martingale measures QN based on “balls” around
P̂N . In order to guarantee asymptotic consistency, we have to ascertain that the true measure
P is contained in these balls and that we have some control over the tails of the martingale
measures in QN . Our crucial insight, following recent work of [34], is to work with Wasser-
stein metrics defined, for p ≥ 1 and P, P̃ ∈ P(Rd+) with a finite pth moment, by

Wp(P, P̃) =
(

inf
{∫

Rd+×Rd+
|r − s|pγ (dr, ds)

∣∣∣γ ∈ �(P, P̃)

})1/p

,

where �(P, P̃) is the set of probability measures on Rd+ × Rd+ with marginals P and P̃.
In case p = 1, [25] showed that Kantorovitch–Rubinstein duality (see [9], Theorem 11.8.2,
p. 421) has a particularly nice expression:

W1(P, P̃) = sup
f ∈L1

∣∣∣∣
∫
Rd+

f (y) dμ(y) −
∫
Rd+

f (y) dν(y)

∣∣∣∣,(3.3)

where L1 denotes the 1-Lipschitz continuous functions f : Rd+ → R.1 A Wasserstein ball
around P is denoted

Bp
ε (P) = {P̃ ∈ P

(
Rd+
)|Wp(P, P̃) ≤ ε

}
.

For a given ε ≥ 0 and k ∈ (0,∞], let

D
p
ε,k(P) :=

{
Q ∈ M

∣∣∣∥∥∥∥dQ
dP̃

∥∥∥∥∞ ≤ k for some P̃ ∈ Bp
ε (P)

}
.(3.4)

One’s first intuition might be to use QN = D
p
εN,∞(P̂N) in (3.2). Interestingly, this does not

work as the balls are too large. Indeed, Wasserstein distance metrises weak convergence and
Lemma A.1 shows that any ball around P̂N includes measures with full support. As it turns
out, to obtain a consistent estimator a subtle interplay is required between ε and k in (3.4).

ASSUMPTION 3.5.

1. r1, r2, . . . are realisations of a time-homogeneous ergodic Markov chain with initial
distribution P1 and unique invariant distribution P such that P1 
P and ‖dP1/dP‖Ls(P) <

∞ for some s > 3. Furthermore, EP[|r|q] < ∞ for some q > 2ps/(s − 2) and there exists a
sequence (ρN)N∈N with

∑
N∈N ρN < ∞ such that if r1 ∼ P,

E
[
E
[
f (rN) − m(f )|r1

]2]≤ ρ2
N,(3.5)

holds for all ‖f ‖∞ ≤ 1, all N ∈ N, where m(f ) =E[f (r1)].
2. r1, r2, . . . are i.i.d. samples of P and there exist a, c > 0 such that EP[exp(c|r|a)] < ∞.

1We develop the theory for all p ≥ 1. In practice, the choice of p has to be made by the statistician. From
Theorem 4.2 and the equation above Corollary 3.7, it is apparent that, for robustness, one wants to take p as large
as possible. This however makes moment assumptions more restrictive. The cases p = 1 and p = 2 are the most
popular in literature, given in particular the nice duality for p = 1 and the fact that L2 is a Hilbert space.
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We again refer to [38], Corollary B.3, for examples of processes, which satisfy Assump-
tion 3.5. Clearly, Assumption 3.5.2 implies 3.5.1. Under this assumption [14], see also [34],
used concentration of measure techniques to obtain rates of the decay for P∞(W(P, P̂N) ≥
ε); see Lemma A.2 and [38], Lemma B.4. This allows to compute explicitly a function
εN : (0,1) →R+ with εN(β) ↘ 0 as N → ∞, such that

P∞(Wp(P, P̂N) ≥ εN(β)
)≤ β, N ≥ 1.

We say that Assumption 3.5 holds if either Assumption 3.5.1 holds and then εN is given in
(B.3) or Assumption 3.5.2 holds and εN is then given in (A.1). We state now the main result
in this section.

THEOREM 3.6. Let g be either Lipschitz continuous and bounded from below or con-
tinuous and bounded, p ≥ 1 and P ∈ P(Rd+) satisfying NA(P). Suppose Assumption 3.5
holds and βN ∈ (0,1) satisfy limN→∞ βN = 0 and limN→∞ εN(βN) = 0. Pick a sequence
kN = o(1/εN(βN)). Then the limit in P∞-probability

lim
N→∞πQ̂N

(g) = πP(g),(3.6)

holds, where Q̂N := D
p
εN(βN),kN

(P̂N). Furthermore, if (βN)N∈N satisfies
∑∞

N=1 βN < ∞
then the limit (3.6) also holds P∞-almost surely.

The above result shows that πQ̂N
is an asymptotically consistent estimator of πP. Note

that we assume no arbitrage NA(P) so that, using (1.2), the convergence above is equivalent
to

lim
N→∞ sup

Q∈Q̂N

EQ[g] = sup
Q∼P,Q∈M

EQ[g].

We write Q̂p
N = Q̂N when we want to stress the dependence on p. As mentioned above, the

consistency depends crucially on the choice of Q̂N . We discuss this further and motivate the
above choice in [38], Section B.7. For p > 1, Dp

ε,k(P) are weakly compact but D1
ε,k(P) is not

even weakly closed in general; see Lemma A.3. In case of p = 1, taking weak closure of Q̂1
N

could destroy the asymptotic consistency of the estimator, for example, taking g(r) = (r − 1)

in the example in the proof of Lemma A.3.
For the particular choice of βN = exp(−√

N) under Assumption 3.5.2, an explicit compu-
tation yields that for N large enough we have

εN(βN) =
(

log(c1 exp(
√

N))

c2N

)1/min(max(d/p,2),a/(2p))

∼ 1

N1/min(max(2d/p,4),a/p)
.

However, many other choices of βN are feasible. The essential point is that for summable
(βN), a Borel–Cantelli argument implies that for N large enough the true distribution P

is within an εN(βN)-ball around P̂N . This allows us to deduce a sufficient condition for
financial robustness of our estimator.

COROLLARY 3.7. In the setup of Theorem 3.6 with
∑∞

N=1 βN < ∞, let g be such that

∃C ∈ R+ s.t. sup
Q∈M,‖ dQ

dP ‖∞≤C

EQ[g] = sup
Q∼P,Q∈M

EQ[g] = πP(g).(3.7)

Then πQ̂N
(g) ≥ πP(g) for N large enough so that the estimator is asymptotically consistent

and converges from above.
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The condition (3.7) is motivated by an approximation result; see Lemma A.4. It allows us
also to consider the case when we are unsure about the true measure P and instead prefer to
superhedge under all measures in its small neighbourhood.

COROLLARY 3.8. In the setup of Theorem 3.6, fix C > 0 and assume there exists Q ∈ M
such that ‖dQ/dP‖∞ < C. Consider CN → C and a fixed ε > 0. Then

lim
N→∞ sup

Q∈D
p
ε+εN ,CN

(P̂N)

EQ[g] = sup
Q∈D

p
ε,C(P)

EQ[g]

holds in P∞-probability and P∞-a.s. whenever
∑∞

N=1 βN < ∞.

We close this section with two examples illustrating that the assumptions on regularity of
g in Theorem 3.6 can not be easily relaxed.

EXAMPLE 3.9 (g unbounded, not Lipschitz). Set g(r) = (r − 1)2 and consider (rN)N≥1
i.i.d. from P= δ1. For rN ≥ 2, consider the measures

νN = εN(βN)

2
δ0 +
(

1 − rNεN(βN)

2(rN − 1)

)
δ1 + εN(βN)

2(rN − 1)
δrN

and

QN = εN(βN)

2
√

εN(βN)
δ0 +
(

1 − rNεN(βN)

2(rN − 1)
√

εN(βN)

)
δ1 + εN(βN)

2(rN − 1)
√

εN(βN)
δrN .

Then W1(νN, δ1) ≤ εN(βN), ∥∥∥∥dQN

dνN

∥∥∥∥∞ ≤ 1√
εN(βN)

and choosing rN = 1/εN(βN) we find

EQN
[g] ≥

√
εN(βN)

2(1/εN(βN) − 1)

(
1/εN(βN) − 1

)2 → ∞ as N → ∞.

EXAMPLE 3.10 (g bounded, discontinuous). Set g(r) = 1{r �=1} and consider (rN)N≥1
i.i.d. from P= δ1. Let

νN = 1

2
δ1−εN (βN)/2 + 1

2
δ1+εN (βN)/2,

then W1(νN, δ1) = εN(βN)/2. We conclude

lim
N→∞ sup

Q∈Q̂N

EQ[g] ≥ lim
N→∞ sup

Q
νN ,Q∈M
EQ[g] = 1 �= 0 = sup

Q∼P,Q∈M
EQ[g].

Let us remark that πQ̂N
(g) acting on infinite dimensional spaces is bounded by a more

sophisticated version of the plug-in estimator. To see this, define the average value at risk of
g at level 1/k, for k ≥ 1, by

AV @RP
1/k(g) = max

P̃∼P,‖dP̃/dP‖∞≤k

E
P̃
[g].

In dimension one, d = 1, it can be re-expressed (see [13], Theorem 4.47), as

AV @RP
1/k(g) := k

∫ 1

1−1/k
F−1
P◦g−1(x) dx,
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which makes the link with the classical value-at-risk apparent. If we now include the ability
to trade and optimise the final position, by the translation-invariance of AV @RP

1/k(·) we can
write

inf
H∈Rd

AV @RP
1/k

(
g(r) − H(r − 1)

)
= inf
{
x ∈ R|∃H ∈ Rd s.t. AV @RP

1/k

(
g(r) − H(r − 1) − x

)≤ 0
}
,

which is a superhedging price, where the acceptance cone is given by an AV @R constraint.
An analogous representation and bounds for πQ̂N

follow.

COROLLARY 3.11. In the setup of Theorem 3.6, let g be 1-Lipschitz and P ∈ P(Rd+)

satisfying NA(P). Then there exists N0 ∈ N such that for all N ≥ N0,

inf
H∈Rd

AV @R
P̂N

1/kN

(
g(r) − H(r − 1)

)

≤ inf
H∈Rd

sup
P̃∈B

p
εN (βN )(P̂N)

AV @RP̃
1/kN

(
g(r) − H(r − 1)

)= πQ̂N
(g)

= inf
{
x ∈ R|∃H ∈ Rd s.t.(3.8)

sup
P̃∈B

p
εN (βN )(P̂N)

AV @RP̃
1/kN

(
g(r) − H(r − 1) − x

)≤ 0
}

≤ inf|H |≤1
AV @R

P̂N

1/kN

(
g(r) − H(r − 1)

)+ 2kNεN(βN)

on a set of probability greater or equal than 1 − βN .

Note that

πQ̂N
(g) = sup

P̃∈B
p
εN (βN )(P̂N)

sup
‖dν/dP̃‖∞≤kN

inf
H∈Rd

Eν

[
g − H(r − 1)

]
.

The proof proceeds by using a min-max argument to interchange the two suprema and the

infimum above and uses continuity of P̃ �→ AV @RP̃
1/kN

(g −H(r −1)) w.r.t. to W1; see [41]
and [38], Section B.2, for details.

We provide a method for the direct calculation of the Wasserstein estimator implemented in
TensorFlow,2 which is based on recent duality results obtained in [10]. As this approximation
is computationally quite costly when a large sample size is used, we opt to compute the upper
bound of πQ̂N

(g) given in (3.8) instead. This is shown in Figure 1.

3.3. A penalty approach: Estimator for discontinuous payoffs. In the previous section,
we introduced the estimator πQ̂N

where Q̂N were based on Wasserstein balls around P̂N .
This estimator allowed us to address fundamental shortcomings of the plug-in estimator but,
as the counterexamples demonstrated, it is only asymptotically consistent under suitable reg-
ularity assumptions on g and/or further assumptions on P. To construct an estimator which
would be consistent also for discontinuous payoffs while preserving some of the desirable ro-
bustness properties of πQ̂N

, it is natural to turn to penalty methods used in risk measures and
their representations as nonlinear expectations. Namely, we use the maximum norm of the
Radon–Nikodym derivative, rather than the Wasserstein distance, in the penalisation term.

2Our Python implementation for all of the numerical examples in the paper can be found at https://github.com/
johanneswiesel/Stats-for-superhedging.

https://github.com/johanneswiesel/Stats-for-superhedging
https://github.com/johanneswiesel/Stats-for-superhedging
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FIG. 1. Convergence of the plug-in estimator π̂N (dotted) and the Wasserstein estimator πQ̂N
(dashed) to the

true value (solid) as N → ∞ for g(r) = (1 − r)1{r≤1} − √
r − 11{r>1}, P= Exp(1) (left) and g(r) = (r − 2)+,

P= exp(N (0,1)) (right). Results averaged over 103 runs.

THEOREM 3.12. In the setting of Theorem 2.1, let NA(P) hold and let g :Rd+ →R+ be

Borel-measurable and bounded by some constant C > 0. Then for any CN
N→∞−→ C we have

lim
N→∞ sup

Q∈M

(
EQ[g] − CN

(
inf

Q̂∼P̂N,Q̂∈M

∥∥∥∥dQ̂dQ

∥∥∥∥∞ − 1
))

= sup
Q∼P,Q∈M

EQ[g](3.9)

P∞-a.s., where for two probability measures Q, Q̂ the expression ‖dQ̂
dQ

‖∞ = ∞ if Q̂ is not
absolutely continuous w.r.t. Q.

The direct implementation of (3.9) proves numerically expensive and unstable due to the
fraction ‖dQ̂/dQ‖∞ appearing in the penalisation term. Thus, in Figure 2, we show an upper
bound on the penalty estimator derived in the proof of Theorem 3.12 in [38], Section B.2. We
focus on more tractable properties of the plug-in and Wasserstein estimator for the rest of the
paper.

FIG. 2. Convergence of the penalty estimator (dashed) in Theorem 3.12 and the plugin estimator π̂N (dot-
ted) to the true value (solid) as N → ∞ for g(r) = 1{r≤0.5}, P = P10 from [38], Example B.23, (left) and

g(r) = 1{r≤0.5}, P= Exp(1) (right). Results averaged over 103 runs.
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4. Statistical robustness of superhedging price estimators. Recall that in Theorem 2.7
we showed that classical robustness in the sense of Hampel cannot hold unless the superhedg-
ing price is trivial in that (2.6) holds. This is closely related to properties of Lévy–Prokhorov
metric (see Lemma A.1), and we are naturally led to consider stronger metrics than dL, which
offer a better control on the support. Below, we investigate the use of Wasserstein distances.
First, we consider Wp for p ≥ 1 which is sufficient to establish robustness of the estimator
πQ̂N

from Section 3.2. Then we turn to an even stronger metric W∞ which is needed to study
the plug-in estimator.

4.1. Robustness with respect to the Wasserstein–Hausdorff metric. Following [32], we
consider Wasserstein–Hausdorff distance, that is, a Hausdorff distance between subsets of
P(Rd+) equipped with Wp .

DEFINITION 4.1. Let P, P̃ ⊆ P(Rd+). The p-Wasserstein–Hausdorff metric between
sets P and P̃ is given by

Wp(P, P̃) := max
(

sup
P∈P

inf
P̃∈P̃

Wp(P, P̃), sup
P̃∈P̃

inf
P∈PWp(P, P̃)

)
.

In this generality, Wp(P, P̃) can take the value infinity. Properties of this quantity are
discussed in [32] assuming compactness and uniform integrability of P and P̃. We apply
this distance to the sets of the form Q̂N = D

p
εN(βN),kN

(P̂N) (see (3.4)), and we note that

D1
εN (βN),kN

(P̂N) is neither compact nor uniformly integrable; see Lemma A.3. We used these
sets in Section 3.2 to define consistent estimators πQ̂N

; see (3.2) and Theorem 3.6. The fol-
lowing establishes their robustness.

THEOREM 4.2. Fix p ≥ 1. The estimator πQ̂N
studied in Theorem 3.6 is robust with

respect to the p-Wasserstein–Hausdorff metric in the sense that

sup
g∈L1

∣∣πQ̂1
N
(g) − πQ̂2

N
(g)
∣∣≤ Wp(Q̂1

N, Q̂2
N

)
,

where Q̂i
N = D

p
εN(βN),kN

(P̂i
N ) for Pi ∈ P(Rd+), i = 1,2.

PROOF. Note that for all g ∈ L1 and Qi ∈ Q̂i
N , i = 1,2, we have

EQ1[g] −EQ2[g] =
∫
Rd+×Rd+

g(r) − g(s) dγ (r, s) ≤
∫
Rd+×Rd+

|r − s|dγ (r, s),

where γ ∈ �(Q1,Q2) is a probability measure on Rd+ × Rd+ with marginals Q1 and Q2.
Taking the infimum over all these probability measures γ yields

EQ1[g] −EQ2[g] ≤ Wp(Q1,Q2)
for all p ≥ 1. The claim follows. �

REMARK 4.3. It follows in particular that if P1,P2 admit no arbitrage then
limN→∞Wp(Q̂1

N, Q̂2
N) = 0 implies supp(P1) = supp(P2). Indeed, otherwise there exists

a Lipschitz continuous function g such that

sup
Q∼P1,Q∈M

EQ[g] �= sup
Q∼P2,Q∈M

EQ[g],

so, by consistency, limN→∞Wp(Q̂1
N, Q̂2

N) > 0, P∞-a.s.
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4.2. Robustness with respect to W∞ and perturbations of the support. We reconsider
now robustness of the plug-in estimator from Section 2. In analogy to the previous section, it
seems natural to simply consider the Hausdorff distance between the supports of P̂1

N and P̂2
N .

In Proposition 2.8, we established continuity of P(Rd+) � P̃ → π P̃(g) in the pseudometric
dH (supp(P), supp(P̃)) but noted that it was not sufficient for a robustness result. Recalling
the Lévy metric in (2.5), if dL(P, P̃) ≤ ε then P̃ can be obtained from P by redistributing ε

mass to arbitrary points on Rd+, while (1−ε) mass can only be moved in an ε-neighbourhood
(in the Euclidean distance) of where P allocated mass. As we have observed before, the
former operation causes problems, as it changes the null sets of the measure uncontrollably.
This is no longer possible under our pseudo-metric. However, to obtain robustness, we have
to restrict redistribution of mass to an ε-neighbourhood for all sets and not only for the whole
support. This is achieved by the W∞ metric as is clear from the second representation in
(3.1). This leads to the following extended notion of robustness.

DEFINITION 4.4. Let P ⊆ P(Rd+) and r1, r2, . . . be i.i.d. with distribution P ∈ P. The

sequence of estimators TN = T (P̂N) is said to be robust at P ∈ P w.r.t. W∞ on P, if for all
ε > 0 there exist δ > 0 and N0 ∈ N such that for all N ≥ N0 and all P̃ ∈ P,

W∞(P̃,P) ≤ δ =⇒ dL

(
L
P̃
(TN),LP(TN)

)≤ ε.

The following asserts robustness of the plug-in estimator in the above sense and is the
main result in this section.

THEOREM 4.5. Let P ∈P(Rd+) such that NA(P) holds and span(supp(P)) = Rd . Then,
for a uniformly continuous g, the plug-in estimator π̂N (g) is robust at P w.r.t. W∞ on
P(Rd+).

The proof of Theorem 4.5 is reported in [38], Section B.3. There are ways to weaken the
continuity assumption on g and obtain robustness on some P ⊆ P(Rd+); see [38], Corol-
lary B.7. We close this section with a result on robustness of π̂∞

N (g) from Proposition 3.3.

COROLLARY 4.6. Let g be a continuous function and P ∈ P(Rd+) satisfying NA(P) and
Assumption 3.1. Then the estimator π̂∞

N (g) from Proposition 3.3 is robust at P w.r.t. W∞ on
P(Rd+).

5. Risk measurement estimation. The P-a.s. superhedging price πP(g) is a very con-
servative assessment of risk of a short position in a liability with payoff g. Instead, we could
use a risk measure ρP for such an assessment, as proposed by [2], leading to

πρP(g) := inf
{
x ∈ R|∃H ∈ Rd such that ρP

(
g − x − H(r − 1)

)≤ 0
}
.

Note that we include above the ability to trade in the market in order to (optimally) reduce
the risk of g. We consider ρP with Kusuoka’s representation

ρP(g) = sup
μ∈P

∫ 1

0
AV@RP

α (g) dμ(α)(5.1)

for a set P of probability measures on [0,1]. This is not very restrictive since this repre-
sentation, first obtained in [31], holds for any law invariant coherent risk measure; see [23].
Importantly, it enables us to think of ρP(g) as a function of the underlying measure P. Much
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like we did for πP(g), we would like to estimate πρP(g) directly from the observed stock
returns. To this end, we introduce the following estimator:

π
ρ

B
p
εN (βN )(P̂N)

(g) := inf
{
x ∈ R

∣∣∃H ∈ Rd such that

sup
P̃∈B

p
εN (βN )(P̂N)

ρ
P̃

(
g − x − H(r − 1)

)≤ 0
}

as the natural equivalent to πQ̂N
(g). In particular, if P = {δα} where α ∈ [0,1], we simply

have ρP(g) = AV@RP
α (g) and the corresponding estimator π

ρ

B
p
εN (βN )(P̂N)

(g) resembles the

Wasserstein Wp estimator for fixed level 1/kN := α. We have the following consistency
result.

PROPOSITION 5.1. Assume g satisfies |g(r)−g(r̃)| ≤ L|r − r̃| for some L ∈ R and that
supμ∈P

∫ 1
0 μ(dα)/α1/p < ∞. Then for any P satisfying NA(P) and Assumption 3.5 the limit

in P∞-probability

lim
n→∞π

ρ

B
p
εN (βN )(P̂N)

(g) = πρP(g)

holds. If Assumption 3.5.2 is satisfied, then the limit also holds P∞-a.s.

PROOF. The “≥”-inequality follows in the proof of Theorem 3.6. We now prove the
opposite inequality using [41], Corollary 11, p. 538. Fix ε > 0. Note that there exists H ∈ Rd

such that ρP(g − πρP(g) − ε − H(r − 1)) ≤ 0. Then for all P̃ ∈ B
p
εN(βN)(P̂N),

πρ
P̃(g) ≤ ρ

P̃

(
g − H(r − 1)

)= ρ
P̃

(
g − πρP(g) − ε − H(r − 1)

)+ πρP(g) + ε

= [ρ
P̃

(
g − πρP(g) − ε − H(r − 1)

)− ρP
(
g − πρP(g) − ε − H(r − 1)

)]
+ ρP
(
g − πρP(g) − ε − H(r − 1)

)+ πρP(g) + ε

≤ L̃Wp(P̃,P) sup
μ∈P

∫ 1

0

μ(dα)

α1/p
+ πρP(g) + ε.

As ε > 0 was arbitrary, the claim follows. �

We note that, in analogy to the above, sup
P̃∈B

p
εN (βN )(P̂N)

ρ
P̃
(g) offers a natural consistent

estimator for ρP(g).
Finally, we present a simple empirical test of the performance of our estimators. We sim-

ulate weekly returns according to a GARCH(1,1) model:

rn =
√

μ − 2

μ
ηn

√
hn, hn = ω + βhn−1 + αr2

n−1,

where ω = 0.02, β = 0.1, α = 0.8 and ηn is standard student-t distributed with μ = 5 degrees
of freedom. We take 1000 samples from the above P∼ GARCH(1,1) and calculate the plug-
in estimator π

AV@R0.95

P̂N
((r − 1)+) and the Wasserstein estimator π

AV@R0.95

B
p
εN (βN )(P̂N)

((r − 1)+). We

compare this to a parametric estimator of πAV@RP
0.95((r − 1)+), where we first estimate the

parameters of the GARCH(1,1) model and then compute πAV@RP̃
0.95((r − 1)+) given the

estimated model P̃. For each of these estimates, we use a running window of 50 weeks,
which is in line with the Basel III regulations for calculating the 10-day AV@R (see [40],
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FIG. 3. Comparison of estimates for πAV@RP̃
0.95 ((r −1)+). Estimates use a rolling window of 50 data points and

we plot the average of the last 10 (first two panes) or 5 (last pane) estimates. The data is from P∼ GARCH(1,1)

(first pane) and its variant with a change in the parameters for the middle third of the time series. The last pane
uses S&P500 returns.

MAR33, p. 89), which set the minimum length of the historical observation period to be one
year. We also consider the case when the parameters of the model change for observations
330–670. The behaviour of the three estimators is shown in Figure 3. Both the Wasserstein
and plug-in estimator approximate the true value reasonably well—the Wasserstein estimator
being the most conservative estimator. The parametric estimator exhibits the most erratic
behaviour which is due to the unstable estimation of the GARCH(1,1) parameters with only
50 data points. This shows advantages of our proposed estimators when compared with a
parametric approach, even when the model is correctly selected. The last pane in Figure 3
uses S&P500 weekly returns data from 01/01/2006–01/01/2015 with a moving window of 50
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weeks. The GARCH(1,1) estimator, for which the model is mis-specified, does not pick up
any markets movements, while both the plug-in and Wasserstein estimator detect the financial
crisis and its aftermath. For similar plots but with GARCH(1,1) using log-returns, we refer
to [38], Section B.4. While preliminary, we believe that this simple empirical study points
to clear advantages of our approach. In particular, it is encouraging to see that in the last
pane, the Wasserstein estimators clearly picks up the financial crisis and the Eurozone debt
crisis periods. A further in-depth study of comparative performance of different estimators is
clearly needed and is left for future research.

APPENDIX A: ADDITIONAL RESULTS AND PROOFS

A.1. Additional results and proofs for Section 2. PROOF OF THEOREM 2.1. First,
note that if An is a nondecreasing sequence of sets with A = limn An =⋃n An then ĝA =
limn ĝAn . The “≥” inequality is obvious and the reverse follows since ĝAn is a nondecreasing
sequence of concave functions thus its limit is a concave function dominating g on A.

Using Lusin’s theorem (see [4], Theorem 7.4.3, p. 227), we can find an increasing sequence
Kn of compact subsets of supp(P) such that P(Rd+ \Kn) ≤ 1/n and g|Kn is continuous. Con-
tinuity of g on Kn implies that ĝKn = ĝP|Kn

≤ ĝP. On the other hand, by the argument above,
limn ĝKn = ĝ⋃

n Kn
≥ ĝP since P(

⋃
n Kn) = 1. We conclude that limn ĝKn = ĝP. Further, by

Birkhoff’s ergodic theorem (see [24], Theorem 9.6, p. 159) and P1 
P we have⋃
N

supp
(
P̂N )= {r1, r2, . . .} is a.s. dense in supp(P)

and hence ĝKn∩{r1,r2,...} = ĝKn a.s. By the argument above, we thus have

lim
N→∞ ĝ

P̂N
= ĝ{r1,...} = ĝ⋃

n Kn∩{r1,...} = lim
n→∞ ĝKn = ĝP P∞-a.s.,

where the second equality follows since the inclusion {r1, r2, . . .} ⊂⋃n Kn holds P∞-a.s. We
conclude using (2.3). �

LEMMA A.1. Let P ∈ P(Rd+) with finite first moment and ε > 0. Then for all x ∈ Rd+
the ball B1

ε (P) in the 1-Wasserstein metric contains λδx + (1 − λ)P for some λ ∈ (0,1). In
particular, any P ∈ P(Rd+) can be written as a weak limit of probability measures PN with
supp(PN) =Rd+.

PROOF OF THEOREM 2.7. Fix P ∈ P(Rd+) and a sequence PN converging to P. Let
{r1, r2, . . . } be dense in supp(P). Fix n ≥ 1 and note that, for any i ≥ 1, weak convergence
implies that PN(B1/n(ri)) > 0 for all N large enough. In particular, there exists rn

i ∈ B1/n(ri)

such that ĝPN (rn
i ) ≥ g(rn

i ). Thus, by the same reasoning as in the proof of Theorem 2.1
above,

lim inf
PN⇒P

πPN

(g) = lim inf
N→∞ ĝPN (1) ≥ lim

n→∞ lim
k→∞ ĝ{rn

1 ,rn
2 ,...,rn

k }(1) = πP(g).

We conclude using Lemma A.1 since for a sequence with supp(PN) = Rd+, by continuity of
g, we have, for all N ≥ 1,

πPN

(g) = inf
{
x ∈ R|∃H ∈ Rd s.t. x + H(r − 1) ≥ g on Rd+

}= sup
Q∈M

Rd+

EQ[g].

For the second part of the theorem, assume P ∈ P(Rd+) is such that

πP(g) < sup
Q∈M

Rd+

EQ[g] = inf
{
x ∈ R|∃H ∈ Rd s.t. x + H(r − 1) ≥ g on Rd+

}
.
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Take a sequence (PN)N∈N, as above, with supp(PN) = Rd+ and PN ⇒ P. Fix ε > 0 such
that

2ε < πPN

(g) − πP(g).

For every δ > 0, there exists N0 ∈ N such that for all N ≥ N0 we have dL(PN,P) ≤ δ. Let
TN be an asymptotically consistent estimator of πP(g). Then, for all N large enough,

dL

(
LPN0 (TN),LP(TN)

)≥ dL(δπP(g), δπPN0 (g)
) − dL

(
LPN0 (TN), δ

πPN0 (g)

)
− dL

(
δπP(g),LP(TN)

)
≥ ε.

Thus TN is not robust at P, which shows the claim. �

A.2. Additional results and proofs for Section 3. We now prove Theorem 3.6 under
Assumption 3.5.2. We adopt the notation of Section 3.

LEMMA A.2 ([14], Theorem 2). Under Assumption 3.5.2, we have

P∞(Wp(P, P̂N) ≥ ε
)≤
{
c1 exp

(−c2Nεmin(max(d/p,2),a/(2p))) if ε ≤ 1,

c1 exp
(−c2Nεa/(2p)) if ε > 1

for N ≥ 1, d �= 2p and ε > 0, where c1, c2 are positive constants that only depend on p, d ,
a, c and EP[exp(c|r|a)]. Thus for some confidence level β ∈ (0,1) we can choose

εN(β) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
log(c1β

−1)

c2N

)1/min(max(d/p,2),a/(2p))

if N ≥ log(c1β
−1)

c2
,(

log(c1β
−1)

c2N

)(2p)/a

if N <
log(c1β

−1)

c2

(A.1)

which yields P∞(Wp(P, P̂N) ≥ εN(β)) ≤ β .

LEMMA A.3. Fix N ∈ N and p ≥ 1. Let Qn ∈ D
p
εN(βN),kN

(P) such that Qn ⇒ Q ∈
P(Rd+) for n → ∞. Then |EQ[r − 1]| ≤ KkNεN(βN) for some K > 0. D

p
εN(βN),kN

(P) is

weakly compact for p > 1. In general, D1
εN (βN),kN

(P) is not weakly closed.

Taking the closure of D1
εN (βN),kN

(P) would ensure compactness, but consistency of the
estimator sup

Q∈Q̂N
EQ[g] in Theorem 3.6 would be lost in general since the closure might

include nonmartingale measures. To see this, take for instance g(r) = (r − 1) in the example
in the proof of Lemma A.3.

LEMMA A.4 ([43], Cor. 3.3). For a measurable function g bounded from below

sup
‖ dQ

dP ‖∞<∞,Q∈M
EQ[g] = sup

Q∼P,Q∈M
EQ[g].

PROOF OF THEOREM 3.6. Let us assume that Assumption 3.5.2 is satisfied. Note that
the “≥”-inequality follows from Lemma A.4. Indeed, Lemma A.4 implies that for all N ∈ N

there exists a martingale measure QN ∼ P with ‖dQN/dP‖∞ ≤ kN such that

sup
Q∼P,Q∈M

EQ[g] ≤EQN
[g] + aN,
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with aN → 0 as N → ∞. With P∞-probability (1 − βN) we have P ∈ B
p
εN(βN)(P̂N), and

hence QN ∈ Q̂N . This gives

P∞( sup
Q∼P,Q∈M

EQ[g] − aN ≤ sup
Q∈Q̂N

EQ[g]
)

≥ 1 − βN, N ≥ 1.

We recall that NA(P) gives πP(g) = supQ∼P,Q∈MEQ[g] and hence, for any ε > 0 and N

large enough, P∞(πQ̂N
(g) − πP(g) ≤ −ε) ≤ βN → 0 as N → ∞.

For the “≤”-inequality, we assume g is Lipschitz continuous bounded from below and we
take H ∈ Rd such that

πP(g) + H(r − 1) ≥ g P-a.s.

Take a sequence QN ∈ Q̂N with EQN
[g] ≥ πQ̂N

(g) − aN . By definition, there exist νN ∈
B

p
εN(βN)(P̂N) such that ‖dQN/dνN‖∞ ≤ kN . In particular, with P∞-probability (1 − βN)

we have νN ∈ B
p
2εN (βN )(P). Let us define

A = {πP(g) + H(r − 1) − g ≥ 0
}
.

Then

EQN
[g] ≤ EQN

[(
πP(g) + H(r − 1)

)
1A + g1Ac

]
= πP(g) +EQN

[
H(r − 1)

]+EQN

[(
g − H(r − 1) − πP(g)

)
1Ac

](A.2)

and the second term on the RHS vanishes since QN is a martingale measure. To treat the last
term on the RHS consider the function

g̃ := (g − H(r − 1) − πP(g)
)∨ 0

which is nonnegative, C-Lipschitz for some C > 0 and {g̃ > 0} = Ac. Since P(Ac) = 0, we
have in particular∣∣∣∣

∫
Ac

g̃ dνN

∣∣∣∣=
∣∣∣∣
∫
Ac

g̃ dνN −
∫
Ac

g̃dP

∣∣∣∣=
∣∣∣∣
∫

g̃ dνN −
∫

g̃ dP

∣∣∣∣
which by the Kantorovitch–Rubinstein duality (3.3) is dominated by CW1(νN,P) ≤
CWp(νN,P). We conclude that, for any ε > 0,

P∞(πQ̂N
(g) − πP(g) ≥ ε

)≤P∞(aN + CkNWp(νN,P) ≥ ε
)≤ βN

for N large enough since εNkN → 0. This establishes the convergence of πQ̂N
(g) to πP(g)

in P∞-probability. Further, whenever
∑∞

N=1 βN < ∞, a simple application of Borel–Cantelli
lemma, similarly as in [34], Lemma 3.7, shows that the convergence holds P∞-a.s. This
concludes the proof in the case of Lipschitz continuous g bounded from below and under
Assumption 3.5.2. The remaining arguments, in particular the case when g is bounded and
continuous, are given in [38], Section B.2. �
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