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In this paper, we develop a general approach to proving global and local
uniform limit theorems for the Horvitz–Thompson empirical process aris-
ing from complex sampling designs. Global theorems such as Glivenko–
Cantelli and Donsker theorems, and local theorems such as local asymp-
totic modulus and related ratio-type limit theorems are proved for both the
Horvitz–Thompson empirical process, and its calibrated version. Limit the-
orems of other variants and their conditional versions are also established.
Our approach reveals an interesting feature: the problem of deriving uniform
limit theorems for the Horvitz–Thompson empirical process is essentially no
harder than the problem of establishing the corresponding finite-dimensional
limit theorems, once the usual complexity conditions on the function class are
satisfied. These global and local uniform limit theorems are then applied to
important statistical problems including (i) M-estimation, (ii) Z-estimation
and (iii) frequentist theory of pseudo-Bayes procedures, all with weighted
likelihood, to illustrate their wide applicability.

1. Introduction.

1.1. Overview. Over the past thirty years, uniform limit theorems for the empirical pro-
cess have proved to be a universal tool in various statistical problems based on independent
observations; we only refer readers to the textbooks [35, 48, 77, 81] for relevant theoretical
developments and various statistical applications.

Our focus here will be uniform limit theorems for the Horvitz–Thompson empirical pro-
cess arising from complex sampling designs (cf. [70]). Such limit theorems provide funda-
mental probabilistic tools in statistical applications with survey data, for instance, in combina-
tion with the functional delta method (see, e.g., [4, 8, 9, 27] for applications in econometrics),
or in semiparametric modeling (see, e.g., [13–15, 50, 56, 57] for applications in biostatistics),
just to name a few. Recent years have seen the emergence of interest in further limit theory
in this direction (e.g., [7, 11, 16, 17, 26, 68, 69]), but the scope of the existing results in this
direction has been somewhat limited, and many of these available results have been derived
based on case-by-case analyses. Roughly speaking, there are three approaches so far in the
literature:

1. Breslow and Wellner [16, 17] developed theory in the context of two-phase sampling
with phase II a simple sampling without replacement sampling design. The key idea therein is
to view the Horvitz–Thompson empirical process conditionally as an exchangeably weighted
bootstrap empirical process [60]. This idea is further exploited in [69] in the context of cal-
ibrated Horvitz–Thompson empirical processes. A similar bootstrap approach is adopted in
[68] in the setting of stratified sampling with potential overlaps.
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2. Bertail et al. [7] derived a Donsker theorem for the Bernoulli sampling design and other
sampling designs that are close enough to the rejective sampling design (= high entropy
designs) under a uniform entropy condition on the indexing function class. Their techniques
heavily rely on the conditional independence of the inclusion indicators.

3. Conti [26] and Boistard et al. [11] established Donsker theorems over one class
{1(−∞,t] : t ∈ R} under sampling designs with increasing level of generality, by explicit cal-
culations that verify the one-dimensional tightness condition.

The apparent case-by-case complication here is that complex sampling designs typically
induce complicated dependence structure between the samples, so in order to use existing
techniques from empirical process theory, certain latent independence or exchangeability
structure needs to be identified in a case-by-case routine.

On the other hand, some structural commonality is indeed hinted at by the results proved in
the above cited papers: uniform laws of large numbers (i.e., Glivenko–Cantelli theorems) and
uniform central limit theorems (i.e., Donsker theorems) hold under rather minimal conditions
on the indexing function classes. The intriguing question naturally arises:

QUESTION 1.1. Does there exist any general approach to proving uniform limit theo-
rems for the Horvitz–Thompson empirical process under natural conditions, without being
confined to a particular form of the sampling design?

A possible solution to this very natural question, however, appears far from obvious from
the previously described approaches. The challenges involved here were already noted in Lin
[50] as “. . . To our knowledge there does not exist a general theory on conditions required
for the tightness and weak convergence of Horvitz–Thompson processes. . . ,” dating back to
as early as 2000. One of the goals of this paper is to address Question 1.1 in an appropriate
general framework that includes a wide variety of sampling designs. Part of the philosophical
difficulty in such a general approach is that there is an easily believable impression that any
general attempt at establishing global uniform limit theorems for the Horvitz–Thompson em-
pirical process, must necessarily give general recipes for establishing finite-dimensional con-
vergence of the Horvitz–Thompson empirical process. In the specific context of Donsker the-
orems, this impression pushes one to think about the “right conditions” under which at least
central limit theorems hold for a single function under various different sampling designs—a
task that usually already requires a case-by-case study.

In this paper, we show that this easily believable impression need not be the rule in the
context of uniform limit theorems for Horvitz–Thompson empirical processes, at least in
the superpopulation framework adopted in [11, 65] with uniformly positive first-order in-
clusion probabilities. The major “change of thinking” adopted in the current paper, interest-
ingly, indicates that the problem of deriving uniform limit theorems for Horvitz–Thompson
empirical processes is not really more difficult than that of establishing the corresponding
finite-dimensional limit theorems, once the usual complexity conditions on the function class
are satisfied. In the context of Donsker theorems, this amounts to saying that, as long as the
Horvitz–Thompson empirical process converges finite-dimensionally, weak convergence at
the process level follows almost automatically. Since finite-dimensional convergence is nec-
essary for weak convergence of the process to hold, the real point here is to separate the
problem of establishing finite-dimensional convergence of the Horvitz–Thompson empirical
process from that of establishing a uniform limit theorem. The approach here is in part in-
spired by a multiplier inequality developed in a recent work of the authors [40], which holds
regardless of the dependence structure among the multipliers, given sufficient independence
structure between the multipliers and the samples.
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Establishing global uniform limit theorems serves as a first step in understanding the be-
havior of these Horvitz–Thompson empirical processes. In typical semi/nonparametric appli-
cations, it is also of crucial importance to understand the local behavior of these empirical
processes. To this end, we further study the local behavior of the Horvitz–Thompson em-
pirical process by characterizing its local asymptotic modulus and proving several ratio-type
limit theorems. These local uniform limit theorems show that the Horvitz–Thompson empiri-
cal process typically has similar local behavior compared to its empirical process counterpart.
Similar global and local uniform limit theorems are established for the calibrated version of
the Horvitz–Thompson empirical processes. Some other variants of Horvitz–Thompson em-
pirical processes are discussed. Conditional versions of the uniform limit theorems are also
established.

As an illustration and a proof of concept of the utility of our global and local uniform
limit theorems (and related techniques), we apply these new tools to a variety of important
statistical problems, including (i) M-estimation, or empirical risk minimization, in a gen-
eral nonparametric model, (ii) Z-estimation in a general semiparametric model and (iii) fre-
quentist theory of pseudo-Bayesian procedures (i.e., theory of posterior contraction rates and
Bernstein–von Mises type theorems), all based on weighted likelihood. Several concrete ex-
amples are illustrated to further demonstrate the applicability of these general results.

The rest of the paper is organized as follows. Section 2 is devoted to a general probabilistic
framework for complex sampling designs and detailed illustrations of the theory in the context
of a number of examples. Section 3 studies the global and local uniform limit theorems for the
Horvitz–Thompson empirical process. Section 4 gives applications of the theory developed
in Section 3 to the statistical problems listed above. Proofs are collected in the Appendix (see
Supplementary Material [41]).

1.2. Notation. For a real-valued measurable function f defined on (X ,A,P ) and p ≥
1, ‖f ‖Lp(P ) ≡ (P |f |p)1/p denotes the usual Lp-norm under P , and ‖f ‖∞ ≡ ‖f ‖L∞ ≡
supx∈X |f (x)|. f is said to be P -centered if Pf = 0. Lp(g,B) denotes the Lp(P )-ball cen-
tered at g with radius B . For simplicity, we write Lp(B) ≡ Lp(0,B).

Let (F,‖·‖) be a subset of the normed space of real functions f : X → R. Let
N (ε,F,‖·‖) be the ε-covering number, and let N[ ](ε,F,‖·‖) be the ε-bracketing number;
see page 83 of [81] for more details. To avoid unnecessary measurability digressions, we
assume that F is countable throughout the article. As usual, for any φ : F → R, we write
‖φ(f )‖F for supf ∈F |φ(f )|.

Throughout the article, ε1, . . . , εn will be i.i.d. Rademacher random variables independent
of all other random variables. Cx will denote a generic constant that depends only on x, whose
numeric value may change from line to line unless otherwise specified. a �x b and a �x b

mean a ≤ Cxb and a ≥ Cxb, respectively, and a 	x b means a �x b and a �x b [a � b means
a ≤ Cb for some absolute constant C]. For two real numbers, a, b, a ∨ b ≡ max{a, b} and
a ∧ b ≡ min{a, b}. For two sequence of nonnegative real numbers {an}, {bn}, an � (
)bn

means limn an/bn = 0(∞). We slightly abuse notation by defining log(x) ≡ log(x ∨ e) (and
similarly for log log(x)).

2. Sampling designs.

2.1. Setup. Let UN ≡ {1, . . . ,N}, and SN ≡ {{s1, . . . , sn} : 0 ≤ n ≤ N, si ∈ UN, si �=
sj ,∀i �= j} (n = 0 corresponds to the empty set) be the collection of subsets of UN . We adopt
the superpopulation framework as in [65]: Let (Y,BY), (Z,BZ) be measurable spaces, and
{(Yi,Zi) ∈ Y × Z}Ni=1 be i.i.d. superpopulation samples defined on the probability space
(X ,A,P(Y,Z)) ≡ (Y × Z,BY ⊗ BZ ,P(Y,Z)). Here, Y (N) ≡ (Y1, . . . , YN) is the vector of
interest, and Z(N) ≡ (Z1, . . . ,ZN) is an auxiliary vector. A sampling design is a function
p : SN ×Z⊗N → [0,1] such that:
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1. for all s ∈ SN , z(N) �→ p(s, z(N)) is measurable,
2. for all z(N) ∈ Z⊗N , s �→ p(s, z(N)) is a probability measure.

The probability space we work with that includes both the superpopulation and the design-
space is the same product space (SN ×X , σ (SN) ×A,P) as constructed in [11]. We include
the construction here for convenience of the reader: the probability measure P is uniquely
defined through its restriction on all rectangles: for any (s,E) ∈ SN × A (note that SN is a
finite set),

P(s × E) ≡
∫
E
p
(
s, z(N)(ω)

)
dP(Y,Z)(ω) ≡

∫
E
Pd(s,ω)dP(Y,Z)(ω),(2.1)

where Pd(s,ω) ≡ p(s, z(N)(ω)). We also use P to denote the marginal law of Y for notational
convenience.

Given (Y (N),Z(N)) and a sampling design p, let {ξi}Ni=1 ⊂ [0,1] be random variables de-
fined on (SN ×X , σ (SN) ×A,P) with πi ≡ πi(Z

(N)) ≡ E[ξi |Z(N)]. We further assume that
{ξi}Ni=1 are independent of Y (N) conditionally on Z(N). Typically, we take ξi ≡ 1i∈s , where
s ∼ p(·,Z(N)), to be the indicator of whether or not the ith sample Yi is observed (and in
this case πi(Z

(N)) = ∑
s∈SN :i∈s p(s,Z

(N))), but we do not require this structure a priori. The
πi ’s are often referred to as the first-order inclusion probabilities, and πij ≡ πij (Z

(N)) ≡
E[ξiξj |Z(N)] are the second-order inclusion probabilities.

We define the Horvitz–Thompson empirical measure and empirical process as follows: for
{πi}, {ξi}, {Yi} as above

P
π
N(f ) ≡ 1

N

N∑
i=1

ξi

πi

f (Yi), f ∈F,

and the associated Horvitz–Thompson empirical process

G
π
N(f ) ≡ √

N
(
P

π
N − P

)
(f ), f ∈ F .

The name of such an empirical process goes back to [44], in which P
π
N(Y ) ≡ N−1 ∑N

i=1(ξi/

πi)Yi is used as an estimator for the population mean P(Y ) ≡ EY∼P Y . The usual empirical
measure and empirical process (i.e., with ξi/πi ≡ 1 for all i = 1, . . . ,N ) will be denoted by
PN , GN , respectively.

ASSUMPTION A. Consider the following conditions on the sampling design p:

(A1) min1≤i≤N πi ≥ π0 holds for some nonrandom π0 > 0.
(A2-LLN) 1

N

∑N
i=1(

ξi

πi
− 1) = oP(1).

(A2-CLT) 1√
N

∑N
i=1(

ξi

πi
− 1) = OP(1).

(A1) is a common assumption in the literature. (A2-LLN) says that the weights {ξi/πi}
satisfy a law of large numbers; while (A2-CLT) says that the weights {ξi/πi} have a

√
N rate

of convergence (so that a uniform central limit theorem for the more complicated Horvitz–
Thompson empirical process G

π
N can be possible). As we will see below in the examples,

a generic way of verifying these conditions is to obtain a good estimate on the correlations
{πij − πiπj }i �=j . Conditions on (even higher order) correlations are very common in the
literature; cf. [10–12, 18].
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2.2. Examples of sampling designs.

EXAMPLE 2.1 (Sampling without replacement). A simple random sampling without re-
placement (SWOR) design p is such that for all z(N) ∈ Z⊗N , p(·, z(N)) is the sampling with-
out replacement design with cardinality n(z(N)). In this case, the parameter in this sampling
design is n(z(N)) and (ξ1, . . . , ξN) is a random permutation of the vector that contains 1 in
the first n(z(N)) components and 0 otherwise. Then

πi

(
z(N)) = E

[
ξi |z(N)] = n(z(N))

N
.

Condition (A1) holds if n(z(N))/N ≥ c for some constant c > 0. Condition (A2) is trivially
satisfied since

∑N
i=1 ξi = n(z(N)), and hence

N∑
i=1

(
ξi

πi

− 1
)

=
(

1

n(z(N))/N
·

N∑
i=1

ξi

)
− N = 0.

EXAMPLE 2.2 (Bernoulli sampling). A Bernoulli sampling design p is such that for all
z(N) ∈ Z⊗N and s ∈ SN ,

p
(
s, z(N)) = ∏

i∈s

πi

(
z(N))∏

i /∈s

(
1 − πi

(
z(N))).

In other words, conditionally on auxiliary random variables Z(N), the ξi ’s are independent
Bernoulli random variables with success probability πi(Z

(N)), so the parameters in this sam-
pling design are {πi(Z

(N)) : 1 ≤ i ≤ N}. Note that we allow {πi(Z
(N))} to be unequal. Con-

dition (A1) holds if πi(Z
(N)) ≥ c for some constant c > 0. Since

E

(
1√
N

N∑
i=1

(
ξi

πi

− 1
))2

= E(Y (N),Z(N))

[
Eξ (N)

1

N

N∑
i=1

(
ξi

πi

− 1
)2

]
=O(1),

condition (A2) is satisfied.

EXAMPLE 2.3 (Rejective sampling and high entropy sampling). A rejective sampling
design r maximizes the entropy functional p �→ ∑

s∈SN
p(s) log(p(s)) over all sampling de-

signs of fixed size n with the constraint that the first-order inclusion probabilities equal
(π1, . . . , πN) (cf. [38]). The parameters in this sampling design are n and {πi(z

(N)) : 1 ≤
i ≤ N}. r can also be realized as a conditional Bernoulli sampling design with appropriate
success probabilities (p1, . . . , pN): for all z(N) ∈ Z⊗N and s ∈ SN ,

r
(
s, z(N)) ∝ ∏

i∈s

pi

(
z(N))∏

i /∈s

(
1 − pi

(
z(N)))1|s|=n,

where
∑N

i=1 pi(z
(N)) = n. The relationship between pi and πi is given in, for example, the

statement and proof of Theorem 5.1 of [37].
Condition (A1) holds if πi(Z

(N)) ≥ c for some constant c > 0. Let dN ≡ ∑N
i=1 πi(z

(N)) ×
(1 − πi(z

(N))), and suppose that there exists some constant K > 0 such that for N large
enough

N

dN

≤ K.(2.2)
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Then we have

E

(
1√
N

N∑
i=1

(
ξi

πi

− 1
))2

= EY (N),Z(N)

[
Eξ (N)

1

N

(
N∑

i=1

(
ξi

πi

− 1
)2

+ ∑
i �=j

(
ξi

πi

− 1
)(

ξj

πj

− 1
))]

� 1 +EY (N),Z(N)

[
N−1

∑
i �=j

|πij − πiπj |
]

=O(1),

where in the last inequality we used an old result due to Hajék (cf. Theorem 5.2 of [37]).
Hence condition (A2) is satisfied under (2.2).

Assuming (for simplicity) that 0 < infi πi ≤ supi πi < 1. Then Theorems 1 and 2 in [6]
showed that high entropy designs satisfy a central limit theorem. More precisely, any sam-
pling design p with first-order inclusion probabilities (π1, . . . , πN) and the property that

DKL(p ‖ r) = ∑
s∈SN

p(s) log
p(s)

r(s)
→ 0

satisfies a CLT. An alternative argument can be found in the discussions after Proposition 3.4
below. In particular, all such high entropy designs satisfy conditions (A1)–(A2-CLT) under
0 < infi πi ≤ supi πi < 1. The examples in this regard examined in [6] include Rao–Sampford
sampling and successive sampling (under some scaling conditions).

EXAMPLE 2.4 (Stratified sampling). Suppose that UN is partitioned into {UN(1), . . . ,

UN(k)} according to the auxiliary variables Z(N) (we omit such dependence for simplicity).
In other words,

⋃k
�=1 UN(�) = UN , UN(�) ∩ UN(�′) = ∅ for � �= �′ and |UN(�)| = N� with∑k

�=1 N� = N . Let n1, . . . , nk be such that
∑k

�=1 n� = n. Within each stratum UN(�), we
draw n� ≤ N� samples s� without replacement. The overall sample is s = ⋃k

�=1 s�. The pa-
rameters in this sampling design are the partition {UN(�) : 1 ≤ � ≤ k} and {n�(Z

(N)) : 1 ≤
� ≤ k}. Similar to the calculations in Example 2.1, since

∑
i∈s�

ξi = n�, we have

N∑
i=1

(
ξi

πi

− 1
)

=
k∑

�=1

(
1

n�/N�

∑
i∈s�

ξi

)
− N =

(
k∑

�=1

N�

)
− N = 0.

Hence (A2) is satisfied. (A1) holds if n�/N� ≥ c for some constant c > 0.

EXAMPLE 2.5 (Stratified sampling with overlap). Recently, [68] studied an interesting
extension of the stratified sampling design as follows: suppose that {UN(1), . . . ,UN(k)} ⊂
UN are k potentially overlapping “data sources” determined by the auxiliary variables Z(N),
where k is a fixed integer. Let N� ≡ |UN(�)|. For each source UN(�), we draw n� ≤ N� sam-
ples s� without replacement. The overall sample is s = ⋃k

�=1 s�, which may include duplicate
samples due to the overlapping nature of the data sources. The parameters in this sampling
design are the same as the above example. This sampling scheme is also known as multiple-
frame surveys; cf. [42, 43, 51].

Let π̄
(�)
i ≡ n�/N� if i ∈ UN(�) be the sampling probability of unit i in the data source

UN(�), and let ξ̄
(�)
i be the indicator of whether or not unit i is sampled in UN(�). Follow-

ing [68], we consider the following variant of the Horvitz–Thompson empirical measure (or
Hartley empirical measure as it is named in [68]):

P
H
N (f ) ≡ 1

N

N∑
i=1

k∑
�=1

ξ̄
(�)
i ρ

(�)
i

π̄
(�)
i

1i∈UN(�)f (Yi),
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and the associated (Hartley) empirical process

G
H
N (f ) ≡ √

N
(
P

H
N − P

)
(f ).

Here, the weights {ρ(�)
i ≡ ρ

(�)
i (z(N)) ∈ [0,1]} are such that

∑k
�=1 ρ

(�)
i (z(N)) = 1 and that

ρ
(�)
i = 0 if i /∈ UN(�). Now letting

πi ≡
k∏

�=1

π̄
(�)
i , ξi ≡

k∑
�=1

(
1i∈UN(�)ξ̄

(�)
i ρ

(�)
i

∏
�′ �=�

π̄
(�′)
i

)
∈ [0,1],(2.3)

we see that the Hartley empirical measure P
H
N and the associated empirical process G

H
N re-

duces to the Horvitz–Thompson empirical measure and empirical process with {πi, ξi} spec-
ified in (2.3).

Condition (A1) holds if n�/N� ≥ c for some constant c > 0 (by noting that k is a fixed
constant that does not depend on Z(N)). Now we verify (A2). Note that

1√
N

N∑
i=1

(
ξi

πi

− 1
)

= 1√
N

[
N∑

i=1

k∑
�=1

ξ̄
(�)
i ρ

(�)
i

π̄
(�)
i

1i∈UN(�) − N

]

=
k∑

�=1

1√
N

N∑
i=1

(
ξ̄

(�)
i

π̄
(�)
i

− 1
)
ρ

(�)
i 1i∈UN(�) = OP(1),

where the last line follows by computing the second moment:

E

[
1√
N

N∑
i=1

(
ξ̄

(�)
i

π̄
(�)
i

− 1
)
ρ

(�)
i 1i∈UN(�)

]2

� 1 + 1

N

∑
i �=j∈UN(�)

E(Y (N),Z(N))

[∣∣∣∣Eξ (N)

(
ξ̄

(�)
i

π̄
(�)
i

− 1
)( ξ̄

(�)
j

π̄
(�)
j

− 1
)∣∣∣∣

]
=O(1).

This verifies (A2-CLT).
From the above derivation, it is easy to see that (A1)–(A2-CLT) hold with the sampling

without replacement design replaced by Bernoulli sampling and rejective sampling designs.
We also note that different choices of the weights {ρ(�)

i ≡ ρ
(�)
i (z(N)) ∈ [0,1]} lead to dif-

ferent asymptotic variances. Since this issue is not the main concern of this paper, we refer
the readers to [68] for the optimal choice of weights in the context of Bernoulli sampling and
sampling without replacement designs.

3. Theory. In this section, we will be mainly interested in the global and local behav-
ior of the Horvitz–Thompson empirical process. In particular, we prove a Glivenko–Cantelli
theorem and a Donsker theorem that provide global information concerning the Horvitz–
Thompson empirical process in the limit. As will be seen, our formulation requires almost
minimal conditions. We further study local behavior of the Horvitz–Thompson empirical
process by characterizing its local asymptotic modulus and several ratio limit theorems. Un-
derstanding the local behavior of the Horvitz–Thompson empirical process plays a key role
in applications to statistical problems as will be demonstrated in Section 4. Corresponding
results for the calibrated version of the Horvitz–Thompson empirical process are also in-
cluded. We also discuss uniform limit theorems for some variants of the Horvitz–Thompson
empirical process and their conditional versions thereof. Finally, we present some positive
and negative results on CLTs when the condition (A1) fails.
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3.1. Global and local limit theorems. First we study the Glivenko–Cantelli theorem. We
say that F is P -Glivenko–Cantelli if and only if supf ∈F |(PN − P)(f )| = oP(1).

THEOREM 3.1 (Glivenko–Cantelli theorem). Suppose that (A1) and (A2-LLN) hold. If
F is P -Glivenko–Cantelli with PF < ∞ for some measurable envelope F , then

sup
f ∈F

∣∣(Pπ
N − P

)
(f )

∣∣ = oP(1).

Recall the notion of weak convergence in the Hoffmann–Jørgensen sense: Let {X(f )}f ∈F
be a bounded process whose finite-dimensional laws correspond to the finite dimensional
projections of a tight Borel law on �∞(F). Let {XN(f )}f ∈F be bounded processes. We say
that XN � X in �∞(F) if and only if E∗H(XN) → EH(X̃) for all H ∈ Cb(�

∞(F)), where
Cb(�

∞(F)) denotes all bounded continuous functions on �∞(F), and X̃ is a measurable
version of X with separable range (so H(X̃) is measurable). Equivalently, dBL(XN, X̃) → 0,
where dBL is the dual bounded Lipschitz metric (cf. p. 246 of [35]). It is also well known that
XN � X in �∞(F) if and only if XN converges to X finite-dimensionally, and there exists a
pseudo-metric d on F such that for any δN → 0,

sup
d(f,g)≤δN

∣∣XN(f ) − XN(g)
∣∣ = oP(1).

We refer the readers to [35, 81] for more details. We say that F is P -Donsker if and only if
GN �G in �∞(F) where G is a P -Brownian bridge process.

THEOREM 3.2 (Donsker theorem). Suppose that (A1) and (A2-CLT) hold. Further as-
sume that:

(D1) G
π
N converges finite-dimensionally to a Gaussian process Gπ .

(D2) F is P -Donsker.

Then G
π admits a tight measurable version in �∞(F) for which, using the same notation,

G
π
N � G

π in �∞(F).

Clearly, the finite-dimensional convergence condition (D1) above is necessary for a uni-
form central limit theorem in �∞(F). (D2) is also minimal. One intriguing feature of Theo-
rem 3.2 is that a uniform central limit theorem follows essentially automatically as long as
the finite-dimensional convergence property of the Horvitz–Thompson empirical process is
verified. A similar phenomenon was also observed in [72] in a univariate non-i.i.d. case.

REMARK 3.3. F is assumed to be countable for simplicity for Theorems 3.1 and 3.2.
For the general uncountable case, we may use outer probability for the statement and proofs
of these theorems.

Although being necessary, establishing a finite-dimensional CLT for Gπ
N and identifying

the covariance structure of Gπ can be a nontrivial problem for general sampling designs; see,
for example, [5, 6, 23, 30, 37, 61–64, 82]. Below we exploit one possible strategy, inspired
by [11], for identifying the covariance structure of Gπ .
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PROPOSITION 3.4. Suppose (A1) and the following conditions hold:

(F1) There exists q ∈ [4,∞] such that for any i.i.d. random variables {Vi} defined on
(X ,A,P(Y,Z)) with ‖V1‖Lq(P(Y,Z)) < ∞,

1

SN

(
1

N

N∑
i=1

ξi

πi

Vi − 1

N

N∑
i=1

Vi

)
� N (0,1)

holds under Pd(·,ω) (notation defined in (2.1)) for P(Y,Z)-a.s. ω ∈ X . Here, SN is the design-
based variance given by

S2
N ≡ 1

N2

∑
1≤i,j≤N

πij − πiπj

πiπj

ViVj .

(F2) The (essentially) first-order inclusion probabilities satisfy

1

N

N∑
i=1

πii − π2
i

π2
i

→P(Y,Z)
μπ1,

for some nonrandom μπ1 ∈ R.
(F3) The second-order inclusion probabilities satisfy

sup
N∈N

sup
1≤i �=j≤N

N |πij − πiπj | ≤ K,
1

N

∑
i �=j

πij − πiπj

πiπj

→P(Y,Z)
μπ2,

where K > 0 is an absolute constant, and μπ2 ∈R is nonrandom.

If F is such that ‖F‖Lq(P ) < ∞ for q ∈ [4,∞] that verifies (F1), then G
π
N converges finite-

dimensionally to a Gaussian process Gπ whose covariance structure is given by the follow-
ing: for any f,g ∈ F ,

Cov
(
G

π(f ),Gπ(g)
) = (1 + μπ1)P (fg) − (1 − μπ2)(Pf )(Pg)

= P(fg) − (Pf )(Pg) + μπ1P(fg) + μπ2(Pf )(Pg).

The above covariance formula can be inferred from the decomposition

G
π
N = √

N
(
P

π
N − P

) = √
N(PN − P) + √

N
(
P

π
N − PN

)
,

where the covariance structure of the second term
√

N(Pπ
N − PN) can be deduced from

conditions (F1)–(F3). These conditions are also used in [11]: (F1) corresponds to (HT1) in
[11], (F2) corresponds to condition (i) in Proposition 3.1 in [11], and (F3) corresponds to
(C2) and condition (ii) in Proposition 3.1 in [11]. Combined with Proposition 3.4, we see
that Theorem 3.2 extends Proposition 3.2 of [11] in at least the following directions: (i) we
work with a general P -Donsker class F with ‖F‖Lq(P ) < ∞ instead of one particular class
{1(−∞,t] : t ∈ R}, and (ii) we weaken conditions for the sampling designs, that is, (C3)–(C4)
in [11] are no longer required. We should, however, remind readers that Proposition 3.4 is not
exhaustive for identifying the covariance structure of Gπ and, therefore, it is possible that the
current conditions in Proposition 3.4 can be further weakened via other approaches.

The conditions in Proposition 3.4 are verified in [11] under a slightly different setting,
but for the convenience of the reader, we provide some details for various sampling designs.
Below we take q = 4; see also Table 1 for a summary.

• For sampling without replacement, πii = πi = n/N and πij = n(n − 1)/N(N − 1) for
i �= j . If n/N → λ ∈ (0,1), (F1) can be verified using Hajék’s rank central limit theorem
(cf. [36], or Proposition A.5.3 of [81]), and (F2)–(F3) are satisfied with μπ1 = λ−1 −1 and
μπ2 = 1 − λ−1. The cases for stratified sampling with/without overlaps can be considered
analogously.
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TABLE 1
Values of μπ1, μπ2 for different sampling designs. Here,

λ = limN n/N , A = limN N−1 ∑N
i=1 π−1

i ,

d = limN N−1 ∑N
i=1 πi(1 − πi)

SWOR Bernoulli Rejective

μπ1 λ−1 − 1 A − 1 A − 1
μπ2 1 − λ−1 0 −d−1(1 − λ)2

• For Bernoulli sampling, πii = πi and πij = πiπj for i �= j . If {πi}Ni=1 ⊂ [ε,1 − ε](ε > 0),
(F1) can be verified using the Lindeberg–Feller central limit theorem, and (F2)–(F3) are
satisfied with μπ1 = limN N−1 ∑N

i=1(π
−1
i − 1) and μπ2 = 0.

• For rejective sampling with first-order inclusion probabilities {πi}Ni=1 ⊂ [ε,1 − ε](ε > 0),
let dN = ∑N

i=1 πi(1 − πi). (F1) can be verified by Theorem 1 of [6]. Using Theorem 1 of
[10], (F2)–(F3) are satisfied with μπ1 = limN N−1 ∑N

i=1(π
−1
i − 1) and

μπ2 = lim
N

[
− 1

N

∑
i �=j

(1 − πi)(1 − πj )

dN

+O
(
Nd−2

N

)] = −d−1(1 − λ)2,

provided n/N → λ ∈ (0,1) and dN/N → d . The covariance structure of Gπ with high en-
tropy sampling designs is the same as the rejective sampling design, which can be verified
using the same arguments in pages 1754–1755 of [11].

Hence, under the assumptions of Proposition 3.4, the covariance formula for Gπ can be
written more explicitly: for any f,g ∈ F ,

Cov
(
G

π(f ),Gπ(g)
)

=

⎧⎪⎪⎨
⎪⎪⎩

λ−1(
P(fg) − (Pf )(Pg)

)
under SWOR,

A · P(fg) − (Pf )(Pg) under Bernoulli,

A · P(fg) − [
1 + d−1(1 − λ)2]

(Pf )(Pg) under Rejective.

Here, λ = limN n/N , A = limN N−1 ∑N
i=1 π−1

i , d = limN N−1 ∑N
i=1 πi(1 −πi) (the conver-

gence is all in probability sense).
Our next goal is to study the local behavior of the Horvitz–Thompson empirical process.

Although being of crucial importance in applications to semi/nonparametric statistics, to the
best knowledge of the authors, this issue has not been addressed in the literature.

We first study local asymptotic modulus of the Horvitz–Thompson empirical process,
which has been considered historically for VC-type classes of sets and function classes in
[3, 33, 34] in the context of usual empirical processes. As will be clear below, one of the
strengths of the formulation of our theorems is that finite-dimensional convergence of Gπ

N is
not required for studying the local behavior of Gπ

N —we only require that the weights have a√
N convergence rate as in (A2-CLT).
Before formally stating the results on the local behavior of the Horvitz–Thompson empir-

ical process, we need some definitions.

DEFINITION 3.5. A local asymptotic modulus of the Horvitz–Thompson empirical pro-
cess indexed by a class of functions F is an increasing function φ(·) for which there exist
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some rN � δN ≤ 1/2, both nonincreasing with N �→ √
NδN nondecreasing, such that

sup
f ∈F :r2

N<Pf 2≤δ2
N

|Gπ
N(f )|

φ(σP f )
= OP(1).(3.1)

Here, σ 2
P (f ) = VarP (f ).

DEFINITION 3.6. We say that F satisfies an entropy condition with exponent α ∈ (0,2)

if either

sup
Q

logN
(
ε‖F‖L2(Q),F,L2(Q)

)
� ε−α,

where the supremum is over all finitely discrete measures Q on (X ,A); or

logN[ ]
(
ε,F,L2(P )

)
� ε−α.

The entropy condition is well understood in the literature; we only refer the readers to [35,
77, 81] for various examples in this regard.

THEOREM 3.7. Suppose that (A1) and (A2-CLT) hold and F is a uniformly bounded
class satisfying an entropy condition with exponent α ∈ (0,2). Then ωα(t) = t1− α

2 is a local
asymptotic modulus for the Horvitz–Thompson empirical process indexed by F , that is, (3.1)
holds with φ = ωα .

The local asymptotic modulus is a key step in understanding the behavior of the Horvitz–
Thompson empirical process at a local level. This will be useful in applications in the next
section. The local asymptotic modulus ωα cannot be improved in general; this can be shown
for the usual empirical process indexed by α-full class (which essentially requires a lower
bound for the entropy number in a more local sense; cf. [33]).

One may also invert the above viewpoint by fixing one particular weight function φ and
asking for the rate of convergence of the corresponding weighted Horvitz–Thompson em-
pirical process. Below are two particular choices: the first one (3.2) uses φ(x) = x, and the
second one (3.3) uses (essentially) φ(x) = x2.

THEOREM 3.8. Suppose that (A1) and (A2-CLT) hold and F is a uniformly bounded
class satisfying an entropy condition with exponent α ∈ (0,2). Let rN � N−1/(α+2). Then

N1/(α+2) sup
f ∈F :σP f ≥rN

|(Pπ
N − P)(f )|

σP f
=OP(1).(3.2)

If furthermore F takes value in [0,1], then for any LN → ∞,

sup
f ∈F :Pf ≥LN ·rN

∣∣∣∣P
π
Nf

Pf
− 1

∣∣∣∣ = oP(1).(3.3)

Results analogous to (3.2)–(3.3) have been derived in the case of i.i.d. sampling in [55, 73–
75, 83] for uniform empirical processes on (subsets of) R (or Rd ), and are further investigated
in [3] for VC classes of sets, and extended by [33, 34] who studied more general VC-subgraph
classes.

Note that (3.3) can be viewed as a uniform law of large numbers for the weighted Horvitz–
Thompson empirical process. We can also establish a central limit theorem for the weighted
Horvitz–Thompson empirical process, analogous to the development in [1–3, 33] for the
usual empirical process.
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THEOREM 3.9. Suppose that (A1) and (A2-CLT) hold, and that F is a uniformly
bounded class satisfying an entropy condition with exponent α ∈ (0,2). Let φ : R≥0 → R≥0
be such that φ(0) = 0 and that

φ(t)

t1− α
2 (log log(1/t))1/2

→ ∞(3.4)

as t → 0. If rN � N−1/(α+2) and G
π
N converges finite-dimensionally to a Gaussian process

G
π , then G

π admits a tight measurable version in �∞(F) for which, using the same notation,

G
π
N(f )

φ(σP f )
1σP f >rN � G

π(f )

φ(σP f )
in �∞(F).

The weight function in the above theorem is required to be only slightly stronger than the
local asymptotic modulus by an iterated logarithmic factor. This is very natural: the weight
function cannot beat the local asymptotic modulus for a weighted CLT to hold, so the condi-
tion (3.4) is optimal up to an iterated logarithmic factor.

REMARK 3.10. The countability assumption on F in Theorems 3.7–3.9 is used at a tech-
nical level via the one-sided Talagrand-type concentration inequality (cf. Proposition C.2).
One may assume, for instance, pointwise measurability (cf. Example 2.3.4 of [81]) for F to
handle the uncountable class.

3.2. Calibration. In practice, since the Horvitz–Thompson estimator may be severely
inefficient, calibration of the weights is often used to improve efficiency [28, 52]. The main
purpose of this section, instead of proposing new calibration methods or addressing effi-
ciency issues, rests in demonstrating that our theoretical results are still valid for the Horvitz–
Thompson empirical process with calibrated weights.

To illustrate this, we consider one popular calibration method that aims at matching the
population mean for the Horvitz–Thompson estimator [28]. Let Z ⊂ R

d be a compact set,
and G : R→R≥0. Let α̂N ∈ Ac, where Ac is a compact set of Rd , be defined via

1

N

N∑
i=1

ξiG(Z�
i α̂N )

πi

Zi = 1

N

N∑
i=1

Zi.

Then the calibrated Horvitz–Thompson empirical measure and calibrated Horvitz–Thompson
empirical process are defined by

P
π,c
N (f ) ≡ 1

N

N∑
i=1

ξiG(Z�
i α̂N )

πi

f (Yi), f ∈ F,

and

G
π,c
N (f ) ≡ √

N
(
P

π,c
N − P

)
(f ), f ∈ F,

respectively.
Our next theorem asserts that as long as α̂N converges to the “truth” 0 (which can be

defined to be another value, but we use 0 for notational convenience) sufficiently fast, the
global and local theorems also hold for the calibrated Horvitz–Thompson empirical process.

THEOREM 3.11. Suppose G(0) = 1, G′(0) > 0. Let F be a class of measurable func-
tions with a measurable envelope F .

(1) Let the assumptions in Theorem 3.1 hold with PF < ∞. If α̂N = oP(1), then the
conclusion of Theorem 3.1 holds with P

π
N replaced by P

π,c
N .
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(2) Let the assumptions in Theorem 3.2 hold with PF 2 < ∞ (but the finite-dimensional
convergence condition is replaced by G

π,c
N converges finite-dimensionally to some Gaussian

process G
π,c). If

√
Nα̂N = OP(1), then G

π,c admits a tight measurable version in �∞(F)

for which, using the same notation,

G
π,c
N � G

π,c in �∞(F).

(3) If
√

Nα̂N = OP(1), then under the same conditions as in Theorems 3.7, 3.8 and
3.9 (but the finite-dimensional convergence condition is replaced by G

π,c
N converges finite-

dimensionally to some Gaussian process Gπ,c), the respective conclusions hold for the cali-
brated Horvitz–Thompson empirical process.

The structural commonality in the above theorem is characterized by the
√

N -rate of the
estimate α̂N . Establishing a

√
N -rate for α̂N is not hard: in fact we can use Theorem 3.3.1 of

[81] for such a purpose by verifying the asymptotic equicontinuity of the Horvitz–Thompson
empirical process.

Below we exploit one possible strategy for this via the method of Proposition 3.4.

PROPOSITION 3.12. Assume the conditions of Proposition 3.4 and Theorem 3.11 hold,
and that πi ≡ πi(Zi) for i = 1, . . . ,N . Further assume that G is continuous with its deriva-
tive G′ continuous in a neighborhood of 0, and the map α �→ PZ[G(Z�α−1)Z] has a unique
zero at 0, and PZ(ZZ�) ∈ R

d×d is invertible. Then
√

Nα̂N = −(
G′(0)

)−1(
PZ

(
ZZ�))−1(

G
π
N −GN

)
Z + oP(1).(3.5)

Furthermore, Gπ,c
N converges finite-dimensionally to a tight Gaussian process G

π,c whose
covariance structure is given by the following: for any f,g ∈F ,

Cov
(
G

π,c(f ),Gπ,c(g)
)

= P(fg) − (Pf )(Pg) + μπ1P(Y,Z)

(
T (f )T (g)

) + μπ2
(
P(Y,Z)T (f )

)(
P(Y,Z)T (g)

)
.

Here, the operator T :RY×Z →R
Y×Z is defined by

T (f )(y, z) = f (y) − P(Y,Z)

(
(ξ/π)f (Y )Z�)(

PZ

(
ZZ�))−1

z.

As we will see in the proofs, the asymptotic expansion for
√

Nα̂N in (3.5) plays a crucial
role in identifying the covariance structure of Gπ,c. Although here we only study one partic-
ular calibration method that matches the population mean, other calibration methods are also
possible. Typically different calibration methods only differ in terms of the exact form of the
corresponding operators T ; see, for example, [69] for various calibration methods under the
(two-phase) stratified sampling design.

3.3. Other variants. Our global limit theorems in Theorems 3.1 and 3.2 can be used
for several other variants of the Horvitz–Thompson empirical processes studied in [11]. We
illustrate this by considering Donsker theorems for the variants as detailed below.

First, consider
√

n(Pπ
N − PN). We have the following.

COROLLARY 3.13. Suppose that (A1) and (A2-CLT) hold, and that F is P -Donsker.
Further suppose that the conditions in Proposition 3.4 hold, and that n/N → λ ∈ (0,1).
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Then
√

n(Pπ
N −PN) converges weakly in �∞(F) to a Gaussian process Ḡπ whose covariance

structure is given by the following: for any f,g ∈ F ,

Cov
(
Ḡ

π(f ), Ḡπ(g)
) = λ

(
μπ1P(fg) + μπ2(Pf )(Pg)

)

=

⎧⎪⎪⎨
⎪⎪⎩

(1 − λ)
(
P(fg) − (Pf )(Pg)

)
under SWOR,

λ(A − 1) · P(fg) under Bernoulli,

λ
(
(A − 1) · P(fg) − d−1(1 − λ)2(Pf )(Pg)

)
under Rejective.

Here, λ = limN n/N , A = limN N−1 ∑N
i=1 π−1

i , d = limN N−1 ∑N
i=1 πi(1 − πi).

The covariance formula above is a direct consequence of the assumptions in Propo-
sition 3.4. Furthermore, the above corollary extends Theorem 3.1 of [11] from the one-
dimensional case F = {1(−∞,t] : t ∈ R} to a general setting.

Next, consider the Hájek empirical process. Let

P
π,H
N (f ) ≡ 1

N̂

N∑
i=1

ξi

πi

f (Yi), N̂ ≡
N∑

i=1

ξi

πi

be the Hájek empirical measure. We have the following.

COROLLARY 3.14. Suppose that (A1) and (A2-CLT) hold, and that F is P -Donsker.
Further suppose that the conditions in Proposition 3.4 hold, and that n/N → λ ∈ (0,1). Then√

n(P
π,H
N − PN) converges weakly to a Gaussian process Ḡπ,H whose covariance structure

is given by the following: for any f,g ∈ F ,

Cov
(
Ḡ

π,H (f ), Ḡπ,H (g)
) = λμπ1

(
P(fg) − (Pf )(Pg)

)

=

⎧⎪⎪⎨
⎪⎪⎩

(1 − λ)
(
P(fg) − (Pf )(Pg)

)
under SWOR,

λ(A − 1) · (
P(fg) − (Pf )(Pg)

)
under Bernoulli,

λ(A − 1) · (
P(fg) − (Pf )(Pg)

)
under Rejective.

Here, λ = limN n/N , A = limN N−1 ∑N
i=1 π−1

i .

As we will see in the proofs, the covariance structure of the limit of
√

n(P
π,H
N −PN) is the

same as that of

f �→ 1√
N

N∑
i=1

(
ξi

πi

− 1
)(

f (Yi) − Pf
)

up to a factor of λ, which can be determined by the conditions of Proposition 3.4. Further-
more, the above corollary extends Theorem 4.2 of [11], again from the one-dimensional case
to a general setting.

REMARK 3.15. Under (F3), since the harmonic mean is less than the arithmetic mean,
we have A−1 = limN(N−1 ∑N

i=1 π−1
i )−1 ≤ limN(N−1 ∑N

i=1 πi) = limN
n
N

= λ, where the
next to last equality follows by computing the second moment and using (F3). It then follows
that λ(A − 1) ≥ 1 − λ under (F3).
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3.4. Conditional limit theorems. In this section, we consider conditional versions of the
(global) uniform limit theorems. For clarity of presentation, following [24] and [84], we
introduce the following notion.

DEFINITION 3.16. Let {
N }N∈N be a sequence of random variables defined on (SN ×
X , σ (SN)×A,P). We say that 
N is of order oPd

(1) in P(Y,Z)-probability if for any ε, δ > 0,
we have P(Y,Z)(Pd|(Y,Z)(|
N | > ε) > δ) → 0 as N → ∞.

Below we establish conditional versions of Glivenko–Cantelli and Donsker theorems for
P

π
N − PN .

COROLLARY 3.17 (Conditional Glivenko–Cantelli theorem). Suppose that (A1) and
(A2-LLN) hold. If F is P -Glivenko–Cantelli, then

sup
f ∈F

∣∣(Pπ
N − PN

)
(f )

∣∣ = oPd
(1) in P(Y,Z)-probability.

COROLLARY 3.18 (Conditional Donsker theorem). Suppose that (A1) and (A2-CLT)
hold, and that F is P -Donsker. Further suppose that the conditions in Proposition 3.4 hold,
and that n/N → λ ∈ (0,1). Then

√
n
(
P

π
N − PN

)
� Ḡ

π in �∞(F) in P(Y,Z)-probability.

Here, Ḡπ is a Gaussian process whose covariance structure is given in Corollary 3.13.

The precise meaning of the above conditional Donsker theorem is that dBL,d(
√

n(Pπ
N −

PN), Ḡπ) ≡ supH∈BL1(�
∞(F))|E∗

d|(Y,Z)H(
√

n(Pπ
N − PN)) − EH(Ḡπ)| → 0 in P(Y,Z)-

probability.

3.5. Positive and negative results for CLTs when (A1) fails. Let

ZN ≡ 1√
N

N∑
i=1

(
ξi

πi

− 1
)

= G
π
N(1).

We present a negative result concerning CLTs for ZN when (A1) fails.

PROPOSITION 3.19. Let eN be such that eN ↘ 0 and NeN ↗ ∞. There exists
a Bernoulli sampling scheme with equal first-order including probabilities satisfying
min1≤i≤N πi = eN , such that a CLT fails for ZN .

PROOF. Let the ξi ’s be i.i.d. Bern(eN) random variables independent of Yi ’s. Then πi =
eN for 1 ≤ i ≤ N . First, note that

Var

[
1√
N

N∑
i=1

(
ξi

πi

− 1
)]

= 1

N

N∑
i=1

π−2
i Var(ξi) = 1 − eN

eN

.

Hence for Z ∼ N (0,1), we have by Liapunov’s CLT and uniform integrability

E

∣∣∣∣∣e1/2
N · 1√

N

N∑
i=1

(
ξi

πi

− 1
)∣∣∣∣∣ → E|Z|.

This shows that ZN is not bounded in probability, and hence the CLT fails. �
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Therefore, when (A1) fails, the conclusion of Theorem 3.2 with
√

N normalization does
not hold without further conditions.

It is easy to note from the proof above that the problem can be fixed if we change nor-
malization from

√
N to

√
n. Specifically, if ξi ’s are i.i.d. Bern(eN) with eN ↘ 0, NeN ↗ ∞,

then √
n

N
ZN =

√
n

N

N∑
i=1

(
ξi

πi

− 1
)

=
√

n

N
G

π
N(1) or e

1/2
N G

π
N(1)

converges to a normal random variable. This phenomenon can be generalized much further
to a uniform central limit theorem as follows.

PROPOSITION 3.20. Let {eN } ⊂ (0,1] be such that NeN ↗ ∞. Suppose that the first-
order probabilities are equal in that π1 = · · · = πN = eN with sampling indicators ξi ’s inde-
pendent from Yi ’s, and that 1√

NeN

∑N
i=1(ξi − eN) = OP(1). Further assume that:

1. e
1/2
N G

π
N converges finite-dimensionally to a Gaussian process Gπ

0 .
2. F is P -Donsker.

Then G
π
0 admits a tight measurable version in �∞(F) for which, using the same notation,

e
1/2
N G

π
N � G

π
0 in �∞(F).

One may wonder to what extent the idea above can be further generalized to the situation
where the first-order inclusion probabilities can be unequal. However, as the following further
counterexample shows, in such situations a CLT becomes impossible in general.

PROPOSITION 3.21. Let α ∈ (0,1). Then there exists a Bernoulli sampling scheme
with unequal first-order inclusion probabilities such that n/N ↘ 0, n/Nα ↗ ∞ and
min1≤i≤N πi ↘ 0, and the random variable

√
n
N

· ZN is not bounded in probability.

Consequently, in sharp contrast to Proposition 3.20, there is no hope for a general Donsker
theory with

√
n normalization if min1≤i≤N πi ↘ 0 as long as the first-order inclusion prob-

abilities are unequal. The proposition above is actually proving a much more negative phe-
nomenon: although a CLT is possible under equal πi ’s for Bernoulli sampling in the whole
regime n/N ↘ 0, n ↗ ∞, such CLTs are not possible for any convergence regime of
n/N ↘ 0, as soon as one allows unequal πi ’s. The failure of CLTs with

√
n normaliza-

tion here is particularly striking, as one would heuristically imagine that n is the effective
sample size. The main trouble here, however, is that when (A1) fails with unequal first-order
inclusion probabilities, the variance pattern of ξi ’s can be arbitrarily complicated.

4. Applications. In this section, we apply the new tools developed in Section 3 in statis-
tical problems including:

1. M-estimation (or empirical risk minimization) in a general nonparametric model;
2. Z-estimation in a general semiparametric model;
3. frequentist theory for pseudo-Bayes procedures, namely, theory of pseudo-posterior

contraction rates and Bernstein–von Mises type theorems,

where the usual likelihood is replaced by the Horvitz–Thompson weighted likelihood. We
will not consider the calibrated version of these problems for simplicity of exposition, given
that the corresponding theory has been fully developed in Section 3. These problems are not
meant to be exhaustive; they are demonstrated as an illustration and a proof of concept of the
new tools.
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4.1. M-Estimation. Consider the canonical empirical risk minimization problem (or “M-
estimation”) based on weighted likelihood:

f̂ π
N ≡ arg min

f ∈F P
π
Nf.(4.1)

The quality of the estimator defined in (4.1) is evaluated through the excess risk of f̂ π
N ,

denoted EP (f̂ π
N ), where

EP (f ) ≡ Pf − inf
g∈F Pg, f ∈ F .

The problem of studying excess risk of empirical risk minimizers under the usual empirical
measure has been extensively studied in the 2000s; we only refer the reader to [33, 46,
47] and references therein. Under the Horvitz–Thompson empirical measure, [25] studied
risk bounds for the binary classification problem under sampling designs that are close to the
rejective sampling design. Our goal here will be a study of the excess risk for the M-estimator
based on weighted likelihood as defined in (4.1) for the general empirical risk minimization
problem under general sampling designs.

To this end, let FE(δ) ≡ {f ∈ F : EP (f ) < δ2}, let ρP : F × F → R≥0 be such that
ρ2

P (f, g) ≥ P(f −g)2 −(P (f −g))2, and D(δ) ≡ supf,g∈FE (δ) ρP (f, g). Now we may prove
the following theorem.

THEOREM 4.1. Suppose (A1) holds. Suppose that there exist some L > 0, κ ≥ 1 such
that D(δ) ≤ L · δ1/κ , and that F is uniformly bounded and satisfies an entropy condition with
exponent α ∈ (0,2). Then there exist some constants {Ci}3

i=1 only depending on π0, L, κ , α

such that for any s, t ≥ 0, with

rN ≥ C1N
− κ

4κ−2+α + C2

[(
s ∨ t2

N

) κ
4κ−2 ∨ s

N

]
,

it holds that

P
(
EP

(
f̂ π

N

) ≥ r2
N

) ≤ C3

s
e−s/C3 + P

(∣∣∣∣∣ 1√
N

N∑
i=1

(
ξi

πi

− 1
)∣∣∣∣∣ > t

)
.

As an illustration of Theorem 4.1, we consider below two standard settings, regression
and classification, similar to the development in [33]. For simplicity of exposition, we also
assume that (A2-CLT) holds.

EXAMPLE 4.2 (Bounded regression). Let {(Xi, Yi) ∈ X × [−1,1]}Ni=1 denote the i.i.d.
copies of the pairs consisting of covariates Xi and responses Yi . Our goal is to estimate the
regression function g0(x) ≡ E[Y |X = x] using the weighted least squares method:

ĝπ
N ≡ arg min

g∈G

N∑
i=1

ξi

πi

(
Yi − g(Xi)

)2
,

where G is a function class containing functions taking values in [−1,1], and the weights
{ξi, πi} may depend on auxiliary information Z(N). To apply Theorem 4.1, let F ≡
{fg(x, y) ≡ (y − g(x))2 : g ∈ G}. Then following the arguments in page 1208 of [33], we
have EP(X,Y )

(fg) = ‖g − g0‖2
L2(PX) and we may take κ = 1. If G satisfies an entropy con-

dition with exponent α ∈ (0,2), it is easy to verify that the same holds for F, and hence
Theorem 4.1 yields ∥∥ĝπ

N − g0
∥∥2
L2(P ) = OP

(
N− 2

2+α
)
,

a very typical rate in the regression problem.
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EXAMPLE 4.3 (Classification). Let {(Xi, Yi) ∈ X × {0,1}}Ni=1 denote the i.i.d. copies of
the pairs consisting of covariates Xi and responses Yi . A classifier g :X → {0,1} over a class
G has a generalization error P(X,Y )(Y �= g(X)). The excess risk for a classifier g over G under
law P(X,Y ) is given by

EP(X,Y )
(g) ≡ P(X,Y )

(
Y �= g(X)

) − inf
g′∈G P(X,Y )

(
Y �= g′(X)

)
.

It is known that for a given law P(X,Y ) on (X,Y ), the minimal generalized error is attained
by a Bayes classifier g0(x) ≡ 1η(x)≥1/2 where η(x) ≡ E[Y |X = x]; cf. [29]. In the setting of
complex sampling design, it is natural to estimate g0 by minimizing the weighted training
error:

ĝπ
N ≡ arg min

g∈G

N∑
i=1

ξi

πi

1Yi �=g(Xi),

where g0 ∈ G is a collection of classifiers. To apply Theorem 4.1, let F ≡ {fg ≡ 1y �=g(x) : g ∈
G}. Suppose the following margin condition (cf. [54, 76]) holds for some c > 0, κ ≥ 1: for all
g ∈ G,

EP(X,Y )
(g) ≥ c�κ(

g(X) �= g0(X)
)
,(4.2)

where � is the marginal law of X under P . Following page 1212 of [33], we may choose
D(δ) � δ1/κ , and hence if the collection of classifiers G satisfies an entropy condition with
exponent α ∈ (0,2), using (fg1 − fg2)

2 ≤ (g1 − g2)
2, we see that F also satisfies the same

entropy condition, and hence

P(X,Y )

(
Y �= ĝπ

N(X)
) − inf

g′∈G P(X,Y )

(
Y �= g′(X)

) = OP

(
N

− κ
2κ−1+α/2

)
,

a very typical rate in the classification problem.

4.2. Z-Estimation. The method of Z-estimation that produces estimators by finding
those values of the parameters which zero out a set of estimating equations is well under-
stood by now under the usual empirical measure; see [78, 81] for a comprehensive treatment.
With the Horvitz–Thompson empirical measure, [16, 17, 68, 69] considered weighted likeli-
hood estimation under stratified sampling designs, both with and without overlaps. The goal
of this section is to give a unified theoretical treatment for the Z-estimation problem under
general sampling designs.

Let θ̂π
N ∈ � solve the (possibly infinite-dimensional) estimating equations based on

weighted likelihood:

P
π
Nψ

θ̂π
N ,h

= 0 for all h ∈ H,

while the “truth” θ0 ∈ � solves the population equations

Pψθ0,h = 0 for all h ∈ H.

Let �N,� : � → �∞(H) be given by �N(θ)(h) ≡ P
π
Nψθ,h and �(θ)(h) ≡ Pψθ,h. We as-

sume that H is countable without loss of generality.

THEOREM 4.4. Suppose that (A1) and (A2-CLT) hold, and that the following conditions
hold:

(Z1) The map � is Fréchet differentiable at θ0 with a continuously invertible derivative
�̇θ0 .
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(Z2) The stochastic equicontinuity condition holds:∥∥GN(ψ
θ̂π
N ,h

− ψθ0,h)
∥∥
H = oP

(
1 + √

N
∥∥θ̂π

N − θ0
∥∥)

and {ψθ0,h : h ∈ H} is a P -Glivenko–Cantelli class.

If θ̂π
N →P θ0, then

√
N

(
θ̂π
N − θ0

) = −�̇−1
θ0

G
π
Nψθ0,· + oP(1).

This theorem is comparable to the standard Z-Theorem 3.3.1 in [81], but here we work
in the context of Z-estimation under weighted likelihood. Note that our conditions are are
almost identical to the standard Z-Theorem, many examples for which Theorem 4.4 applies
can be found in Section 3.3 of [81] (see also [78, 79]). In particular, (Z2) is imposed for the
usual empirical process GN , and can be easily checked if a Donsker property for the class
{ψθ,h − ψθ0,h : ‖θ − θ0‖ ≤ δ, h ∈ H} holds. We omit these details here.

Now consider estimation of a finite-dimensional parameter in the presence of an infinite-
dimensional nuisance parameter, that is, estimation in a semiparametric model. Following
[24, 53], we use the following general semiparametric framework: Consider a model {Pθ,η :
(θ, η) ∈ R

d ×H}, where H is an infinite dimensional Hilbert space with norm ‖·‖H. Suppose
that the true parameter is (θ0, η0). An estimator (θ̂π

N , η̂π
N) of (θ0, η0) usually takes the form(

θ̂π
N , η̂π

N

) := arg supPπ
Nmθ,η,(4.3)

where mθ,η is often the log likelihood function (for n = 1). However, here we will work with
a more general Z-estimation framework.

For any fixed η ∈ H, let η(t) be a smooth curve at t = 0 with η(0) = η and a =
(∂/∂t)η(t)|t=0 for some a ∈ H. Denote A ⊂ H the collection for all such admissible a’s.
Now let mθ(θ, η) = ∂θm(θ, η) ∈ R

d , mη(θ, η)[a] = (∂/∂t)m(θ, η(t))|t=0 with ∂tη(t)|t=0 =
a ∈A. The second derivatives can be defined in a similar fashion. Suppose further the follow-
ing orthogonality condition hold: there exists A∗ = (a∗

1 , . . . , a∗
d) ∈ Ad so that for any A ∈ Ad ,

it holds that

Pθ0,η0

(
mθη(θ0, η0)[A] − mηη

[
A∗][A]) = 0.(4.4)

This condition is commonly adopted in semiparametric literature to handle the case when
nuisance parameter is not

√
n-estimable; see, for example, Condition 2, page 555 in [45].1

Define the efficient score function m̃(θ, η) = mθ(θ, η) − mη(θ, η)[A∗] (since if m is the
log likelihood function, m̃ typically becomes the efficient score function). Then (4.4) can be
rewritten as following: for any A ∈Ad ,

Pθ0,η0m̃η(θ0, η0)[A] = 0.(4.5)

We assume that the true parameter (θ0, η0) zeros out the population estimating equation:

Pθ0,η0m̃(θ0, η0) = 0.(4.6)

To allow some flexibility in the framework, the estimators (θ̂π
N , η̂π

N) are assumed to approxi-
mately zero out the Horvitz–Thompson empirical estimating equation:

P
π
Nm̃

(
θ̂π
N , η̂π

N

) = oP
(
N−1/2)

.(4.7)

It is easy to see that the above condition is satisfied if (4.3) holds. Note here our general
condition also includes the case where η̂π

N may depend on θ̂π
N , for example, profile likelihood

estimation.

1See also condition A3 in [85], page 2138; condition (4) in [53], page 196; condition (4) in [24], page 2887.
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THEOREM 4.5. Suppose that (A1) holds, and that (4.5)–(4.7) hold. Further assume the
following conditions:

(S1) The matrix Iθ0,η0 ≡ −Pθ0,η0m̃θ (θ0, η0) ∈ R
d×d is nonsingular.

(S2) ‖θ̂π
N − θ0‖ ∨ ‖η̂π

N − η0‖H =OP(N
−β) holds for some β > 1/4.

(S3) The model is smooth in the sense that∥∥Pθ0,η0

(
m̃(θ, η) − m̃(θ0, η0) − m̃θ (θ0, η0)(θ − θ0)

)∥∥
=O

(‖θ − θ0‖2 ∨ ‖η − η0‖2
H

)
holds for (θ, η) close enough to (θ0, η0).

(S4) For any C > 0,

sup
‖θ−θ0‖∨‖η−η0‖H≤CN−β

∣∣GN

(
m̃(θ, η) − m̃(θ0, η0)

)∣∣ = oP(1).

Then √
N

(
θ̂π
N − θ0

) = I−1
θ0,η0

G
π
Nm̃(θ0, η0) + oP(1).

Conditions (S1)–(S4) are all standard assumptions in semiparametric literature, and can
be verified in numerous models, including the Cox model with right censored/current status
data, partially linear model, panel count data (with covariates), etc. Here, we only consider the
partially linear model; detailed verifications for other models can be found in, for example,
[24, 53, 68, 69, 85].

EXAMPLE 4.6 (Partially linear model). Consider the following model:

Yi = X�
i θ0 + f0(Wi) + ei, i = 1, . . . ,N,

where Yi ’s are the responses, {(Xi,Wi) ∈ [−1,1]d × [0,1]}’s are i.i.d. covariates, and ei ’s
are i.i.d. normal errors independent of the covariates. The “true signal” θ0 ∈ R

d and f0 :
[0,1] → R is a “smooth” function. For ease of exposition, we will consider the parameter
space � ≡ {(θ, f ) : ‖θ‖1 ≤ 1,‖f ‖∞ ≤ 1, J (f ) ≤ M} for some M > 0, and here J 2(f ) :=∫ 1

0 (f ′′(t))2 dt . Now with λ̄N 	 N−2/5, let(
θ̂π
N , f̂ π

N

) := arg min
(θ,f )∈�

[
P

π
N

(
Y − X�θ − f (W)

)2 + λ̄2
NJ 2(f )

]
.(4.8)

To put the model into our framework, let m(θ,f ) := −(y − x�θ − f (w))2. Then for any
admissible a, b, we have

mθ(θ, f ) = 2x
(
y − x�θ − f (w)

)
, mf (θ, f )[a] = 2a(w)

(
y − x�θ − f (w)

)
,

mθf (θ, f )[b] = −2xb(w), mff (θ, f )[a][b] = −2a(w)b(w).

Now let A∗(W) = E[X|W ] ∈ R
d . Then a direct calculation verifies (4.4). Thus we can take

m̃(θ, f ) = 2
(
y − x�θ − f (w)

)(
x −E[X|W = w]).(4.9)

(4.6) is immediately verified; (4.7) can also be verified by taking partial derivatives in the def-
inition (4.8) and noting that λ̄2

N = o(N−1/2). Now we verify (S1)–(S4). (S1) will be satisfied
if the matrix Iθ0,η0 ≡ 2E[(X − E[X|W ])X�] = 2E[(X − E[X|W ])⊗2] is nonsingular. (S2)
can be verified with β = 2/5 along the lines of Lemma 25.88 in [80] with the tools developed
in Section 3. (S3) is trivially satisfied since m̃ is linear in θ and f . (S4) is also easy to verify.
Hence we have shown that under the same conditions as in Lemma 25.88 of [80],√

N
(
θ̂π
N − θ0

) = I−1
θ0,η0

G
π
Nm̃(θ0, η0) + oP(1).



UNIFORM LIMIT THEOREMS IN COMPLEX SAMPLING DESIGNS 479

4.3. Frequentist theory for pseudo-Bayesian procedures. Suppose the i.i.d. superpopu-
lation variables of interest {Yi}Ni=1 have law Pf0 where f0 belongs to a statistical model F
and {Pf }f ∈F is dominated by a σ -finite measure μ. A Bayesian approach assigns a prior
�N on the model F and makes estimation/inference based on the posterior distribution. In
the case where all the superpopulation {Yi}Ni=1 are available, by Bayes’ formula, the posterior
distribution, that is, a random measure on F , is defined as follows: for a measurable subset
B ⊂ F ,

�N

(
B|Y (N)) ≡

∫
B

∏N
i=1 pf (Yi)d�N(f )∫ ∏N
i=1 pf (Yi)d�N(f )

=
∫
B exp(NPN logpf )d�N(f )∫

exp(NPN logpf )d�N(f )
,(4.10)

where pf (·) denotes the probability density function of Pf with respect to the dominating
measure μ.

In the current superpopulation setup with complex sampling designs, we may naturally
replace the usual empirical measure PN in (4.10) by the Horvitz–Thompson empirical mea-
sure P

π
N to define the pseudo-posterior distribution with weighted likelihood as follows: for

a measurable subset B ⊂F ,

(4.11) �π
N

(
B|D(N)) ≡

∫
B

∏N
i=1 pf (Yi)

ξi/πi d�N(f )∫ ∏N
i=1 pf (Yi)ξi/πi d�N(f )

=
∫
B exp(NP

π
N logpf )d�N(f )∫

exp(NP
π
N logpf )d�N(f )

.

Recall here D(N) ≡ (Y (N),Z(N), ξ (N),π(N)). Note that since
∏N

i=1 pf (Yi)
ξi/πi is not a true

likelihood because of the power ξi/πi , the resulting expression is not a posterior distribution
in the usual sense, and hence we call it a pseudo-posterior based on weighted likelihood.
Bayesian inference based on (4.11) in the complex sampling setting is initiated in [71], and
is further developed in [49]. As we will see below, one particular advantage of the pseudo-
posterior distribution with weighted likelihood defined above is that we may obtain a com-
plete frequentist theory for pseudo-Bayes procedures analogous to that based on observing
the whole superpopulation {Yi}Ni=1.

4.3.1. Pseudo-posterior contraction rate theory. We say that the pseudo-posterior distri-
bution with weighted likelihood, namely �π

N(·|D(N)), contracts at a rate δN with respect to
a metric d if

Pf0�
π
N

(
f ∈ F : d2(f, f0) > LNδ2

N |D(N)) → 0

for any LN → ∞.
Our first goal in this section is to develop some useful results in deriving such pseudo-

posterior contraction rates for the pseudo-posterior distribution using weighted likelihood.
We will use (essentially the same) machinery developed in [39] (which we find easier to adapt
in the current context than the standard machinery [31, 32]). For some v > 0, c ∈ [0,∞) let

ψv,c(λ) = vλ2 · 1|λ|≤1/c + ∞ · 1|λ|>1/c

denote the local quadratic function.

THEOREM 4.7. Suppose (A1) holds and the following conditions hold:

(B1) (Local Gaussianity condition) There exist some constants c1 > 0 and κ = (κg, κ�) ∈
(0,∞) × [0,∞) such that for all n ∈N, and f0, f1 ∈ F ,

Pf0 exp
[
λ

(
log

pf0

pf1

− Pf0 log
pf0

pf1

)]
≤ c1 exp

[
ψκgd2(f0,f1),κ�

(λ)
]
.
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Here, d : F ×F →R≥0 is a symmetric function satisfying

c2 · d2(f0, f1) ≤ Pf0 log
pf0

pf1

≤ c3 · d2(f0, f1)

for some constants c2, c3 > 0.
(B2) (Local entropy condition) There exist some {δN }N∈N such that

1 + sup
ε>δN

logN
(
c5ε,

{
f ∈ F : d(f,f0) ≤ 2ε

}
, d

) ≤ c4Nδ2
N,

where c4 ∈ (0,1), c5 ∈ (0,1/4) depend on {ci}3
i=1.

(B3) (Prior mass condition) For all j ∈N,

�N({f ∈ F : jδN < d(f,f0) ≤ (j + 1)δN })
�N(d(f,f0) ≤ δN)

≤ exp
(
c6j

2Nδ2
N

)
,

where c6 > 0 is a small enough constant depending on {ci}3
i=1.

Then

Pf0�
π
N

(
f ∈F : d2(f, f0) > C1δ

2
N |D(N)) ≤ C2 exp

(−Nδ2
N/C2

)
.

Here, C1,C2 > 0 only depend on {ci}3
i=1 and κ .

The local Gaussianity condition (B1) can be easily verified in a wide range of exper-
iments including regression/density estimation/Gaussian autoregression/Gaussian time se-
ries/covariance matrix estimation, etc. (B2)–(B3) are standard conditions in the literature.
In particular, (B3) allows the exact

√
N parametric pseudo-posterior contraction rate, which

will be useful below. It is also possible to consider hierarchical priors to formulate a similar
theorem as in [39]—in essence all examples therein can be considered here (except for re-
gression where random design instead of fixed design is needed to maintain the i.i.d. property
of the superpopulation {Yi}Ni=1).

4.3.2. Bernstein–von Mises theorem. Next, we will be interested in a more precise lim-
iting distribution of the pseudo-posterior distribution with weighted likelihood, that is, a
Bernstein–von Mises type theorem. To this end, we work with a finite-dimensional model,
where � is a compact subset of Rd . Let θ0 ∈ �, an interior point of �, be the true parameter.
Let Nμ,� denote the d-dimensional normal distribution with mean μ and covariance matrix
�.

THEOREM 4.8. Suppose that (A1) and (A2-CLT) hold. Further assume the following
conditions:

(Bv1) (Experiment) The map θ �→ logpθ(x) = �θ (x) is differentiable at θ0 for all x with
derivative �̇θ0(x), and for θ1, θ2 close enough to θ ,∣∣�θ1(x) − �θ2(x)

∣∣ ≤ m(x)‖θ1 − θ2‖
holds for some Pθ0-square integrable function m. Furthermore, the log-likelihood ratio
{log pθ

pθ0
}θ∈� satisfies the local Gaussianity condition, and is twice differentiable under Pθ0

with a nonsingular Hessian Iθ0 : for θ close enough to θ0,

Pθ0 log
pθ0

pθ

= 1

2
(θ − θ0)Iθ0(θ − θ0) + o

(‖θ − θ0‖2)
.

(Bv2) (Prior) The prior � has a Lebesgue density bounded away from 0 and ∞ on �.
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Then the pseudo-posterior distribution with weighted likelihood �π
N converges to a sequence

of normal distributions in the total variational distance:

sup
B

∣∣�π
N

(√
N(θ − θ0) ∈ B|D(N)) −N

I−1
θ0

G
π
N �̇θ0 ,I−1

θ0
(B)

∣∣ = oP(1).

Note that in finite-dimensional problems, the efficient score m̃ in Theorem 4.5 can usually
be taken as �̇θ0 . Then under the regularity conditions as in Theorem 4.5, we have the usual
interpretation of the Bernstein–von Mises theorem in our context of weighted likelihood es-
timation: the sequence of pseudo-posterior distributions with weighted likelihood resembles
that of progressively sharpened normal distributions centered at the maximum weighted like-
lihood estimator θ̂π

N :

sup
B

∣∣�π
N

(
θ ∈ B|D(N)) −N

θ̂π
N ,N−1I−1

θ0
(B)

∣∣ = oP(1).

4.3.3. Inference using the Bernstein–von Mises theorem. The Bernstein–von Mises the-
orem in the i.i.d. sampling models justifies the frequentist validity of the credible sets of the
posterior distribution for the purpose of inference. The situation in the complex sampling set-
ting is however more subtle. As will be clear from the discussion below, the structure of the
Bernstein–von Mises theorem in Theorem 4.8 shows that: (1) vanilla credible sets may not
lead to valid frequentist inference procedure; (2) but at the same time suggests the construc-
tion of a corrected credible set with asymptotically valid coverage.

To see (1), suppose CN = CN(D(N)) ⊂ � is a (vanilla) (1 − α) credible set, that is,
�π

N(θ ∈ CN |D(N)) = 1 − α. Then by the Bernstein–von Mises theorem in Theorem 4.8,
N0,I ((NIθ0)

1/2(CN − θ̄π
N)) → 1 − α in P-probability. Here, θ̄π

N ≡ θ0 + N−1/2I−1
θ0

G
π
N �̇θ0 . In

other words, CN = θ̄π
N + I

−1/2
θ0

BN/
√

N for some random BN such that N0,I (BN) → 1 − α

in P-probability. By Proposition 3.4, we have G
π
N �̇θ0 →d N (0, (1 + μπ1)Iθ0), and hence the

frequentist coverage for the credible set CN is

Pθ0(θ0 ∈ CN) = P
(
θ0 ∈ θ̄π

N + I
−1/2
θ0

BN/
√

N
) = P

(
I

1/2
θ0

√
N

(
θ0 − θ̄π

N

) ∈ BN

)
= P

(−I
−1/2
θ0

G
π
N �̇θ0 ∈ BN

) = EN0,I

(
BN/(1 + μπ1)

1/2) + o(1),
(4.12)

which does not converge to 1 − α in general as N → ∞ as long as μπ1 �= 0.
Fortunately, the vanilla credible set CN can be corrected as follows. Let θ̂π

N =
arg supθ∈� P

π
N logpθ be the maximum weighted likelihood estimator as in Section 4.2.

Then under regularity conditions, θ̂π
N = θ0 + N−1/2I−1

θ0
G

π
N �̇θ0 + oP(1). Now for any CN =

CN(D(N)) such that �π
N(θ ∈ CN |D(N)) = 1 − α, let

C∗
N ≡ θ̂π

N + (1 + μπ1)
1/2(

CN − θ̂π
N

)
.(4.13)

Note again that CN = θ̂π
N +I

−1/2
θ0

BN/
√

N for some random BN such that N0,I (BN) → 1−α

in P-probability, so we have

Pθ0

(
θ0 ∈ C∗

N

) = Pθ0

(
θ0 ∈ θ̂π

N + (1 + μπ1)
1/2(

CN − θ̂π
N

))
= Pθ0

(
I

1/2
θ0

√
N

(
θ0 − θ̂π

N

) ∈ (1 + μπ1)
1/2 · I 1/2

θ0

√
N

(
CN − θ̂π

N

))
= Pθ0

(−(1 + μπ1)
−1/2I

−1/2
θ0

G
π
N �̇θ0 ∈ BN

) + o(1)

→ 1 − α.

Hence the corrected credible set C∗
N (4.13) has the correct coverage.
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The construction of the corrected credible set in (4.13) is generic, regardless of different
sampling schemes as long as μπ1 is known (cf. Table 1). Such a unified construction of
corrected credible sets based on the pseudo-posterior distributions could bring significant
advantage for the purpose of inference in the complex sampling setting, in that it alleviates
complicated bootstrap methods whose design architectures must adapt to the dependence
structure in each and every different sampling schemes (e.g., [66, 67] in the context of two-
phase sampling). In Appendix D, we present an illustrative example and simulation results
in the context of one-dimensional Gaussian location model with a Gaussian prior for the
phenomenon discussed above.

Finally, we remark that there are interesting recent developments in semiparametric and
nonparametric Bernstein–von Mises theorems; cf. [19–22, 58, 59]. It is an interesting open
question to extend the Bernstein–von Mises theorem and the correction scheme (4.13) to
these more complicated settings with complex sampling designs.
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