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When data analysts train a classifier and check if its accuracy is signif-
icantly different from chance, they are implicitly performing a two-sample
test. We investigate the statistical properties of this flexible approach in the
high-dimensional setting. We prove two results that hold for all classifiers
in any dimensions: if its true error remains ε-better than chance for some
ε > 0 as d,n → ∞, then (a) the permutation-based test is consistent (has
power approaching to one), (b) a computationally efficient test based on a
Gaussian approximation of the null distribution is also consistent. To get a
finer understanding of the rates of consistency, we study a specialized set-
ting of distinguishing Gaussians with mean-difference δ and common (known
or unknown) covariance �, when d/n → c ∈ (0,∞). We study variants of
Fisher’s linear discriminant analysis (LDA) such as “naive Bayes” in a non-
trivial regime when ε → 0 (the Bayes classifier has true accuracy approach-
ing 1/2), and contrast their power with corresponding variants of Hotelling’s
test. Surprisingly, the expressions for their power match exactly in terms of
n, d, δ, �, and the LDA approach is only worse by a constant factor, achiev-
ing an asymptotic relative efficiency (ARE) of 1/

√
π for balanced samples.

We also extend our results to high-dimensional elliptical distributions with
finite kurtosis. Other results of independent interest include minimax lower
bounds, and the optimality of Hotelling’s test when d = o(n). Simulation re-
sults validate our theory, and we present practical takeaway messages along
with natural open problems.

1. Introduction. The recent popularity of machine learning has resulted in the exten-
sive teaching and utilization of prediction methods in theoretical and applied communities.
When faced with a hypothesis testing problem in practice, data scientists sometimes opt for a
prediction-based test-statistic. We study one example of this common practice in this paper,
concerning arguably the most classical testing and prediction problems—two-sample testing
(are the two underlying distributions the same?) and classification (learning a classifier that
separates the two distributions, implicitly assuming they are not the same). Practitioners fa-
miliar with machine learning but not the hypothesis testing literature often find it intuitive to
perform testing in the following way: first learn a classifier, and then see if its accuracy is sig-
nificantly different from chance and if it is, then conclude that the distributions are different.

The central question that this paper seeks to answer is “what are the pros and cons of
the classifier-based approach to two-sample testing?” As we shall detail in Section 2, the
notion of cost or price that is appropriate for the Neyman–Pearson or Fisherian hypothesis
testing paradigm, is the power achievable at a fixed false positive level α (in other words, the
lowest possible type-2 error achievable at some prespecified target type-1 error). Indeed, we
approach this question using the frequentist perspective of minimax theory. More formally,
we can restate our question as “when is the classifier-based test consistent, and how does its
power compare to the minimax power?”
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1.1. Practical motivation. Before we delve into the details, it is worth mentioning that
even though this paper is a theoretical endeavor, the question was initially practically moti-
vated. Many scientific questions are naturally posed as two-sample tests—examples abound
in epidemiology and neuroscience. As a hypothetical example from the latter, say we are
interested in determining whether a particular brain region responds differently under two
situations (say listening to loud harsh sounds versus soft smooth sounds), or for a person
with a medical condition (patient) and a person without the condition (control). Often, one
collects and analyzes brain data for the same patient under the two contrasting stimuli (to
study the effect of change in that stimulus), or for different normal and ill patients under the
same stimulus (to study effect of a medical condition). Since the work of Golland and Fis-
chl (2003) where the authors examined permutation tests for classification with application
to neuroimaging analysis, it has been increasingly common in the field of neuroscience (see
Etzel, Gazzola and Keysers (2009), Pereira, Mitchell and Botvinick (2009), Stelzer, Chen and
Turner (2013), Zhu et al. (2008)) to assess whether there is a significant difference between
the two sets of data collected by learning a classifier to differentiate between them (because,
for instance, they may be more familiar with classification than two-sample testing). Neu-
roscientists call this style of brain decoding as pattern discrimination and a positive answer
can be seen as preliminary evidence that the mental process of interest might occur within
the portion of the brain being studied; see Olivetti, Greiner and Avesani (2012) for a discus-
sion of related issues. This classification approach to two-sample testing has been considered
in other application areas including genetics (Yu et al. (2007)), speech analysis (Chen et al.
(2009)), credit scoring (Xiao et al. (2014)), churn prediction (Xiao et al. (2015)) and video
content analysis (Liu, Li and Póczos (2018)).

1.2. Overview of the main results. Our first contribution is to identify weak conditions
on the classifier that suffice for both finite-sample or asymptotic type-1 error control, as well
as for asymptotic consistency.

• Asymptotic test (Proposition 9.1): We identify mild conditions under which the sample-
splitting error of a general classifier (2.4) is asymptotically Gaussian as n,d → ∞. We
introduce a test based on this Gaussian approximation and prove its asymptotic type-1
error control. We also prove that a sufficient condition for its consistency (for its power
to approach one) is that its true accuracy converges to 1/2 + ε for any constant ε > 0 as
n,d → ∞ at any relative rate.

• Permutation test (Theorem 9.1): In addition to the asymptotic approach, we consider two
types of random permutation procedures that yield a valid level α test in finite-sample
scenarios. Under the same conditions made before, we find the minimum number of per-
mutations that guarantees that the resulting permutation test is consistent.

For technical reasons, it is convenient to present these results last, after suitable notation,
lemmas and assumptions are developed in earlier sections.

The above results leave two natural questions open: first, whether we can derive a rate of
consistency in special cases, and second, whether testing can be consistent even when the
classifier accuracy asymptotically approaches chance (is not bounded away from half). We
answer both affirmatively; our second contribution is to rigorously analyze the asymptotic
power of tests using classification accuracy for Gaussian and elliptical distributions in a high-
dimensional setting when the error of the Bayes optimal classifier approaches half. In this
direction, we have three main results:

• Power of the accuracy of LDA for Gaussian distributions with known � (Theorem 6.1): The
considered test statistic (6.1) is the centered and rescaled classification error of LDA esti-
mated via sample splitting, when � is known. Under standard interpretable assumptions
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(Section 5.1), this test statistic converges to a standard normal in the high-dimensional
setting (Theorem 5.1) under both null and local alternative. Using this fact, we describe
its local asymptotic power in expression (6.7). Comparing the latter with the minimax
power (3.3), we highlight that the performance of the accuracy test is comparable to but
worse than the minimax optimal test, achieving an asymptotic relative efficiency (ARE) of
1/

√
π ≈ 0.564 for balanced sample sizes.

• Extensions to unknown � using naive Bayes and other variants (Theorem 7.1): We gen-
eralize the previous findings to other linear classifiers for unknown �, like naive Bayes.
We again find that classifier-based tests are underpowered, achieving the same aforemen-
tioned ARE of 1/

√
π compared to corresponding variants of Hotelling’s test such as Bai

and Saranadasa (1996) and Srivastava and Du (2008).
• Extensions to elliptical distributions (Theorem 8.1): We extend Theorem 6.1 to the class

of (heavy-tailed) elliptical distributions with finite kurtosis, and prove that the asymptotic
power expression matches the Gaussian setting up to an explicit constant factor, which is√

2 times the marginal density evaluated at 0. Restricting our attention to multivariate t-
distributions, we also find an interesting phenomenon that the classifier-based test becomes
relatively more efficient when the underlying distributions have heavier tails (lower degrees
of freedom).

As two side contributions, we formally study the fundamental minimax power of high-
dimensional two-sample mean testing for Gaussians. In this direction, we have two main
results.

• Explicit and exact expression for asymptotic minimax power (Proposition 3.1): By building
on prior work (Luschgy (1982)), we provide an explicit expression for the asymptotic
minimax power of high-dimensional two-sample mean testing that is valid for any (shared)
positive definite covariance matrix and unbalanced sample sizes when d,n → ∞ at any
relative rate.

• Minimax optimality of Hotelling’s T 2 test when d = o(n) (Theorem 4.1): It is well known
that Hotelling’s test is minimax optimal when d is fixed and n → ∞. In the high-
dimensional setting, when the dimension d and the sample size n both increase to infinity
with d/n → c ∈ (0,1), Bai and Saranadasa (1996) show that Hotelling’s test may have low
power. Since then, Hotelling’s test has been largely undervalued in the setting where d in-
creases with n. In contrast to the aforementioned negative result, we prove that Hotelling’s
test remains asymptotically minimax optimal when d → ∞ as long as d/n → 0.

1.3. Interpreting our results and practical takeaway messages. There may be two some-
what contradictory ways that our results may be interpreted:

1. Practitioners may (possibly unjustly) use our results to reassure themselves that their
utilization of prediction methods for testing, even in the high-dimensional setting, may not
hurt their power too much.

2. For scientific disciplines in which data is not abundant, scientists may be wary of using
prediction methods for hypothesis testing problems due to the loss in power.

After our manuscript appeared on arXiv in early 2016, a few different papers have cited our
results to justify their choices in both of these above ways. We take the liberty to weigh in
on this possible conundrum, using our intuition from this paper and from experiments in
other followup papers (e.g., Hediger, Michel and Näf (2019), Lopez-Paz and Oquab (2016),
Rosenblatt et al. (2019)) to instead propose complementary, noncontradictory takeaway mes-
sages:



414 KIM, RAMDAS, SINGH AND WASSERMAN

1. If the data is relatively unstructured or not abundant, and if the alternative can be accu-
rately specified in such a manner that is both practically meaningful and for which a provably
powerful two-sample test statistic is available (or can be easily designed), then we recom-
mend using such a well-tailored statistic.

2. Suppose the data is highly structured or abundant (say, images of two species of bee-
tles), but the potential differences between the two distributions cannot be easily specified.
In this case, constructing a refined test that has high power against an accurately prespeci-
fied alternative may be too hard, and thereby we recommend using a flexible two-sample test
statistic like classification accuracy (say using a convolutional neural network classifier or
random forests).

Of course, it seems very challenging to theoretically study these setups in their full generality
to provide a thorough formal backing to such practical suggestions. However, we are hopeful
that our work will spur others to extend our concrete results to new settings.

1.4. Related work. The idea of using binary classifiers for two-sample testing was con-
ceptualized by Friedman (2004). However, Friedman’s proposal was fundamentally different
from the one proposed here: he suggested using training a classifier on all points, and using
that classifier to assign a score to each point. Then he compared the scores in each class using
a univariate two-sample test like Mann–Whitney or Kolmogorov–Smirnov. In other words,
Friedman proposed using classifiers to reduce a multivariate two-sample test into a univari-
ate one. A different classifier-based approach to the two-sample problem was proposed by
Blanchard, Lee and Scott (2010). Although their test is built upon classification algorithms, it
estimates the a priori probability of a contamination model, instead of classification accuracy.

In contrast, this paper considers held-out accuracy as the test statistic. The held-out ac-
curacy of any classifier in any dimension can be used as the test statistic, and type-1 error
can always be controlled nonasymptotically at the desired level using permutations (see Sec-
tion 9.2). Hence, the main question of genuine mathematical interest is what we can prove
about the power of such a test. To overcome the computational burden of permutations, if
we instead use a Gaussian approximation to the null distribution, then it is unclear whether it
remains valid in the high-dimensional setting and again its power is unclear.

To the best of our knowledge, our 2016 ArXiv manuscript was the first mathematical at-
tempt to study the power of this general approach in a specialized setting. There has been a
growing interest in this idea in both the statistics and the machine learning communities (Borji
(2019), Gagnon-Bartsch and Shem-Tov (2019), Hediger, Michel and Näf (2019), Lopez-Paz
and Oquab (2016), Rosenblatt et al. (2019)), most of which directly build on our work, but
further provide valuable practical insight into the problem using various classifiers under dif-
ferent scenarios. However, most of these other works couple informal heuristic arguments
with numerical experiments, motivating us to fully formalize and further generalize our ear-
lier analysis.

In an orthogonal work, Scott and Nowak (2005) proposed a Neyman–Pearson classifica-
tion framework within which one would like to minimize the probability of classification
error for one class, subject to a bound on the probability of classification error for the other
class. Their problem is a variant of classification in which the classifier is judged by a different
error metric, but it is quite different from our goal of two-sample testing. Other connections
between classification and two-sample testing have also been explored by Ben-David et al.
(2007), Sriperumbudur et al. (2009) and Gretton et al. (2012), but none of them set out to
solve our problem.

Another class of two-sample tests is based on geometric graphs; examples include the
k-nearest neighbor (NN) graph (Henze (1988), Schilling (1986)), the minimum spanning
tree (Friedman and Rafsky (1979)) and the cross-matching (Rosenbaum (2005)). Recently,
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Bhattacharya (2020) presented general asymptotic properties of graph-based tests under the
fixed dimensional setting. Comparing the performance of the k-NN graph test and the k-NN
classifier test (based on its held-out classification accuracy, as studied in this paper) may be
interesting to explore in future work.

There is of course a very large body of work that just analyzes classifiers, or just analyzes
two-sample tests (e.g., Arias-Castro, Pelletier and Saligrama (2018), Hu and Bai (2016), and
the references therein), but without connecting the two.

Paper outline. The rest of this paper is organized as follows. In Section 2, we formally
define both testing and classification problems. In Section 3, we discuss a minimax lower
bound for two-sample testing in high-dimensional settings and in Section 4, we prove that
Hotelling’s T 2 test achieves this lower bound when d/n → 0. Section 5 studies the limiting
distribution of Fisher’s LDA accuracy in the high-dimensional setting. Building on this lim-
iting distribution, Section 6 presents the asymptotic power of Fisher’s LDA for two-sample
mean testing under known �. Section 7 extends this asymptotic power expression to other
linear classifiers with unknown �, like naive Bayes. Generalizations to elliptical distribu-
tions are in Section 8. In Section 9, we examine the type-1 error control and consistency of
the asymptotic test as well as the permutation test for any classifier. In Section 10, we pro-
vide simulation results that confirm our theoretical analysis, before concluding in Section 11.
The proofs of all the results along with the discussion on open problems are provided in the
Supplementary Material (Kim et al. (2020)).

Notation. Let Nd(μ,�) refer to the d-variate Gaussian distribution with mean μ ∈ Rd and
d × d positive definite covariance matrix �. With a slight abuse of notation, we sometimes
use Nd(z;μ,�) to denote the corresponding density evaluated at z. The symbol ‖ · ‖ refers
to the L2 norm. Let I[·] denote the standard 0-1 indicator function. Let �(·) denote the
standard Gaussian CDF, and let zα be its upper 1 − α quantile. For a square matrix A, let
diag(A) denote the diagonal matrix formed by zeroing out the off-diagonal entries of A, and
let λmin(A) and λmax(A) be the minimum and the maximum eigenvalues of A. We write the
identity matrix as I . For sequences of constants an and bn, we write an = O(bn) if there
exists a universal constant c such that |an/bn| ≤ c for all n larger than some n0, and we write
an = o(bn) if an/bn → 0. Similarly, for a sequence of random variables Xn and constants
an, we write Xn = OP (an) if a−1

n Xn is stochastically bounded and Xn = oP (an) if a−1
n Xn

converges to zero in probability.

2. Background. In this section, we introduce two-sample testing, including the special
case of two-sample mean testing using Hotelling-type statistics and Fisher’s linear discrim-
inant analysis (LDA). We only introduce the basic versions here, later introducing variants
like naive Bayes. We will be working in the high-dimensional setting where the number of
samples n and dimension d can both increase to infinity simultaneously.

2.1. Two-sample testing. Suppose that X1, . . . ,Xn0, Y1, . . . , Yn1 are independent random

vectors in Rd such that X n0
1

def= {X1, . . . ,Xn0} are identically distributed with the distribution

P0 and Yn1
1

def= {Y1, . . . , Yn1} are identically distributed with the distribution P1. Given these
samples, the two-sample problem aims at testing whether

H0 : P0 = P1 vs. H1 : P0 	= P1.(2.1)

While some of our results are on general classifiers and distributions (Section 9), we often
focus on the specific case where P0 and P1 are d-variate Gaussian distributions with densities

p0(x)
def= Nd(x;μ0,�) and p1(y)

def= Nd(y;μ1,�), respectively. We discuss the extension to
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heavy-tailed elliptical distributions in Section 8. When the Gaussians have equal covariance,
the previous problem boils down to testing whether two distributions have the same mean
vector or not. This two-sample mean testing is a fundamental decision-theoretic problem,
having a long history in statistics; for example, the past century has seen a wide adoption of
the T 2-statistic by Hotelling (1931) to decide if two-samples have different population means

(see Hu and Bai (2016) for a review). Given the sample mean vectors μ̂0
def= ∑n0

i=1 Xi/n0 and

μ̂1
def= ∑n1

i=1 Yi/n1 and the pooled sample covariance matrix

�̂
def= 1

n0 + n1 − 2

[
n0∑
i=1

(Xi − μ̂0)(Xi − μ̂0)

 +

n1∑
i=1

(Yi − μ̂1)(Yi − μ̂1)



]
,

Hotelling’s T 2-statistic is given by

TH = (μ̂0 − μ̂1)

�̂−1(μ̂0 − μ̂1).

Hotelling’s T 2 test based on TH was introduced for Gaussians, but it has been generalized to
non-Gaussian settings as well (e.g., Kariya (1981)).

2.2. Held-out classification accuracy. Consider the same distributional setting described
in the previous section. Given the samples X n0

1 and Yn1
1 , classification is the problem of

predicting to which class a new observation Z belongs, that is, we want to predict whether Z

came from P0 or P1. Let the samples from P0 and P1 be given labels 0 and 1, respectively.
A classifier C is a function that maps a datapoint Z to {0,1}. Define the conditional error of
a classifier C trained on the labeled data as

(2.2)

E def= (E0 + E1)/2 where

E0
def= Pr

Z∼P0

(
C(Z) = 1 |X n0

1 ,Yn1
1

)
,

E1
def= Pr

Z∼P1

(
C(Z) = 0 |X n0

1 ,Yn1
1

)
.

Clearly, E is a random variable that depends on the input data. Next, define the unconditional
error of C as

(2.3)

E
def= (E0 + E1)/2 where

E0
def= En0,n1

[
Pr

Z∼P0

(
C(Z) = 1 |X n0

1 ,Yn1
1

)]
,

E1
def= En0,n1

[
Pr

Z∼P1

(
C(Z) = 0 |X n0

1 ,Yn1
1

)]
,

where En0,n1 denotes the expectation with respect to the n0 and n1 labeled datapoints. Note

that E, E0, E1 do not depend on the input data and are only functions of d , δ, �, n def= n0 +n1.
Importantly, if P = Q, chance performance is always E = 1/2, no matter the ratio of sample
sizes from each class (hence predicting the dominant label also achieves accuracy half).

Even though E is unknown, one can estimate E in a few different ways. One simple
way is via sample splitting where the samples are split into training and test sets. Let us
denote the number of samples of each class in the training (or test) set by n0,tr and n1,tr (or

n0,te and n1,te). In other words, there are ntr
def= n0,tr + n1,tr samples in the training set and

nte
def= n0,te + n1,te samples in the test set. We then learn a classifier Ĉ using ntr samples, and
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estimate its sample-splitting error using the remaining nte samples as

(2.4)

ÊS def= (
ÊS

0 + ÊS
1
)
/2 where

ÊS
0

def= 1

n0,te

n0,te∑
i=1

I
[
Ĉ(Xn0,tr+i ) = 1

]
,

ÊS
1

def= 1

n1,te

n1,te∑
i=1

I
[
Ĉ(Yn1,tr+i ) = 0

]
.

It is clear that the classifier will have a true accuracy significantly above half only if P 	= Q.
Hence one can use ÊS as a test statistic for two-sample testing, by checking whether ÊS is
significantly less than half. The power of this approach is examined in Section 9, but we begin
with the special case of mean-testing using linear discriminant analysis.

2.3. Fisher’s linear discriminant classifier. In the Gaussian setting, the optimal classifier
is given by Bayes rule:

I

[
log

p1(Z)

p0(Z)
> 0

]
= I

[
(μ1 − μ0)


�−1
(
Z − (μ0 + μ1)

2

)
> 0

]
.

We denote δ
def= μ1 − μ0 and μpool

def= (μ0 + μ1)/2 so that we can succinctly write the Bayes
rule as

CBayes(Z)
def= I

[
δ
�−1(Z − μpool) > 0

]
.(2.5)

Then, by plugging in the estimators δ̂
def= μ̂1 −μ̂0, μ̂pool

def= (μ̂0 +μ̂1)/2, and some appropriate
choice of �̂, the linear discriminant analysis (LDA) rule is given by

LDA(Z)
def= I

[̂
δ
�̂−1(Z − μ̂pool) > 0

]
.

This classifier was derived by Fisher (1936, 1940) from a generalized eigenvalue prob-
lem (hence also called Fisher’s LDA) and was later developed further by Wald (1944) and
Anderson (1951). We will show that the held-out accuracy of Fisher’s LDA in the high-
dimensional Gaussian setting is asymptotically Gaussian, and derive its power when used for
two-sample testing (for various choices of �̂). We later extend these results to heavy-tailed
ellpitical distributions. However, we begin by understanding the fundamental minimax lower
bounds for two-sample mean testing.

3. Lower bounds for two-sample mean testing. We first introduce some notation. Let
P be a set that consists of all pairs of d-dimensional multivariate normal density functions
whose covariance matrices coincide, and is positive definite. Let P0 be the subset of P such
that each pair also has the same mean. For a given α ∈ (0,1), let us write a level α test based
on X n0

1 and Yn1
1 by ϕα and the collection of all level α tests by

Tα
def=

{
ϕα : X n0

1 ∪Yn1
1 
→ {0,1} : sup

p0,p1∈P0

Ep0,p1[ϕα] ≤ α
}
.

Additionally, we define a class of two multivariate normal density functions p0 and p1 whose
distance is measured in terms of Mahalanobis distance parameterized by ρ > 0 as

P1(ρ)
def= {

(p0,p1) ∈ P : (μ0 − μ1)

�−1(μ0 − μ1) ≥ ρ2}

.
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The use of Mahalanobis distance is conventional and has been considered in Giri, Kiefer and
Stein (1963), Giri and Kiefer (1964) and Salaevskii (1971) to study the minimax character of
Hotelling’s one-sample test. The “oracle” Hotelling’s two sample test is defined as

ϕ∗
H = I

[
n0n1

n0 + n1
(μ̂0 − μ̂1)


�−1(μ̂0 − μ̂1) ≥ cα,d

]
,

where cα,d is the 1−α quantile of the chi-squared distribution with d degrees of freedom, and
“oracle” signifies that � is known. Luschgy (1982) extends the previous one-sample results
and shows that ϕ∗

H is minimax optimal over P1(ρ), or more explicitly,

sup
ϕα∈Tα

inf
p0,p1∈P1(ρ)

Ep0,p1[ϕα] = inf
p0,p1∈P1(ρ)

Ep0,p1

[
ϕ∗

H

]
,(3.1)

for any finite n and d . However, this result does not clearly show how the underlying parame-
ters (e.g., n, d , ρ) interact to determine the power. To shed light on this, we study the asymp-

totic expression for the minimax power. Denote the sample size ratio by λ1 = λ1,n
def= n1/n.

Recalling that � is the standard normal CDF and zα its 1 − α quantile, we prove the follow-
ing.

PROPOSITION 3.1. Consider a high-dimensional regime where n,d → ∞ (at any rate).
Then the minimax power for Gaussian two-sample mean testing is

(3.2)

sup
ϕα∈Tα

inf
p0,p1∈P1(ρ)

Ep0,p1[ϕα]

= �

(
−

√
2d√

2d + nλ1(1 − λ1)ρ2
zα + nλ1(1 − λ1)ρ

2√
2d + 4nλ1(1 − λ1)ρ2

)
+ o(1).

The proof is based on the central limit theorem and can be found in Appendix C.2. No-
tably, the expression (3.2) is asymptotically precise including all constant terms and is valid
without any restrictions on d/n and λ1. The way to interpret the bound in (3.2) is as follows.
The first term inside the parentheses is not of interest for our purposes, its magnitude being
bounded by the constant zα . The second term is what determines the rate at which the power
approaches one. When ρ = 0, the power reduces to �(−zα) = α and if d and n are thought
of as fixed, larger ρ leads to larger power. The key in high dimensions, however, is how the
power depends jointly on the signal to noise ratio (SNR) ρ, the dimension d and the sample
size n. To see this clearer, in the low SNR regime where ρ2 = o(d/n) and λ1 → λ ∈ (0,1),
the minimax lower bound simplifies to

�

(
−zα + nλ(1 − λ)ρ2

√
2d

)
+ o(1).(3.3)

It can be already seen that at constant SNR, n only needs to scale faster than
√

d for test power
to asymptotically approach unity—this

√
d/n scaling is unlike the d/n scaling typically seen

in prediction problems (for prediction error or classifier recovery, see Raudys and Young
(2004)). Next, we prove that this lower bound is tight even when � is unknown, as long as
d = o(n).

4. Minimax optimality of Hotelling’s test when d = o(n). When � is unknown, ϕ∗
H

is not implementable, and thus it remains unclear whether the previous asymptotic lower
bound is tight. In other words, we do not know whether there exists a test that has the same
asymptotic minimax power as ϕ∗

H in all high-dimensional regimes with unknown �. Below,
we partially close this gap by showing that Hotelling’s test with unknown � can achieve
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the same asymptotic minimax power as ϕ∗
H when d/n → 0. By letting qα,n,d be the 1 − α

quantile of the F distribution with parameters d and n − 1 − d , Hotelling’s two-sample test
with unknown � is given by

ϕH = I

[
n0n1(n − d − 1)

n(n − 2)d
(μ̂0 − μ̂1)


�̂−1(μ̂0 − μ̂1) ≥ qα,n,d

]
.

For Gaussians, it is well known that ϕH satisfies supp0,p1∈P0
Ep0,p1[ϕH ] ≤ α (e.g., Anderson

(1958)). The next theorem studies the power of ϕH .

THEOREM 4.1. Consider an asymptotic regime where d/n → 0. Then the uniform power
of ϕH is asymptotically the same as that of ϕ∗

H for Gaussian two-sample mean testing. In
other words, as n,d → ∞ with d/n → 0, we have that infp0,p1∈P1(ρ)Ep0,p1[ϕH ] is equal to

�

(
−

√
2d√

2d + nλ1(1 − λ1)ρ2
zα + nλ1(1 − λ1)ρ

2√
2d + 4nλ1(1 − λ1)ρ2

)
+ o(1).

The proof can be found in Appendix C.3. When d > n, TH is not even well defined, but
Bai and Saranadasa (1996) demonstrate that even when d/n → c ∈ (0,1) the power of ϕH

is poor. Due to its limitations, Hotelling’s test has been largely neglected when d increases
with n. Unlike the previous negative results, Theorem 4.1 shows that it is minimax optimal
when d is allowed to grow with n, but d/n → 0. We also provide empirical support for our
asymptotic results in Figure 4 of Section 10.3.

REMARK 4.1. Combining the previous theorem with Bai and Saranadasa (1996) and
our simulation results in Section 10.3, we may describe the phase transition behavior of
Hotelling’s test with unknown � as:

• optimal regime (same power as ϕ∗
H ): d/n → 0,

• suboptimal regime (lower power than ϕ∗
H ): d/n → c ∈ (0,1),

• not applicable: d/n → c ≥ 1.

Even though Hotelling’s test is suboptimal when d = O(n), it is still an open problem to
determine whether the lower bound is achievable by some other test, or whether a stronger
lower bound can be proved.

5. Asymptotic normality of the accuracy of generalized LDA. Here, we investigate
the high-dimensional limiting distribution of the sample-splitting error in (2.4). Building on
the results developed in this section, we will present the power of the classification test in
Section 6. Our main interest is in the setting where the dimension is comparable to or poten-
tially much larger than the sample size. In this high-dimensional scenario, Bickel and Levina
(2004) prove that Fisher’s LDA performs poorly in classification problems. When d > n,
Fisher’s LDA classifier is not even well defined since �̂ is not invertible. Thus, Bickel and
Levina (2004) consider the naive Bayes (NB) classification rule by replacing �̂−1 with the in-
verse of diag(�̂) and show that it outperforms Fisher’s LDA in the high-dimensional setting.
In the context of two-sample testing, we encounter the same issue on �̂ as mentioned earlier.
To simplify our analysis, we start by assuming that � is known and analyze the asymptotic
behavior of the corresponding Fisher’s LDA statistic. Later in Section 7, we extend the results
to unknown � by considering the NB classifier and others.
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5.1. Assumptions. Recalling that we work in the high-dimensional Gaussian setting with
common covariance, let us detail some assumptions that facilitate our analysis. We assume
that as n = n0 + n1 → ∞, we have:

(A1) High-dimensional asymptotics: ∃c ∈ (0,∞) such that d/n → c.
(A2) Local alternative: δ
�−1δ = O(n−1/2).
(A3) Sample size ratio: there exists λ ∈ (0,1) such that n0/n → λ.
(A4) Sample splitting ratio: there exists κ ∈ (0,1) such that ntr/n → κ .

The asymptotic regime in (A1) is called Raudys–Kolmogorov double asymptotics (e.g.,
Zollanvari, Braga-Neto and Dougherty (2011)) and assumes that d increases linearly with n.
In (A2), we assume that δ
�−1δ is close to zero such that a minimax test has nontrivial
power. Note that under (A1), the low SNR regime δ
�−1δ = o(d/n) is implied by (A2). It
is also interesting to note that the classification error of the Bayes optimal classifier (2.5) is
computed as

1

2
Pr

Z∼P0

{
CBayes(Z) = 1

} + 1

2
Pr

Z∼P1

{
CBayes(Z) = 0

} =1 − �

(√
δ
�−1δ

2

)
,

which means that the classification error of the Bayes classifier, and hence any classifier,
approaches chance under (A2). Assumption (A3) rules out highly imbalanced cases and is
common in the two-sample literature (e.g., Bai and Saranadasa (1996), Chen and Qin (2010),
Srivastava, Katayama and Kano (2013)). (A4) assumes that the user-chosen sample-splitting
ratio is within (0,1). We show in Theorem 6.1 that the asymptotic power of the test based
on held-out classification accuracy is maximized when κ = 1/2 for the balanced case of
λ = 1/2. In other cases, Theorem 6.1 may serve as a guideline for choosing κ that maximizes
the asymptotic power. For any d × d symmetric positive definite matrix A, we define the
generalized LDA classifier by

LDAA,n0,n1(Z)
def= I

[̂
δ
A(Z − μ̂pool) > 0

]
.(5.1)

Its sample-splitting error can be calculated using expression (2.4):

ÊS
A ≡ classification error of LDAA,n0,tr,n1,tr(Z),

emphasizing the dependency on the user-chosen matrix A. In terms of � and A, we assume
that:

(A5) � has bounded eigenvalues: there exist constants c1, c2 such that 0 < c1 ≤
λmin(�) ≤ λmax(�) ≤ c2 < ∞.

(A6) A has bounded eigenvalues: there exist constants c′
1, c′

2 such that 0 < c′
1 ≤

λmin(A) ≤ λmax(A) ≤ c′
2 < ∞.

The same eigenvalue condition for � was used by Bickel and Levina (2004). Assumption
(A6) is satisfied when A is diagonal with uniformly bounded entries, and when A = �−1

under (A5).

5.2. Asymptotic normality for nonrandom A. Given the previous assumptions, we study
the asymptotic distribution of the sample-splitting error of the generalized LDA classifier
when A is nonrandom. Since Fisher’s LDA with known � is a special case of generalized
LDA, it is straightforward to derive the limiting distribution of ÊS

�−1 from the general result.
We first observe that the sample-splitting error of the generalized LDA classifier can be

viewed as the average of independent observations when conditioning on the training set.
Therefore, it is natural to expect that the sample-splitting error is asymptotically normally
distributed. To make this statement formal, we define Ei,A and Ei,A similarly as Ei and Ei
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for i = 1,2 from definitions (2.2) and (2.3), but by replacing the LDA classifier with the
generalized LDA classifier with a given A. Then let us write the standardized test statistic as

WA
def= ÊS

A − E0,A/2 − E1,A/2√
E0,A(1 − E0,A)/(4n0,te) + E1,A(1 − E1,A)/(4n1,te)

.(5.2)

In the next proposition, we present both conditional and unconditional limiting distributions
of WA in the high-dimensional setting.

PROPOSITION 5.1. Suppose that the assumptions (A1)–(A6) hold. Then WA converges
to a standard Gaussian conditional on the training set:

sup
t∈R

∣∣Pr
(
WA ≤ t |X n0,tr

1 ,Yn1,tr
1

) − �(t)
∣∣ = OP

(
n−1/2)

.

Moreover, under the same assumptions, WA converges to the standard normal distribution
unconditional on the training set:

sup
t∈R

∣∣Pr(WA ≤ t) − �(t)
∣∣ = o(1).

The proof is given in Appendix C.4. Although the limiting distribution of WA is known
from the previous lemma, it is quite challenging to determine the power of a test based clas-
sification accuracy by analyzing WA. The reason is that E0,A and E1,A are random since they
depend on the training set. To address this issue, we shall present a tractable approximation
of WA that replaces E0,A and E1,A with nonrandom quantities. To ease notation, let us denote

V0,A
def= δ̂
A(μ0 − μ̂pool), V1,A

def= δ̂
A(μ̂pool − μ1) and UA
def= δ̂
A�Aδ̂. We would like to

stress that δ̂ and μ̂pool are computed based only on the training set. Using this fact, E0,A and
E1,A can be written as

E0,A = �

(
V0,A√

UA

)
and E1,A = �

(
V1,A√

UA

)
.(5.3)

Further write the expectations of V0,A, V1,A and UA by E[V0,A] = �A,n,d + 
A,n,d ,
E[V1,A] = �A,n,d − 
A,n,d and E[UA] = �A,n,d where

(5.4)

�A,n,d
def= −1

2
δ
Aδ,

�A,n,d
def= δ
A�Aδ +

(
1

n0,tr
+ 1

n1,tr

)
tr

{
(A�)2}

and


A,n,d
def= 1

2

(
1

n0,tr
− 1

n1,tr

)
tr(A�).

Here, the first two terms �A,n,d and �A,n,d can be viewed as signal and noise terms, respec-
tively, which ultimately determine the asymptotic power of the accuracy test. The third term

A,n,d is an extra variance that comes from unbalanced sample sizes. Finally, we define a
scaling factor

γA,n,d
def= 2

√
n0,ten1,te

n0,te + n1,te

1√
�(
A,n,d/

√
�A,n,d){1 − �(
A,n,d/

√
�A,n,d)}

.(5.5)

With this notation in hand and letting φ(·) be the standard normal density function, we now
introduce an approximation of WA defined as

W
†
A

def= γA,n,d ·
{
ÊS

A − 1

2
− φ

(

A,n,d√
�A,n,d

)
�A,n,d√
�A,n,d

}
.
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It is clear that W
†
A is centered and scaled by explicit and nonrandom quantities. Next, we

show that the difference between WA and W
†
A is asymptotically negligible and, therefore,

W
†
A is also asymptotically standard normal.

THEOREM 5.1. Suppose that the assumptions (A1)–(A6) hold. Then we have that WA =
W

†
A + oP (1) and thus the distribution of W

†
A converges to a standard normal:

sup
t∈R

∣∣Pr
(
W

†
A ≤ t

) − �(t)
∣∣ = o(1).

The proof of Theorem 5.1 can be found in Appendix C.5. The asymptotic normality, estab-
lished in the above theorem, holds under the null as well as under the local alternative (A2).
This enables us to explore the asymptotic power of the generalized LDA test with known �

in the next section, and we deal with unknown � in the following section.

6. Asymptotic power of generalized LDA with nonrandom A. Here, we study the
asymptotic power of the generalized LDA test for known �. Since a smaller value of ÊS

A −
1/2 (or equivalently a larger value of the average per-class accuracy 1 − ÊS

A) is in favor of
H1 : μ0 	= μ1, we define the test function by

ϕA
def= I

[
γA,n,d

(
ÊS

A − 1

2

)
< −zα

]
.(6.1)

It is then clear from Theorem 5.1 that ϕA has an asymptotic type-1 error controlled by α.
Now under the local alternative hypothesis, ϕA has power given by

E[ϕA] = Pr
(
W

†
A < −zα − γA,n,d · φ

(

A,n,d√
�A,n,d

)
�A,n,d√
�A,n,d

)

= �

(
−zα − γA,n,d · φ

(

A,n,d√
�A,n,d

)
�A,n,d√
�A,n,d

)
+ o(1),

(6.2)

where the second equality uses Theorem 5.1. Let us write

βA,λ,κ
def= λ − 1/2√

λ(1 − λ)κ

n−1 tr(A�)√
n−1 tr{(A�)2}

.(6.3)

Using assumptions (A1)–(A6), the main term in the power function (6.2) simplifies as

−γA,n,d · φ
(


A,n,d√
�A,n,d

)
�A,n,d√
�A,n,d

=
√

2κ(1 − κ)φ(βA,λ,κ)√
�(βA,λ,κ ){1 − �(βA,λ,κ )} · nλ(1 − λ)δ
Aδ√

2 tr{(A�)2}
+ o(1).

Resubstituting the above into expression (6.2), we finally infer that

E[ϕA] = �

(
−zα +

√
2κ(1 − κ)φ(βA,λ,κ )√

�(βA,λ,κ ){1 − �(βA,λ,κ )} · nλ(1 − λ)δ
Aδ√
2 tr{(A�)2}

)
+ o(1).(6.4)

Since supx∈R φ(x)/
√

�(x){1 − �(x)} = √
2/π and its maximum is achieved at x = 0, the

asymptotic power (6.4) is maximized when λ = 1/2 and κ = 1/2, further supported by sim-
ulations in Appendix D. However it is unknown whether the same result continues to hold
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for a random A (e.g., A = �̂−1). In this balanced setting, the asymptotic power is further
simplified as

�

(
−zα + nδ
Aδ√

32π tr{(A�)2}

)
+ o(1).(6.5)

For ease of reference, we summarize our discussion as a theorem.

THEOREM 6.1. Suppose that the assumptions (A1)–(A6) hold. Then the generalized
LDA test (6.1) asymptotically controls type-1 error at level α and its power for Gaussian
two-sample mean testing is given by

E[ϕA] = �

(
−zα +

√
2κ(1 − κ)φ(βA,λ,κ )√

�(βA,λ,κ ){1 − �(βA,λ,κ )} · nλ(1 − λ)δ
Aδ√
2 tr{(A�)2}

)
+ o(1).(6.6)

Furthermore, keeping other parameters fixed, the asymptotic power is maximized when λ =
κ = 1/2 (corresponding to a balanced train/test split).

The proof of the above theorem follows immediately from the preceding discussion and so
is omitted. As a direct consequence of Theorem 6.1, when λ = 1/2 and κ = 1/2, the power
of the “oracle” Fisher’s LDA test that uses A = �−1 (again, “oracle” is used because it uses
�−1) becomes

E
[
ϕ∗

�−1

] = �

(
−zα + nδ
�−1δ√

32πd

)
+ o(1).(6.7)

Comparing the above power with the minimax lower bound expression (3.3) with λ = 1/2, we
may conclude that the classification accuracy test can achieve essentially minimax optimal
power, up to the small constant factor 1/

√
π ≈ 0.564. In other words, we pay a constant

factor by performing a two-sample test via classification. However, this conclusion should be
treated with caution as emphasized below:

• First, Theorem 6.1 is a pointwise result. That means, the result holds for any sequence of
distributions satisfying the assumptions, but not uniformly over a class of distributions.
Hence, conceptually, this is weaker than the uniform power achieved by ϕ∗

H in Theo-
rem 4.1. However, this drawback actually applies to almost every published result on high-
dimensional two-sample testing that we are aware of (or certainly all those that we cite),
and it is a much broader open problem to prove that the power guarantees for these tests
hold uniformly over the relevant classes.

• Second, although a constant factor is not of major concern in determining the minimax rate,
it may have a significant effect on power in practice. To see this, let nFisher and nHotelling
be the sample sizes needed for ϕ∗

�−1 and ϕ∗
H to obtain the same power against the local

alternative considered in Theorem 6.1. Then the asymptotic relative efficiency (ARE) of
ϕ∗

�−1 with respect to ϕ∗
H is defined as the limit of the ratio nHotelling/nFisher (e.g., Chapter 14

of van der Vaart (1998)). Based on the asymptotic power expressions (3.3) and (6.6), a
simple closed-form expression of the ARE is available as

ARE
(
ϕ∗

�−1;ϕ∗
H

) =
√

2κ(1 − κ)φ(β∗)√
�(β∗){1 − �(β∗)} ≤ 1√

π
≈ 0.564,(6.8)

where β∗ = limn,d→∞ β�−1,λ,κ if it exists. This ARE expression implies that ϕ∗
�−1 requires

(at least)
√

π ≈ 1.77 more samples to attain approximately the same power as ϕ∗
H . In this

context, Hotelling’s test should be preferred over the classifier-based test to obtain higher
power against the Gaussian mean shift alternative.
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In the following sections, we extend the results on the oracle Fisher’s LDA classifier to it
variants with unknown � and also to elliptical distributions.

REMARK 6.1. As mentioned in Section 5.1, the accuracy of the Bayes optimal clas-
sifier approaches half under the considered asymptotic regime, meaning that no classifier
can have accuracy better than a random guess in the limit. In contrast, under the same
asymptotic regime, two-sample testing based on generalized LDA can have nontrivial power
(strictly greater than α) as shown in Theorem 6.1. These two results not only demonstrate
that testing is easier than classification, but also that the local alternative (A2) is conceptu-
ally interesting—it corresponds to a regime where the LDA classifier performs as poorly as a
random guess for classification, but is essentially optimal for testing.

7. Naive Bayes: Power of generalized LDA with unknown �. For low-dimensional
Gaussians with unknown �, there are strong reasons to prefer Hotelling’s test; it is well
known that it is uniformly most powerful among all tests that are invariant with respect to
nonsingular linear transformations (e.g., Anderson (1958)). We also refer to Giri and Kiefer
(1964), Giri, Kiefer and Stein (1963), Kariya (1981), Luschgy (1982), Salaevskii (1971),
Simaika (1941) for other optimality properties of Hotelling’s test in finite d and n settings.
Moreover, our result in Theorem 4.1 says that ϕH is asymptotically minimax optimal among
all level α tests as long as d/n → 0. Unfortunately, when d is linearly comparable to or larger
than n, these optimal properties of Hotelling’s test becomes highly nontrivial. In particular,
ϕH has asymptotic power tending to the (trivial) value of α in the high-dimensional setting,
when d,n → ∞ with d/n → 1 − ε for small ε > 0 (Bai and Saranadasa (1996) for details).
The problem becomes even worse when the dimension is larger than the sample size as TH

is not well defined.
The aforementioned issue on TH has motivated the study of alternative two-sample mean

test statistics in the high-dimensional setting. For instance, Bai and Saranadasa (1996) show
that dropping �̂ from the Hotelling test statistic (i.e., replacing �̂ with the identity matrix)
entirely leads to a test that does have asymptotic power tending to one in the high-dimensional
setting where Hotelling’s test fails. The test statistic proposed by Bai and Saranadasa (1996)
can be essentially written as

TBS
def= (μ̂0 − μ̂1)


(μ̂0 − μ̂1).

Following that, Srivastava and Du (2008) propose (in a similar spirit) the test statistic

TSD
def= (μ̂0 − μ̂1)


 diag(�̂)−1(μ̂0 − μ̂1),(7.1)

by replacing �̂ with diag(�̂) in Hotelling’s statistic. They show that TSD also leads to high-
dimensional consistency.

As mentioned earlier, the idea of using diag(�̂) in place of �̂ has also been justified in the
high-dimensional classification problem (Bickel and Levina (2004)). In particular, the naive
Bayes classifier (corresponding to TSD) outperforms Fisher’s LDA classifier (corresponding
to TH ) in terms of the worst-case classification error in the high-dimensional setting. We note
that this relatively understated connection between two-sample testing and classification has
important implications for extending our previous results to other linear classifiers. Specifi-
cally, as we shall see, the power of the classifier-based tests is only worse by a constant factor
than the variants of Hotelling’s test when both the classifier and the two-sample test use the
same substitute for �−1.

To start, let us consider two classifiers with unknown �. The first one is the naive Bayes
classifier and the other is the generalized LDA classifier with the identity matrix, that is,
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A = I . We then compare the power of the corresponding classification accuracy tests with
the two-sample mean tests based on TSD and TBS. Throughout this section, we assume that
n0 = n1, n0,tr = n1,tr and ntr = nte for simplicity.

From Theorem 6.1, the asymptotic power of the test based on ÊS
I is already available as

E[ϕI ] = �

(
−zα + nδ
δ√

32π tr(�2)

)
+ o(1).(7.2)

Under more general conditions than the assumptions (A1)–(A6), Bai and Saranadasa (1996)
show that the asymptotic power of the test based on TBS, denoted by ϕBS, is

E[ϕBS] = �

(
−zα + nδ
δ√

32 tr(�2)

)
+ o(1).(7.3)

Now by comparing two power expressions in (7.2) and (7.3), we arrive at the same conclusion
as before that the classification accuracy test is less powerful than the corresponding two-
sample test ϕBS by the constant factor 1/

√
π ≈ 0.564.

Next, we focus on the naive Bayes classifier and compute the asymptotic power of the
resulting test. Although the analysis proceeds similar to the previous one, we now need to
deal with the randomness from the inverse diagonal matrix, which requires extra nontrivial

work. By putting D̂−1 def= diag(�̂)−1 and D−1 = diag(�)−1, the asymptotic power of the
naive Bayes classifier is provided as follows.

THEOREM 7.1. Consider the case where n0 = n1, n0,tr = n1,tr and ntr = nte. Then under
the assumptions (A1), (A2) and (A5), the power of the naive Bayes classifier test for Gaussian
two-sample mean testing is

E[ϕD̂−1] = �

(
−zα + nδ
D−1δ√

32π tr{(D−1�)2}

)
+ o(1).(7.4)

The proof of Theorem 7.1 can be found in Appendix C.5. Srivastava and Du (2008) study
the asymptotic power of the test ϕSD based on TSD (7.1). One can also check that their con-
ditions are fulfilled under the assumptions (A1)–(A5). Using λ = 1/2, the power of ϕSD is
given by

E[ϕSD] = �

(
−zα + nδ
D−1δ√

32 tr{(D−1�)2}

)
+ o(1).

Comparing this with the asymptotic power of ϕD̂−1 in (7.4), we see that the power of the
accuracy test based on the naive Bayes classifier is worse than the corresponding two-sample
test ϕSD, once again achieving an ARE of exactly 1/

√
π .

8. Extension to elliptical distributions. In this section, we extend our main result (The-
orem 6.1) to the class of elliptical distributions and show that the asymptotic power expression
remains the same up to a constant factor. Let μ be a d-dimensional vector, S be a d × d pos-
itive semidefinite matrix, ξ(·) be a nonnegative function. A random vector Z in Rd is said to
have an elliptical distribution with location parameter μ, scale matrix S and generator ξ(·) if
its characteristic function satisfies

E
[
eit
Z] = eit
μξ

(
t
St

)
for all t ∈ Rd .

When the second moment exists, it can be verified that μ corresponds to the mean vector
of Z and S is proportional to the covariance matrix of Z, denoted by �. More specifically,
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by letting ξ ′(0) be the first derivative of ξ evaluated at zero, S is explicitly linked to � as
−2ξ ′(0)S = �. Notable examples of elliptical distributions include the multivariate normal,
the multivariate student t , the multivariate Laplace and the multivariate logistic distribution.
We refer to Fang, Kotz and Ng (2018), Frahm (2004), Gómez, Gómez-Villegas and Marín
(2003) for further properties and examples of elliptical distributions. To have an explicit
power expression, we make two extra assumptions on Z described as follows:

(A7) Condition on kurtosis parameter: let ζkurt be the kurtosis parameter of Z defined as

ζkurt
def= E[{(Z − μ)
�−1(Z − μ)}2]

d(d + 2)
− 1.

We assume that there exists a positive constant M such that ζkurt < M for all n, d .
(A8) Condition on density function: assume that the standardized first coordinate of Z,

that is, e

1 (Z −μ)/(e


1 �e1)
1/2 where e1 = (1,0, . . . ,0)
, has the density function fξ (·) with

respect to the Lebesgue measure. We further assume that fξ is bounded and continuously
differentiable.

We believe that the condition on ζkurt in (A7) is mild and satisfied for many elliptical dis-
tributions (e.g., Zografos (2008)). For example, the kurtosis parameter of the multivariate
t-distribution with ν degrees of freedom is 2/(ν − 4) for ν > 4, which in turn implies that
ζkurt is zero for the Gaussian case. To interpret (A8), we note that each component of an el-
liptical random vector has the same distribution after standardization. Assumption (A8) then
states that this common distribution has the density function fξ with some extra regularity
conditions. Clearly, fξ corresponds to the standard normal density function for the Gaussian
case that is bounded and continuously differentiable. But (A8) fails to hold for the Laplace
distribution whose density function is not differentiable at zero. With these extra assumptions,
we are now ready to present the main result of this section, which generalizes Theorem 6.1
to elliptical distributions.

THEOREM 8.1. Suppose that P0 and P1 are elliptical distributions with parameters
(μ0, S, ξ) and (μ1, S, ξ), respectively. Consider the case where n0 = n1, n0,tr = n1,tr and
ntr = nte, that is, λ = κ = 1/2, for simplicity. Then under the assumptions (A1), (A2) and
(A5)–(A8), the generalized LDA test (6.1) asymptotically controls type-1 error at level α and
has the asymptotic power for testing the hypothesis (2.1) as

E[ϕA] = �

(
−zα + fξ (0) · nδ
Aδ√

16 tr{(A�)2}

)
+ o(1).(8.1)

The above result shows that the asymptotic power expression in Theorem 6.1 does not
change in terms of n, d , �, A, δ, for elliptical distributions. To further illustrate the result, let
us consider the specific case where P0 and P1 are multivariate t-distributions with ν degrees
of freedom and the same scale matrix. We additionally assume that ν > 4 under which the
assumption (A7) is satisfied. In such a case, fξ (0) = fξ (0;ν) equals

fξ (0;ν) = �(ν+1
2 )√

π(ν − 2)�(ν
2 )

→ 1√
2π

≈ 0.399 as ν → ∞.

Hence, by taking ν → ∞, the asymptotic power (8.1) recovers the previous power expression
(6.5) for the Gaussian case. Indeed fξ (0;ν) is a decreasing sequence of ν such that fξ (0;ν) <

fξ (0;4) ≈ 0.530 for all ν > 4. This fact demonstrates that the generalized LDA test becomes
relatively more efficient when the underlying t-distributions have heavier tails, which is also
validated by simulations (see Figure 2 in Section 10.1).
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9. Results on general classifiers. So far we have focused on the accuracy tests based on
linear classifiers and derived their explicit asymptotic power against local alternatives under
Gaussian or elliptical distribution assumptions. In this section, we turn to more general set-
tings and examine two key properties, namely the type-1 error control and consistency, of the
accuracy test based on a general classifier. The main result of this section shows that a classifi-
cation accuracy test achieves asymptotic power equal to one, provided that the corresponding
classifier has an accuracy higher than chance. This result naturally motivates questions about
rate, for which more assumptions are needed, and also motivates studying a more challenging
setting where the true accuracy approaches half, like the one we consider for the generalized
LDA test.

Recall that for a generic classifier Ĉ based on the training set, the per-class and total errors
ÊS

0 (Ĉ), ÊS
1 (Ĉ) and ÊS(Ĉ) are calculated using expression (2.4). To facilitate analysis, we

assume the following asymptotic properties of ÊS
0 (Ĉ) and ÊS

1 (Ĉ):

(A9) Asymptotic classification errors: assume that ÊS
0 (Ĉ) = E0(C)+oP (1) and ÊS

1 (Ĉ) =
E1(C) + oP (1) where E1(C) and E2(C) are constants in (0,1). Moreover, there exists a
constant ε > 0 such that E0(C)/2 + E1(C)/2 = 1/2 − ε under the alternative hypothesis.

To determine the significance threshold for deciding if the error is different from chance,
we consider two methods: (1) the Gaussian approximation that underlies our theory in the
preceding sections and (2) the permutation procedure with finite sample guarantees that has
been common in practice.

9.1. Asymptotic test. As discussed before, the sample-splitting error can be viewed as the
sum of independent random variables given the training set. Therefore, it is natural to expect
that this empirical error follows closely a normal distribution even for a general classifier
when the sample size is large. Building on this intuition, we define the asymptotic test as

I

[
2ÊS(Ĉ) − 1√

ÊS
0 (Ĉ){1 − ÊS

0 (Ĉ)}/n0,te + ÊS
1 (Ĉ){1 − ÊS

1 (Ĉ)}/n1,te

< −zα

]

and denote it by ϕĈ,Asymp. We note that the quantity inside of the indicator function is a
studentized sample-splitting error under the null hypothesis. In the next proposition, we prove
that the normal approximation is indeed accurate, and thus ϕĈ,Asymp is a valid test at least
asymptotically. Moreover, when the sequence of classification errors tends to a constant that
is strictly less than chance level, we show that the power of the asymptotic test tends to one
as n → ∞ potentially with d → ∞.

PROPOSITION 9.1. Suppose that the assumptions (A3), (A4) and (A9) hold as n → ∞
potentially with d → ∞ at any relative rate. Then under the null hypothesis H0 : P0 = P1,
we have limn→∞EH0[ϕĈ,Asymp] ≤ α. On the other hand, under the alternative hypothesis
H1 : P0 	= P1, the asymptotic test is consistent as limn→∞EH1[ϕĈ,Asymp] = 1.

Despite its simplicity, the asymptotic approach has no finite sample guarantee. Next, we
prove consistency of permutation-based approaches.

9.2. Permutation tests. In practice, one often employs permutation tests that can offer
exact control of the type-1 error rate. There are two possible ways of applying permutation
testing within the classification via sample splitting framework. The methods below differ in
the italicized text.



428 KIM, RAMDAS, SINGH AND WASSERMAN

METHOD 1 (Half-permutation).

• Split data into two halves, X1, Y 1 and X2, Y 2. Train the classifier on X1, Y 1, call it f ∗.
Evaluate accuracy of f ∗ on X2, Y 2, call it a∗.

• Repeat P times: Pool the samples X2, Y 2 into one bag, randomly permute the samples,
and then split it into two parts, Xp , Yp . Here, each part of Xp , Yp has the same sample
size as the corresponding part of X2, Y 2. Evaluate the accuracy of f ∗ on this permuted
data, call this ap .

• Sort a∗, a1, . . . , aP and denote their order statistics by a(1) ≤ · · · ≤ a(P+1); Let k
def= �(1 −

α)(1 + P)�. If a∗ > a(k), then reject the null.

METHOD 2 (Full-permutation).

• Split data into two halves, X1, Y 1 and X2, Y 2. Train the classifier on X1, Y 1, call it f ∗.
Evaluate accuracy of f ∗ on X2, Y 2, call it a∗.

• Repeat P times: Pool all samples X1, Y 1, X2, Y 2 into one bag, randomly permute the
samples, and then split it into 4 parts Xp , Yp , X′p , Y ′p . Here, each part of Xp , Yp , X′p ,
Y ′p has the same sample size as the corresponding part of X1, Y 1, X2, Y 2. Train a new
classifier f p on the first half, evaluate it on the second half, to get accuracy ap .

• Sort a∗, a1, . . . , aP and denote their order statistics by a(1) ≤ · · · ≤ a(P+1). Let k
def= �(1 −

α)(1 + P)�. If a∗ > a(k), then reject the null.

It is worth noting that both methods yield a valid level α test under H0 : P0 = P1 as a direct
consequence of, for example, Theorem 1 in Hemerik and Goeman (2018). In terms of power,
method 2 may potentially be more powerful than method 1 as it uses the data more efficiently
to determine a threshold. In particular, permuted accuracies via method 1 can take fewer
values than those via method 2, which may result in a more conservative threshold depending
on the nominal level. However, method 1 has a computational advantage over method 2 since
it only requires to refit a classifier on the second half of the dataset. Nevertheless the following
theorem shows that both methods provide a consistent test under the same assumptions made
in Proposition 9.1. Let us denote the permutation test by ϕĈ,Perm via either method 1 or
method 2 based on classifier Ĉ.

THEOREM 9.1. Consider the same assumptions made in Proposition 9.1. Then under
the null hypothesis H0 : P0 = P1, we have EH0[ϕĈ,Perm] ≤ α for each n and d . Under
the alternative hypothesis H1 : P0 	= P1, the (half or full) permutation test is consistent as
limn→∞EH1[ϕĈ,Perm] = 1 given that the number of random permutations P is greater than
(1 − α)/α.

One interesting aspect of the above theorem is that consistency is guaranteed as long as
the number of random permutations P is greater than (1 − α)/α (e.g., P ≥ 20 for α = 0.05),
which is independent of the sample size. We would also like to point out that the permutation
test relies on a data-dependent threshold and thus it is more difficult to analyze than the
asymptotic test. In Appendix C.11, we bound this data-dependent threshold with a more
tractable quantity using Markov’s inequality with the first two moments of the permuted
test statistic. Leveraging this preliminary result, we prove that the permutation critical value
cannot exceed the true accuracy in the limit, and this is the critical fact that completes the
proof.
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FIG. 1. Comparisons of the empirical power to our theoretically derived expression for (asymptotic) power
under the Gaussian setting. The curves are almost identical especially when the size of δ is not too big, which
suggests that our theory under local alternatives accurately predicts power. See Section 10.1 for details.

10. Experiments. In this section, we present several numerical results that support our
theoretical analysis. Throughout our simulations (except in Section 10.3), we set the sample
sizes and the dimension to be n0 = n1 = d = 200 and compare two multivariate Gaussian or
multivariate t-distributions with the same identity covariance matrix, with means

μ0 = (0, . . . ,0)
 and μ1 = δ

d1/4 · (1, . . . ,1)


for δ ∈ {0,0.05, . . . ,0.35,0.40}. The simulations were repeated 500 times to estimate the
power of each test at significance level α = 0.05.

10.1. Empirical power versus theoretical power. In the following experiment, we com-
pare the empirical power of classification accuracy tests with the corresponding theoretical
power. For the Gaussian case, we consider the accuracy tests ϕ�−1 and ϕD̂−1 based on the
Fisher’s LDA classifier and the naive Bayes classifier, respectively. As specified in the defini-
tions of ϕ�−1 and ϕD̂−1 , the critical values of both tests are based on a normal approximation.
Here, we split the samples into training and test sets with equal sample sizes so that the
power is asymptotically maximized. In this case, the asymptotic power expression for each
test is presented in (6.7) and (7.4), respectively. For the case of multivariate t-distributions,
we focus on the accuracy test ϕ�−1 and see whether the asymptotic power expression (8.1)
approximates its empirical power over different values of degrees of freedom ν.

The results are given in Figure 1 and Figure 2. We see that the empirical power almost
coincides with the theoretical counterpart especially when δ is not too big (i.e., low SNR
regime), which confirms our theoretical analysis. We also see that the accuracy test has higher
power when the underlying t-distributions have smaller degrees of freedom, an interesting
and initially surprising fact that is again predicted by our theory.

10.2. Sample-splitting versus resubstitution. In the following experiment, we compare
the performance of sample-splitting tests with resubstitution accuracy tests under the Gaus-
sian setting. As their name suggests, the resubstitution accuracy tests use resubstitution ac-
curacy estimates as their test statistic. The precise definition of a resubstitution estimate is
given in Appendix B. We also consider Hotelling’s test and its variant proposed by Srivastava
and Du (2008) as reference points. The setup is almost the same as the previous experiment
except for the choice of critical values. In particular, since the (asymptotic) null distribution
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FIG. 2. The empirical power and theoretical (asymptotic) power of the accuracy test based on Fisher’s LDA
classifier for comparing multivariate t-distributions with ν degrees of freedom. The curves are tightly matched
across ν. Moreover, predicted by Theorem 8.1, the power decreases with ν. See Section 10.1 for details.

of a resubstitution statistic is unknown, the critical values of all tests are determined using
permutations for a fair comparison. Specifically, to calibrate critical values, we use the full
permutation method from Section 9.2 with 200 random permutations.

In the first part, Fisher’s LDA is considered as a base line classifier. Then the accuracy is
estimated via (i) sample-splitting with ntr = nte and (ii) resubstitution. As a reference point,
we consider Hotelling’s test as it shares the same weight matrix with Fisher’s LDA. For both
Hotelling’s and Fisher’s LDA tests, we assume that � is known. In the second part, the naive
Bayes classifier is considered as a base line classifier with unknown �. We then perform tests
based on sample-splitting and resubstitution accuracy statistics defined similarly as before.
In this part, we consider TSD given in (7.1) as a reference point since it relies on the inverse
of diagonal sample covariance matrix as in the naive Bayes classifier.

From the results presented in Figure 3, it stands out that Hotelling’s test and its high-
dimensional variant are more powerful than the corresponding tests via classification accu-
racy as we expected. The results also show that the powers of the sample-splitting tests are
slightly higher than those of the resubstitution tests in both Fisher’s LDA and naive Bayes
classifier examples. However, additional simulation studies, not presented here, suggest that
resubstitution tests tend to be more powerful than sample-splitting tests in low-dimensional
settings (or when the sample sizes are relatively small), and thus, at least empirically, neither
of them is strictly better than the other under all scenarios. Similar empirical results were
observed by Rosenblatt et al. (2019) where they conducted extensive simulation studies to
compare the performance of the accuracy tests via resubstitution and 4-fold cross-validation
and different versions of Hotelling’s test. From their simulation results, one reaches the same
conclusion that the accuracy tests tend to have lower power than Hotelling’s test against
Gaussian mean shift alternatives.

10.3. Asymptotic power of Hotelling’s test. In this subsection, we provide numerical sup-
port for the asymptotic optimality of Hotelling’s test under Gaussian settings with unknown
� (Theorem 4.1). Here, we compare two multivariate Gaussian distributions with the mean
vectors

μ0 = 1

d1/4n
1/2
0

· (1, . . . ,1)
 and μ1 = − 1

d1/4n
1/2
0

· (1, . . . ,1)
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FIG. 3. Comparisons between sample-splitting (Split) and resubstitution (Resub) tests using LDA and naive
Bayes. As reference points, we also consider Hotelling’s test and the test based on TSD. Under the given scenarios,
the sample-splitting tests have higher power than the resubstitution tests but lower power than Hotelling’s and SD
tests, the latter being predicted by our theory. See Section 10.2 for details.

and the identity covariance matrix. In this case, by setting n0 = n1, the asymptotic minimax
power tends to be constant as in (3.3). Now we consider six different asymptotic regimes:
(i) d = �n1/4

0 �, (ii) d = �n2/4
0 �, (iii) d = �n3/4

0 �, (iv) d = 0.5n0, (v) d = 1.0n0 and (vi) d =
1.5n0. According to Theorem 4.1, Hotelling’s test with unknown � (denoted by ϕH ) obtains
asymptotically the same power as the minimax optimal test (denoted by ϕ∗

H ) in the first
three regimes. Whereas, in the last three regimes where d and n are linearly comparable,
ϕH becomes less powerful than ϕ∗

H proved by Bai and Saranadasa (1996). To illustrate this
numerically, we increase the sample size by n0 ∈ {101,102, . . . ,106} and compute the power
of ϕ∗

H and ϕH for each n0. To calculate the power, we use the fact that E[1 − ϕ∗
H ] and

E[1 − ϕH ] are noncentral χ2 and F distribution functions evaluated at their critical values,
which are cα,d and qα,n,d , respectively.

As can be seen in the first row of Figure 4, the power of ϕH becomes approximately the
same as that of ϕ∗

H in the first three regimes as n increases. On the other hand, in the last three
regimes where d/n → c ∈ (0,1), we observe significantly different results. Specifically, from
the second row of Figure 4, it is seen that the power of ϕH is much lower than that of ϕ∗

H

and the gap does not decrease even in large n. This, thereby, supports our argument that ϕH

is asymptotically comparable to the minimax optimal test in the case of d/n → 0, but it is
underpowered otherwise.

11. Conclusion. This paper provided analyses on the use of classification accuracy as a
test statistic for two-sample testing. We started by presenting a fundamental minimax lower
bound for high-dimensional two-sample mean testing and showed that Hotelling’s test with
unknown � can be optimal in high-dimensional settings as long as d/n → 0. When d =
O(n), we found that two-sample tests via the classification accuracy of various versions of
Fisher’s LDA (including naive Bayes) have the same power as high-dimensional versions
of Hotelling’s test in terms of all problem parameters (n, d, δ,�), but having worse (but
explicit) constants.

Beyond linear classifiers, we also proved that both the asymptotic test and the permutation
test based on a general classifier are consistent if the limiting value of the true accuracy is
higher than chance. This consistency result naturally motivated a more challenging setting
in which the Bayes error approaches half while the corresponding accuracy-based test can
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FIG. 4. Comparisons of the power of (1) Hotelling’s test ϕH with unknown � and (2) Hotelling’s test ϕ∗
H

with known � at α = 0.05 in different asymptotic regimes. These results coincide with our theoretical results in
Section 4, showing that ϕH has asymptotically the same power as ϕ∗

H when d/n → 0 (first row) and it is less
powerful when d/n → c ∈ (0,1) (second row). See Section 10.3 for details.

still have nontrivial power, which is the regime studied in most of this paper. Under such
a challenging regime, it would be interesting to see whether explicit expressions of power
can be derived for nonlinear classifiers. Characterizing the high-dimensional power (beyond
consistency as we have shown) of permutation-based tests is also an important open problem.
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SUPPLEMENTARY MATERIAL

Supplement to “Classification accuracy as a proxy for two-sample testing” (DOI:
10.1214/20-AOS1962SUPP; .pdf). This supplemental file includes the technical proofs omit-
ted in the main text and a discussion on open problems.
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