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We consider the problem of estimating the mean of a random vector
based on i.i.d. observations and adversarial contamination. We introduce a
multivariate extension of the trimmed-mean estimator and show its optimal
performance under minimal conditions.

1. Introduction. Estimating the mean of a random vector based on independent and
identically distributed samples is one of the most basic statistical problems. In the last few
years, the problem has attracted a lot of attention and important advances have been made
both in terms of statistical performance and computational methodology.

In the simplest form of the mean estimation problem, one wishes to estimate the expec-
tation μ = EX of a random vector X taking values in R

d , based on a sample X1, . . . ,XN

consisting of independent copies of X. An estimator is a (measurable) function of the data

μ̂ = μ̂(X1, . . . ,XN) ∈ R
d .

We measure the quality of an estimator by the distribution of its Euclidean distance to the
mean vector μ. More precisely, for a given δ > 0—the confidence parameter—one would
like to ensure that

‖μ̂ − μ‖ ≤ ε(N, δ) with probability at least 1 − δ

with ε(N, δ) as small as possible. Here and in the entire article, ‖ · ‖ denotes the Euclidean
norm in R

d .
The obvious choice of μ̂ is the empirical mean N−1 ∑N

i=1 Xi , which, apart from its com-
putational simplicity, has good statistical properties when the distribution is sufficiently well
behaved. However, it is well known that, even when X is real valued, the empirical mean
behaves suboptimally and much better mean estimators are available.1 The reason for the
suboptimal performance of the empirical mean is the damaging effect of outliers that are
inevitably present when the distribution is heavy-tailed.

Informally put, outliers are sample points that are, in some sense, atypical; as a result
they cause a significant distortion to the empirical mean. The crucial fact is that when X is
a heavy-tailed random variable, a typical sample contains a significant number of outliers,
implying the empirical mean is likely to be distorted.

To exhibit the devastating effect that outliers cause, let ε > 0 and note that there is a square
integrable (univariate) random variable X such that∣∣∣∣∣ 1

N

N∑
i=1

Xi − μ

∣∣∣∣∣ ≥ ε with probability at least c
σ 2

X

ε2N
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for a positive absolute constant c; σ 2
X is the variance of X. In other words, the best possible

error ε(N, δ) that can be guaranteed by the empirical mean (when only finite variance is
assumed) is of the order of σX/

√
δN . On the other hand, it is well known (see, e.g., the

survey [20]) that there are estimators of the mean μ̂ such that for all square-integrable random
variables X,

(1.1) |μ̂ − μ| ≤ cσX

√
log(2/δ)

N
with probabilty 1 − δ,

where c is a suitable absolute constant. An estimator that performs with an error ε(N, δ) of
the order of σX

√
log(2/δ)/N is called a sub-Gaussian estimator. Such estimators are optimal

in the sense that no estimator can perform with a better error ε(N, δ) even if X is known to
be a Gaussian random variable.

Because the empirical mean is such a simple estimator and seeing that outliers are the
probable cause of its suboptimality, for real-valued random variables, a natural attempt to
improve the performance of the empirical mean is removing possible outliers using a trun-
cation of X. Indeed, the so-called trimmed-mean (or truncated-mean) estimator is defined
by removing a fraction of the sample, consisting of the γN largest and smallest points for
some parameter γ ∈ (0,1), and then averaging over the rest. This idea is one of the most
classical tools in robust statistics and we refer to Tukey and McLaughlin [28], Huber and
Ronchetti [15], Bickel [1] and Stigler [26] for early work on the theoretical properties of the
trimmed-mean estimator. However, the nonasymptotic sub-Gaussian property of the trimmed
mean was established only recently, by Oliveira and Orenstein in [23]. They proved that if
γ = κ log(1/δ)/N for a constant κ , then the trimmed mean estimator μ̂ satisfies (1.1) for all
distributions with a finite variance σX and with a constant c that depends on κ only.

An added value of the trimmed mean is that it seems to be robust to malicious noise, at
least intuitively. Indeed, assume that an adversary can corrupt ηN of the N points for some
η < 1. The trimmed-mean estimator can withstand at least one sort of contamination: the
adversary making the corrupted points either very large or very small. This does not rule out
other damaging changes to the sample, but at least it gives the trimmed mean another potential
edge over other estimators. And, in fact, as we prove in this article, the performance of the
trimmed-mean estimator is as good as one can hope for under both heavy-tailed distributions
and adversarial corruption. We show that—a simple variant of—the trimmed-mean estimator
achieves

(1.2) |μ̂ − μ| ≤ cσX

(√
η +

√
log(1/δ)

N

)
with probability 1 − δ, for an absolute constant c (see Theorem 1 for the detailed statement).
The bound (1.2) holds for all univariate distributions with a finite variance, and is minimax
optimal in that class of distributions. For distributions with lighter tail, the dependence on
the contamination level η can be improved. For example, for sub-Gaussian distributions

√
η

may be replaced by η
√

log(1/η) and the trimmed-mean estimator achieves that. As we ex-
plain in what follows, the parameter γ that determines the level of trimming depends on the
confidence parameter δ and contamination level η only.

The problem of mean estimation in the multivariate case (i.e., when X takes values in R
d

for some d > 1) is considerably more complex. For i.i.d. data without contamination, the best
possible statistical performance for square-integrable random vectors is well understood: if
� = E[(X − μ)(X − μ)T ] is the covariance matrix of X whose largest eigenvalue and trace
are denoted by λ1 and Tr(�), respectively, then for every δ > 0, there exists a mean estimator
μ̂ such that, regardless of the distribution, with probability at least 1 − δ,

(1.3) ‖μ̂ − μ‖ ≤ c

(√
Tr(�)

N
+

√
λ1 log(1/δ)

N

)
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for some absolute constant c. This bound is optimal in the sense that one cannot improve it
even when the distribution is known to be Gaussian. The existence of such a “sub-Gaussian”
estimator was established by Lugosi and Mendelson [21]. Computationally efficient versions
have been subsequently constructed by Hopkins [14] and by Cherapanamjeri, Flammarion
and Bartlett [5]; see also Depersin and Lecué [7]. Once again, we refer to the survey [20] for
related results.

A natural question is how well one can estimate the mean of a random vector in the pres-
ence of adversarial contamination. In particular, one may ask the following.

Let X be a random vector in R
d whose mean and covariance matrix exist. Let X1, . . . ,XN

be i.i.d. copies of X. Then the adversary, maliciously (and knowing in advance of statistician’s
intentions), is free to change at most ηN of the sample points. How accurately can μ = EX

be estimated with respect to the Euclidean norm? In particular, given δ and η, does there exist
an estimator and an absolute constant c such that, regardless of the distribution of X, with
probability at least 1 − δ,

(1.4) ‖μ̂ − μ‖ ≤ c

(√
Tr(�)

N
+

√
λ1 log(1/δ)

N
+ √

λ1η

)
?

The main result of this article, Theorem 2, answers this question in the affirmative. To that
end, we construct a procedure, based on the one-dimensional trimmed-mean estimator, that
has the desired performance guarantees.

Related work. The model of estimation under adversarial contamination has been exten-
sively addressed in the literature of computational learning theory. Its origins may be traced
back to the malicious noise model of Valiant [29] and Kearns and Li [16]. In the context of
mean estimation, it has been investigated by Diakonikolas, Kamath, Kane, Li, Moitra and
Stewart [9–11], Steinhardt, Charikar and Valiant [25] and Minsker [22]. In particular, in [10]
it is shown that when N = 
((d/η) logd) and λ1 is the largest eigenvalue of the covari-
ance matrix � of X, then there exists a computationally efficient estimator of the mean that
satisfies

‖μ̂ − μ‖ ≤ c
√

λ1η

with probability at least 9/10 for all distributions. Although this bound is suboptimal in terms
of the conditions and does not recover the sub-Gaussian bounds, the goal in [10], and in other
articles in this direction as well, was mainly on computational efficiency. In contrast, our aim
is to construct an estimator with optimal statistical performance, and the multivariate esti-
mator we propose is not computationally feasible—at least in its naive implementation—in
the sense that computing the estimator takes time that is exponential in the dimension. It is
an intriguing problem to find computationally efficient mean estimators that have optimal
statistical performance under the weakest possible assumptions: although such estimators are
available for i.i.d. data from the results of Hopkins [14] and Cherapanamjeri, Flammarion
and Bartlett [5], these estimators are not expected to perform well under adversarial contam-
ination.

The sub-Gaussian estimators achieving the bound (1.3) are based on median-of-means es-
timators. Such estimators have been studied under a (somewhat more restrictive) adversarial
contamination model by Lecué and Lerasle [17] and by Minsker [22]; see also see Rodriguez
and Valdora [24]. In particular, Minsker [22] studies estimators that cleverly combine Huber’s
robust M-estimators with the median-of-means technique. His results imply a performance
bound exactly of the form of (1.4). A disadvantage of Minsker’s estimator is that it assumes
that the trace and operator norm of the covariance matrix are known up to a constant factor.
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In a recent manuscript, Depersin and Lecué [7] study the problem of robust mean estima-
tion a slightly more restrictive model of contamination. Their main result is a computationally
efficient multivariate mean estimator that achieves a performance similar to (1.4), though only
when η is at most a small constant times log(1/δ)/N ; thus, it is only able to handle low levels
of contamination.

Chen, Gao and Ren [3] develop a general theory of minimax bounds under Huber’s con-
tamination model (i.e., when the contamination is i.i.d.) for parametric families of distribu-
tions. In [4] the same authors study robust estimation of the mean vector and covariance
matrix under Huber’s contamination model and derive sharp minimax bounds for Gaussian,
and more generally elliptical, distributions. In particular, they show that if the uncontami-
nated data is Gaussian with identity covariance matrix, then Tukey’s median μ̂ satisfies that,
with probability at least 1 − δ,

‖μ̂ − μ‖ ≤ c

(√
d

N
+

√
log(1/δ)

N
+ η

)
.

Moreover, they prove that this estimator is minimax optimal up to constant factors. Note that
(1.4) has a similar form except that the term η is replaced by the weaker

√
η. It is remarkable

that this is the only (necessary) price one has to pay for moving from Gaussian distributions
to arbitrary ones whose covariance matrix exists and from Huber’s contamination to adver-
sarial one. Moreover, as we argue below, for sub-Gaussian distributions the term

√
η may

be improved to η
√

log(1/η). We also refer to Dalalyan and Thompson [6] for recent related
work.

The rest of the article is organized as follows. In Section 2, we discuss the univariate case
and establish a performance bound for a version of the trimmed-mean estimator in Theorem 1.
We argue that this bound is best possible up to the value of the absolute constant. In Section 3,
we extend the discussion to the multivariate case, and construct a new estimator. The proof
of the performance bound of the multivariate estimator is given in Section 4.

2. The real-valued case. Let X be a real-valued random variable that has finite variance
σ 2

X . Set μ = EX and define X = X − μ. In what follows, c,C denote positive absolute
constants whose value may change at each appearance. For 0 < p < 1, define the quantile

(2.1) Qp(X) = sup
{
M ∈R : P(X ≥ M) ≥ 1 − p

}
.

For simplicity of presentation, we assume throughout the article that X has an absolutely con-
tinuous distribution. Under this assumption, it follows that P(X ≥ Qp(X)) = 1−p. However,
we emphasize that this assumption is not restrictive; one may easily adjust the proof to in-
clude all distributions with a finite second moment. Another solution is that the statistician
can always add a small independent Gaussian noise to the sample points, thus ensuring that
the distribution has a density and without affecting statistical performance.

For reasons of comparison, our starting point is a simple lower bound that limits the per-
formance of every mean estimator. Similar arguments appear in [10] and [22].

While the adversary has total freedom to change at most ηN of the sample points, consider
first a rather trivial action: changing the i.i.d. sample (Xi )

N
i=1 to (X̃i)

N
i=1 defined by

(2.2) X̃i = min
{
Xi,μ + Q1−η/2(X)

}
.

Since

P
(
X ≥ Q1−η/2(X)

) = η

2
,

by a binomial tail bound, with probability at least 1 − 2 exp(−cηN),∣∣{i : Xi − μ ≥ Q1−η/2(X)
}∣∣ ≤ 3

4
ηN.
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In particular, on this event, the adversary can change all sample points Xi that are bigger than
μ+Q1−η/2(X). As a result, there is no way one can determine whether (X̃i)

N
i=1 is a corrupted

sample, originally selected according to X and then changed as in (2.2), or an uncorrupted
sample selected according to the random variable

Z = min
{
X,μ + Q1−η/2(X)

}
.

Therefore, on this event, no procedure can distinguish between EX and EZ, which means
that the error caused by this action is at least |EZ − μ|. Note that for M = Q1−η/2(X) one
has that

|EZ − μ| = E
[
(X − M)1X≥M

]
.

Since the adversary can target the lower tail of X in exactly the same way, it follows that, with
probability at least 1 − 2 exp(−cηN), no estimator can perform with accuracy better than

E(η,X)

def.= max
{
E

[∣∣X − Qη/2(X)
∣∣1X≤Qη/2(X)

]
,E

[∣∣X − Q1−η/2(X)
∣∣1X≥Q1−η/2(X)

]}
.

Of course, the adversary has a second trivial action: do nothing. That is a better corruption
strategy (in the minimax sense) when

E(η,X) ≤ CσX

√
log(2/δ)

N
.

Therefore, if one wishes to find a procedure that performs with probability at least 1 − δ −
2 exp(−cηN), the best error one can hope for is

(2.3) E(η,X) + CσX

√
log(2/δ)

N
,

where c and C are absolute constants.
A rather surprising fact is that in the real-valued case, the two trivial actions cause the

largest possible damage. Indeed, we show that there is an estimator that is a simple modifi-
cation of trimmed mean that attains what is almost the optimal error—with E(η,X) replaced
by

E(η,X)
def.= max

{
E

[|X|1X≤Qη/2(X)

]
,E

[|X|1X≥Q1−η/2(X)

]}
.

REMARK. It is straightforward to construct a random variable X for which E(η,X) ≥
c1

√
ησX . (Take, e.g., X that takes value 0 with probability 1 − η and values ±σX/

√
η with

probability η/2 each.) Thus, in terms of η,σX, δ and N , the best minimax error rate that is
possible in the corrupted mean estimation problem for real-valued random variables is

cσX max
{√

η,

√
log(2/δ)

N

}
for a suitable absolute constant c.

Next, let us define the modified trimmed-estimator. The estimator splits the data into two
equal parts. Half of the data points are used to determine the truncation at the appropri-
ate level. The points from the other half are averaged as is, except for the data points that
fall outside of the estimated quantiles, which are truncated prior to averaging. For con-
venience, assume that the data consists of 2N independent copies of the random variable
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X, denoted by X1, . . . ,XN,Y1, . . . , YN . The statistician has access to the corrupted sample
X̃1, . . . , X̃N , Ỹ1, . . . , ỸN , where at most 2ηN of the sample points have been changed by an
adversary.

For α ≤ β , let

φα,β(x) =

⎧⎪⎪⎨⎪⎪⎩
β if x > β,

x if x ∈ [α,β],
α if x < α,

and for x1, . . . , xm ∈ R let x∗
1 ≤ x∗

2 ≤ · · · ≤ x∗
m be its nondecreasing rearrangement.

With this notation in place, the definition of the estimator is as follows.
Univariate mean estimator.

(1) Consider the corrupted sample X̃1, . . . , X̃N , Ỹ1, . . . , ỸN as input.
(2) Given the corruption parameter η and confidence level δ, set

ε = 8η + 12
log(4/δ)

N
.

(3) Let α = Ỹ ∗
εN and β = Ỹ ∗

(1−ε)N and set

μ̂ = 1

N

N∑
i=1

φα,β(X̃i).

THEOREM 1. Let δ ∈ (0,1) be such that δ ≥ e−N/4. Then, with probability at least 1−δ,

|μ̂ − μ| ≤ 3E(4ε,X) + 2σX

√
log(4/δ)

N
.

Moreover, with probability at least 1 − 4 exp(−εN/12),

|μ̂ − μ| ≤ 10
√

εσX.

REMARK. The necessity of prior knowledge of the confidence parameter δ was pointed
out (even in the contamination-free case) by Devroye, Lerasle, Lugosi and Oliveira [8]; see
[20] for further discussion. The contamination level need not be known exactly. If an upper
bound η ≥ η is available and one uses the estimator with parameter η instead of η, then the
same bound holds with η replaced by η.

To explain the meaning of Theorem 1, observe that for M = Q1−ε/2(X), one has

ε

2
= P(X ≥ M) ≤ σ 2

X

M2 ,

and in particular,

(2.4) Q1−ε/2(X) ≤ σX

√
2√

ε
.

Also,

E
[
(X − M)1X≥M

] ≤ E
[|X|1X≥M

] +E[M1X≥M ]
≤ σXP

1/2(X ≥ M) + |M|P(X ≥ M)(2.5)

≤ σX

√
8ε,
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implying that for every X,

(2.6) E(ε,X) ≤ σX

√
8ε.

Hence, Theorem 1 shows that the estimator attains the minimax rate of the corrupted mean-
estimation problem, noted previously.

Of course, Theorem 1 actually implies sharper individual bounds: if ηN ≤ log(2/δ), then
ε ∼ N−1 log(2/δ) and the assertion of Theorem 1 is that, with probability at least 1 − δ,

|μ̂ − μ| ≤ CσX

√
log(2/δ)

N
,

which matches the optimal sub-Gaussian error rate. If, on the other hand, ηN > log(2/δ),
then with probability at least 1 − δ,

|μ̂ − μ| ≤ CE(cη,X),

essentially matching the lower bound (2.3).

REMARK. Observe that the upper bound on E(ε,X) in (2.6) is based only on σX and,
therefore, on the fact that X is square-integrable. Under stronger moment assumptions on X,
an improved bound can be easily established. For example, if X is sub-Gaussian, that is, if
for every p ≥ 2, (E|X|p)1/p ≤ c

√
pσX , the same argument used in (2.6) for p = log(1/ε)

shows that

2E(4ε,X) + ε

2
max

{∣∣Qε/2(X)
∣∣, ∣∣Q1−ε/2(X)

∣∣} ≤ cε
√

log(1/ε)σX.

One may wonder if η
√

log(1/η) is the correct order of dependence on the contamina-
tion level for sub-Gaussian distributions. As it is proved by Chen, Gao and Ren [4], if X

is Gaussian and the contamination comes from Huber’s model, the correct dependence on
the contamination level is proportional to η, suggesting a possible slight improvement. At
the same time, as we discuss it above, E(η,X) is a lower bound for any estimator. One
may easily check that, if X is Gaussian, E(η,X) is of the order of η/

√
log(1/η) so this

lower bound is loose in this case. Interestingly, however, there exist sub-Gaussian distribu-
tions under which E(η,X) is of the order of η

√
log(1/η). (As an example, one may take

X = 1|G|≤Q min(1, |G|) + 1|G|>Q|G| where G is a standard Gaussian random variable and
Q is its 1 − η/2 quantile.) This means that for sub-Gaussian distributions, the upper bound
of Theorem 1 is indeed tight, up to constant factors. Note that our lower bound uses the ad-
versarial nature of the contamination, so it might be the case that under Huber’s model, even
for sub-Gaussian distributions, η is the correct order.

2.1. Proof of Theorem 1. Recall that one is given the corrupted sample X̃1, . . . , X̃N , Ỹ1,

. . . , ỸN , out of which at most 2ηN of the sample points have been corrupted. Also, (z∗
i )

N
i=1

denotes a nondecreasing rearrangement of the sequence (zi)
N
i=1.

The first step of the estimation procedure determines the truncation level, which is done
using the first half of the corrupted sample.

Consider the corruption-free sample Y1, . . . , YN and let U = 1X≥Q1−2ε(X). Since X is ab-

solutely continuous, we have that P(X ≥ Q1−2ε(X)) = 2ε and

σU ≤ P
1/2(

X ≥ Q1−2ε(X)
) = (2ε)1/2.

A straightforward application of Bernstein’s inequality shows that, with probability at least
1 − exp(−εN/12),

(2.7)
∣∣{i : Yi ≥ μ + Q1−2ε(X)

}∣∣ ≥ 3

2
εN.
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A similar argument for U = 1X>Q1−ε/2(X) implies that, with probability at least 1 −
exp(−εN/12),

(2.8)
∣∣{i : Yi ≤ μ + Q1−ε/2(X)

}∣∣ ≥ (
1 − (3/4)ε

)
N.

Similarly, with probability at least 1 − 2 exp(−εN/12),

(2.9)
∣∣{i : Yi ≤ μ + Q2ε(X)

}∣∣ ≥ 3

2
εN,

and, with probability at least 1 − 2 exp(−εN/12),

(2.10)
∣∣{i : Yi ≥ μ + Qε/2(X)

}∣∣ ≥ (
1 − (3/4)ε

)
N.

Thus, with probability at least 1 − 4 exp(−εN/12) ≥ 1 − δ/2, (2.7)–(2.10) hold simultane-
ously on an event we denote by E. Importantly, the event E only depends on the uncorrupted
sample Y1, . . . , YN .

Since η ≤ ε/8, following any corruption of at most 2ηN points, on the event E,∣∣{i : Ỹi ≥ μ + Q1−2ε(X)
}∣∣ ≥ (

(3/2)ε − 2η
)
N ≥ εN

and ∣∣{i : Ŷi ≤ μ + Q1−ε/2(X)
}∣∣ ≥ (

1 − (3/4)ε − 2η
)
N ≥ (1 − ε)N;

in other words,

(2.11) Q1−2ε(X) ≤ Ỹ ∗
(1−ε)N − μ ≤ Q1−ε/2(X).

Similarly, on the event E, we also have

(2.12) Qε/2(X) ≤ Ỹ ∗
εN − μ ≤ Q2ε(X).

Recall that the truncation levels are

α = Ỹ ∗
εN and β = Ỹ ∗

(1−ε)N .

To prove Theorem 1, first we show that (1/N)
∑N

i=1 φα,β(Xi) satisfies an inequality of the
wanted form, and then we prove that corruption does not change the empirical mean of φα,β

by too much; that is, that ∣∣∣∣∣ 1

N

N∑
i=1

φα,β(Xi) − 1

N

N∑
i=1

φα,β(X̃i)

∣∣∣∣∣
is also small enough.

For the first step, note that on the event E,

1

N

N∑
i=1

φα,β(Xi) ≤ 1

N

N∑
i=1

φμ+Q2ε(X),μ+Q1−ε/2(X)(Xi)

= Eφμ+Q2ε(X),μ+Q1−ε/2(X)(X)

(2.13)

+ 1

N

N∑
i=1

(
φμ+Q2ε(X),μ+Q1−ε/2(X)(Xi)

−Eφμ+Q2ε(X),μ+Q1−ε/2(X)(X)
)
.

The first term on the right-hand side of (2.13) is bounded by

Eφμ+Q2ε(X),μ+Q1−ε/2(X)(X) ≤ μ +E[X1X≥Q1−ε/2(X)]
≤ μ + E(ε,X).
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On the other hand, since

Eφμ+Q2ε(X),μ+Q1−ε/2(X)(X) ≥ μ −E[X1X≤Q2ε(X)]
≥ μ − E(4ε,X),

the second term on the right-hand side of (2.13) is a sum of centered i.i.d. random variables
(independent of E) that are upper bounded by Q1−ε/2(X) + E(4ε,X) and whose variance is
at most σ 2

X . Therefore, by Bernstein’s inequality, conditioned on Y1, . . . , Yn, with probability
at least 1 − δ/4,

1

N

N∑
i=1

φα,β(Xi)

≤ μ + E(ε,X) + σX

√
2 log(4/δ)

N
+ Q1−ε/2(X) log(4/δ)

N
+ E(4ε,X) log(4/δ)

N

≤ μ + 2E(4ε,X) + 2σX

√
log(4/δ)

N
,

where we used the fact that by (2.4), Q1−ε/2(X) log(4/δ)/N ≤ σX

√
log(4/δ)

6N
and that

E(4ε,X) log(4/δ)/N ≤ E(4ε,X) by the assumption that δ ≥ e−N/4.
An identical argument for the lower tail shows that, on the event E, with probability at

least 1 − δ/2, ∣∣∣∣∣ 1

N

N∑
i=1

φα,β(Xi) − μ

∣∣∣∣∣ ≤ 2E(4ε,X) + 2σX

√
log(4/δ)

N
.

It remains to show that, on the event E,∣∣∣∣∣ 1

N

N∑
i=1

φα,β(Xi) − 1

N

N∑
i=1

φα,β(X̃i)

∣∣∣∣∣
is small. Since φα,β(Xi) 	= φα,β(X̃i) for at most 2ηN indices, and for such points that maxi-
mal gap is ∣∣φα,β(Xi) − φα,β(X̃i)

∣∣ ≤ ∣∣Qε/2(X)
∣∣ + ∣∣Q1−ε/2(X)

∣∣,
it follows that∣∣∣∣∣ 1

N

N∑
i=1

φα,β(Xi) − 1

N

N∑
i=1

φα,β(X̃i)

∣∣∣∣∣ ≤ 2η
(∣∣Qε/2(X)

∣∣ + ∣∣Q1−ε/2(X)
∣∣)

≤ ε

2
max

{∣∣Qε/2(X)
∣∣, ∣∣Q1−ε/2(X)

∣∣},
since η ≤ ε/8. Finally, note that

ε

2
Q1−ε/2(X) = E

[
Q1−ε/2(X)1X≥Q1−ε/2(X)

] ≤ E[X1X≥Q1−ε/2(X)],
and, therefore, on the event E, we have∣∣∣∣∣ 1

N

N∑
i=1

φα,β(Xi) − 1

N

N∑
i=1

φα,β(X̃i)

∣∣∣∣∣ ≤ E(ε,X).

The second statement of the theorem now follows by (2.6).
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3. Robust multivariate mean estimation. In this section, we present the main findings
of the article; we construct a multivariate version of the robust mean estimator and establish
the corresponding performance bound announced in the introduction.

As one may expect, the procedure in the multidimensional case is significantly more in-
volved than in dimension one. In what follows, X is a random vector taking values in R

d with
mean μ = EX and covariance matrix of �. As before, we write X = X − μ, λ1 denotes the
largest eigenvalue of �, and Tr(�) = E‖X‖2 is its trace.

Recall that a mean estimator receives as data a sample (X̃i)
N
i=1 that an adversary fabri-

cates by corrupting at most ηN points of a sample X1, . . . ,XN of independent, identically
distributed copies of the random vector X. As in the univariate case, the estimator requires
knowledge of the contamination level η and the confidence parameter δ. Once again, for
clarity of the presentation, we assume that X has an absolutely continuous distribution with
respect to the Lebesgue measure.

THEOREM 2. Assume that X is a random vector in R
d that has a mean and covariance

matrix. There exists a mean estimator μ̂ that takes the parameters δ ∈ (0,1), η ∈ [0,1) and
the contaminated data (X̃i)

N
i=1 as input, and satisfies that, with probability at least 1 − δ,

‖μ̂ − μ‖ ≤ c

(√
Tr(�)

N
+

√
λ1 log(1/δ)

N
+ √

λ1η

)
,

where c > 0 is a numerical constant.

A value of the numerical constant is explicitly given in the proof. However, no attempt has
been made to optimize its value.

The same remark as in the univariate case on the previous knowledge of η and δ, mentioned
after Theorem 1, applies here as well.

As it is pointed out in the Introduction, the bound of Theorem 2 coincides with the best
possible bound in the corruption-free case up to the term

√
λ1η that is the price one has

to pay for adversarial corruption. The fact that the term
√

λ1η is inevitable in the upper
bound follows from the fact that for any upper bound for the norm of difference ‖μ̂ − μ‖,
the same upper bound holds for any one-dimensional marginal. Hence, the necessity of this
term follows from our arguments in the univariate case. At the same time, similar to the
univariate case, under higher moment assumptions, the term

√
λ1η may be improved. For

instance, if the distribution is sub-Gaussian (in the sense that all one-dimensional projections
are sub-Gaussian), then this term may be replaced by η

√
log(1/η)

√
λ1. This may be seen by

a straightforward modification of the proof.
Remarkably, the malicious sample corruption affects only the “weak” term of the bound,

that is, it scales with the square root of the operator norm of the covariance matrix. Indeed, if
the corruption parameter η is such that ηN ≤ log(2/δ), then, with probability at least 1 − δ,
μ̂ satisfies

(3.1) ‖μ̂ − μ‖ ≤ c

(√
Tr(�)

N
+ √

λ1

√
log(1/δ)

N

)
,

matching the optimal bound for multivariate mean estimation bound from [21] for the
corruption-free case. If, on the other hand, the corruption parameter is larger, then Theorem 2
implies that with probability at least 1 − 2 exp(−ηN/c),

(3.2) ‖μ̂ − μ‖ ≤ c

(√
Tr(�)

N
+ √

η
√

λ1

)
for a numerical constant c > 0.

In what follows we describe the construction of the mean estimator μ̂ that satisfies the
announced performance bound.
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3.1. The multivariate mean estimator. The main component is a mean estimation pro-
cedure that, in order to perform well, requires information on Tr(�) and λ1. Since such
information is not assumed to be available, we produce an estimator depending on a tuning
parameter Q. Then we use a simple mechanism of choosing the appropriate value of Q.

Just like in the univariate case, for simplicity of notation, assume that the estimator re-
ceives 2N data points X̃1, . . . , X̃N , Ỹ1, . . . , ỸN , and that at most 2ηN points of the original
independent sample X1, . . . ,XN,Y1, . . . , YN have been changed by the adversary. The pro-
cedure computes, for each unit vector v and tuning parameter Q > 0, the trimmed mean
estimate of the expectation of the projection of X to the line spanned by v with a minor dif-
ference: the truncation level is widened depending on the parameter Q. Each one of these
estimators defines a slab in R

d . The details are as follows.
Multivariate mean estimator.

(1) Set

ε = max
(

10η,2560
log(2/δ)

N

)
.

(2) Let Sd−1 be the Euclidean unit sphere in R
d and for every v ∈ Sd−1 define

αv = (〈Ỹi , v〉)∗(ε/2)N and βv = (〈Ỹi , v〉)∗(1−ε/2)N .

(3) For every v ∈ Sd−1 and Q > 0, set

UQ(v) = 1

N

N∑
i=1

φαv−Q,βv+Q

(〈X̃i, v〉),
and let

�(v,Q) = {
x ∈ R

d : ∣∣〈x, v〉 − UQ(v)
∣∣ ≤ 2εQ

}
.

(4) For each Q > 0, set

�(Q) = ⋂
v∈Sd−1

�(v,Q).

(5) Let i∗ ∈ Z be the smallest such that
⋂

i≥i∗ �(2i ) 	= ∅. Define μ̂ to be any point in⋂
i∈Z:i≥i∗

�
(
2i).

Each set �(Q) is an intersection of random slabs, one for each direction in the sphere Sd−1.
The “center” of the slab associated with the direction v is UQ(v) and its width is proportional
to εQ. As we show in what follows, there is some i0 ∈ Z such that with probability at least
1 − δ, the sets �(2i ), i ≥ i0 are nested, implying that μ̂ is well defined. Note that the last
step of selecting the value of Q is reminiscent of Lepski’s method [19] or the related method
“intersection of confidence intervals” by Goldenshluger and Nemirovski [13].

4. Proof of Theorem 2. The heart of the proof of Theorem 2 is the following proposition
that describes the performance of an estimator with the correct tuning parameter Q.

The role of Q is to incorporate the “global complexity” of Sd−1. In particular, if Q is se-
lected properly, that is enough to ensure that �(Q) is nonempty and contains a good estimator
of μ. This is formalized in the next proposition.
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PROPOSITION 1. Let

(4.1) Q0 = max
(

256

ε

√
Tr(�)

N
,16

√
λ1

ε

)
and consider Q ∈ [2Q0,4Q0]. Then, with probability at least 1−2 exp(−εN/2560) ≥ 1− δ,
�(Q) 	=∅ and for every z ∈ �(Q),

‖z − μ‖ ≤ 4εQ0.

Observe that for every Q, the diameter of �(Q) is at most 4εQ. Indeed, if x1, x2 ∈ �(Q)

then for every v ∈ Sd−1,∣∣〈x1 − x2, v〉∣∣ = ∣∣〈x1, v〉 − 〈x2, v〉∣∣ ≤ ∣∣〈x1, v〉 − UQ(v)
∣∣ + ∣∣〈x2, v〉 − UQ(v)

∣∣ ≤ 4εQ,

implying that ‖x1 − x2‖ ≤ 4εQ.
The key component in the proof of Proposition 1 is the next lemma.

LEMMA 1. For each i ∈ {1, . . . ,N} and v ∈ SN−1, define Y i(v) = 〈Yi − μ,v〉. With
probability at least 1 − exp(−εN/2560) ≥ 1 − δ/2,

(4.2) sup
v∈Sd−1

∣∣{i : Y i(v) ≥ Q0
}∣∣ ≤ ε

8
N and sup

v∈Sd−1

∣∣{i : Y i(v) ≤ −Q0
}∣∣ ≤ ε

8
N.

Lemma 1 is a uniform version of the analogous claim used in the univariate case.

PROOF. Let us prove the first inequality; the second is proved by an identical argument
and is omitted. Consider the function χ :R →R, defined by

χ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if x ≤ Q0/2,
2x

Q0
− 1 if x ∈ (Q0/2,Q0],

1 if x > Q0.

Observe that 1{Y (v)≥Q0} ≤ χ(Y (v)) ≤ 1{Y (v)≥Q0/2}, and that χ is Lipschitz with constant
2/Q0. Therefore, if ε1, . . . , εN are independent, symmetric {−1,1}-valued random variables
that are independent of the (Yi)

N
i=1, then

E sup
v∈Sd−1

1

N

N∑
i=1

1{Y i(v)≥Q0}

≤ E sup
v∈Sd−1

1

N

N∑
i=1

χ
(
Y i(v)

)

≤ 2E sup
v∈Sd−1

1

N

∣∣∣∣∣
N∑

i=1

εiχ
(
Y i(v)

)∣∣∣∣∣ + sup
v∈Sd−1

Eχ
(
Y (v)

)
(
by the Giné–Zinn symmetrization theorem [12]

)
≤ 4

Q0
E sup

v∈Sd−1

1

N

∣∣∣∣∣
N∑

i=1

εiY i(v)

∣∣∣∣∣ + sup
v∈Sd−1

Eχ
(
Y(v)

)
def.= (∗),
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where in the second step one uses the standard contraction lemma for Rademacher averages;
see Ledoux and Talagrand [18].

To bound the second term on the right-hand side, recall that Q0 ≥ 16
√

λ1/ε, and thus, for
every v ∈ Sd−1,

Eχ
(
Y (v)

) ≤ E1{Y (v)≥Q0/2} = P

(
〈X,v〉 ≥ Q0

2

)
(4.3)

≤ 4E〈X,v〉2

Q2
0

≤ 4λ1

Q2
0

≤ ε

64
.

To bound the first term, note that

E sup
v∈Sd−1

∣∣∣∣∣ 1

N

N∑
i=1

εiY i(v)

∣∣∣∣∣ = E sup
v∈Sd−1

∣∣∣∣∣ 1

N

N∑
i=1

εi〈Xi − μ,v〉
∣∣∣∣∣ ≤

√
Tr(�)

N
.

Hence, by the definition of Q0,

(∗) ≤ ε

32
.

By Talagrand’s concentration inequality for empirical processes indexed by a class of uni-
formly bounded functions [27], with probability at least 1 − exp(−x),

1

N
sup

v∈Sd−1

∣∣{i : Y i(v) ≥ Q0
}∣∣ ≤ ε

16
+

√
x

N
·

√
ε

128
+ 10x

N

(see [2], Exercise 12.15, for the value of the numerical constant).
With the choice of x = εN/2560 one has that, with probability at least 1 − exp(−εN/

2560),

sup
v∈Sd−1

∣∣{i : Y i(v) ≥ Q0
}∣∣ ≤ ε

8
N,

as required. �

Note that, when (4.2) holds, we have, for every v ∈ Sd−1,

αv − 〈μ,v〉 ≥ −Q0 and βv − 〈μ,v〉 ≤ Q0.

Indeed, this follows from the fact that for every v ∈ Sd−1 there are at most (ε/8)N of the
Y i(v) that are larger than Q0. If, in addition, the adversary corrupts at most (ε/8)N of the
points Yi , then there are still no more than (ε/4)N values 〈Ỹi , v〉 that are larger than 〈μ,v〉 +
Q0, which suffices for our purposes. And, by the definition of ε, one has that ε/8 ≥ η, as
required.

Now consider some Q that satisfies 2Q0 < Q ≤ 4Q0, and from here we condition on an
event E such that the inequalities (4.2) both hold. By Lemma 1, E occurs with probability at
least 1 − exp(−εN/2560); importantly, this event only depends on Y1, . . . , YN , the first half
of the uncontaminated sample.

In particular, on the event E, for every v ∈ Sd−1,

βv − 〈μ,v〉 + Q ≤ Q0 + Q ≤ 5Q0

and

βv − 〈μ,v〉 + Q ≥ αv − 〈μ,v〉 + Q ≥ −Q0 + Q ≥ Q0.
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By a similar argument, one may obtain lower and upper bounds for αv − 〈μ,v〉. Hence, on
E, for every v ∈ Sd−1,

(4.4) −5Q0 ≤ αv − 〈μ,v〉 − Q ≤ −Q0 and Q0 ≤ βv − 〈μ,v〉 + Q ≤ 5Q0.

Finally, recall that

UQ(v) = 1

N

N∑
i=1

φαv−Q,βv+Q

(〈X̃i, v〉),
and in order to complete the proof of Proposition 1, it suffices to show that UQ(v) is uniformly
close to 〈μ,v〉, with high probability. In particular, the next lemma implies Proposition 1.

LEMMA 2. Let 2Q0 ≤ Q ≤ 4Q0. Conditioned on the event E, with probability at least
1 − 2 exp(−εN/2560),

sup
v∈Sd−1

∣∣UQ(v) − 〈μ,v〉∣∣ ≤ 2εQ.

PROOF. We prove that

sup
v∈Sd−1

(
UQ(v) − 〈μ,v〉) ≤ 2εQ

holds with the wanted probability; the proof that

sup
v∈Sd−1

(〈μ,v〉 − UQ(v)
) ≤ 2εQ

follows an identical argument and is omitted.
As a first step, note that, in the expression of UQ(v), the corrupted samples X̃i may be

harmlessly replaced by their uncorrupted counterparts Xi . Indeed, by (4.4), on the event E,
the range of the function φαv−Q,βv+Q is an interval of length at most 10Q and, therefore,
deterministically, for all v ∈ Sd−1,

1

N

N∑
i=1

φαv−Q,βv+Q

(〈X̃i, v〉) − 1

N

N∑
i=1

φαv−Q,βv+Q

(〈Xi, v〉) ≤ η · 10Q ≤ εQ.

Once again, recalling that on E (4.4) holds, it follows that

1

N

N∑
i=1

φαv−Q,βv+Q

(〈Xi, v〉) ≤ 1

N

N∑
i=1

φ〈μ,v〉−Q0,〈μ,v〉+5Q0

(〈Xi, v〉).
Since the event E only depends on the uncorrupted sample Y1, . . . , YN , the right-hand side
of the above inequality is independent of E. Thus, writing

UQ(v) = 1

N

N∑
i=1

φ〈μ,v〉−Q0,〈μ,v〉+5Q0

(〈Xi, v〉) − 〈μ,v〉 = 1

N

N∑
i=1

φ−Q0,5Q0

(〈Xi − μ,v〉),
it suffices to prove that, with probability at least 1 − 2e−εN/2560,

sup
v∈Sd−1

UQ(v) ≤ εQ.

To that end, consider the decomposition

sup
v∈Sd−1

UQ(v) ≤ sup
v∈Sd−1

(
UQ(v) −EUQ(v)

) + sup
v∈Sd−1

EUQ(v)
def.= (1) + (2).
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First, let us bound the term (1) in several steps.
Set

WQ(v) = 1

N

N∑
i=1

φ−3Q,3Q

(〈Xi − μ,v〉),
and note that

sup
v∈Sd−1

(
UQ(v) −EUQ(v)

) ≤ sup
v∈Sd−1

(
UQ(v) − WQ(v)

)
+ sup

v∈Sd−1

(
WQ(v) −EWQ(v)

)
+ sup

v∈Sd−1

(
EWQ(v) −EUQ(v)

)
def.= (a) + (b) + (c).

To bound term (a), recall that 2Q0 ≤ Q ≤ 4Q0, implying that φ−Q0,5Q0(x) 	= φ−3Q,3Q(x)

only if

either x < −Q0 or x > 5Q0.

In both cases, ∣∣φ−Q0,5Q0(x) − φ−3Q,3Q(x)
∣∣ ≤ 3Q.

By Lemma 1, with probability at least 1 − exp(−εN/2560),

sup
v∈Sd−1

∣∣{i : 〈Xi − μ,v〉 > 5Q0 or 〈Xi − μ,v〉 < −Q0
}∣∣ ≤ εN

4
,

hence, on this event,

(a) ≤ 3εQ

4
.

One may control term (c) similarly. For each v ∈ Sd−1,

EWQ(v) −EUQ(v) ≤ 3Q · P{∣∣〈X − μ,v〉∣∣ > Q0
} ≤ 3εQ

64

by recalling (4.3).
The term (b) is controlled using Talagrand’s concentration inequality for the supremum of

empirical processes. Note that for every v ∈ Sd−1,∣∣φ−3Q,3Q

(〈X,v〉)∣∣ ≤ 3Q and E
∣∣φ−3Q,3Q

(〈X,v〉)∣∣2 ≤ E
∣∣〈X,v〉∣∣2 ≤ λ1.

Also, since φ−3Q,3Q(x) is a 1-Lipschitz function that passes through 0, by a contraction
argument (see Ledoux and Talagrand [18]),

E sup
v∈Sd−1

∣∣WQ(v) −EWQ(v)
∣∣ ≤ 2E sup

v∈Sd−1

∣∣∣∣∣ 1

N

N∑
i=1

εi〈Xi − μ,v〉
∣∣∣∣∣ ≤ 2

√
Tr(�)

N
.

Hence, by Talagrand’s inequality, with probability at least 1 − 2 exp(−x),

sup
v∈Sd−1

∣∣WQ(v) −EWQ(v)
∣∣ ≤ 4

√
Tr(�)

N
+ 2

√
λ1

√
x

N
+ 20Q

x

N
≤ εQ

64
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with the choice of x = εN/2560, recalling the definition of Q0, and using that Q ≥ 2Q0.
This concludes the proof that (1) ≤ (1/2+1/32+1/400)εQ with probability 1− e−εN/2560.

Finally, it remains to estimate term (2),

(2) = sup
v∈Sd−1

EUQ(v) = sup
v∈Sd−1

Eφ−Q0,5Q0

(〈X,v〉).
Clearly, Xv = 〈X,v〉 is centered and φ−Q0,5Q0(Xv) 	= Xv only when either Xv ≥ 5Q0 or
Xv ≤ −Q0. Hence,

Eφ−Q0,5Q0(Xv) = E
(
φ−Q0,5Q0(Xv) − Xv

)
≤ E|Q0 + Xv|1Xv≤−Q0

≤ εQ

64

by an argument analogous to (2.5) and using (4.3). �

With Proposition 1 proved, let us complete the proof of Theorem 2. Let i0 be such that

Q
def.= 2i0 ∈ [2Q0,4Q0) and let E be the “good” event that both (4.2) and

sup
v∈Sd−1

∣∣UQ(v) − 〈μ,v〉∣∣ ≤ 2εQ

hold. Recall that

UQ(v) = 1

N

N∑
i=1

φαv−Q,βv+Q

(〈X̃i, v〉);
E holds with probability at least 1 − δ; and on E, any point in �(2i0) is within distance 4εQ0
of the mean μ. Hence, it suffices to show that on the event E, the sets �(2i ) for i ≥ i0 are
nested. Indeed, by the definition of i∗,

∅ 	= ⋂
i≥i∗

�
(
2i) ⊂ �

(
2i0

)
,

and thus ‖μ̂ − μ‖ ≤ 4εQ0.
To see that �(2i0) ⊂ �(2i0+1), it is enough to show that, for all v ∈ Sd−1, |〈x, v〉 −

U2Q(v)| ≤ 4εQ. But if x ∈ �(v,Q) for some v ∈ Sd−1, it follows that∣∣〈x, v〉 − U2Q(v)
∣∣ ≤ ∣∣〈x, v〉 − UQ(v)

∣∣ + ∣∣UQ(v) − U2Q(v)
∣∣ ≤ 2εQ + ∣∣UQ(v) − U2Q(v)

∣∣;
therefore, it suffices to show that |UQ(v) − U2Q(v)| ≤ 2εQ.

Note that on the event E, there are at most εN/4 sample points X̃i such that 〈X̃i, v〉 is
above or below the levels αv − 2i0 and βv + 2i0 . Hence, the number of points for which
UQ(v) 	= U2Q(v) is at most εN/4 and so the difference is at most (2QεN/4)/N = εQ/2.

By induction, the same argument shows that, on the event E, �(2i ) ⊂ �(2i+1) for every
i ≥ i0, completing the proof of Theorem 2.
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