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In this paper, we study the matrix denoising model Y = S + X, where
S is a low rank deterministic signal matrix and X is a random noise matrix,
and both are M × n. In the scenario that M and n are comparably large and
the signals are supercritical, we study the fluctuation of the outlier singu-
lar vectors of Y , under fully general assumptions on the structure of S and
the distribution of X. More specifically, we derive the limiting distribution
of angles between the principal singular vectors of Y and their deterministic
counterparts, the singular vectors of S. Further, we also derive the distribu-
tion of the distance between the subspace spanned by the principal singular
vectors of Y and that spanned by the singular vectors of S. It turns out that
the limiting distributions depend on the structure of the singular vectors of
S and the distribution of X, and thus they are nonuniversal. Statistical appli-
cations of our results to singular vector and singular subspace inferences are
also discussed.

1. Introduction. Consider an M × n noisy matrix Y modeled as

Y = S + X,(1.1)

where S is a low-rank deterministic matrix with fixed rank r and X is a real random noise
matrix. We assume that S admits the singular value decomposition

(1.2) S = UDV ∗ =
r∑

i=1

diuiv
∗
i ,

where D = diag(d1, . . . , dr) consists of the singular values of S and we assume d1 > · · · >

dr > 0; U = (u1, . . . ,ur ) ∈ R
M×r and V = (v1, . . . ,vr ) ∈ R

n×r are the matrices consisting
of the �2-normalized left and right singular vectors. For the noise matrix X = (xij ) in (1.1),
we assume that the entries xij ’s are i.i.d. real random variables with

(1.3) Exij = 0, E|xij |2 = 1

n
.

For simplicity, we also assume the existence of all moments, that is, for every integer q ≥ 3,
there is some constant Cq > 0, such that

(1.4) E|√nxij |q ≤ Cq < ∞.

This condition can be weakened to the existence of some sufficiently high order moment. But
we do not pursue this direction here. We remark that although we are primarily interested in
the real case, our method also applies to the case when X is a complex noise matrix.

In practice, S is often called the signal matrix which contains the information of interest.
In the high-dimensional setup, when M and n are comparably large, we are interested in the
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inference of S or its left and right singular spaces, which are the subspaces spanned by ui ’s
or vi’s, respectively. Such a problem arises in many scientific applications such as matrix
denoising [26, 28], multiple signal classification (MUSIC) [37, 62] and multidimensional
scaling [31, 55]. We call the model in (1.1) the matrix denoising model, which is also known
as the signal-plus-noise model in the literature. We refer to Section 1.2 for more introduction
on the application aspects.

We denote the singular value decomposition of Y by

Y = Û�V̂ ∗ =
M∧n∑
i=1

√
μi ûi v̂

∗
i ,(1.5)

where μ1 ≥ · · · ≥ μM∧n are the squares of the nontrivial singular values, and ûi ’s and v̂i ’s
are the �2-normalized sample singular vectors. Here, Û = (û1, . . . , ûM) and V̂ = (̂v1, . . . , v̂n)

and � is M × n with singular values on its main diagonal.
In this paper, we are interested in the distributions of the principal left and right singular

vectors of Y and the subspaces spanned by them. On singular vectors, a natural quantity
to look into is the projection of a sample principal singular vector onto its deterministic
counterpart, that is, |〈ûi ,ui〉| and |〈̂vi ,vi〉|, which characterizes the deviation of an original
signal from the noisy one. On singular spaces, the natural estimators for U and V are their
noisy counterparts

Ûr = (û1, . . . , ûr ) and V̂r = (̂v1, . . . , v̂r ),

respectively, that is, the matrices consisting of the first r left and right singular vectors of Y ,
respectively. To measure the distance between Ûr and U , or V̂r and V , we consider the fol-
lowing matrix of the cosine principal angles between two subspaces (see [36], Section 6.4.3,
for instance):

cos�(V̂r ,V ) = diag
(
σV

1 , . . . , σV
r

)
, cos�(Ûr,U) = diag

(
σU

1 , . . . , σU
r

)
,

where σV
i ’s and σU

i ’s are the singular values of the matrices V̂ ∗
r V and Û∗

r U , respec-
tively. Therefore, an appropriate measure of the distance between the subspaces is L :=
‖ cos�(U, Ûr)‖2

F for the left singular subspace or R := ‖ cos�(V, V̂r)‖2
F for the right sin-

gular subspace, where ‖ · ‖2
F stands for the Frobenius norm. Note that L and R can also be

written as

L :=
r∑

i,j=1

∣∣〈ûi ,uj 〉
∣∣2 = 1

2

(
2r − ∥∥Ûr Û

∗
r − UU∗∥∥2

F

)
,(1.6)

R :=
r∑

i,j=1

∣∣〈̂vi ,vj 〉
∣∣2 = 1

2

(
2r − ∥∥V̂r V̂

∗
r − V V ∗∥∥2

F

)
.(1.7)

In this paper, we are interested in the following high-dimensional regime: for some small
constant τ ∈ (0,1), we have

(1.8) M ≡ M(n), y ≡ yn := M

n
→ c ∈ [

τ, τ−1]
as n → ∞.

Our main results are on the limiting distributions of individual |〈̂vi ,vi〉|2 (resp., |〈ûi ,ui〉|2)
and R (resp., L) when the signal strength, di ’s, are supercritical (cf. Assumption 2.1). They
are detailed in Theorems 2.3, 2.9, after necessary notation are introduced. In the rest of this
section, we review some related literature from both theoretical and applied perspectives.
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1.1. On finite-rank deformation of random matrices. From the theoretical perspective,
our model in (1.1) is in the category of the fixed-rank deformation of the random matrix
models in the random matrix theory, which also includes the deformed Wigner matrix and
the spiked sample covariance matrix as typical examples. There are a vast of work devoted
to this topic and the primary interest is to investigate the limiting behavior of the extreme
eigenvalues and the associated eigenvectors of the deformed models. Since the seminal work
of Baik, Ben Arous and Péché [5], it is now well understood that the extreme eigenvalues
undergo a so-called BBP transition along with the change of the strength of the deformation.
Roughly speaking, there is a critical value such that the extreme eigenvalue of the deformed
matrix will stick to the right end point of the limiting spectral distribution of the undeformed
random matrix if the strength of the deformation is less than or equal to the critical value,
and will otherwise jump out of the support of the limiting spectral distribution. In the lat-
ter case, we call the extreme eigenvalue as an outlier, and the associated eigenvector as an
outlier eigenvector. Moreover, the fluctuation of the extreme eigenvalues in different regimes
(subcritical, critical and supercritical) are also identified in [5] for the complex spiked co-
variance matrix. We also refer to [4, 6, 12, 13, 22, 26, 27, 41, 53] and the reference therein
for the first-order limit of the extreme eigenvalue of various fixed-rank deformation models.
The fluctuation of the extreme eigenvalues of various models have been considered in [3, 4,
9–11, 16, 17, 24, 25, 29, 35, 41, 42, 53, 54, 57]. Especially, the fluctuations of the outliers are
shown to be nonuniversal for the deformed Wigner matrices, first in [24] under certain special
assumptions on the structure of the deformation and the distribution of the matrix entries, and
then in [41] in full generality.

The study on the behavior of the extreme eigenvectors has been mainly focused on the
level of the first-order limit [12, 13, 21, 26, 34, 53]. In parallel to the results of the extreme
eigenvalues, it is known that the eigenvectors are delocalized in the subcritical case and have
a bias on the direction of the deformation in the supercritical case. It is recently observed in
[15] that a deformation close to the critical regime will cause a bias even for the nonoutlier
eigenvectors. On the level of the fluctuation, the limiting behavior of the extreme eigenvectors
has not been fully studied yet. By establishing a general universality result of the eigenvec-
tors of the sample covariance matrix in the null case, the authors of [15] are able to show that
the law of the eigenvectors of the spiked covariance matrices are asymptotically Gaussian
in the subcritical regime. More specifically, the generalized components of the eigenvectors
(i.e., 〈̂vi ,w〉 for any deterministic vector w) are χ2 distributed. For spiked Gaussian sample
covariance matrices, in the supercritical regime, the fluctuation of a fixed-dimensional nor-
malized subvector of the outlier eigenvector is proved to be Gaussian in [53], but this result
cannot tell the distribution of 〈̂vi ,vi〉. Under some special assumptions on the structure of
the deformation and the distribution of the random matrix entries, it is shown in [23] that the
eigenvector distribution of a generalized deformed Wigner matrix model is nonuniversal in
the supercritical regime. In the current work, we aim at establishing the nonuniversality for
the outlier singular vectors for the matrix denoising model under fully general assumptions
on the structure of the deformation S and the distribution of the random matrix X. This can
be regarded as an eigenvector counterpart of the result on the outlying eigenvalue distribution
in [41].

1.2. On singular subspace inference. From the applied perspective, our model (1.1) ap-
pears prominently in the study of signal processing [40, 51], machine learning [58, 61] and
statistics [18, 19, 28, 33]. For instance, in the study of image denoising, S is treated as the
true image [49] and in the problem of classification, S contains the underlying true mean
vectors of samples [18]. In both situations, we need to understand the asymptotics of the sin-
gular vectors and subspace of S, given the observation Y . In addition, the statistics R and L
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defined in (1.7) can be used for the inference of the structure of the singular subspace of S.
We remark that these statistics have been used extensively to explore the properties of sin-
gular subspace. To name a few, in [39], the authors studied the problem of testing whether
the sample singular subspace is equal to some given subspace; in [20], the authors studied
the eigenvector inference problems for the correlated stochastic block model; in [38], the
authors analyzed the impact of dimensionality reduction for subspace clustering algorithms;
and in [18], the authors studied the high-dimensional clustering problem and the canonical
correlation analysis. In the high-dimensional regime (1.8), to the best of our knowledge, the
distributions of R and L have not been studied yet in the literature.

In the situation when M is fixed, the sample eigenvectors of XX∗ are normally distributed
[1]. When M diverges with n, many interesting results have been proposed under various
assumptions. One line of the work is to derive the perturbation bounds for the perturbed sin-
gular vectors based on Davis–Kahan’s theorem. For instance, in [52], the authors improve the
perturbation bounds of Davis–Kahan theorem to be nearly optimal. In [18], the authors study
similar problems and their related statistical applications. Most recently, in the papers [32, 33,
63], the authors derive the �∞ pertubation bounds assuming that the population vectors were
delocalized (i.e., incoherent). The other line of the work is to study the asymptotic normal-
ity of the spectral projection under various regularity conditions. In such cases, the singular
vectors of S can be estimated using those of Y and some Gaussian approximation technique
can be employed. Considering the Gaussian data samples xi � N (0,�), i = 1,2, . . . , n and
X = (xi), under the assumption that the order of Tr�

‖�‖ is much smaller than n, in [44–46], the
authors prove that the eigenvectors of XX∗ are asymptotically normally distributed, whose
variance depends the eigenvectors of �. Furthermore, in [59], assuming that m such random
matrices Xi, i = 1,2, . . . ,m are available, the author shows that the singular vectors of S can
be estimated via trace regression using matrix nuclear norm penalized least squares estima-
tion (NNPLS). Under the assumption that r4K log3 m = o(m),K = max{M,n}, the author
shows that the principal angles of the subspace estimated using NNPLS are asymptotically
normal.

1.3. Organization. The rest of the paper is organized as follows. In Section 2, we state
our main results and summarize our method for the proofs. In Section 3, we design Monte
Carlo simulations to demonstrate the accuracy of our main results and briefly illustrate their
applications through a hypothesis testing problem. In Section 4, we introduce some main
technical results including the isotropic local law and also derive the Green function rep-
resentation for our statistics. In Section 5, we prove Theorems 2.3, based on the recursive
estimate in Proposition 5.2. We state more simulation results, further discussions of statisti-
cal applications, the proofs of Theorem 2.9 and some technical lemmas in the Supplementary
Material [8].

2. Main results and methodology. In this section, we state our main results, and briefly
summarize our proof strategy.

2.1. Main results. In this paper, the singular values of S are assumed to satisfy the fol-
lowing supercritical condition.

ASSUMPTION 2.1 (Supercritical condition). There exist a constant C > 0 and a (small)
constant δ > 0, such that

y1/4 + δ ≤ dr < · · · < d2 < d1 ≤ C, min
1≤j �=i≤r

|di − dj | ≥ δ.
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REMARK 2.2. The first inequality above ensures that the first r singular values of Y are
outliers, and the threshold y1/4 is the analogous BBP transition point in [5]. The second in-
equality guarantees that the outliers of Y are well separated from each other. We also assume
that d1, . . . , dr are bounded by some constant C. All these conditions can be weakened. For
instance, we do allow the existence of the subcritical and critical di ’s if we only focus on the
outlier singular vectors. Also, the separation of di ’s by an order 1 distance δ is not necessary.
In [15], a much weaker separation of order n−1/2+ε is enough for the discussion of the eigen-
values. Moreover, we can also extend our results to the case when d1, . . . , dr diverge with n.
But we do not pursue these directions in the current paper.

In the sequel, we will only state the results for the right singular vectors and the right
singular subspace. The results for the left ones can be obtained from the right ones by simply
considering the transpose (with a rescaling) of our matrix model in (1.1). To state our results,
we need more notation. First, we define

p(d) := (d2 + 1)(d2 + y)

d2 .(2.1)

For each i ∈ [r], we will write pi ≡ p(di) for short. Recall (1.5). In [26], Theorem 3.4, it has
been shown that pi is the limit of μi . Further, we set

(2.2) a(d) := d4 − y

d2(d2 + 1)
.

It has been proved in [26] that a(di) are the limits of |〈vi , v̂i〉|2, respectively (see Lemma D.1
in [8]). We also denote by κl the lth cumulant of the random variables

√
nxij . For a vector

w = (w(1), . . . ,w(m))T and l ∈ N, we introduce the notation

sl(w) :=
m∑

i=1

w(i)l.

Set

θ(d) := d4 + 2yd2 + y

d3(d2 + 1)2 , ψ(d) := d6 − 3yd2 − 2y

d3(d2 + 1)2(2.3)

and

VE(d) := 2

d4 − y

(
2y(y + 1)θ(d)2 − y(y − 1)(5y + 1)

d(d2 + 1)2 θ(d)

+ (d4 + y)(d2 + y)2

d3(d2 + 1)2 ψ(d) + 2y2(y − 1)2

d2(d2 + 1)4

)
.

(2.4)

For the right singular vectors, we have the following theorem.

THEOREM 2.3 (Right singular vectors). Assume that (1.3), (1.4), (1.8) and Assump-
tion 2.1 hold. For i ∈ [r], define the random variable

�i := −2
√

nθ(di)u
∗
i Xvi − 2ψ(di)

d2
i

(
κ3

n
s1(ui )s1(vi )

)
,(2.5)

and let Zi ∼ N (0,Vi ) be a random variable independent of �i , where

Vi := VE(di) − 4

di

θ(di)ψ(di)

(
κ3√
n
s3(ui )s1(vi )

)
+ 4

di

θ(di)
2
(

κ3√
n
s1(ui )s3(vi)

)

+ ψ(di)
2

d2
i

κ4s4(ui ) + yθ(di)
2

d2
i

κ4s4(vi ).
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Then for any i ∈ [r] and any bounded continuous function f , we have

lim
n→∞

(
Ef

(√
n
(∣∣〈vi , v̂i〉

∣∣2 − a(di)
)) −Ef (�i +Zi )

) = 0.

REMARK 2.4. In [41], the authors obtain the nonuniversality for the limiting distribu-
tions of the outliers (outlying eigenvalues) of the deformed Wigner matrices. The limiting
distributions admit similar forms as the limiting distribution for the outlier singular vectors
for our models. One might notice that the third or the fourth cumulants of the entries of the
Wigner matrices are allowed to be different in [41]. An extension along this direction is also
straightforward for our result.

We discuss a few special cases of interest. For simplicity, we assume that S has rank r = 1
and drop all the subindices.

REMARK 2.5. If the entries of
√

nX are standard Gaussian random variables (i.e., κ3 =
κ4 = 0), then � � N (0,4θ(d)2) (see Definition 4.9 for the meaning of �). Hence, we find
� +Z is asymptotically distributed as

N
(
0,4θ(d)2 + VE(d)

)
.

REMARK 2.6. If both u and v are delocalized in the sense that ‖u‖∞ = o(1) and
‖v‖∞ = o(1). Then sl(u) = o(1) and sl(v) = o(1) for l = 3,4. By (1.3), (1.4) and the fact
‖u‖2 = ‖v‖2 = 1, we find that E(u∗Xv) = 0 and E(u∗Xv)2 = n−1. Then we conclude from
Lyapunov’s CLT for triangular array that

� �N
(
−2ψ(d)

d2

(
κ3

n
s1(u)s1(v)

)
,4θ(d)2

)
,(2.6)

and therefore � +Z has asymptotically the same distribution as

N
(
−2ψ(d)

d2

(
κ3

n
s1(u)s1(v)

)
,4θ(d)2 + VE(d)

)
.

The only difference from the Gaussian case is a shift caused by the nonvanishing third cumu-
lant.

REMARK 2.7. If one of u and v is delocalized, say ‖u‖∞ = o(1), then � still has the
limiting distribution in (2.6). Therefore, � +Z has asymptotically the same distribution as a
Gaussian random variable with mean

−2ψ(d)

d2

(
κ3

n
s1(u)s1(v)

)
and variance

4θ(d)2 + VE(d) + 4

d
θ(d)2

(
κ3√
n
s1(u)s3(v)

)
+ y

θ(d)2

d2 κ4s4(v).

REMARK 2.8. If neither u nor v is delocalized, then � + Z is no longer Gaussian in
general. For example, if u = e1 and v = f 1 where e1 and f 1 are the canonical basis vectors
in R

M and R
n respectively, then � +Z is asymptotically distributed as

−2θ(d)
√

nX11 +N
(

0,VE(d) + κ4
ψ(d)2 + yθ(d)2

d2

)
,

which depends on the distribution of X11, and thus is nonuniversal.
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If the assumptions of Theorem 2.3 hold, we conclude from Remarks 2.6–2.8 that |〈vi , v̂i〉|2
always has a Gaussian fluctuation if either the entries of X are Gaussian or one of ui and vi

is delocalized in the sense ‖ui‖∞ = o(1) or ‖vi‖∞ = o(1). In the general setting when the
noise matrix is non-Gaussian, the detailed distribution will rely on both the structure of the
singular vectors and the noise matrix X.

Next, we study the distributions of the right singular space. For two vectors wa =
(wa(1), . . . ,wa(m))T , a = 1,2, we denote

sk,l(w1,w2) :=
m∑

i=1

w1(i)
kw2(i)

l.

Recall R from (1.7). We have the following theorem.

THEOREM 2.9 (Right singular subspace). Assume that (1.3), (1.4), (1.8) and Assump-
tion 2.1 hold. Let � = ∑r

i=1 �i , where �i is defined in (2.5). Let Z be a random variable
independent of � with law Z ∼N (0,V), where

V :=
r∑

i=1

VE(di) + κ4

r∑
i,j=1

(
ψ(di)ψ(dj )

didj

s2,2(ui ,uj ) + y
θ(di)θ(dj )

didj

s2,2(vi ,vj )

)

+ κ3√
n

r∑
i,j=1

4

di

θ(dj )
(
θ(di)s2,1(vi ,vj )s1(uj ) − ψ(di)s2,1(ui ,uj )s1(vj )

)
.

Then for any bounded continuous function f , we have that

lim
n→∞

(
Ef

(√
n

(
R −

r∑
i=1

a(di)

))
−Ef (� +Z)

)
= 0.

2.2. Proof strategy. In this subsection, we briefly describe our proof strategy. We first
review the method used in a related work [41], and then we highlight the novelty of our
strategy.

As we mentioned, in [41], the authors derive the distribution of outliers (outlying eigen-
values) of the fixed-rank deformation of Wigner matrices. The main technical input is the
isotropic local law for Wigner matrices, which provides a precise large deviation estimate for
the quadratic form 〈u, (W − z)−1v〉 for any deterministic vectors u,v. Here, W is a Wigner
matrix. It turns out that an outlier of the deformed Wigner matrix can also be approximated
by a quadratic form of the Green function, of the form 〈u, (W − z)−1u〉. So one can turn
to establish the law of the quadratic form of the Green function instead. In [41], the authors
decompose the proof into three steps. First, the law is established for the GOE/GUE, the
Gaussian Wigner matrix, for which orthogonal/unitary invariance of the matrix can be used
to facilitate the proof. In the second step of going beyond Gaussian matrix, in order to capture
the independence of the Gaussian part and the non-Gaussian part of the limiting distribution
of the outliers, the authors construct an intermediate matrix in which most of the matrix en-
tries are replaced by the Gaussian ones while those with coordinates corresponding to the
large components of u are kept as generally distributed. The intermediate matrix allows one
to use the nice properties of the Gaussian ensembles such as orthogonal/unitary invariance
for the major part of the matrix, and meanwhile keeps the non-Gaussianity induced by the
small amount of generally distributed entries. In the last step, the authors of [41] derive the
law for the fully generally distributed Wigner matrix by further conducting a Green function
comparison with the intermediate matrix.



SINGULAR VECTOR AND SINGULAR SUBSPACE DISTRIBUTION 377

For our problem, similarly, we will use the isotropic law of the sample covariance matrix
in [14, 43] as a main technical input. It turns out that for the singular vectors, we can ap-
proximately represent

√
n|〈ûi ,ui〉| (after appropriate centering) in terms of a quantity of the

form

Qi = √
n
(
Tr

(
G(pi)

) − �1(pi)
)
Ai + Tr

(
G′(pi) − �′

1(pi)
)
Bi),(2.7)

where G is the Green function of the linearization of the sample covariance matrix and �1 is
the deterministic approximation of G; see (4.5) and (4.10) for the definitions. Here, both Ai

and Bi are deterministic fixed-rank matrices. Hence, differently from the outlying eigenvalues
or singular values, the Green function representation of the singular vectors also contains
the derivative of the Green function. More importantly, instead of the three step strategy
in [41], here we derive the law of the above Qi directly for generally distributed matrix.
Recall �i defined in (2.5), whose random part is proportional to u∗

i Xvi , which is simply a
linear combination of the entries of X. Inspired by [41], we decompose �i into two parts,
say �̃i and �̂i . The former contains the linear combination of xk�’s for those indices k, �

corresponding to the large components uik and vi� in ui and vi . The latter contains the linear
combinations of the rest of xk�’s. Note that �̂i is asymptotically normal by CLT since the
coefficients of xk�’s are small. However, �̃i may not be normal. The key idea of our strategy
is to show the following recursive estimate: For any fixed k ∈ N, we have

E(Qi − �̃i)
keit�̃i = (k − 1)ṼiE(Qi − �̃i)

k−2eit�̃i + o(1),(2.8)

for some positive number Ṽi . Choosing t = 0, we can derive the asymptotic normality of
Qi − �̃i for (2.8) by the recursive moment estimate. Choosing t to be arbitrary, we can
further deduce from (2.8) that

Eeis(Qi−�̃i )+it�̃i = Eeis(Qi−�̃i )Eeit�̃i + o(1).

Then asymptotic independence between Qi − �̃i and �̃i follows. Hence, we prove both
the asymptotic normality and asymptotic independence from (2.8). The method of using the
recursive estimate to get the large deviation bounds for Green function or some functional of
the Green functions has been previously used in the context of the random matrix theory. For
instance, we refer to [47]. However, as far as we know, it is the first time to use the recursive
estimate to show the normality and the independence simultaneously for the functionals of
the Green functions.

Moreover, we remark that the approach in this paper can also be applied to derive the
distribution of the outlier eigenvectors of the spiked sample covariance matrix [7] and the
deformed Wigner matrix.

Finally, we briefly compare the methods used in this paper and the related work [23].
In [23], the authors study the distribution of |〈̂v, e1〉|2 of a deformed Wigner matrix whose
deformation is a block diagonal deterministic Hermitian matrix containing one large spike
θe1e

∗
1 which creates one outlier of the deformed Wigner matrix. Here, v̂ is the random outlier

eigenvector. By the Helffer–Sjöstrand formula, they represent |〈̂v, e1〉|2 in terms of an integral
(over z) of e∗

1(W − z)−1e1. In contrast to our work, the major difference in [23] is that they
establish the limiting distribution for the whole process e∗

1(W − z)−1e1 in z, and then use
functional limit theorem to conclude the limit of the integral. In our work, relying on the
isotropic law, we first integrate out the contour integral approximately. This results in the
linear combination in (2.7), and then we only need to consider the joint distribution of the
quadratic form of G and G′ at a single point p(di). Moreover, in [23], the authors decompose
the quadratic form e∗

1(W − z)−1e1 into two parts using Schur’s complement, where one of
them can be proved to be Gaussian using an extension of the CLT for quadratic forms as in
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the previous work [24]. It is worth noticing that the independence between the Gaussian and
non-Gaussian parts follows directly from the special structure of the model in [23]. However,
in [41] and our work, since we do not have structural assumptions on S, we need to make
more dedicated efforts for the independence (see [41], Proposition 7.12, and Proposition 5.1).

3. Simulations and statistical applications.

3.1. Numerical simulations. In this section, we present some numerical simulations for
our results stated in Section 2.1. For the simulations, we consider two specific distributions
for our noise matrix. We assume that

√
nxij ’s are i.i.d. N (0,1) or i.i.d. with the distribution

1
3δ√

2 + 2
3δ− 1√

2
. We call these two types of noise as Gaussian noise and two-point noise,

respectively. It is easy to check that the 3rd and 4th cumulants of the distribution 1
3δ√

2 +
2
3δ− 1√

2
are κ3 = 1√

2
and κ4 = −3

2 . In the sequel, let {ei}Mi=1 and {f j }nj=1 be the canonical

basis of RM and R
n, respectively. Denote by 1m the all-one vector in R

m.
Assume that S has rank r = 1 and admits the singular value decomposition S = duT v.

Set the dimension ratio y = M/n = 0.5. We present the simulations corresponding to the
special cases discussed in Remarks 2.5–2.8. Specifically, we consider following four cases:
1. Gaussian noise, u = e1 and v = f 1; 2. Two-point noise, u = 1M/

√
M and v = 1/

√
n;

3. Two-point noise, u = 1M/
√

M and v = f 1; 4. Two-point noise, u = e1 and v = f 1.
The normalization of

√
n(|〈̂v,v〉|2 − a(d)) listed in the above cases are chosen according

to the calculations in Remarks 2.5–2.8. For case 4, we further subtract the non-Gaussian
part −2θ(d)

√
nX11 from the statistic. Hence, in all four cases, we expect that the asymp-

totic distributions are normal. We denote the normalized statistics of the above four cases as
Rg,Rdt ,Rpt and Rst , respectively, and we refer to the Supplementary Material [8], Section
A, for more details on the definitions.

In Figure 1 of [8], we plot the ECDFs of of Rg,Rdt ,Rpt ,Rst in subfigures (A), (B), (C),
(D), respectively, for n = 500 and various values of d = 2,3,5,10. The distributions of these
quantities are fairly close to the standard normal distribution. In [8], Section A, we also record
the probabilities for different quantiles of the empirical cumulative distributions (ECDFs) of
the above statistics, they are fairly close to standard Gaussian even for a small sample size
n = 200.

3.2. Statistical applications. In this section, we will briefly discuss the applications of
our main results to the singular vector and singular subspace estimation and inference, and
leave more details to the Supplementary Material [8].

We start with the estimation part and focus on the right singular vector and subspace. The
estimation of singular vector and subspace is important in the recovery of low-rank matrix
based on noisy observations (see, for instance, [18, 20, 28] and reference therein). It is clear
that (see Lemma D.1 in [8]) the sample singular vector is concentrated on a cone with axis
parallel to the true singular vector. The aperture of the cone is determined by the deterministic
function a(d) defined in (2.2). Further, when d increases, the sample singular vector will get
closer to the true singular vector in �2 norm. It can be seen from the result in Theorem 2.3 that
the variance of the fluctuation also decays when d increases. This phenomenon is recorded
in Figure 2 in the Supplementary Material [8].

Empirically, it can be seen from Figure 2 in [8] that for a sequence of y ∈ [ 1
10 ,10], when

d > 5, the variance part is already very small and hence the fluctuation can be ignored. Fur-
ther, when d > 7.5, we can use the sample singular vector to estimate the true singular vector
since their inner product is rather close to 1. Finally, note that the noise type will affect the
variance of the fluctuation. Especially when the noise has negative κ3 and κ4, we can ignore
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the fluctuation for a smaller value of d . Once the singular vectors are estimated, the estimation
of the singular subspace follows.

Next, we consider the inference of the singular vectors and subspace of S. Recall the
decomposition in (1.2). For brevity, here we focus our discussion on the inference of V ,
assuming that U,D and the necessary parameters of X (e.g., cumulants of the entries of
X) are known. In the Supplementary Material [8], we will also briefly discuss the possible
extension of our results to adapt to the situation when D and the parameters of X are not
known. Especially, using Theorem 2.3 we can test whether a singular vector vi is equal to a
given vector vi0, which can be formulated as

H 0 : vi = vi0, H a : vi �= vi0,(T0)

and we can choose the testing statistic to be

S0 := √
n
(∣∣〈̂vi ,vi0〉

∣∣2 − a(di)
)
.

Further, using Theorem 2.9, one can test if the matrix V is equal to a given matrix, which can
be formulated as

H 0 : V = V0, H a : V �= V0,(T1)

where V0 = (v10, . . . ,vi0) is a given matrix consisting of orthonormal columns. We can
choose the testing statistic to be

S1 = √
n

(
r∑

i,j=1

∣∣〈̂vi ,vj0〉
∣∣2 −

r∑
i=1

a(di)

)

= √
n

(
1

2

(
2r − ∥∥V̂r V̂

∗
r − V0V

∗
0

∥∥2
F

) −
r∑

i=1

a(di)

)
.

(3.1)

We remark here that in some cases like X is Gaussian, we can see from Theorem 2.9 that
S1 is not a good statistic to distinguish V0 from V0O for some deterministic r × r orthogo-
nal matrix O . Specifically, one cannot tell if V̂r is the matrix of the singular vectors of the
model X +UDV ∗

0 or X +UD(V0O)∗, since V0V
∗
0 = (V0O)(V0O)∗ in (3.1) and the limiting

distribution of S1 does not depend on V when X is Gaussian. Hence, we do not expect the
statistic S1 to be powerful for the test (T1) when the alternative is of the form V0O in some
cases like Gaussian noise. In other words, in this case, what one can test is if V V ∗ = V0V

∗
0 .

Nevertheless, one can still do the test (T1) by using the testing statistic of the diagonal parts
of S1 only, that is, S1d = √

n(
∑r

i |〈̂vi ,vi0〉|2 − ∑r
i=1 a(di)). Under the null hypothesis, S1d

has the same distribution as S1 since it will be clear that |〈̂vi ,vj0〉|2 is negligible if i �= j , in
the null case. But note that the limiting distribution of S1d is no longer invariant under taking
right orthogonal transformation for V0. Hence, it can be used to test if V = V0.

We mention that both (T0) and (T1) could be useful in many scientific disciplines, espe-
cially when the singular vectors of S are sparse and have practical meanings. For instance, an
important goal of the study of gene expression data for cancer is to simultaneously identify
related genes and subjects grouped together according to the cancer types [48], Section 2. For
this purpose, the right singular vectors are used to visualize the gene grouping (see Figure 1
of [48]) and the left singular vectors are used to represent the subject grouping (see Figure 2
of [48]). Other examples include the study of the nutrition content data of different foods [48]
and the mortality rate data after expanding on suitable basis functions [60], Section 3. In the
literature, various algorithms have been proposed to estimate the sparse singular vectors; for
instance, see [26, 48, 60, 61]. From the statistical perspective, with the above estimates, it
is natural to do inference on the singular vectors. For instance, for the gene expression data



380 Z. BAO, X. DING AND A. K. WANG

of lung caner, researchers may be interested in testing whether a certain type of cancer is
determined by a subset of genes and this is related to doing inference on the right singular
vectors and right singular subspace.

Since we assume that U,D and the necessary parameters of X (e.g., cumulants of the
entries of X) are known, we can carry out the z-score test to test H 0 in both (T0) and (T1).
Due the similarity of (T0) and (T1), we focus on (T1) and leave the detailed discussions and
simulations to the Supplementary Material [8].

4. Techincal tools and Green function representations. This section is devoted to pro-
viding some basic notions and technical tools, which will be needed often in our proofs for the
theorems. The basic notions are given in Section 4.1. A main technical input for our proof is
the isotropic local law for the sample covariance matrix obtained in [14, 43]. It will be stated
in Section 4.2. In Section 4.3, we represent (asymptotically) |〈̂vi ,vi〉|2’s and R (cf. (1.7)) in
terms of the Green function. The discussion is based on [26], where the limits for |〈ûi ,uj 〉|2
and |〈̂vi ,vj 〉|2 are studied. We then collect a few auxiliary definitions in Section 4.4.

4.1. Basic notions. For a positive integer n, we denote by [n] the set {1, . . . , n}. Let C+
be the complex upper-half plane. Further, we define the following linearization for our model

Y(z) := UD(z)U∗ + H(z), z = E + iη ∈ C
+,(4.1)

where

U :=
(
U

V

)
, D(z) := √

z

(
D

D

)
, H(z) := √

z

(
X

X∗
)

.(4.2)

In the sequel, we will often omit z and simply write Y ≡ Y(z),D ≡ D(z) and H ≡ H(z)

when there is no confusion.
We denote the empirical spectral distributions (ESD) of the matrices XX∗ and X∗X by

F1(x) := 1

M

M∑
i=1

1{λi(XX∗)≤x}, F2(x) := 1

n

n∑
i=1

1{λi(X
∗X)≤x}.

F1(x) and F2(x) are known to satisfy the Marchenko–Pastur (MP) law [50]. More precisely,
almost surely, F1(x) converges weakly to a nonrandom limit F1y(x) which has a density
function given by

ρ1(x) :=
⎧⎪⎨⎪⎩

1

2πxy

√
(λ+ − x)(x − λ−) if λ− ≤ x ≤ λ+,

0 otherwise,

and has a point mass 1 − 1/y at the origin if y > 1, where λ+ = (1 + √
y)2 and λ− =

(1 − √
y)2. Further, the Stieltjes’s transform of F1y is given by

(4.3) m1(z) :=
∫ 1

x − z
dF1y(x) = 1 − y − z + i

√
(λ+ − z)(z − λ−)

2zy
for z ∈ C

+,

where the square root denotes the complex square root with a branch cut on the negative real
axis. Similarly, almost surely, F2(x) converges weakly to a nonrandom limit F2y(x) which
has a density function given by

ρ2(x) :=
⎧⎨⎩

1

2πx

√
(λ+ − x)(x − λ−) if λ− ≤ x ≤ λ+,

0 otherwise,
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and a point mass 1 − y at the origin if y < 1. The corresponding Stieltjes’s transform is

(4.4) m2(z) :=
∫ 1

x − z
dF2y(x) = y − 1 − z + i

√
(λ+ − z)(z − λ−)

2z
.

Our estimation relies on the local MP law [56] and its isotropic version [14, 43], which
provide sharp large deviation estimates for the Green functions

G(z) = (H − z)−1, G1(z) = (
XX∗ − z

)−1
, G2(z) = (

X∗X − z
)−1

.

Here, we recall the definition in (4.2). By Schur complement, one can derive

(4.5) G(z) =
(

G1(z) z−1/2G1(z)X

z−1/2X∗G1(z) G2(z)

)
.

The Stieltjes transforms for the ESD of XX∗ and X∗X are defined by

m1n(z) = 1

M
TrG1(z) = 1

M

M∑
i=1

Gii(z),

m2n(z) = 1

n
TrG2(z) = 1

n

M+n∑
μ=M+1

Gμμ(z).

(4.6)

It is well known that m1n(z) and m2n(z) have nonrandom approximates m1(z) and m2(z),
which are the Stieltjes transforms for the MP laws defined in (4.3) and (4.4). Specifically, for
any fixed z ∈ C

+, the following hold:

m1n(z) − m1(z)
a.s.−→ 0, m2n(z) − m2(z)

a.s.−→ 0.

Furthermore, one can easily check that m1(z) and m2(z) satisfy the following self-consistent
equations (see [2] for instance)

m1(z) + 1

z − (1 − y) + zym1(z)
= 0,(4.7)

m2(z) + 1

z + (1 − y) + zm2(z)
= 0.(4.8)

We can also derive the following simple relation from the definitions:

m1(z) = y−1 − 1

z
+ y−1m2(z).(4.9)

Next, we summarize some basic identities in the following lemma without proof. They can
be checked from (4.3) and (4.4) via elementary calculations.

LEMMA 4.1. Denote p ≡ p(x) in (2.1). For any x > y1/4, we have

m1(p) = −1

x2 + y
, m2(p) = −1

x2 + 1
,

m′
1(p) = x4

(x2 + y)2(x4 − y)
, m′

2(p) = x4

(x2 + 1)2(x4 − y)
.

Furthermore, denote by T (t) = tm1(t)m2(t). We have

T (p) = x−2, T ′(p) = (
y − x4)−1

.

In the sequel, we also need the following notion on high probability events.
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DEFINITION 4.2 (High probability event). We say that an n-dependent event E ≡ E(n)

holds with high probability if, for any large ϕ > 0,

P(E) ≥ 1 − n−ϕ,

for sufficiently large n ≥ n0(ϕ).

We also adopt the notion of stochastic domination introduced in [30].

DEFINITION 4.3 (Stochastic domination). Let

X = (
X(n)(u) : n ∈ N, u ∈ U(n)), Y = (

Y(n)(u) : n ∈ N, u ∈ U(n)),
be two families of nonnegative random variables, where U(n) is a possibly n-dependent pa-
rameter set. We say that X is stochastically dominated by Y, uniformly in u, if for all small ε

and large ϕ, we have

sup
u∈U(n)

P
(
X(n)(u) > nεY(n)(u)

) ≤ n−ϕ,

for large enough n ≥ n0(ε, ϕ). In addition, we use the notation X = O≺(Y) if |X| is stochasti-
cally dominated by Y, uniformly in u. Throughout this paper, the stochastic domination will
always be uniform in all parameters (mostly are matrix indices and the spectral parameter z)
that are not explicitly fixed.

4.2. Isotropic local laws. The key ingredient in our estimation is a special case of the
anisotropic local law derived in [43], which is essentially the isotropic local law previously
derived in [14]. Let ⊕ be the direct sum of two matrices. Set

(4.10) �1(z) := m1(z)IM ⊕ m2(z)In.

We will need the isotropic local law outside the spectrum of the MP law. For λ+ = (1 +
y1/2)2, define the spectral domain

(4.11) So ≡ So(τ ) := {
z = E + iη ∈ C

+ : λ+ + τ ≤ E ≤ τ−1,0 ≤ η ≤ τ−1}
,

where τ > 0 is a fixed small constant. Recall m1n and m2n defined in (4.6).

LEMMA 4.4 (Theorem 3.7 of [43], Theorem 3.12 of [14] and Theorem 3.1 of [56]). Fix
τ > 0, for any unit deterministic u,v ∈ R

M+n, we have

〈
u,

(
G(z) − �1(z)

)
v
〉 = O≺

(√
Imm2(z)

nη

)
,(4.12)

∣∣m1n(z) − m1(z)
∣∣ = O≺

(
1

n

)
,

∣∣m2n(z) − m2(z)
∣∣ = O≺

(
1

n

)
,(4.13)

uniformly in z ∈ So.

REMARK 4.5. The bounds in (4.13) cannot be directly read from any of Theorem 3.7 of
[43], Theorem 3.12 of [14] or Theorem 3.1 of [56]. In all these theorems, a weaker bound
O≺( 1

nη
) is stated for z both inside and outside of the support of the limiting spectral dis-

tribution. Here, since our parameter z can be real, we use the stronger bound 1
n

instead
of 1

nη
. For z ∈ So, such a bound follows from the rigidity estimates of eigenvalues in [56]

and the definition of the Stieltjes transform easily. Specifically, by (3.7) in [56], we know
that for a = 1,2, supt∈R |Fa(t) − Fay(t)| ≺ 1

n
, and further by (3.6) of [56] we know that

sup
t∈R:|t |≥2+n

− 2
3 +ε

|Fa(t) − Fay(t)| = 0 with high probability. Then using the integration by

parts to man(z) − ma(z) = ∫
(t − z)−1 d(Fa(t) − Fay(t)), one can easily conclude the bounds

in (4.13).
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Following from Lemma 4.4, by further using Cauchy’s integral formula for derivatives, we
have the following uniformly in z ∈ So, for any given l ∈ N,

(4.14)
〈
u,

(
G(l)(z) − �

(l)
1 (z)

)
v
〉 = O≺

(√
Imm2(z)

nη

)
.

Denote by κ = |E − λ+|. We summarize some basic estimates of m1,2(z) without proof.
For any two numbers an and bn (might be n-dependent), we write an ∼ bn if there exist two
positive constants C1 and C2 (independent of n) such that C1|bn| ≤ |an| ≤ C2|bn|.

LEMMA 4.6. The following estimates hold uniformly in z ∈ So:∣∣m′
1,2(z)

∣∣ ∼ ∣∣m1,2(z)
∣∣ ∼ 1,(4.15)

Imm1(z) ∼ Imm2(z) ∼ η√
κ + η

.(4.16)

Given any deterministic bounded Hermitian matrix A with fixed rank, it is easy to see
from Lemma 4.4 and Lemma 4.6, the spectral decomposition and (4.14) that the following
estimates hold uniformly in z ∈ So: For any fixed k, � ∈ N,

max
μ,ν

∣∣(G(l)(z)A
)
μν − (

�
(l)
1 (z)A

)
μν

∣∣ = O≺
(

1√
n

)
,

TrG(l)(z)A − Tr�(l)
1 (z)A = O≺

(
1√
n

)
,(4.17)

max
μ,ν

∣∣(G(k)(z)AG(l)(z)
)
μν − (

�
(k)
1 A�

(l)
1

)
μν

∣∣ = O≺
(

1√
n

)
.

In our proof, we will rely on the estimates of powers of G, that is, Gl, l = 2,3,4. We have
the following lemma whose proof is stated in [8].

LEMMA 4.7. We have the following recursive relation:

(4.18) G2 = 2G′ + G

z
, G3 = (

G2)′ + G2

z
, G4 = 2

3

(
G3)′ + G3

z
.

Recall �1 defined in (4.10) and further define

�2 := 2�′
1 + 1

z
�1, �3 := �′

2 + 1

z
�2, �4 := 2

3
�′

3 + 1

z
�3.(4.19)

With Lemma 4.7, similar to (4.12) and (4.14), we can get the following estimates for l =
1,2,3,4:

(4.20)
〈
u,

(
Gl − �l

)
v
〉 = O≺

(
1√
n

)
,

uniformly in z ∈ So. For brevity, in the sequel, we will use the notation

�l ≡ �l(z) := Gl(z) − �l(z), l ∈N.(4.21)
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4.3. Green function representation. In this section, we represent (asymptotically)
|〈̂vi ,vi〉|2’s and R (cf. (1.7)) in terms of the Green function. The derivation relies on the
results obtained in [26]. Recall p(d) in (2.1) and a(d) in (2.2). For i ∈ [r], define

(4.22) hi(x) = x4p′(x)p(x)

(x + di)2 ,

and we use the shorthand notation ī = i + r . To state results for the right singular vectors,
we introduce a 2r × 2r matrix function Wi(x) for x > 0, which has only four nonzero entries
given by (

Wi(x)
)
ii = m2

2(x),
(
Wi(x)

)
ī ī = 1

d2
i x

,

(
Wi(x)

)
iī = (

Wi(x)
)
īi = −m2(x)

di

√
x

.

(4.23)

We further denote the matrix function

Mi(x) = UWi(x)U∗.(4.24)

With the above notation, we further introduce two (M + n) × (M + n) matrices

AR
i = −d2

i

(
h′

i (di)Mi(pi) + hi(di)p
′(di)M

′
i (pi)

)
,

BR
i = −d2

i h(di)p
′(di)Mi(pi).

(4.25)

In light of the definition of U in (4.2), we have

AR
i =

(
ωi1uiu

T
i ωi2uiv

T
i

ωi3viu
T
i ωi4viv

T
i

)
, BR

i =
(
�i1uiu

T
i �i2uiv

T
i

�i3viu
T
i �i4viv

T
i

)
.(4.26)

Here, we used the notation

ωi1 := −d2
i

(
h′

i (di)
(
Wi(pi)

)
ii + hi(di)p

′(di)
(
W ′

i (pi)
)
ii

)
,

ωi4 := −d2
i

(
h′

i (di)
(
Wi(pi)

)
ī ī + hi(di)p

′(di)
(
W ′

i (pi)
)
ī ī

)
,

ωi2 = ωi3 := −d2
i

(
h′

i (di)
(
Wi(pi)

)
iī + hi(di)p

′(di)
(
W ′

i (pi)
)
iī

)
,

�i1 := −d2
i hi(di)p

′(di)
(
Wi(pi)

)
ii ,

�i4 := −d2
i hi(di)p

′(di)
(
Wi(pi)

)
ī ī ,

�i2 = �i3 := −d2
i hi(di)p

′(di)
(
Wi(pi)

)
iī .

Recall the notation introduced in (4.21). We have the following lemma whose proof is
stated in [8].

LEMMA 4.8. Under assumptions of (1.3), (1.4), (1.8) and Assumption 2.1, we have∣∣〈vi , v̂i〉
∣∣2 = a(di) + Tr

(
�1(pi)A

R
i

) + Tr
(
�′

1(pi)B
R
i

) + O≺
(

1

n

)
.

Furthermore, we have

R =
r∑

i=1

a(di) +
r∑

i=1

(
Tr

(
�1(pi)A

R
i

) + Tr
(
�′

1(pi)B
R
i

)) + O≺
(

1

n

)
.(4.27)
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4.4. Auxiliary definitions. It is convenient to introduce the following notion of conver-
gence in distribution.

DEFINITION 4.9 ( [41], Definition 7.3). Two sequences of random variables, {Xn} and
{Yn}, are asymptotically equal in distribution, denoted as Xn � Yn, if they are tight and satisfy

lim
n→∞

(
Ef (Xn) −Ef (Yn)

) = 0

for any bounded continuous function f .

We also collect some basic results on convergence and equivalence in distribution in the
Supplementary Material [8], Lemma C.3.

The following notation from [41], Definition 7.11, will be convenient for us when we
replace random variables with their i.i.d. copies.

DEFINITION 4.10. Let {σn} be a sequence of bounded positive numbers. If Xn and Yn

are independent random variables with Yn � N (0, σ 2
n ), and if Sn � Xn + Yn, we write Sn �

Xn +N (0, σ 2
n ).

5. Proof of Theorems 2.3. For brevity, in this section, we omit the subindices of
di,ui ,vi , ûi , v̂i and write d,u,v, û, v̂ instead. Similarly, we write the matrices AR

i and BR
i

(cf. (4.25)) as A and B , respectively. We also write m1,2(z) as m1,2 for brevity.
By Lemma 4.8, we can reduce the problem to study

Q ≡ Q(z) := √
n
(
Tr

(
�1(z)A

) + Tr
(
�′

1(z)B
))

,(5.1)

at z = p(d) (cf. (2.1)).
In the sequel, we will prove the limiting distribution of Q(z) at z = p(d). The key task is

to prove Proposition 5.1 below. In this section, we will show that Theorem 2.3 follows from
Proposition 5.1. Let index i ∈ [M] and j ∈ [n]. Denote the shorthand notation

j ′ = j + M.(5.2)

For short, we also write
∑

i,j = ∑M
i=1

∑n
j=1.

In order to state Proposition 5.1, we first introduce some notation. For a fixed small con-
stant ν > 0, denote by

B(ν) := {
(i, j) ∈ [M] × [n] : ∣∣u(i)

∣∣ > n−ν,
∣∣v(j)

∣∣ > n−ν}
,

the set of the indices of those components with large magnitude. Since u and v are unit
vectors, we have |B(ν)| ≤ Cn4ν for some constant C > 0. Let S(ν) be the complement of
B(ν), that is,

S(ν) = ([M] × [n]) \B(ν).(5.3)

For brevity, we introduce the notation

(5.4) P(α1, . . . , αm),

to represent the set of all the permutations of (α1, . . . , αm), where αi’s can be alike. Recall
(4.10) and (4.19). We set the deterministic quantity

�d ≡ �d(z)

:= −κ3z
3/2

n

∑
i,j

(
(�1)ii(�1)j ′j ′

(
2(�1A�1)ij ′ + (

�1B�′
1
)
ij ′ + (

�′
1B�1

)
ij ′

)
(5.5)

+ 1

2

∑
(a1,a2,a3)∈P(2,1,1)

(�a1)ii(�a2)j ′j ′
(
(�1B�a3)ij ′ + (�a3B�1)ij ′

))
,
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and the random variable

�r ≡ �r(z) := √
nz

∑
(i,j)∈B(ν)

xij cij ,(5.6)

where

cij ≡ cij (z) := − ∑
l1,l2∈{i,j ′}

l1 �=l2

(
(�1A�1)l1l2 − 1

2z
(�1B�1)l1l2

(5.7)

+ 1

2
(�1B�2)l1l2 + 1

2
(�2B�1)l1l2

)
.

Define the M × n matrix function S ≡ S(z) = (sij ) with

sij ≡ sij (z) := ∑
l1,...,l4∈{i,j ′}
l1 �=l4,l2 �=l3

(
(�1A�1)l1l2(�1)l3l4 − 1

2z
(�1B�1)l1l2(�1)l3l4

(5.8)

+ 1

2

∑
(a1,a2,a3)∈P(2,1,1)

(�a1B�a2)l1l2(�a3)l3l4

)
.

Further, we define the function

V ≡ V (z) := VE(z) + 2
κ3z

3
2√

n

∑
(i,j)∈S(ν)

cij sij + κ4z
2

n

∑
i,j

s2
ij + z

∑
(i,j)∈S(ν)

c2
ij ,(5.9)

where

VE ≡ VE(z) := −√
z

∑
α=1,2

(
mαa1α + mα

2
b̃1α + m′

αb1α

)
.(5.10)

Here, we refer to (E.9) in [8] for the definitions of a1α , b1α and b̃1α for α = 1,2.
With �d and �r defined in (5.5) and (5.6), we introduce the notation

� ≡ �(z) := �r(z) + �d(z)(5.11)

and define

Q ≡ Q(z) := Q(z) − �(z).(5.12)

PROPOSITION 5.1. Under the assumptions of Theorem 2.3, we have that Q(pi) and
�(pi) are asymptotically independent. Furthermore,

(5.13) Q(pi) � N
(
0,V (pi)

)
.

We first show how Proposition 5.1 implies Theorem 2.3.

PROOF OF THEOREM 2.3. By Lemma 4.8 and (5.1),
√

n
(∣∣〈vi , v̂i〉

∣∣2 − a(di)
) = Q(pi) + O≺

(
n− 1

2
)
.

Here, Q(pi) is defined in (5.1) with (A,B) = (AR
i ,BR

i ) (cf. (4.25)). By Proposition 5.1, we
have that at z = pi ,

Q = �d + �r + Q � �d + √
nz

∑
(i,j)∈B(ν)

xij cij +N (0,V ).
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Next, by the central limit theorem and Lemma C.3 in [8], one has

√
nz

∑
i,j

xij cij � √
nz

∑
(i,j)∈B(ν)

xij cij +N
(

0, z
∑

(i,j)∈S(ν)

(cij )
2
)
.

Furthermore, by the definition of S(ν), we notice that

n−1/2
∑

(i,j)∈S(ν)

cij sij = n−1/2
∑
i,j

cij sij + O
(
n− 1

2 +4ν)
.

Let C(z) = (cij (z)) with cij (z) defined in (5.7) and recall S(z) from (5.8). Using Lemma C.3
in [8], we conclude that

Q(pi) � �d(pi) + √
npi Tr

(
X∗C(pi)

) +N
(
0,V(pi)

)
,

where

V(pi) = VE(pi) + 2
κ3pi

3/2
√

n
Tr

(
C(pi)

∗S(pi)
) + κ4pi

2

n
Tr

(
S(pi)

∗S(pi)
)
.

Denote

�i = √
npi Tr

(
X∗C(pi)

) + �d(pi)

and Zi ∼ N (0,V(pi)), which is independent of �i . Next, plugging z = pi into (5.5), (5.7),
(5.8), using Lemma 4.1 and taking into account the definitions of AR

i ,BR
i in (4.25), we find

that

�i = −√
n

2(d4
i + 2yd2

i + y)

d3
i (d2

i + 1)2
u∗

i Xvi − 2(d6
i − 3yd2

i − 2y)

d5
i (d2

i + 1)2

(
κ3

n

∑
k,l

ui (k)vi (l)

)
.

The variance V(pi) is the sum of

2
κ3√
n
p

3/2
i Tr

(
C(pi)

∗S(pi)
) + κ4

n
p2

i Tr
(
S(pi)

∗S(pi)
)

= −4(d4
i + 2yd2

i + y)(d6
i − 3yd2

i − 2y)

d7
i (d2

i + 1)4

(
κ3√
n

∑
k,l

ui (k)3vi (l)

)

+ 4(d4
i + 2yd2

i + y)2

d7
i (d2

i + 1)4

(
κ3√
n

∑
k,l

ui (k)vi (l)
3
)

+ (d6
i − 3yd2

i − 2y)2

d8
i (d2

i + 1)4

(
κ4

∑
k

ui (k)4
)

+ (d4
i + 2yd2

i + y)2

d8
i (d2

i + 1)4

(
κ4yn

∑
l

vi (l)
4
)

and

VE(pi) = 2

d4
i − y

(
2y(y + 1)

(
d4 + 2yd2 + y

d3(d2 + 1)2

)2
− y(y − 1)(5y + 1)

di(d
2
i + 1)2

(
d4 + 2yd2 + y

d3(d2 + 1)2

)

+ (d4
i + y)(d2

i + y)2

d3
i (d2

i + 1)2

(
d6 − 3yd2 − 2y

d3(d2 + 1)2

)
+ 2y2(y − 1)2

d2
i (d2

i + 1)4

)
.

The last expression is obtained by using the definitions of a1α , b1α and b̃1α for α = 1,2 in
(E.9) of [8] and performing tedious yet elementary calculations. Recall (2.3). The conclusion
of Theorem 2.3 follows immediately by rewriting �i and V(pi) in terms of θ(di) and ψ(di).

�
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The rest of this section is devoted to the proof of Proposition 5.1. Our proof relies on
the cumulant expansion in Lemma C.1 of [8], where we need to control the expectation.
Throughout the proof, we will frequently use the estimates in (4.17). These estimates hold
with high probability, which do not yield bounds for the expectations directly. In order to
translate the high probability bounds into those for the expectations, one needs a crude deter-
ministic bound for the Green function on the bad event with tiny probability. To this end, we
will work with a slight modification of the real z = p(d) for Green function. Specifically, in
the proof of the following Proposition 5.2, we will also use the parameter

(5.14) z = p(d) + in−C,

for a large constant C. On the bad event, we will use the naive bound of the Green function
‖G‖ ≤ NC , which will be compensated by the tiny probability of the bad event. At the end,
by the continuity of G(z̃) at z̃ away from the support of the MP law, it is (asymptotically)
equivalent to work with (5.14), for the proof of Proposition 5.1. We first claim that it suffices
to establish the following recursive estimate.

PROPOSITION 5.2. Suppose that the assumptions of Theorem 2.3 hold. Let z0 = p(d)

and z be defined in (5.14). We have

EQ(z)eit�(z0) = O≺
(
n− 1

2 +4ν)
,(5.15)

and for any fixed integer k ≥ 2,

(5.16) EQk(z)eit�(z0) = (k − 1)VEQk−2(z)eit�(z0) + O≺
(
n− 1

2 +4ν)
.

The proof of Proposition 5.2 is our main technical task, which will be stated in Section E
of [8]. Now we first show the proof of Proposition 5.1 based on Proposition 5.2.

PROOF OF PROPOSITION 5.1. Recall the following elementary bound, for any x ∈ R

and sufficiently large N ∈ N, we have

(5.17)

∣∣∣∣∣eix −
N∑

k=0

(ix)k

k!
∣∣∣∣∣ ≤ min

{ |x|N+1

(N + 1)! ,
2|x|N
N !

}
.

First, we write Q(z) = QR(z) + iQI(z), where QR(z) and QI(z) stand for the real and
imaginary parts of Q(z), respectively. According to the choice of z in (5.14), we have the de-
terministic bound |QI(z)| ≤ NC for some large positive constant C. Moreover, by continuity
of the Green function and the Stieltjes transform, one can easily check that |QI(z)| ≤ N−C′

,
for some large positive constant C′ with high probability. Using the small bound N−C′

on
the high probability event and the large deterministic bound NC on the tiny probability event,
one can easily derive from (5.15) and (5.16) that

EQR(z)eit�(z0) = O≺
(
n− 1

2 +4ν)
,(5.18)

EQk
R(z)eit�(z0) = (k − 1)VEQk−2

R (z)eit�(z0) + O≺
(
n− 1

2 +4ν)
.(5.19)

For any s, t ∈R, by (5.17), we have

EeisQR(z)+it�(z0) =
2N−1∑
k=0

(is)k

k! EQk
R(z)eit�(z0) + O

(
s2N

(2N)!EQ2N
R (z)

)
.(5.20)

For the error term on the right-hand side of (5.20), using (5.19) recursively for t = 0, we
first find

EQ2N
R (z) = (2N − 1)!!V N + O≺

(
n− 1

2 +4ν)
.
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Thus, for arbitrarily small ε > 0, by taking N sufficiently large, we have (2N−1)!!V N

(2N)! < ε and
it follows that∣∣∣∣∣EeisQR(z)+it�(z0) −

2N−1∑
k=0

(is)k

k! EQk
R(z)eit�(z0)

∣∣∣∣∣ < ε + O≺
(
n− 1

2 +4ν)
.(5.21)

Using (5.19), we get the following estimate:

(5.22)
2N−1∑
k=0

(is)k

k! EQk
R(z)eit�(z0) =

N−1∑
k=0

(is)2k

(2k)!!V
k
Eeit�(z0) + O≺

(
n− 1

2 +4ν)
.

Next, combing (5.22) with the fact

exp
(

x2

2

)
=

∞∑
k=0

x2k

(2k)!! ,

together with (5.21), we conclude that

(5.23)
∣∣EeisQR(z)+it�(z0) − e− 1

2 V s2
Eeit�(z0)

∣∣ < 2ε + O≺
(
n− 1

2 +4ν)
.

The asymptotic independence of QR(z) and �(z0) is a consequence of (5.23) and the fact
ε is arbitrarily small. (5.13) can be proved by setting s = 0. Although Proposition 5.2 is
proved under the choice (5.14), by continuity of G outside of the support of MP law, we
know Q(z0) = QR(z) + O(N−C′

) with high probability for some positive constant C′. This
concludes the proof of Proposition 5.1. �
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ulation results, further discussions on statistical applications, auxiliary lemmas, the proofs of
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