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To the frequentist who computes posteriors, not all priors are useful
asymptotically: in this paper, a Bayesian perspective on test sequences is
proposed and Schwartz’s Kullback–Leibler condition is generalised to widen
the range of frequentist applications of posterior convergence. With Bayesian
tests and a weakened form of contiguity termed remote contiguity, we prove
simple and fully general frequentist theorems, for posterior consistency and
rates of convergence, for consistency of posterior odds in model selection, and
for conversion of sequences of credible sets into sequences of confidence sets
with asymptotic coverage one. For frequentist uncertainty quantification, this
means that a prior inducing remote contiguity allows one to enlarge credible
sets of calculated, simulated or approximated posteriors to obtain asymptoti-
cally consistent confidence sets.

1. Introduction. In this paper, we examine for which model-prior pairs Bayesian
asymptotic conclusions give rise to conclusions valid in the frequentist sense: how Doob’s
prior-almost-sure consistency is strengthened to reach Schwartz’s frequentist conclusion;
how a test that is consistent prior-almost-surely becomes a test that is consistent in all points
of the model; and how sequences of Bayesian credible sets can serve as frequentist confidence
sets of asymptotic coverage one.

Frequentist posterior consistency conditions focus on prior-model pairs satisfying
Schwartz’s Kullback–Leibler (KL) lower bound [34]. Before generalizing to a contigu-
ity argument for sequential approximation, let us focus on simple circumstances in which
Schwartz’s condition cannot be applied [23].

EXAMPLE 1.1. Consider X1,X2, . . . that are i.i.d.-P0 with continuous, nonzero
Lebesgue density p0 : R → R on an interval of known width (say, 1) but unknown loca-
tion. Parametrize with a continuous density η on [0,1] with η(x) > 0 for all x ∈ (0,1) and
θ ∈R: pθ,η(x) = η(x − θ)1[θ,θ+1](x). If θ �= θ ′, then

−Pθ,η log
pθ ′,η′

pθ,η

= ∞

for all η,η′, so KL neighbourhoods do not have any extent in the θ -direction and no prior is
a KL prior in this model. Nonetheless, the posterior is consistent (see Examples 3.7 and 4.3).

Similarly, heavy tails can undermine the Ghosal–Ghosh–van der Vaart (GGV) condition
[14]: consider an i.i.d. sample of integers from a distribution Pa (a ≥ 1), defined by pa(k) =
Pa(X = k) = Z−1

a k−a(logk)−3, for all k ≥ 2. For a = 1, b > 1,

−Pa log
pb

pa

< ∞, Pa

(
log

pb

pa

)2
= ∞.

No prior can satisfy the GGV condition for neighbourhoods of a = 1. If we change the third
power of the logarithm in pa(k) to a square, Schwartz’s KL-priors also cease to exist.
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Standard frequentist conditions for suitability of priors (given the model) may therefore
imply unnecessary disqualification in comparable but less-obvious ways in more compli-
cated models. Combined with natural questions regarding generalization (e.g., what form
does Schwartz’s theorem take when data are non-i.i.d.? how are credible sets useful to the
frequentist? if posteriors and tests are so close, what about frequentist model selection with
posteriors? etcetera), the examples suggest we look for generalization of KL and GGV con-
ditions. Below we argue that the central property to enable frequentist interpretation of pos-
terior asymptotics is remote contiguity (see Section 3), a less stringent version of Le Cam’s
notion of contiguity [24]. We argue by example in Section 3.3 that remote contiguity has
the potential to provide sequential approximations in nonparametric statistics, analogous to
approximation by contiguous sequences in parametric setting [17]. This is illustrated by re-
cent work [12, 33] that uses remote contiguity to prove consistency with respect to relatively
complicated true data distributions by simpler, approximating sequences of max-stable dis-
tributions in extreme-value theory.

The second change we propose concerns weakening of Schwartz’s testing condition: in-
stead of requiring the existence of uniform test sequences [14, 34], we restrict type-I and
type-II error probabilities (referred to together as “composite power”) of tests when averaged
with the prior. We show that these so-called Bayesian tests exist, if and only if, the posterior
displays prior-almost-sure convergence [11] (rendering our understanding of Doob’s consis-
tency compatible with the occurrence of tests in Schwartz’s theorem). Bayesian tests involve
the prior in the testing condition, a property that is especially important in model-selection
questions and is in line with nonlocality of priors, as in [19].

The most significant practical implication concerns frequentist uncertainty quantification:
Theorem 6.4 shows that if the priors induce remote contiguity, sequences of credible sets can
be enlarged to form sequences of confidence sets with asymptotic coverage one. Compare
this with the main inferential conclusion of the Bernstein–von Mises theorem (asymptotic
validity of credible sets as confidence sets in smooth parametric models [29]). In practice, a
frequentist can calculate, simulate or approximate the posterior, construct associated credi-
ble sets and ‘enlarge’ them to obtain asymptotic confidence sets, provided his prior induces
remote contiguity.

The rest of this paper is organized as follows: Section 2 focusses on an inequality that
relates testing to posterior concentration. Section 3 introduces remote contiguity and the ana-
logue of Le Cam’s first lemma, applies remote contiguity in Bayesian context and compares
contiguity with remote contiguity in the context of parametric and nonparametric regression.
Section 4 applies remote contiguity to posterior consistency and convergence at a rate. In Sec-
tion 5, frequentist model selection with posteriors is considered and Section 6 focusses on the
conversion of sequences of credible sets into sequences of confidence sets with asymptotic
coverage one. Section 7 discusses the conclusions. Although the main focus is theoretical,
examples are provided throughout and Appendix B in the Supplementary Material [22] pro-
vides a larger example illustrating the main points, on goodness-of-fit testing with random
walk data; more elaborate applications of remote contiguity and Bayesian limits are found
in [12, 21, 33]. Definitions, notation and conventions roughly follow those of [27] and are
collected in Appendix A in the Supplementary Material [22].

2. Posterior concentration and asymptotic tests. First, we consider a lemma that re-
lates concentration of posterior mass in certain model subsets to test sequences that dis-
tinguish between those subsets: if consistent tests exist, the posterior concentrates its mass
appropriately.

2.1. Bayesian test sequences. We propose to define test sequences immediately in
Bayesian context by involving priors from the outset. Consider sequentially observed, (pos-
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sibly non-i.i.d.) samples Xn, distributed according to Pθ0,n for some θ0 ∈ �, within a model
θ → Pθ,n. (More generally, refer to Appendix A in the Supplementary Material [22] for no-
tation and conventions.)

DEFINITION 2.1. Given priors (�n) on the measurable spaces (�n,Gn), model subsets
(Bn), (Vn) ⊂ Gn and an ↓ 0, a sequence of Bn-measurable maps φn : Xn → [0,1] is called a
Bayesian test sequence for Bn versus Vn (under �n) of composite power an, if,

(2.1)
∫
Bn

Pθ,nφn d�n(θ) +
∫
Vn

Pθ,n(1 − φn)d�n(θ) = o(an).

We say that (φn) is a Bayesian test sequence for Bn versus Vn (under �n) if (2.1) holds for
some an ↓ 0. If another Bayesian test sequence (ψn) exists of composite power bn = o(an),
we say that (ψn) is stronger than (φn) for testing Bn versus Vn (under �n).

Bayesian test sequences and concentration of the posterior are related through the follow-
ing lemma (in which n-dependence is suppressed for clarity).

LEMMA 2.2. For any B,V ∈ G and any measurable φ : X → [0,1],
(2.2)

∫
B

Pθ�(V |X)d�(θ) ≤
∫
B

Pθφ d�(θ) +
∫
V

Pθ (1 − φ)d�(θ).

PROOF. Due to Bayes’s rule (A.2) and monotone convergence,∫ (
1 − φ(X)

)
�(V |X)dP � =

∫
V

Pθ

(
1 − φ(X)

)
d�(θ).

Accordingly,
∫
B Pθ(1 − φ)�(V |X)d�(θ) ≤ ∫

(1 − φ)�(V |X)dP � = ∫
V Pθ (1 − φ)d�(θ).

Inequality (2.2) follows from the fact that �(V |X) ≤ 1. �

So the mere existence of a test sequence is enough to guarantee posterior concentration, a
fact expressed in n-dependent form through the following proposition. (Local prior predictive
distributions P

�n|Bn
n and P

�n|Vn
n are defined in Definition A.2.)

PROPOSITION 2.3. Let (Xn,Bn), (�n,Gn), (Pn) and (�n) be given. Given sequences
(Bn), (Vn) ⊂ Gn and (an), (bn), (cn) such that an = o(bn ∧ cn) and, �n(Bn) ≥ bn > 0,
�n(Vn) ≥ cn > 0. If,

(i) there exists a Bayesian test sequence for Bn versus Vn of composite power an,

then

(ii) mutually, expected posterior weights vanish,

(2.3) P �n|Bn
n �

(
Vn|Xn) = o

(
anb

−1
n

)
, P �n|Vn

n �
(
Bn|Xn) = o

(
anc

−1
n

)
.

If �n = Bn ∪ Vn for all n ≥ 1, then also (ii) ⇒ (i).

PROOF. Assume (i). Then

P �n|Bn
n �

(
Vn|Xn) = b−1

n

∫
Bn

Pθ,n�
(
Vn|Xn)

d�n(θ) = o
(
anb

−1
n

)
(and analogously for Vn). Assume (ii) and Bn ∪Vn = �n. Define maps φn(X

n) = �(Vn|Xn),
then

bnP
�n|Bn
n �

(
Vn|Xn) + cnP

�n|Vn
n �

(
Bn|Xn) = o(an),

so (φn) defines a Bayesian test sequence for Bn versus Vn of composite power an. �
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We come back to the equivalence of Bayesian test existence and posterior concentration
in Section 2.2, as well as in Section 4. To illustrate how Proposition 2.3 relates to frequentist
posterior concentration and how this involves remote contiguity, consider model subsets Vn =
V that are all equal to the complement of a neighbourhood U of P0. The subsets Bn = B

are thought of as being even closer to the P0,n, in such a way that the expectations of the
random variables Xn �→ �(V |Xn) under P

�n|Bn
n “dominate” their expectations under P0,n

in a suitable way. Then sufficiency of prior mass bn given composite power an, is enough to
assert that P0,n�(V |Xn) → 0. Remote contiguity makes this notion of domination precise.

REMARK 2.4. To conclude this section, take inequality (2.2) one step further, to obtain
Le Cam’s inequality,

P0,n�(Vn|X) ≤ ∥∥P0,n − P �|Bn
n

∥∥
+

∫
Pθ,nφn d�n(θ |Bn) + �n(Vn)

�n(Bn)

∫
Pθ,n(1 − φn)d�n(θ |Vn)

(2.4)

for Bn and Vn such that �n(Bn) > 0 and �n(Vn) > 0. Inequality (2.4) is used in the proof
of the Bernstein–von Mises theorem; see Section 8.4 of [29]. A less successful application
pertains to nonparametric posterior rates of convergence for i.i.d. data, in an unpublished
paper [26].

2.2. Existence of Bayesian test sequences. Lemma 2.2 and Proposition 2.3 require the
existence of test sequences of the Bayesian type. That question is unfamiliar, frequentists are
used to test sequences for uniform testing, like the minimax Hellinger tests of Section 16.4
in [27], or uniform tests for weak neighbourhoods [34] based on Hoeffding’s inequality. Re-
quiring the existence of a Bayesian test sequence c.f. (2.1) is quite different: first of all the
existence of a Bayesian test sequence is linked directly to behaviour of the posterior itself.

THEOREM 2.5. Let (�,G ,�) be given and assume that there is a coupling X ∈ X ∞
with distribution Pθ and marginals Xn ∼ Pθ,n for every θ ∈ � and n ≥ 1. For any B,V ∈ G
with �(B) > 0,�(V ) > 0, the following are equivalent:

(i) there are Bn-msb. φn : Xn → [0,1] such that for �-almost-all θ ∈ B,θ ′ ∈ V ,

φn

(
Xn) Pθ -a.s.−−−→ 0, φn

(
Xn) Pθ ′ -a.s.−−−−→ 1,

(ii) there are Bn-msb. φn : Xn → [0,1] such that for �-almost-all θ ∈ B,θ ′ ∈ V ,

Pθ,nφn → 0, Pθ ′,n(1 − φn) → 0,

(iii) there are Bn-msb. φn : Xn → [0,1] such that∫
B

Pθ,nφn d�(θ) +
∫
V

Pθ,n(1 − φn)d�(θ) → 0,

(iv) for �-almost-all θ ∈ B , θ ′ ∈ V ,

�
(
V |Xn) Pθ,n-a.s.−−−−→ 0, �

(
B|Xn) Pθ ′,n-a.s.−−−−−→ 0.

PROOF. (i) ⇒ (ii) and (ii) ⇒ (iii) by dominated convergence. Assume (iii) and note that
by Lemma 2.2, ∫

Pθ,n�
(
V |Xn)

d�(θ |B) → 0.
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With the coupling X of the observations Xn, martingale convergence in L1(X ∞ × �) (rela-
tive to the probability measure �∗ defined by �∗(A × B) = ∫

B Pθ(A)d�(θ) for measurable
A ⊂ X ∞ and B ⊂ �), shows there is a measurable g : X ∞ → [0,1] such that∫

Pθ

∣∣�(
V |Xn) − g(X)

∣∣d�(θ |B) → 0.

So
∫

Pθg(X)d�(θ |B) = 0, implying that g = 0, Pθ -almost-surely for �-almost-all θ ∈ B .
Using martingale convergence again (now in L∞(X ∞ × �)), conclude �(V |Xn) → 0,
Pθ -almost-surely for �-almost-all θ ∈ B , from which (iv) follows. Choose φ(Xn) =
�(V |Xn, θ ∈ B ∪ V ) to conclude that (iv) ⇒ (i). �

The interpretation of this theorem is gratifying to supporters of the likelihood principle
and pure Bayesians: distinctions between model subsets are Bayesian testable, if and only
if, they are picked up by the posterior asymptotically, if and only if, there exists a pointwise
test for B versus V that is �-almost-surely consistent. There is also a constructivist inter-
pretation: where the mathematical existence of test sequences to separate model subsets is
fully abstract, posteriors can in principle be calculated and actually perform said separation
concretely.

A second perspective on the existence of Bayesian tests arises from Doob’s argument (see
[11], as well as Section 17.7, Proposition 2 in [27]): if � is Polish (more precisely, a Borel
subset of a complete metric spaces), there exists a Borel measurable ϑ : X ∞ → � such that
Pθ(ϑ(X) = θ) = 1, for �-almost-all θ ∈ �. (Note: here and elsewhere in i.i.d. setting, the
parameter space � is the single-observation model P , θ is the single-observation distribution
P and θ �→ Pθ,n is P �→ P n.)

PROPOSITION 2.6. Consider a model P of single-observation distributions P for i.i.d.
data (X1,X2, . . . ,Xn) ∼ P n (n ≥ 1). Assume that P is a Polish space with Borel prior �.
For any Borel set V there is a Bayesian test sequence for V versus P \ V under �.

PROOF. (See [11] and [27], Section 17.7, Proposition 1 with the indicator for V ; see also
[8].) Note that if ϑ : X ∞ → � exists, then by martingale convergence in L∞(X ∞ × �),
�(V |Xn) → ∫

1V (θ) d�(θ |X) = 1V (ϑ(X)), �∗-almost-surely, implying posterior conver-
gence. To conclude, use that (iv) ⇒ (i) in Theorem 2.5. �

Theorem 2.5 is seen to be related to Doob’s consistency theorem, if we let V be the com-
plement of any open neighbourhood of P0 in Proposition 2.6.

Compared to uniform tests, Bayesian tests are quite abundant, because Bayesian testing
really only amounts to testing of barycentres: to see this, let priors (�n) and G -measurable
model subsets Bn,Vn be given. For given tests (φn) and composite power an, write (2.1) as
follows:

�n(Bn)P
�n|Bn
n φn

(
Xn) + �n(Vn)P

�n|Vn
n

(
1 − φn

(
Xn)) = o(an),

and note that what is required here, is a (weighted) test sequence for (P
�n|Bn
n ) versus

(P
�n|Vn
n ). The likelihood-ratio test (denote densities for P

�n|Bn
n and P

�n|Vn
n by pBn,n and

pVn,n),

φn

(
Xn) = 1{�n(Vn)pVn,n(Xn)>�n(Bn)pBn,n(Xn)},

is optimal and has composite power ‖�n(Bn)P
�n|Bn
n ∧ �n(Vn)P

�n|Bn
n ‖. (Here, P ∧ Q de-

notes the minimum of P and Q [27], the largest (sub-probability) measure λ that satisfies
λ ≤ P and λ ≤ Q. Explicitly, if μ = P + Q and p = dP/dμ, q = dQ/dμ, the minimum is
given by (P ∧ Q)(A) = ∫

A(p(x) ∧ q(x)) dμ(x).) This leads to the following lemma based
on the so-called Hellinger transform (see Section 16.4, Remark 1 in [27]).
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LEMMA 2.7. Fix n ≥ 1 and let a prior (�n) and measurable model subsets Bn,Vn be
given. There exists a test function φn : Xn → [0,1] such that∫

Bn

Pθ,nφn d�n(θ) +
∫
Vn

Pθ,n(1 − φn)d�n(θ)

≤
∫ (

�n(Bn)pBn,n(x)
)α(

�n(Vn)pVn,n(x)
)1−α

dμn(x)

(2.5)

for any 0 ≤ α ≤ 1.

Lemma 2.7 generalises Proposition 2.6 and makes Bayesian tests available with a sharp
bound on composite power. This bound can be related to more familiar minimax upper
bounds as follows. If {Pθ,n : θ ∈ Bn} and {Pθ,n : θ ∈ Vn} are convex sets, then

H
(
P �n|Bn

n ,P �n|Vn
n

) ≥ inf
{
H(Pθ,n,Pθ ′,n) : θ ∈ Bn, θ

′ ∈ Vn

}
.

Combination with (2.5) for α = 1/2, implies that the minimax upper bound in i.i.d. cases [27]
remains valid:

(2.6)
∫
Bn

P nφn d�n(P ) +
∫
Vn

Qn(1 − φn)d�n(Q) ≤ √
�n(Bn)�n(Vn)e

−nε2
n ,

where εn = inf{H(P,Q) : P ∈ Bn,Q ∈ Vn}.
Note that Bayesian tests enhance the role of the prior in the frequentist discussion of the

asymptotic behaviour of posteriors: the prior must not only assign enough mass to KL- or
GGV-neighbourhoods of the truth, but is also of influence in the testing condition: where
the test is least powerful, prior mass should be scarce to compensate and where the test
is more powerful, prior mass can be plentiful. To optimize composite power, one imposes
upper bounds on prior mass in hard-to-test subsets of the model (see Appendix B in the
Supplementary Material [22]). This falls in line with the argument that underpins nonlocality
of priors for variable selection, as in [19].

3. Remote contiguity. In this section, we weaken the notion of contiguity (see [24],
Chapter 6 in [27] and [17, 29]) in a way that is suitable to promote �-almost-everywhere
Bayesian limits to frequentist limits that hold everywhere in the model.

3.1. Definition and criteria for remote contiguity. The notion of “domination” left unde-
fined in the argument following Proposition 2.3 is made rigorous here.

DEFINITION 3.1. Given measurable spaces (Xn,Bn), n ≥ 1 with two sequences (Pn)

and (Qn) of probability measures and a sequence ρn ↓ 0, we say that Qn is ρn-remotely
contiguous with respect to Pn, notation Qn�ρ−1

n Pn, if

(3.1) Pnφn

(
Xn) = o(ρn) ⇒ Qnφn

(
Xn) = o(1)

for every sequence of Bn-measurable φn : Xn → [0,1].

Note that for a sequence (Qn) that is an-remotely contiguous with respect to (Pn), there
exists no test sequence that distinguishes between Pn and Qn with composite power of order
o(an). Note also that given two sequences (Pn) and (Qn), contiguity Pn � Qn is equivalent
to remote contiguity Pn � a−1

n Qn for all an ↓ 0.
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EXAMPLE 3.2. Let P be a model for the distribution of a single observation in i.i.d.
samples Xn = (X1, . . . ,Xn). Let P0,P and ε > 0 be such that −P0 log(dP/dP0) < ε2. The
law of large numbers implies that for large enough n,

(3.2)
dP n

dP n
0

(
Xn) ≥ e− n

2 ε2
,

with P n
0 -probability one. Consequently, for large enough n and for any Bn-measurable

sequence ψn : Xn → [0,1], P nψn ≥ e− 1
2 nε2

P n
0 ψn. Therefore, if P nφn = o(exp (−1

2nε2))

then P n
0 φn = o(1). Conclude that for every ε > 0, the Kullback–Leibler neighbourhood

{P : −P0 log(dP/dP0) < ε2} consists of model distributions for which the sequence (P n
0 )

of product distributions are exp (−1
2nε2)-remotely contiguous with respect to (P n).

Criteria for remote contiguity are given in the lemma below; note that, here, we give suf-
ficient conditions, rather than necessary and sufficient, as in Le Cam’s first lemma. (For the
Qn-almost-sure definition of (dPn/dQn)

−1, see Appendix A in the Supplementary Material
[22].)

LEMMA 3.3. Let probability measures (Pn), (Qn) on measurable spaces (Xn,Bn) and
an ↓ 0 be given, then Qn�a−1

n Pn if any of the following hold:

(i) for any bounded, Bn-msb. Tn : Xn → [0,1], a−1
n Tn

Pn−→ 0 ⇒ Tn
Qn−→ 0,

(ii) for any ε > 0, there is a δ > 0 such that Qn(dPn/dQn < δan) < ε, for large
enough n,

(iii) there is a b > 0 such that lim infn ba−1
n Pn(dQn/dPn > ba−1

n ) = 1,
(iv) for any ε > 0, there is a constant c > 0 such that ‖Qn −Qn ∧ ca−1

n Pn‖ < ε, for large
enough n,

(v) under Qn every subsequence of (an(dPn/dQn)
−1) has a weakly convergent subse-

quence.

PROOF. (The proof of this lemma actually shows that ((i) or (iv)) implies remote conti-
guity; that ((ii) or (iii)) ⇒ (iv) and that (v) ⇔ (ii).) Assume (i). Let φn : Xn → [0,1] be given
and assume that Pnφn = o(an). By Markov’s inequality, for every ε > 0, Pn(a

−1
n φn > ε) =

o(1). Then φn
Qn−→ 0 and since φn is bounded, that implies Qnφn = o(1), so that Qn�a−1

n Pn.
Next, assume (iv). Let ε > 0 and φn : Xn → [0,1] be given. By assumption, there exist c > 0
and N ≥ 1 such that for all n ≥ N ,

Qnφn < ca−1
n Pnφn + ε

2
.

Assuming Pnφn = o(an), Qnφn < ε for large enough n. Conclude that Qn�a−1
n Pn. To show

that (ii) ⇒ (iv), let μn = Pn + Qn and denote μn-densities for Pn,Qn by pn, qn : Xn → R.
Then, for any n ≥ 1, c > 0,

∥∥Qn − Qn ∧ ca−1
n Pn

∥∥ = sup
A∈Bn

(∫
A

qn dμn −
∫
A

qn dμn ∧
∫
A

ca−1
n pn dμn

)

≤ sup
A∈Bn

∫
A

(
qn − qn ∧ ca−1

n pn

)
dμn

=
∫

1
{
qn > ca−1

n pn

}(
qn − ca−1

n pn

)
dμn.

(3.3)
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Note that the right-hand side of (3.3) is bounded above by Qn(dPn/dQn < c−1an). To show
that (iii) ⇒ (iv), it is noted that, for all c > 0 and n ≥ 1,

0 ≤
∫

ca−1
n Pn

(
qn > ca−1

n pn

) ≤ Qn

(
qn > ca−1

n pn

) ≤ 1,

so (3.3) goes to zero if lim infn→∞ ca−1
n Pn(dQn/dPn > ca−1

n ) = 1. To prove that (v) ⇔
(ii), note that Prohorov’s theorem says that (v) is equivalent to the uniform tightness of
(an(dPn/dQn)

−1 : n ≥ 1) under Qn, which is equivalent to (ii). �

To conclude this subsection, we specify the definition of remote contiguity slightly further.

DEFINITION 3.4. Given measurable spaces (Xn,Bn) (n ≥ 1) with two sequences (Pn)

and (Qn) of probability measures and sequences ρn,σn > 0, ρn,σn → 0, we say that Qn is
ρn-to-σn remotely contiguous with respect to Pn, notation σ−1

n Qn�ρ−1
n Pn, if

Pnφn

(
Xn) = o(ρn) ⇒ Qnφn

(
Xn) = o(σn)

for every sequence of Bn-measurable φn : Xn → [0,1].
Like Definition 3.1, Definition 3.4 allows for reformulation similar to Lemma 3.3, for

example, if for some sequences ρn,σn like in Definition 3.4,∥∥Qn − Qn ∧ σnρ
−1
n Pn

∥∥ = o(σn),

then σ−1
n Qn�ρ−1

n Pn. We leave the formulation of other sufficient conditions to the reader.

EXAMPLE 3.5. The inequality of Example 3.2 implies that b−1
n P n

0 �a−1
n P n, for any

an ≤ exp(−nα2) with α2 > 1
2ε2 and bn = exp(−n(α2 − 1

2ε2)). It is noted that this implies

that φn(X
n)

P0-a.s.−−−→ 0 for any φn : Xn → [0,1] such that P nφn(X
n) = o(an) (more generally,

this holds whenever
∑

n σn < ∞, as a consequence of the first Borel–Cantelli lemma).

3.2. Remote contiguity for Bayesian limits. Applications in the context of Bayesian limit
theorems concern remote contiguity of the sequence of true distributions Pθ0,n with respect

to local prior predictive distributions P
�n|Bn
n , where the sets Bn ⊂ � are such that

(3.4) Pθ0,n � a−1
n P �n|Bn

n

for some rate an ↓ 0. Let us first demonstrate how Schwartz’s KL-priors induce remote con-
tiguity.

EXAMPLE 3.6. Let P be a model for i.i.d. samples Xn as in Example 3.2. Fix P0
and ε > 0, define K(ε) = {P ∈ P : −P0 log(dP/dP0) < ε2} and recall that a KL-prior
� satisfies, �(K(ε)) > 0 for every ε > 0. The exponential lower bound (3.2) implies that
lim infn exp(1

2nε2)(dP n/dP n
0 )(Xn) ≥ 1 with P ∞

0 -probability one for every P ∈ K(ε). With
Fatou’s lemma,

lim inf
n→∞

e
1
2 nε2

�(K(ε))

∫
K(ε)

dP n
θ

dP n
θ0

(
Xn)

d�(θ) ≥ 1,

with P ∞
θ0

-probability one, showing that sufficient condition (ii) of Lemma 3.3 holds. Con-
clude that

P n
0 � e

1
2 nε2

P �|K(ε)
n .

A version of the form b−1
n P n

0 �a−1
n P n based on Example 3.5 is also possible.
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Remote contiguity also applies in more irregular situations: Example 1.1 does not admit
KL priors, but satisfies the requirement of remote contiguity.

EXAMPLE 3.7. Consider again Example 1.1 in the case of an i.i.d. sample from a uni-
form distribution on [θ, θ + 1], for unknown θ ∈ R. Model distributions Pθ have Lebesgue
densities pθ(x) = 1[θ,θ+1](x), for θ ∈ � = R. Pick a prior � on � with a continuous
and strictly positive Lebesgue density π : R → R and, for some rate δn ↓ 0, choose Bn =
(θ0, θ0 + δn). For any α > 0, (1 − α)π(θ0)δn ≤ �(Bn) ≤ (1 + α)π(θ0)δn for large enough n.
Note that for any θ ∈ Bn and Xn ∼ P n

θ0
, dP n

θ /dP n
θ0

(Xn) = 1{X(1) ≥ θ}, and correspondingly,

dP
�|Bn
n

dP n
θ0

(
Xn) = �n(Bn)

−1
∫ θ0+δn

θ0

1{X(1) ≥ θ}d�(θ)

≥ 1 − α

1 + α

δn ∧ (X(1) − θ0)

δn

for large enough n. As a consequence, for every δ > 0 and all an ↓ 0,

P n
θ0

(
dP

�|Bn
n

dP n
θ0

(
Xn)

< δan

)
≤ P n

θ0

(
δ−1
n (X(1) − θ0) < (1 + α)δan

)

for large enough n ≥ 1. Since n(X(1) − θ0) has an exponential weak limit under P n
θ0

, we

choose δn = n−1, so that the right-hand side in the above display goes to zero. So Pθ0,n �
a−1
n P

�n|Bn
n , for any an ↓ 0. Conclude that with these choices for � and Bn, (3.4) holds, for

any an.

Example 3.7 emphasizes the role of weak convergence of likelihood ratios, similar to lim-
its of experiments [25, 27, 39]. To emphasize this relation further, consider the following
proposition. Proposition 3.8 should be viewed in light of [28], which considers contiguity
under statistical information loss. To make the present case compatible, think of (remote)
contiguity for probability measures that arise as marginals for the data Xn when information
concerning the (Bayesian random) parameter θ is unavailable.

PROPOSITION 3.8. Let θ0 ∈ � and priors �n : G → [0,1], n ≥ 1 be given. Let (Bn) be
a sequence of measurable subsets of �n such that �n(Bn) > 0 for all n ≥ 1. Assume that for
some an ↓ 0, the family, {

an

(
dPθ,n

dPθ0,n

)−1(
Xn) : n ≥ 1, θ ∈ Bn

}
,

is uniformly tight under Pθ0,n. Then Pθ0,n � a−1
n P

�n|Bn
n .

PROOF. For every ε > 0, there exists a constant δ > 0 such that

Pθ0,n

(
an

(
dPθ,n

dPθ0,n

)−1(
Xn)

>
1

δ

)
< ε

for all n ≥ 1, θ ∈ Bn. For this choice of δ, condition (ii) of Lemma 3.3 is satisfied for all
θ ∈ Bn simultaneously, and according to the proof of said lemma, for given ε > 0, there
exists a c > 0 such that

(3.5)
∥∥Pθ0,n − Pθ0,n ∧ ca−1

n Pθ,n

∥∥ < ε
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for all n ≥ 1, θ ∈ Bn. Now note that for any A ∈ Bn,

0 ≤ Pθ0,n(A) − Pθ0,n(A) ∧ ca−1
n P �n|Bn

n (A)

≤
∫ (

Pθ0,n(A) − Pθ0,n(A) ∧ ca−1
n Pθ,n(A)

)
d�n(θ |Bn).

Taking the supremum with respect to A, we find the following inequality in terms of total
variational norms,

∥∥Pθ0,n − Pθ0,n ∧ ca−1
n P �n|Bn

n

∥∥ ≤
∫ ∥∥Pθ0,n − Pθ0,n ∧ ca−1

n Pθ,n

∥∥d�n(θ |Bn).

Based on (3.5), condition (iv) of Lemma 3.3 is satisfied. �

If we think of Proposition 3.8 in the context of density estimation, one sees that remote
contiguity benefits from model distributions that have heavier tails than the true distribu-
tion of the data. This rhymes with experience in example models (see, e.g., Theorem 3.1
in [38]) and holds true more generally: if model distributions are ‘not concentrated enough’
in regions of sample spaces where the true data-generating mechanism assigns ‘too much
probability mass’, then posteriors may display instances of inconsistency. Remote contiguity
makes precise what heuristic notions like ‘not concentrated’ and ‘too much mass’ mean.

3.3. Comparison of contiguity and remote contiguity. To compare contiguity and its re-
mote analogue in parametric and nonparametric context, consider the following standard ex-
ample.

Let F denote a class of functions X → R, where X is a compact, convex subset of Rd .
We consider samples Xn = ((X1, Y1), . . . , (Xn,Yn)) (n ≥ 1) of points in X ×R, assumed to
be related through

Yi = f0(Xi) + ei

for some unknown f0 ∈ F , where the errors are i.i.d. standard normal e1, . . . , en ∼ N(0,1)n

and independent of the i.i.d. covariates X1, . . . ,Xn ∼ P n, for some ancillary distribution P

on R. Assume that F ⊂ L2(P ) and that Pf (X) = 0 for all f ∈ F . We distinguish two cases:
(a) the case of linear regression, F = {fθ : X ⊂ R → R : θ ∈ �}, where θ = (a, b) ∈ � =
R

2 and fθ (x) = ax + b; (b) the case of nonparametric regression (to maintain concreteness,
we keep in mind the special case F = Cα

1 (X ), the collection of all α-smooth functions on
X with Hölder-α-norm ‖ · ‖α bounded by 1).

For (ρn) to be fixed later, define an = exp(−1
2nρ2

n). A bit of manipulation casts the an-
rescaled likelihood ratio for f0, f ∈ F in the following form:

(3.6) a−1
n

dPf,n

dPf0,n

(
Xn) = e− 1

2
∑n

i=1(2ei(f −f0)(Xi)+(f −f0)
2(Xi)−nρ2

n)

for Xn ∼ Pf0,n.

EXAMPLE 3.9. In the parametric case, expression (3.6) can be written in terms of a
local parameter h ∈R

2 which, for given θ0 and n ≥ 1, is related to θ by θ = θ0 +n−1/2h. For
h ∈ R

2, we write Ph,n = Pθ0+n−1/2h,n, P0,n = Pθ0,n and write

(3.7)
dPh,n

dP0,n

(
Xn) = e

1√
n

∑n
i=1 h·�θ0 (Xi,Yi)− 1

2 h·Iθ0 ·h+oPθ0,n
(1)

,
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where �θ0 : R2 → R
2 : (x, y) �→ (y − a0x − b0)(x,1) is the score function for θ at θ0, Iθ0 =

Pθ0,1�θ0�
T
θ0

is the Fisher information matrix. Assume Iθ0 is nonsingular and note the central
limit,

1√
n

n∑
i=1

�θ0(Xi, Yi)
Pθ0,n-w.−−−−→ N2(0, Iθ0),

which expresses local asymptotic normality of the model and implies that for any fixed h ∈
R

2, Ph,n � P0,n. It is well known that contiguity extends to n−1/2-localized prior averages
(see Lemma 3, Section 8.4 in [29]):

(3.8) Pθ0,n � P �|Bn
n

(where Bn = {θ ∈ � : ‖θ − θ0‖ ≤ Mn−1/2}, for any M > 0) provided �(Bn) > 0 for all n.

EXAMPLE 3.10. In the nonparametric case, define B(ρ) = {f ∈ F : ‖f − f0‖ < ρ}
(where ‖ · ‖ denotes the L2(Pn)-norm, with Pn the empirical distribution of observed de-
sign points [40]). Theorem 3.4.1 and, more specifically, Section 3.4.3 of [40] prove that the
(outer) expectation of the supremum of the empirical process for scores satisfies the maximal
inequality,

Pf0,n sup
f ∈B(ρ)

∣∣∣∣∣ 1√
n

n∑
i=1

ei(f − f0)(Xi)

∣∣∣∣∣ ≤ φn(ρ)

for all ρ > 0, where φn(ρ) is a bracketing integral. If we choose ρn > 0 such that nρ2
n → ∞

and ρ−2
n φn(ρn) = βn with βn = o(

√
n), then Markov’s inequality shows that, for any ε > 0,

(3.9) Pf0,n

(
sup

f ∈B(ρn)

∣∣∣∣∣
n∑

i=1

ei(f − f0)(Xi)

∣∣∣∣∣ >
nρ2

nβn

ε

)
≤ ε.

If the ancillary distribution P is such that {(f − f0)
2 : f ∈ B(ρn)} satisfy the Glivenko–

Cantelli-like requirement that

sup
f ∈B(ρn)

∣∣∣∣∣1

n

n∑
i=1

(f − f0)
2(Xi) − ‖f − f0‖2

P,2

∣∣∣∣∣ P ∞-a.s.−−−−→ 0,

then for any δ, δ′ > 0, using (3.9) and assuming that �n(B(ρn)) > 0,

Pf0,n

(
1

�n(B(ρn))

∫
B(ρn)

dPf,n

dPf0,n

(
Xn)

d�n(f ) < δan

)

≤ Pf0,n

(
inf

f ∈B(ρn)
a−1
n

dPf,n

dPf0,n

(
Xn)

< δ

)

≤ Pf0,n

(
inf

f ∈B(ρn)
−

n∑
i=1

ei(f − f0)(Xi) + 1

2
nρ2

n < log δ − δ′
)

≤ ε

for large enough n. Conclude that

(3.10) Pf0,n � e
1
2 nρ2

nP �|B(ρn)
n .

A similar proof based on Proposition 3.8 is also possible. For a smoothness class F =
Cα

1 (X ) (and provided certain technical conditions are met, see Section 3.4.3.2 in [40]),
rates ρn that solve ρ−2

n φn(ρn) = o(n1/2) exist arbitrarily close to n−α/(2α+2d), the minimax
L2(P )-rate of estimation of f . Note that the argument extends to other sequences (Qn) that
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approximate (Pf0,n) well enough. (For example, if we define (Qn) by substitution of esti-

mators f̂n that are L2(P )-consistent at rate ρn, and we can show that P
f̂n,n

(An) = o(e
1
2 nρ2

n ),
then also Pf0,n(An) = o(1).)

The analogy between (3.8) and (3.10) establishes in this regression example (and many
others that allow the same empirical-process argument), that remote contiguity has the poten-
tial to provide sequential approximations in nonparametric statistics, analogous to approx-
imation by contiguous sequences in parametric setting [17]. More examples of sequential
approximation by remote contiguity are provided in [12, 33] and [21].

4. Posterior concentration for frequentists. From the perspective of the Bayesian,
asymptotic concentration of the posterior is covered by Lemma 2.2, particularly as in Propo-
sition 2.3. To existence of Bayesian tests, we add the requirement of remote contiguity to
arrive at the frequentist conclusion that the posterior concentrates.

THEOREM 4.1. Let (Xn,Bn), (�n,Gn), (Pn) and (�n) be given. Assume that for all
n ≥ 1, the data Xn ∼ P0,n and that, for given Bn,Vn ∈ Gn and an, bn ↓ 0 with an = o(bn):

(i) there are Bayesian tests φn : Xn → [0,1] such that

(4.1)
∫
Bn

Pθ,nφn d�n(θ) +
∫
Vn

Pθ,n(1 − φn)d�n(θ) = o(an),

(ii) the prior mass of Bn is lower-bounded, �n(Bn) ≥ bn,
(iii) the sequence P0,n satisfies P0,n � bna

−1
n P

�n|Bn
n .

Then �(Vn|Xn)
Pθ0,n−−−→ 0.

PROOF. Proposition 2.3 says that P
�n|Bn
n �(Vn|Xn) is of order o(b−1

n an). Condition (iii)
then implies that Pθ0,n�(Vn|Xn) = o(1), or equivalently, �(Vn|Xn) goes to zero in Pθ0,n0-
probability. �

This theorem requires very little of P0,n: it is not required that P0,n describes i.i.d. data,
nor does P0,n need to correspond to an element of Bn (or even lie in Pn): the true data-
distributions need to relate to the rest of the problem only through remote contiguity.

4.1. Posterior consistency. The most basic interpretation is that in which �n = �,
�n = �, Bn = B , Vn = V and P0,n = Pθ0,n for some θ0 ∈ B , with V the complement of
a neighbourhood U of θ0 in � and B ⊂ U . If, moreover, we have data Xn that is i.i.d., we ar-
rive at Schwartz’s consistency in P . In that case, require that bn = �n(Bn) = �(B) = b > 0,
to restate Schwartz’s theorem.

THEOREM 4.2. Assume that for all n ≥ 1, the data Xn ∼ P n
0 for some P0 ∈ �. Fix a

prior � : G → [0,1] and assume that for given B,V ∈ G with �(B) > 0 and an ↓ 0:

(i) there exist Bayesian tests φn for B versus V ,

(4.2)
∫
B

P nφn d�(P ) +
∫
V

Qn(1 − φn)d�(Q) = o(an),

(ii) the sequence P n
θ0

satisfies P n
θ0
� a−1

n P
�|B
n .

Then �(V |Xn)
Pθ0,n−−−→ 0.
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Theorem 4.2 relates to Schwartz’s conditions as follows: Schwartz requires that uniform
tests exist; a well-known argument based on Hoeffding’s inequality then guarantees the exis-
tence of a uniform test sequence of exponential composite power. According to Example 3.6,
KL-priors induce remote contiguity of P n

0 with respect to KL-localized prior predictive dis-
tributions based on B = K(ε) at exponential rate.

Next, observe that B is contained in a Hellinger ball in P centred on P0. So if we let U

be a Hellinger ball centred on P0 of some larger radius, B and V are separated by nonzero
Hellinger distance. Assuming that P is dominated, any � that is Borel for the Hellinger
topology on P is Radon in the completion, so for every δ > 0, there exists a Hellinger pre-
compact (that is, totally-bounded) K ⊂ P , such that �(K) > 1 − δ. Totally-boundedness is
the entropy argument needed in a well-known construction [5, 14, 27, 30] of a finite cover of
V ∩K by Hellinger balls and combination of the corresponding uniform minimax tests versus
B (Section 16.4 in [27]) into uniform test φn of B versus V ∩ K of exponential composite
power:

(4.3)
∫
B

P nφn d�(P ) +
∫
V

Qn(1 − φn)d�(Q) ≤ N(ε,V ∩ K,H)e−nε2 + δ

for some ε > 0. Diagonalization with respect to exponentially decreasing δ’s and an upper
bound on the Hellinger covering numbers of the corresponding pre-compact K’s then formu-
lates Barron’s negligible prior mass condition [2, 3].

4.2. Rates of posterior concentration. A significant extension to the theory on posterior
convergence is formed by results concerning posterior convergence in metric spaces at a rate
[3, 14, 23, 26, 35, 42]. To establish the exceptional case first, we start with application of
Theorem 4.1 to the rate of posterior convergence in Examples 1.1 and 3.7, where no KL- or
GGV-priors exist.

EXAMPLE 4.3. Consider again the situation of a uniform distribution with an unknown
location, as in Examples 1.1 and 3.7. Take Vn equal to {θ : θ − θ0 > εn} with εn = Mn/n for
some Mn → ∞. It is noted that, for every 0 < c < 1, the likelihood ratio test,

φn

(
Xn) = 1

{
dPθ0+εn,n/dPθ0,n

(
Xn)

> c
} = 1{X(1) > θ0 + εn},

satisfies P n
θ (1 − φn)(X

n) = 0 for all θ ∈ Vn, and if we choose δn = 1/2 and εn = Mn/n for
some Mn → ∞, P n

θ φn ≤ e−Mn+1 for all θ ∈ Bn, so that∫
Bn

P n
θ φn d�(θ) +

∫
Vn

P n
θ (1 − φn)d�(θ) ≤ �(Bn)e

−Mn+1.

Using Lemma 2.2, we see that P
�|Bn
n �(Vn|Xn) ≤ e−Mn+1. Based on the conclusion of Ex-

ample 3.7, contiguity implies that P n
θ0

�(Vn|Xn) → 0. Treating the case θ < θ0 −εn similarly,
we conclude that the posterior is consistent at any rate εn = Mn/n, with Mn → ∞.

Let us also review the conditions of [3, 14, 35] in light of Theorem 4.1.

EXAMPLE 4.4. Let εn ↓ 0 such that nε2
n → ∞ denote a Hellinger rate of convergence,

let M > 1 be some constant and define

Vn = {
P ∈ P : H(P,P0) ≥ Mεn

}
,

Bn = {
P ∈ P : −P0 logdP/dP0 < ε2

n,P0 log2 dP/dP0 < ε2
n

}
.

We repeat the argument leading to (4.3) for every n, with ε = εn, εn ↓ 0 and nε2
n → ∞. If we

require Barron’s δ-contribution in (4.3) to be of nε2
n-exponentially small order,

�(P \ Pn) ≤ exp
(−nMε2

n

)
,
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and the sieve of pre-compact Pn has Hellinger entropies that are upper-bounded (see [5, 30])

N(εn,Pn,H) ≤ eKnε2
n

for some K > 0, then the minimax construction extends to tests that separate Vn = {P ∈
P : H(P0,P ) ≥ 4εn} from Bn = {P ∈ P : H(P0,P ) < εn} asymptotically, with composite
power exp(−nLε2

n) for some L > 0.
Note that Bn is contained in the Hellinger ball of radius εn around P0, so (4.1) holds.

Remote contiguity therefore requires that for some C > 0,

(4.4) �n(Bn) ≥ e−Cnε2
n .

We note Lemma 8.1 in [14], which says that if (4.4) is satisfied then Lemma 3.3(ii) holds, so
that

(4.5) P n
0 � ecnε2

nP �|Bn
n

for any c > 1. For large enough M , Theorem 4.1 then reproduces the GGV-result, that is,
the posterior is Hellinger consistent at rate εn. Due to relations that exist between metrics for
model parameters and the Hellinger metric in many examples and applications, the material
covered here is widely applicable in (nonparametric) models for i.i.d. data. (For much more
on this and many similar constructions, see [15].)

Experience teaches that the sharpest results on posterior concentration are achieved when
the alternatives Vn are split into pieces, each according to the strength of the optimal test
versus Bn. Combination of the tests per piece and re-summation weighted by prior masses
can often be employed to arrive at sharp results.

EXAMPLE 4.5. Consider a model P of distributions P for i.i.d. data Xn ∼ P n (n ≥ 1)

and suppose that P is Hellinger-separable. Let P0 ∈ P and εn → 0 be given, denote V (ε) =
{P ∈ P : H(P0,P ) ≥ 4ε}, BH(ε) = {P ∈ P : H(P0,P ) < ε} for all ε > 0. There exist
N(εn) ≥ 1 (possibly infinite) and a cover of V (εn) by N(εn) Hellinger balls Vn,1,Vn,2, . . . of
radius εn and for any point Q in any Vn,i and any P ∈ BH(εn), H(Q,P ) > εi,n. According
to Lemma 2.7 with α = 1/2 and (2.6), for each 1 ≤ i ≤ N(εn) there exists a Bayesian test
sequence (φn,i) for BH(εn) versus Vn,i of composite power exp(−1

2nε2
i,n). Then, for any

subsets B ′
n ⊂ BH(εn),

P
�|B ′

n
n �

(
V (εn)|Xn) ≤

N(εn)∑
i=1

P
�|B ′

n
n �

(
Vn,i |Xn)

≤ 1

�(B ′
n)

N(εn)∑
i=1

(∫
B ′

n

P nφn,i d�(P ) +
∫
Vn,i

P n(1 − φn,i) d�(P )

)

≤
N(εn)∑
i=1

√
�(Vn,i)

�(B ′
n)

exp
(
−1

2
nε2

i,n

)
.

(4.6)

The requirement that the above upper bound converges to zero leads directly to the summabil-
ity requirements for square-root prior masses of Hellinger covers of separable models posed
by [41, 42].

Summability of this type leads [30] to define the so-called Le Cam dimension of the model,
as well as to various subtle results on posterior behaviour in nonparametric applications, and
also explains the sharpness of the posterior concentration results of [21]. We emphasize that
(4.6) makes explicit the balancing of prior masses and composite power, as intended by the
remark that closes Section 2.2.
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5. Consistent hypothesis testing with posterior odds. Model selection describes all
statistical methods that attempt to determine from the data which model to use for further
inferential statistical analysis (for an overview, see [37]). For example, consider projection
of a high-dimensional vector of co-variates onto a sparse subset for subsequent regression
analysis, or the selection of a directed a-cyclical graph to formulate a graphical model. Model
selection also makes an appearance in very high-dimensional models, which often leave room
for over-fitting, requiring regularization [6, 7, 9].

Frequentist methods for model selection vary widely, ranging from very simple rules-
of-thumb, to cross-validation and penalization of the likelihood function. Here, we propose
to conduct the frequentist analysis with the help of the posterior [4]: when faced with a
(dichotomous) model choice, we let posterior odds determine our preference. An (objective)
Bayesian perspective on model selection is provided in [43].

For hypotheses B,V ⊂ � and any n ≥ 1, define posterior odds Gn,

Gn = �(B|Xn)

�(V |Xn)

for B versus V . Analysing the question first from a purely Bayesian perspective, we see that
for a fixed prior �, Theorem 2.5 says that the posterior gives rise to consistent posterior
odds Gn for B versus V in a Bayesian (i.e., �-almost-sure) way, if and only if a Bayesian
test sequence for B versus V exists. Proposition 2.6 says that in Polish models, any Borel
set V is Bayesian testable versus its complement. So basically, for the Bayesian, measurable
distinctions are consistently testable with posterior odds. In fact, posterior odds are optimal
[20], in the sense that φn(X

n) = 1{Xn ∈ Xn : �(B|Xn) > �(V |Xn)} satisfies∫
B

Pθ,nφn

(
Xn)

d�(θ) +
∫
V

Pθ,n

(
1 − φn

(
Xn))

d�(θ)

= inf
ψ

∫
B

Pθ,nψ
(
Xn)

d�(θ) +
∫
V

Pθ,n

(
1 − ψ

(
Xn))

d�(θ),

where the infimum runs over all measurable ψn : Xn → [0,1].
However, the frequentist requires convergence in all points of the model.

DEFINITION 5.1. For all n ≥ 1, let the model be parametrized by maps θ �→ Pθ,n

on a parameter space (�,G ) with priors �n : G → [0,1]. Consider disjoint, measurable
B,V ⊂ �. Posterior odds Gn are frequentist consistent for testing B versus V , if

Gn

Pθ,n−−→ 0, Gn

Pθ ′,n−−→ ∞,

for all θ ∈ V , and all θ ′ ∈ B .

We employ remote contiguity again to bridge the gap between Bayesian and frequentist
formulations.

THEOREM 5.2. For all n ≥ 1, let the model be parametrized by maps θ �→ Pθ,n on a
parameter space with (�,G ) with priors �n : G → [0,1]. Consider disjoint, measurable
B,V ⊂ � with �n(B),�n(V ) > 0 such that:

(i) there exist Bayesian tests for B versus V of composite power an ↓ 0,∫
B

P nφn d�n(P ) +
∫
V

Qn(1 − φn)d�n(Q) = o(an),

(ii) for every θ ∈ B and every θ ′ ∈ V ,

Pθ,n � a−1
n P �n|B

n , Pθ ′,n � a−1
n P �n|V

n .

Then posterior odds are frequentist consistent for B versus V .
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Note that the second condition of Theorem 5.2 can be replaced by a local condition: if,
for every θ ∈ B , there exists a sequence Bn(θ) ⊂ B such that �n(Bn(θ)) ≥ bn and Pθ,n �
a−1
n bnP

�n|Bn
n , then Pθ,n � a−1

n P
�n|B
n .

This device for model selection is used in the application of Appendix B in the Supple-
mentary Material [22]: it is shown that for stationary Markov chains, the transition kernel for
a random walk Xn can be subjected to a goodness-of-fit test inspired by Pearson’s χ2-test,
based on a finite partition of the state-space. Proposition B.2 emphasizes the enhancement of
the role of the prior, as intended by the remark that closes Section 2.2: where the test is less
powerful, prior mass should be scarce to compensate and where the test is more powerful,
prior mass can be plentiful. In model selection, alternative hypotheses often ‘touch’ and a
continuous power function leads to problems with testing power in the vicinity of the bound-
ary separating them: in such cases, prior mass is upper-bounded in model subsets near that
boundary, in line with nonlocality of priors as in [19].

6. Confidence sets from credible sets. The assertion of the Bernstein–von Mises theo-
rem [29] has the methodological implication that Bayesian credible sets can be interpreted as
asymptotically efficient confidence sets, at least, in the setting of smooth parametric models.
Extension to nonparametric models is highly desirable and has been explored in many ex-
amples and counterexamples [10, 13]. In recent years, much effort has gone into calculations
that balance posterior expectation and variance so that credible metric balls have asymptotic
frequentist coverage, mostly in Gaussian models with conjugate posteriors, often with em-
pirically chosen prior to control posterior bias [36]. Below we formulate a general theorem
that asserts that certain enlargements of credible sets have an interpretation as asymptotic
confidence sets, based on remote contiguity.

DEFINITION 6.1. Given (�,G ) with priors �n, denote the sequence of posteriors by
�(·|·) : G ×Xn → [0,1]. Let D denote a collection of measurable subsets of �. A sequence
of credible sets (Dn) of credible levels 1 − an (where 0 ≤ an ≤ 1, an ↓ 0) is a sequence
of set-valued maps Dn : Xn → D such that �(� \ Dn(x)|x) = o(an) for P

�n
n -almost-all

x ∈ Xn.

DEFINITION 6.2. For 0 ≤ a ≤ 1, a set-valued map x �→ C(x) defined on X such that,
for all θ ∈ �, Pθ(θ /∈ C(X)) ≤ a, is called a confidence set of level 1 − a. If the levels 1 − an

of a sequence of confidence sets Cn(X
n) go to 1 as n → ∞, the Cn(X

n) are said to be
asymptotically consistent.

DEFINITION 6.3. Let D be a (credible) set in � and let B = {B(θ) : θ ∈ �} denote a
collection of model subsets such that θ ∈ B(θ) for all θ ∈ �. A model subset C ′ is said to
be (a confidence set) associated with D under B , if for all θ ∈ � \ C′, B(θ) ∩ D = ∅. The
intersection C of all C′ like above equals {θ ∈ � : B(θ) ∩ D �= ∅} and is called the minimal
(confidence) set associated with D under B (see Figure 1).

Example 6.6 makes this construction explicit in uniform spaces and specializes to metric
context.

THEOREM 6.4. Let θ0 ∈ � and 0 ≤ an ≤ 1, bn > 0 such that an = o(bn) be given.
Choose priors �n and let Dn denote level-(1 − an) credible sets. Furthermore, for all θ ∈ �,
let Bn = {Bn(θ) ∈ G : θ ∈ �} denote a sequence such that:
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FIG. 1. The relation between a credible set D and its associated (minimal) confidence set C under B in Venn
diagrams: the extra points θ in the associated confidence set C not included in the credible set D are characterized
by nonempty intersection B(θ) ∩ D �= ∅.

(i) �n(Bn(θ0)) ≥ bn,

(ii) Pθ0,n � bna
−1
n P

�n|Bn(θ0)
n .

Then any confidence sets Cn associated with the credible sets Dn under Bn are asymptotically
consistent,

(6.1) Pθ0,n

(
θ0 ∈ Cn

(
Xn)) → 1.

PROOF. Fix n ≥ 1 and let Dn denote a credible set of level 1 − o(an), defined for all
x ∈ Fn ⊂ Xn such that P

�n
n (Fn) = 1. For any x ∈ Fn, let Cn(x) denote a confidence set

associated with Dn(x) under B . Due to Definition 6.3, θ0 ∈ � \ Cn(x) implies that Bn(θ0) ∩
Dn(x) = ∅. Hence the posterior mass of B(θ0) satisfies �(Bn(θ0)|x) = o(an). Consequently,
the functions x �→ 1{θ0 ∈ � \ Cn(x)}�(B(θ0)|x) are o(an) for all x ∈ Fn. Integrating with
respect to the nth prior predictive distribution and dividing by the prior mass of Bn(θ0), one
obtains

1

�n(Bn(θ0))

∫
1{θ0 ∈ � \ Cn}�(

Bn(θ0)|Xn)
dP �n

n ≤ an

bn

.

Applying Bayes’s rule in the form (A.2), we see that

P �n|Bn(θ0)
n

(
θ0 ∈ � \ Cn

(
Xn)) =

∫
Pθ,n

(
θ0 ∈ � \ Cn

(
Xn))

d�n(θ |Bn) ≤ an

bn

.

By the definition of remote contiguity, this implies asymptotic coverage; cf. (6.1). �

Theorem 6.4 can be interpreted as follows: the credible sets Dn at its heart are ‘statistically
informative’, according to the Bayesian notion of what ‘statistically informative’ means. To
render that compatible with the frequentist notion asymptotically, Theorem 6.4 employs en-
largement by sets Bn and remote contiguity to carry one into the other. This entails a trade-off:
the larger the sets Bn are chosen, the greater the enlargements; but also, the larger the sets Bn,
the higher the lower bounds bn, and thence, the more slowly the credible levels an can go to
zero (allowing for smaller choices of Dn). The fact that Theorem 6.4 holds generally implies
practical ways to obtain confidence sets from posteriors: to illustrate, [21] uses Theorem 6.4
to derive confidence sets for the community assignment in a sparse stochastic block model.

In order for the assertion of Theorem 6.4 to be specific regarding the confidence level
(rather than just resulting in asymptotic coverage), we re-write the last condition of Theo-
rem 6.4 as follows:

(ii′) c−1
n Pθ0,n � bna

−1
n P

�n|Bn(θ0)
n ,
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so that the last step in the proof of Theorem 6.4 is more specific; particularly, assertion (6.1)
becomes

Pθ0,n

(
θ /∈ Cn

(
Xn)) = o(cn),

controlling asymptotic confidence levels.

6.1. Credible/confidence sets in metric spaces. Next, we specialize to parameter spaces
that are metric. First we note a theorem proved in [21], showing that posterior convergence
at a rate ensures coverage of enlarged minimal-radius credible balls.

THEOREM 6.5. Suppose that (�,d) with Borel priors (�n) parametrizes models � →
Pn : θ �→ Pθ,n for data Xn distributed according to Pθ0,n for some θ0 ∈ �. Assume that
posteriors concentrate in metric balls of radii rn:

�
(
d(θ, θ0) ≤ rn|Xn) Pθ0,n−−−→ 1.

Given Xn and some 0 < ε < 1, let D̂n = Bn(θ̂n, r̂n) be level-1 − ε credible balls of mini-
mal radii. With high Pθ0,n-probability, r̂n ≤ rn and the sequence Cn(X

n) = B(θ̂n, r̂n + rn) ⊂
B(θ̂n,2rn) is asymptotically consistent,

Pθ0,n

(
θ0,n ∈ Cn

(
Xn)) → 1.

However, posterior convergence at a known rate is a relatively strong condition and, in
practice, one may not be able to guarantee it. For that reason, we also explore the direct
method of Theorem 6.4 in metric spaces.

When enlarging credible sets to confidence sets using a collection of subsets B as in Defini-
tion 6.3, measurability of confidence sets is guaranteed if B(θ) is open in � for all θ ∈ �. It is
worth recalling that KL-divergence is not automatically continuous with respect to Hellinger
distance (for specifics, see Theorem 5 of [44]).

EXAMPLE 6.6. Let G be the Borel σ -algebra for a uniform topology on �. Let W denote
a symmetric entourage and, for every θ ∈ �, define B(θ) = {θ ′ ∈ � : (θ, θ ′) ∈ W }, a neigh-
bourhood of θ . Let D denote any credible set. A confidence set associated with D under B is
any set C′ such that the complement of D contains the W -enlargement of the complement of
C′. Equivalently (by the symmetry of W ), the W -enlargement of D does not meet the com-
plement of C′. Then the minimal confidence set C associated with D is the W -enlargement
of D. If the B(θ) are all open neighbourhoods (e.g., whenever W is a symmetric entourage
from a fundamental system for the uniformity on �), the minimal confidence set associated
with D is open.

The most common examples include the Hellinger or total-variational metric uniformities,
but weak topologies and polar topologies are uniform, too.

EXAMPLE 6.7. To illustrate Example 6.6 with a customary situation, consider a pa-
rameter space � with parametrization θ �→ P n

θ , to define a model for i.i.d. data Xn =
(X1, . . . ,Xn) ∼ P n

θ0
, for some θ0 ∈ �. Let D be the class of all pre-images of Hellinger

balls, that is, sets D(θ, ε) ⊂ � of the form,

D(θ, ε) = {
θ ′ ∈ � : H(Pθ ,Pθ ′) < ε

}
for any θ ∈ � and ε > 0. After choice of a Kullback–Leibler prior � for θ and calculation of
the posteriors, choose Dn equal to the pre-image D(θ̂n, ε̂n) of a minimal-radius Hellinger ball
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with credible level 1 − o(an), an = exp(−nα2) for some α > 0. Assume, now, that for some
0 < ε < α, the W of Example 6.6 is the Hellinger entourage W = {(θ, θ ′) : H(Pθ ,Pθ ′) < ε}.
Since Kullback–Leibler neighbourhoods are contained in Hellinger balls, the sets D(θ̂n,

ε̂n + ε) (associated with Dn under the entourage W ), is a sequence of asymptotically consis-
tent confidence sets, provided the prior satisfies Schwartz’s KL condition. If we make ε vary
with n, like before, Cn(X

n) = D(θ̂n, ε̂n + εn) are asymptotic confidence sets, provided that
the prior satisfies (4.4).

In the case εn is the minimax rate of convergence for the problem, the confidence sets
Cn(X

n) attain rate-optimality [31]. Rate-adaptivity [16, 18, 36] is not possible with Theo-
rem 6.4 because a definite, nondata-dependent choice for the Bn is required. An interesting
option concerns the exploration of data-driven choices for priors �n and Bn, as in [36].

7. Conclusions. We list and discuss the main conclusions below.

Frequentist validity of Bayesian limits. There exists a systematic way of taking Bayesian
limits into frequentist ones, if priors satisfy an extra condition relating true data dis-
tributions to localized prior predictive distributions. This extra condition generalises
Schwartz’s Kullback–Leibler condition and amounts to a weakened form of contiguity,
termed remote contiguity. Remote contiguity has the potential to provide sequential ap-
proximations in nonparametric statistics, analogous to approximation by contiguous se-
quences in parametric statistics (e.g., see [12, 33]).

Given steadily growing interest in the analysis of large datasets gathered from networks (e.g.,
by webcrawlers that perform branching random walks across linked webpages), or from time-
series/stochastic processes (e.g., in statistical physics or financial markets), or in the form of
high-dimensional, functional or random-graph data (e.g., from biological, financial, medical
and meteorological fields), the development of new Bayesian methods benefits from a sim-
ple asymptotic perspective to guide the search for suitable priors. Theory presented here is
general enough to enable new frequentist applications of Bayesian methodology in models
from applied probability, machine learning and statistical physics that involve (large and of-
ten dependent) data Xn of nonstandard types. An example with random-walk data concerns
the goodness-of-fit tests of Appendix B in the Supplementary Material [22]. An example
with random-graph data concerns recovery of the community structure in the planted bisec-
tion model, which is known to be possible if and only if the sparsity levels for edges within
and between communities satisfy certain limits [1, 32]. In [21], these necessary conditions
are found to be sufficient for (almost-)exact recovery with posteriors, showing that theory
presented here does not impose overly stringent conditions (at least in this random graph
model).

The nature of Bayesian test sequences. The existence of a Bayesian test sequence is
equivalent to consistent posterior convergence in the Bayesian, prior-almost-sure sense.
Bayesian test sequences are more abundant than uniform or pointwise test sequences. To
optimize the composite power of a Bayesian test the prior should assign little mass where
the test is less powerful, and much where the test is more powerful, ideally.

This point appears to be especially relevant in model selection with posterior odds, which
requires careful construction of Bayesian tests with little prior mass near the boundaries be-
tween hypotheses, leading to upper bounds for prior mass, as in [19]. Appendix B in the
Supplementary Material [22] illustrates the influence of the prior on frequentist hypothesis
testing with posterior odds.
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Frequentist uncertainty quantification. Use of a prior that induces remote contiguity al-
lows one to convert credible sets of calculated, simulated or approximated posteriors into
asymptotically consistent confidence sets.

The latter conclusion forms the most important and practically useful aspect of this paper.
For example, in the planted bisection model, the devices of Section 6 give rise to frequentist
uncertainty quantification for community structure: if exact recovery is possible, credible
sets are asymptotic confidence sets; if recovery is almost-exact, enlarged credible sets are
asymptotic confidence sets [21].

Acknowledgements. The author thanks J. van Waaij and S. Rizzelli for interesting dis-
cussions and perspectives.

SUPPLEMENTARY MATERIAL

Appendices (DOI: 10.1214/20-AOS1952SUPP; .pdf). A. Definitions and conventions;
B. Goodness-of-fit for random walks.
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