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We show that the modified log-Sobolev constant for a natural Markov
chain which converges to an r-homogeneous strongly log-concave distribu-
tion is at least 1/r . Applications include a sharp mixing time bound for the
bases-exchange walk for matroids, and a concentration bound for Lipschitz
functions over these distributions.

1. Introduction. Let π : 2[n] → R≥0 be a discrete distribution, where [n] = {1, . . . , n}.
Consider the generating polynomial of π :

gπ(x) = ∑
S⊆[n]

π(S)
∏
i∈S

xi.

We call a polynomial log-concave if its logarithm is concave, and strongly log-concave (SLC)
if it is log-concave at the all-ones vector 1 after taking any sequence of partial derivatives.
The distribution π is homogeneous and strongly log-concave if gπ is.

An important example of homogeneous strongly log-concave distributions is the uniform
distribution over the bases of a matroid (Anari et al. (2019), Brändén and Huh (2019)).1 This
discovery leads to the breakthrough result that the exchange walk over the bases of a matroid
is rapidly mixing (Anari et al. (2019)), which implies the existence of a fully polynomial-time
randomised approximation scheme (FPRAS) for the number of bases of any matroid (given
by an independence oracle).

The bases-exchange walk, denoted by PBX, is defined as follows. In each step, we remove
an element from the current basis uniformly at random to get a set S. Then we move to a
basis containing S uniformly at random.2 This chain is irreducible and it converges to the
uniform distribution over the bases of a matroid. Brändén and Huh (2019) showed that the
support of an r-homogeneous strongly log-concave distribution π must be the set of bases of
a matroid. Thus, to sample from π , we may use a random walk PBX,π similar to the above.
The only change required is that in the second step we move to a basis B ⊃ S with probability
proportional to π(B).

Let P be a Markov chain over a state space �, and π be its stationary distribution. To
measure the convergence rate of P , we use the total variation mixing time,

tmix(P, ε) := min
t

{
t | ∥∥P t(x0, ·) − π

∥∥
TV ≤ ε

}
,

where x0 ∈ � is the initial state and the subscript TV denotes the total variation distance
between two distributions. The main goal of this paper is to show that for any r-homogeneous
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1For other examples, such as the determinantal point process and its variants, see Anari et al. (2019).
2Notice that to implement this step it may require more than constant time. The chain considered here is some-

times called the modified bases-exchange walk. A common alternative in the literature is to randomly propose an
element and then apply a rejection filter.
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strongly log-concave distribution π ,

tmix(PBX,π , ε) ≤ r

(
log log

1

πmin
+ log

1

2ε2

)
,(1)

where πmin = minx∈� π(x). This will improve upon the previous bound tmix(PBX,π , ε) ≤
r(log 1

πmin
+ log 1

ε
) due to Anari et al. (2019). Since πmin is most commonly exponentially

small in the input size (e.g., when π is the uniform distribution), the improvement is usually
a polynomial factor. Our upper bound is sharp, as it is achieved (up to constant factors) when
π is the uniform distribution over the bases of some matroids (Jerrum (2003)).3

Our main improvement is a modified log-Sobolev inequality (mLSI) for π and PBX,π . To
introduce this inequality, we define the Dirichlet form of a reversible Markov chain P , over
state space �, as

EP (f, g) := ∑
x,y∈�

π(x)f (x)[I − P ](x, y)g(y),

where f,g are two functions over �, and I denotes the identity matrix. Moreover, let the
(normalized) relative entropy of f : � →R≥0 be

Entπ(f ) := Eπ(f logf ) −Eπf logEπf,

where we follow the convention that 0 log 0 = 0. If we normalize Eπf = 1, then Entπ(f ) is
the relative entropy (or Kullback–Leibler divergence) between π(·)f (·) and π(·).

The modified log-Sobolev constant (Bobkov and Tetali (2006)) is defined as

ρ(P ) := inf
{EP (f, logf )

Entπ(f )

∣∣∣∣ f : � →R≥0,Entπ(f ) �= 0
}
.

Our main theorem is the following, which is a special case of Theorem 7.

THEOREM 1. Let π be an r-homogeneous strongly log-concave distribution, and PBX,π

is the corresponding bases-exchange walk. Then

ρ(PBX,π ) ≥ 1

r
.

Since tmix(P, ε) ≤ 1
ρ(P )

(log log 1
πmin

+ log 1
2ε2 ) (cf. Bobkov and Tetali (2006)), Theorem 1

directly implies the mixing time bound (1).
In fact, we show more than Theorem 1. Following Anari et al. (2019) and Kaufman and

Oppenheim (2018), we stratify independent sets of the matroid M by their sizes, and define
two random walks for each level, depending on whether they add or delete an element first.
For instance, the bases-exchange walk PBX,π is the “delete-add” or “down-up” walk for the
top level. We give lower bounds for the modified log-Sobolev constants of both random walks
for all levels. For the complete statement, see Section 3 and Theorem 7.

The previous work of Anari et al. (2019), building upon (Kaufman and Oppenheim
(2018)), focuses on the spectral gap of PBX,π . It is well known that lower bounds of the
modified log-Sobolev constant are stronger than those of the spectral gap. Thus, we need to
seek a different approach. Our key lemma, Lemma 11, shows that the relative entropy de-
cays by a factor of 1 − 1

k
when we go from level k to level k − 1. Theorem 1 is a simple

3One such example is the matroid defined by a graph which is similar to a path but with two parallel edges
connecting every two successive vertices instead of a single edge. Equivalently, this can be viewed as the partition
matroid where each block has two elements and each basis is formed by choosing exactly one element from every
block. The Markov chain PBX,π in this case is just the 1/2-lazy random walk on the Boolean hypercube.
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consequence of this lemma and Jensen’s inequality. In order to prove this lemma, we used a
decomposition idea to inductively bound the relative entropy. Although similar ideas have ap-
peared before (Jerrum et al. (2004), Lee and Yau (1998), Morris (2009, 2013)) our approach
does not seem to fall into any existing framework.

Prior to our work, similar bounds have been obtained mostly for strong Rayleigh distri-
butions, which, introduced by Borcea, Brändén and Liggett (2009), are a proper subset of
strongly log-concave distributions. Hermon and Salez (2019) showed a lower bound on the
modified log-Sobolev constant for strong Rayleigh distributions,4 improving upon the spec-
tral gap bound of Anari, Oveis Gharan and Rezaei (2016). The work of Hermon and Salez
(2019) builds upon the previous work of Jerrum et al. (2004) for balanced matroids (Feder and
Mihail (1992)). All of these results follow an inductive framework inspired by Lee and Yau
(1998), which is apparently difficult to carry out in the case of general matroids or strongly
log-concave distributions. Our analysis of the relative entropy took a different path from this
line of work.

By the standard Herbst argument (see, e.g., Boucheron, Lugosi and Massart (2013), Goel
(2004), Sammer (2005)), Theorem 1 also implies the following concentration bound.

COROLLARY 2. Let π be an r-homogeneous strongly log-concave distribution with sup-
port � ⊂ 2[n], and PBX,π be the corresponding bases-exchange walk. For any observable
function f : � →R and a ≥ 0,

Prx∼π

(∣∣f (x) −Eπf
∣∣ ≥ a

) ≤ 2 exp
(
− a2

2rv(f )

)
,

where v(f ) is the maximum of one-step variances,

v(f ) := max
x∈�

{∑
y∈�

PBX,π (x, y)
(
f (x) − f (y)

)2
}
.

There have been a number of results concerning concentration inequalities for Lipshitz
functions of negatively correlated variables. Pemantle and Peres (2014) showed concentra-
tion for variables satisfying the stochastic covering property (SCP), which includes strong
Rayleigh distributions as special cases. (See also Hermon and Salez (2019).) Correcting an
earlier proof of Dubhashi and Ranjan (1998), Garbe and Vondrák (2018) showed concentra-
tion for variables with negative regression (NR), a property even weaker than SCP.

For a c-Lipschitz function (under the graph distance in the bases-exchange graph), v(f ) ≤
c2. Thus, Corollary 2 generalizes the concentration bound for Lipschitz functions in strong
Rayleigh distributions. However, SLC is not a negative correlation property. We construct
examples in the Appendix to show that SCP and SLC are in fact incomparable. Thus, Corol-
lary 2 is incomparable to the results of Garbe and Vondrák (2018), Hermon and Salez (2019),
Pemantle and Peres (2014). It is not clear whether there is a larger class of distributions,
generalizing both NR and SLC, which retains this concentration bound.

It is an interesting open problem to extend our result to more general settings. SLC distri-
butions are special cases of high-dimensional expanders, where all local spectral gaps are at
least 1. For more general cases, “local-to-global” bounds for spectral gaps have been obtained
(Alev and Lau (2020), Kaufman and Oppenheim (2018)), whereas local-to-global mLSI on
high-dimensional expanders is still elusive. Another interesting setting is the uniform distri-
bution over common bases or independent sets of two matroids. Is there a Markov chain that

4The result of Hermon and Salez (2019) in fact requires a weaker assumption, namely the stochastic covering
property (SCP). We construct examples in the Appendix to show that SCP and SLC are in fact incomparable.
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converges rapidly to such distributions? Note that this setting includes the important problem
of sampling perfect matchings of bipartite graphs, where the only known efficient algorithm
is through an annealing process and its running time is a polynomial with high exponent
(Jerrum, Sinclair and Vigoda (2004)).

In Section 2, we introduce necessary notions and briefly review relevant background. In
Section 3, we formally state our main results. In Section 4, we show the decay of relative
entropy and modified log-Sobolev constant lower bounds for the “down-up” and “up-down”
walks. In Section 5, we show the concentration bound. In the Appendix, we discuss stochastic
covering property and strong log-concavity.

2. Preliminaries. In this section, we define and give some basic properties of Markov
chains, strongly log-concave distributions and matroids.

2.1. Markov chains. Let � be a discrete state space and π be a distribution over �. Let
P : � × � → R≥0 be the transition matrix of a Markov chain whose stationary distribution
is π . Then

∑
y∈� P (x, y) = 1 for any x ∈ �. We say P is reversible with respect to π if

π(x)P (x, y) = π(y)P (y, x).(2)

We adopt the standard notation of Eπ for a function f : � →R, namely

Eπf = ∑
x∈�

π(x)f (x).

We also view the transition matrix P as an operator that maps functions to functions. More
precisely, let f be a function f : � →R and P acting on f is defined as

Pf (x) := ∑
y∈�

P (x, y)f (y).

This is also called the Markov operator corresponding to P . We will not distinguish the
matrix P from the operator P as it will be clear from the context. Note that Pf (x) is the
expectation of f with respect to the distribution P(x, ·). We can regard a function f as a
column vector in R

�, in which case Pf is simply matrix multiplication.
The Hilbert space L2(π) is given by endowing R

� with the inner product

〈f,g〉π := ∑
x∈�

π(x)f (x)g(x),

where f,g ∈ R
�. In particular, the norm in L2(π) is given by ‖f ‖π := √〈f,f 〉π .

The adjoint operator P ∗ of P is defined as P ∗(x, y) = π(y)P (y,x)
π(x)

. This is the (unique)
operator which satisfies 〈f,Pg〉π = 〈P ∗f,g〉π . It is easy to verify that if P satisfies the
detailed balanced condition (2) (so P is reversible), then P is self-adjoint, namely P = P ∗.

The Dirichlet form is defined as

EP (f, g) := 〈
(I − P)f,g

〉
π ,(3)

where I stands for the identity matrix of the appropriate size. Let the Laplacian L := I − P .
Then

EP (f, g) = ∑
x,y∈�

π(x)g(x)L(x, y)f (y)

= gT diag(π)Lf,



510 M. CRYAN, H. GUO AND G. MOUSA

where in the last line we regard f , g and π as (column) vectors over �. In particular, if P is
reversible, then L∗ = L and

EP (f, g) = 〈Lf,g〉π = 〈
f,L∗g

〉
π = 〈f,Lg〉π = EP (g, f )

= f T diag(π)Lg.
(4)

In this paper, all Markov chains are reversible and we will most commonly use the form (4).
Another common expression of the Dirichlet form for reversible P is

EP (f, g) = 1

2

∑
x∈�

∑
y∈�

π(x)P (x, y)
(
f (x) − f (y)

)(
g(x) − g(y)

)
,(5)

but we will not need this expression until Section 5. It is well known that the spectral gap of
P , or equivalently the smallest positive eigenvalue of L, controls the convergence rate of P .
It also has a variational characterization. Let the variance of f be

Varπ(f ) := Eπf 2 − (Eπf )2.

Then

λ(P ) := inf
{EP (f,f )

Varπ(f )

∣∣∣∣ f : � →R,Varπ(f ) �= 0
}
.

The usefulness of λ(P ) is due to the fact that, if, say, all eigenvalues of P are nonnegative,
then

tmix(P, ε) ≤ 1

λ(P )

(
1

2
log

1

πmin
+ log

1

2ε

)
,(6)

where πmin = minx∈� π(x); see, for example, Levin and Peres (2017), Theorem 12.4.
The (standard) log-Sobolev inequality relates EP (

√
f ,

√
f ) with the following entropy-

like quantity:

Entπ(f ) := Eπ(f logf ) −Eπf logEπf,(7)

for a nonnegative function f , where we follow the convention that 0 log 0 = 0. Also, log
always stands for the natural logarithm in this paper. The log-Sobolev constant is defined as

α(P ) := inf
{EP (

√
f ,

√
f )

Entπ(f )

∣∣∣∣ f : � →R≥0,Entπ(f ) �= 0
}
.

The constant α(P ) gives a better control of the mixing time of P , as shown by Diaconis and
Saloff-Coste (1996),

tmix(P, ε) ≤ 1

4α(P )

(
log log

1

πmin
+ log

1

2ε2

)
.(8)

The saving seems modest comparing to (6), but it is quite common that πmin is exponentially
small in the instance size, in which case the saving is a polynomial factor.

What we are interested in, however, is the following modified log-Sobolev constant intro-
duced by Bobkov and Tetali (2006):

ρ(P ) := inf
{EP (f, logf )

Entπ(f )

∣∣∣∣ f : � →R≥0,Entπ(f ) �= 0
}
.

Similar to (8), we have that

tmix(P, ε) ≤ 1

ρ(P )

(
log log

1

πmin
+ log

1

2ε2

)
,(9)

as shown by Bobkov and Tetali (2006), Corollary 2.8.
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For reversible P , the following relationships among these constants are known:

2λ(P ) ≥ ρ(P ) ≥ 4α(P ).

See, for example, Bobkov and Tetali (2006), Proposition 3.6.
Thus, lower bounds on these constants are increasingly difficult to obtain. However, to get

the best asymptotic control of the mixing time, one only needs to lower bound the modified
log-Sobolev constant ρ(P ) instead of α(P ) by comparing (8) and (9). Indeed, as observed
by Hermon and Salez (2019), by taking the indicator function 1

π(x)
1x for all x ∈ �,

α(P ) ≤ min
x∈�

{
1

− logπ(x)

}
.

In our setting of r-homogeneous strongly log-concave distributions, we cannot hope for a
uniform bound for α(P ) similar to Theorem 1, as the right-hand side of the above can be
arbitrarily small for fixed r .

By (3) and (7), it is clear that if we replace f by cf for some constant c > 0, then both
EP (f, logf ) and Entπ(f ) increase by the same factor c. Thus, in order to bound ρ, we
may further assume that Eπf = 1. This assumption allows the simplification Entπ(f ) =
Eπ(f logf ). In this case, π(·)f (·) is a distribution, and Entπ(f ) is the relative entropy (or
Kullback–Leibler divergence) between π(·)f (·) and π(·).

2.2. Strongly log-concave distributions. We write ∂i as shorthand for ∂
∂xi

, and ∂I for an
index set I = {i1, . . . , ik} as shorthand for ∂i1 . . . ∂ik .

DEFINITION 3. A polynomial p ∈ R[x1, . . . , xn] with nonnegative coefficients is log-
concave at x ∈ R≥0 if its Hessian ∇2 logp is negative semidefinite at x. We call p strongly
log-concave if for any index set I ⊆ [n], ∂Ip is log-concave at the all-1 vector 1.

The notion of strong log-concavity was introduced by Gurvits (2009a, 2009b). There
are also notions of complete log-concavity introduced by Anari, Oveis Gharan and Vinzant
(2018), and Lorentzian polynomials introduced by Brändén and Huh (2019). It turns out that
for homogeneous polynomials the three notions are equivalent (Brändén and Huh (2019),
Theorem 5.3). (See also Anari et al. (2019).)

The following property of strongly log-concave polynomials is particularly useful (Anari,
Oveis Gharan and Vinzant (2018), Brändén and Huh (2019)).

PROPOSITION 4. If p is strongly log-concave, then for any I ⊆ [n], the Hessian matrix
∇2∂Ip(1) has at most one positive eigenvalue.

In fact, when p is homogeneous, ∇2∂Ip(1) having at most one positive eigenvalue is equiv-
alent to ∇2 log ∂Ip(1) being negative semidefinite (Anari, Oveis Gharan and Vinzant (2018)),
but we will only need the proposition above.

A distribution π is called r-homogeneous (or strongly log-concave) if gπ is.

2.3. Matroids. A matroid is a combinatorial structure that abstracts the notion of linear
independence. We shall define it in terms of its independent sets, although many different
equivalent definitions exist. Formally, a matroid M = (E,I) consists of a finite ground set
E and a collection I of subsets of E (independent sets) that satisfy the following:

• ∅ ∈ I;
• if S ∈ I , T ⊆ S, then T ∈ I;
• if S,T ∈ I and |S| > |T |, then there exists an element i ∈ S \ T such that T ∪ {i} ∈ I .
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The first condition guarantees that I is nonempty, the second implies that I is downward
closed, and the third is usually called the augmentation axiom. We direct the reader to Oxley
(1992) for a reference book on matroid theory. In particular, the augmentation axiom implies
that all the maximal independent sets have the same cardinality, namely the rank r of M. The
set of bases B is the collection of maximal independent sets of M. Furthermore, we denote
by M(k) the collection of independent sets of size k, where 0 ≤ k ≤ r . If we dropped the
augmentation axiom, the resulting structure would be a nonempty collection of subsets of E

that is downward closed, known as an (abstract) simplicial complex.
Brändén and Huh (2019), Theorem 7.1, showed that the support of an r-homogeneous

strongly log-concave distribution π is the set of bases of a matroid M = (E,I) of rank r .
We equip I with a weight function w(·) recursively defined as follows:5

w(I) :=
⎧⎪⎨
⎪⎩

π(I)Zr if |I | = r,∑
I ′⊃I,|I ′|=|I |+1

w
(
I ′) if |I | < r,

for some normalization constant Zr > 0. For example, we may choose w(B) = 1 for all
B ∈ B and Zr = |B|, which corresponds to the uniform distribution over B. It follows that

w(I) = (
r − |I |)! ∑

B∈B,I⊆B

w(B).

Let πk be the distribution over M(k) such that πk(I ) ∝ w(I) for I ∈ M(k). Thus π = πr .
For any I ∈ M(k), πk(I ) is proportional to the probability of generating a superset of I under
π . Let Zk = ∑

I∈M(k) w(I ) be the normalization constant of πk . In fact, for any 0 ≤ k ≤ r ,
k!Zk = Z0 = w(∅).

It is straightforward to verify that for any I ∈ I ,

∂I gπ(1) = ∑
B∈B,I⊂B

π(B) = 1

Zr

∑
B∈B,I⊂B

w(B).(10)

We also write w(v) as shorthand for w({v}) for any v ∈ E.
For an independent set I ∈ I , the contraction MI = (E \ I,II ) is also a matroid, where

II = {J | J ⊆ E \ I, J ∪ I ∈ I}. We equip MI with a weight function wI (·) such that
wI (J ) = w(I ∪ J ). We may similarly define distributions πI,k for k ≤ r − |I | such that
πI,k(J ) ∝ wI (J ) for J ∈ MI (k). For convenience, instead of defining πI,k over MI (k), we
define it over M(k + |I |) such that for any J ∈ M(k + |I |),

πI,k(J ) :=
⎧⎪⎨
⎪⎩

k!w(J )

w(I)
if I ⊂ J ;

0 otherwise.
(11)

Notice that the normalizing constant ZI,k = w(I)
k! .

If |I | ≤ r − 2, let WI be the matrix such that Wuv = wI ({u, v}) for any u, v ∈ E \ I . Then
notice that

wI

({u, v}) = w
(
I ∪ {u, v})

= (
r − |I | − 2

)! ∑
B∈B,I∪{u,v}⊆B

w(B)

= (
r − |I | − 2

)!Zr · ∂u∂v∂I gπ(1).(by (10))

5One may define w(I) to be a k!
r! fraction of the current definition for I ∈M(k). This alternative definition will

eliminate many factorial factors in the rest of the paper. However, it is inconsistent with the literature (Anari et al.
(2019), Kaufman and Oppenheim (2018)), so we do not adopt it.
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In other words, WI is ∇2∂I gπ multiplied by the scalar (r − |I | − 2)!Zr . Thus, Proposition 4
implies the following.

PROPOSITION 5. Let π be an r-homogeneous strongly log-concave distribution over
M = (E,I). If I ∈ I and |I | ≤ r −2, then the matrix WI has at most one positive eigenvalue.

Proposition 5 implies the following bound for a quadratic form, which will be useful later.

LEMMA 6. Let π be an r-homogeneous strongly log-concave distribution over M =
(E,I), and let I ∈ I such that |I | ≤ r − 2. Let f : MI (1) → R be a function such that
EπI,1f = 1. Then

f TWIf ≤ w(I).

PROOF. Let wI = {wI (v)}v∈E\I . The constraint EπI,1f = 1 implies that∑
v∈E\I wI (v)f (v) = w(I). Let D = diag(wI ) and A = D−1/2WID

−1/2. Then A is a real
symmetric matrix. By Proposition 5, WI has at most one positive eigenvalue, and thus so
does A (see, e.g., Anari et al. (2019), Lemma 2.4). We may decompose A as

A =
|E\I |∑
i=1

λigig
T
i ,(12)

where {gi} is an orthonormal basis and λi ≤ 0 for all i ≥ 2. Moreover, notice that
√

wI is an
eigenvector of A with eigenvalue 1. Thus, λ1 = 1 and g1 can be taken as

√
πI,1.

The decomposition (12) directly implies that

W =
|E\I |∑
i=1

λihih
T
i ,

where hi = D1/2gi . In particular, h1 = 1√
w(I)

wI .

The assumption
∑

v∈E\I wI (v)f (v) = w(I) can be rewritten as 〈h1, f 〉 = √
w(I). Thus,

f TWIf =
|E\I |∑
i=1

λi〈hi, f 〉2 ≤ 〈h1, f 〉2 = w(I),

where the inequality is due to the fact that λ1 = 1 and λi ≤ 0 for all i ≥ 2. The lemma follows.
�

3. Main results. There are two natural random walks P ∧
k and P ∨

k on M(k) by starting
with adding or deleting an element and coming back to M(k). Given the current I ∈ M(k),
the “up-down” random walk P ∧

k first chooses I ′ ∈ M(k+1) such that I ′ ⊃ I with probability
proportional to w(I ′), and then removes one element from I ′ uniformly at random. More
formally, for 1 ≤ k ≤ r − 1 and I, J ∈ M(k), we have that

P ∧
k (I, J ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

k + 1
if I = J ;

w(I ∪ J )

(k + 1)w(I)
if I ∪ J ∈ M(k + 1);

0 otherwise.

(13)
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The “down-up” random walk P ∨
k removes an element of I uniformly at random to get I ′ ∈

M(k − 1), and then moves to J such that J ∈M(k), J ⊃ I ′ with probability proportional to
w(J ). More formally, for 2 ≤ k ≤ r ,

P ∨
k (I, J ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
I ′∈M(k−1),I ′⊂I

w(I )

kw(I ′)
if I = J ;

w(J )

kw(I ∩ J )
if |I ∩ J | = k − 1;

0 if |I ∩ J | < k − 1.

(14)

Thus, the bases-exchange walk PBX,π according to π is just P ∨
r . The stationary distribution

of both P ∧
k and P ∨

k is πk(I ) = w(I)
Zk

= k!w(I)
r!Zr

.

THEOREM 7. Let π be an r-homogeneous strongly log-concave distribution, and M the
associated matroid. Let P ∨

k and P ∧
k be defined as above on M(k). Then the following hold:

• for any 2 ≤ k ≤ r , ρ(P ∨
k ) ≥ 1

k
;

• for any 1 ≤ k ≤ r − 1, ρ(P ∧
k ) ≥ 1

k+1 .

Theorem 7 is shown in Section 4. Interestingly, we do not know how to directly relate
ρ(P ∧

k ) with ρ(P ∨
k+1), although it is straightforward to see that both walks have the same

spectral gap (see (17) and (18) below).
By (9), we have the following corollary.

COROLLARY 8. In the same setting as Theorem 7, we have that:

• for any 2 ≤ k ≤ r , tmix(P
∨
k , ε) ≤ k(log logπ−1

k,min + log 1
2ε2 );

• for any 1 ≤ k ≤ r − 1, tmix(P
∧
k , ε) ≤ (k + 1)(log logπ−1

k,min + log 1
2ε2 ).

In particular, for the bases-exchange walk PBX,π according to π ,

tmix(PBX,π , ε) ≤ r

(
log logπ−1

min + log
1

2ε2

)
.

Let M be a matroid of rank r with a ground set of size n. For the uniform distribution
over the bases of M, Corollary 8 implies that the mixing time of the bases-exchange walk is
O(r(log r + log logn)), which improves upon the O(r2 logn) bound of Anari et al. (2019).
The mixing time bound in Corollary 8 is sharp, as there are matroids where the upper bound is
achieved (Example 9.14 Jerrum (2003)). As mentioned in the Introduction, one such example
is the graphic matroid defined by a graph which is similar to a path but with two parallel edges
connecting every two successive vertices instead of a single edge. Equivalently, this can be
viewed as the partition matroid where each block has two elements and each basis is formed
by choosing exactly one element from every block. The rank of this matroid is r = n/2, and
πmin = 1

2n/2 . The Markov chain PBX,π in this case is just the 1/2-lazy random walk on the
n/2-dimensional Boolean hypercube, which has mixing time 	(n logn), matching the upper
bound in Corollary 8.

For more details on the concentration result, Corollary 2, see Section 5.

4. Decay of relative entropy. In this section and what follows, we always assume that
the matroid M and the weight function w(·) correspond to an r-homogeneous strongly log-
concave distribution π = πr .
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We first give some basic decompositions of P ∨
k and P ∧

k . Let Ak be a matrix whose rows
are indexed by M(k) and columns by M(k + 1) such that

Ak(I, J ) :=
{

1 if I ⊂ J ;
0 otherwise,

and wk be the vector of {w(I)}I∈M(k). Moreover, let

P
↑
k := diag(wk)

−1Ak diag(wk+1),(15)

P
↓
k+1 := 1

k + 1
AT

k .(16)

Then

P ∧
k = P

↑
k P

↓
k+1,(17)

P ∨
k+1 = P

↓
k+1P

↑
k .(18)

Let Dk = diag(πk). Using (15) and (16), we get that

Dk+1P
↓
k+1 = (

P
↑
k

)T
Dk.(19)

By multiplying equation (19) by the all-ones vector, we also get that

πk+1P
↓
k+1 = πk,(20)

πkP
↑
k = πk+1.(21)

For k ≥ 2 and a function f (k) : M(k) → R≥0, define f (i) : M(i) → R≥0 for 1 ≤ i ≤ k − 1
such that

f (i) :=
k−1∏
j=i

P
↑
j f (k).(22)

Intuitively, f (i) is the function f (k) “going down” to level i. The key lemma, namely
Lemma 11, is that this operation contracts the relative entropy by a factor of 1 − 1

i
from

level i to level i − 1.
In fact, recall that if we normalize Eπk

f (k) = 1, then (f (k))TDk is a distribution (viewed
as a row vector). Then it is easy to verify that(

f (k−1))TDk−1 = (
f (k))TDkP

↓
k .(23)

Namely, the corresponding distribution of f (k−1) is that of f (k) after the random walk P
↓
k .

We first establish some properties of f (i) for i < k.

LEMMA 9. Let k ≥ 2 and f (k) : M(k) →R≥0 be a nonnegative function on M(k). Then
we have the following:

1. for any 1 ≤ i < k, J ∈ M(i), f (i)(J ) = EπJ,k−i
f (k);

2. for any 1 ≤ i ≤ k, Eπi
f (i) = Eπk

f (k).

PROOF. For (1), first notice that

δTJ

k−1∏
j=i

P
↑
j = δTJ

k−1∏
j=i

[
diag(wj )

−1Aj diag(wj+1)
]

= δTJ
w(J )

k−1∏
j=i

Aj diag(wk) = πJ,k−i ,
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where δJ is the Dirac vector that equals 1 at J and 0 elsewhere. The last equality holds due
to the fact that the product of the adjacency matrices counts the paths from independent sets
at level i to independent sets at level k. For every such pair of sets, the number of these paths
is (k − i)! if one is contained in the other, or 0 otherwise. It follows that

EπJ,k−i
f (k) = πJ,k−if

(k) = δTJ

k−1∏
j=i

P
↑
j f (k) = δTJ f (i) = f (i)(J ).

For (2), we have that

Eπi
f (i) = πi

k−1∏
j=i

P
↑
j f (k)

= πkf
(k)(by Equation (21))

= Eπk
f (k). �

Now we are ready to establish the base case of the entropy’s contraction.

LEMMA 10. Let f (2) : M(2) →R≥0 be a non-negative function defined on M(2). Then

Entπ2

(
f (2)) ≥ 2Entπ1

(
f (1)).

PROOF. Without loss of generality, we may assume that Eπ2f
(2) = 1 and therefore

Eπ1f
(1) = 1 by (2) of Lemma 9. Note that for v ∈ E,

f (1)(v) = ∑
S∈M(2):v∈S

w(S)

w(v)
f (2)(S).

We will use the following inequality, which is valid for any a ≥ 0 and b > 0,

a log
a

b
≥ a − b.(24)

Noticing that Z1 = 2Z2, we have

Entπ2

(
f (2)) − 2Entπ1

(
f (1))

= ∑
S∈M(2)

π2(S)f (2)(S) logf (2)(S)

− 2
∑
v∈E

π1(v)

( ∑
S∈M(2):v∈S

w(S)

w(v)
f (2)(S)

)
logf (1)(v)

= ∑
S∈M(2)

(
π2(S)f (2)(S) logf (2)(S) − 2

∑
v∈S

π1(v)
w(S)

w(v)
f (2)(S) logf (1)(v)

)

= ∑
S∈M(2)

(
w(S)

Z2
f (2)(S) logf (2)(S) − 2

∑
v∈S

w(v)

Z1
· w(S)

w(v)
f (2)(S) logf (1)(v)

)

= ∑
S={u,v}∈M(2)

w(S)

Z2
f (2)(S)

(
logf (2)(S) − logf (1)(v) − logf (1)(u)

)

≥ ∑
S={u,v}∈M(2)

w(S)

Z2

(
f (2)(S) − f (1)(v)f (1)(u)

)
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= ∑
S∈M(2)

π2(S)f (2)(S) − ∑
S={u,v}∈M(2)

w(S)

Z2
· f (1)(v)f (1)(u)

= 1 − 1

2Z2
· (

f (1))TW∅f (1),

where the inequality is by (24) with a = f (2)(S) and b = f (1)(u)f (1)(v) when b > 0, and
when b = 0 we have a = 0 as well. Thus, the lemma follows from Lemma 6 with I = ∅ and
w(∅) = Z1 = 2Z2. �

We generalize Lemma 10 as follows.

LEMMA 11. Let k ≥ 2 and f (k) : M(k) → R≥0 be a nonnegative function defined on
M(k). Then

Entπk

(
f (k)) ≥ k

k − 1
Entπk−1

(
f (k−1)).

PROOF. We do an induction on k. The base case of k = 2 follows from Lemma 10.
For the induction step, assume the lemma holds for all integers at most k for any matroid

M. Let f (k+1) : M(k + 1) →R≥0 be a nonnegative function such that Eπk+1f
(k+1) = 1.

Recall (11), where we define πv,k over M(k + 1) instead of over Mv(k). For I ∈ M(k +
1), v ∈M(1) and v ∈ I ,

πk+1(I ) = w(I)

Zk+1
= (k + 1) · w(v)

(k + 1)!Zk+1
· k!w(I)

w(v)
= (k + 1)π1(v)πv,k(I ),

as Z1 = (k + 1)!Zk+1. This means that

πk+1(I ) = ∑
v∈M(1),v∈I

π1(v)πv,k(I ) = ∑
v∈M(1)

π1(v)πv,k(I ).(25)

Thus πk+1 is a mixture of πv,k .
We use the “chain rule” of entropy to decompose Entπk+1(f

(k+1)) with respect to the
entropy of f (1) (“projection”) and the entropy conditioned on having each v (“restriction”).
To be more precise, we have

Eπk+1f
(k+1) logf (k+1) = ∑

v∈M(1)

π1(v)Eπv,k
f (k+1) logf (k+1).

This implies that

Entπk+1

(
f (k+1)) = ∑

v∈M(1)

π1(v)Entπv,k

(
f (k+1))

+ ∑
v∈M(1)

π1(v)
(
Eπv,k

f (k+1)) log
(
Eπv,k

f (k+1))(26)

= ∑
v∈M(1)

π1(v)Entπv,k

(
f (k+1)) + Entπ1

(
f (1)),

where we use (1) and (2) of Lemma 9. Similarly,

Entπk

(
f (k)) = ∑

v∈M(1)

π1(v)Entπv,k−1

(
f (k)) + Entπ1

(
f (1)).(27)
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For any v ∈ M(1), the contracted matroid Mv with weight function wv(I) = w(I ∪ v)

for I ⊆ E \ {v} corresponds to an (r − 1)-homogeneous strongly log-concave distribution.
(Recall Definition 3.) Thus, we can apply the induction hypothesis on Mv at level k and get

Entπv,k

(
f (k+1)) ≥ k

k − 1
· Entπv,k−1

(
f (k)).(28)

Strictly speaking, in (28) we should apply the induction hypothesis to f
(k)
v which is the

restriction of f (k+1) to J ∈ M(k + 1) and J � v, and then “push it down” to f
(k−1)
v defined

over I ∈ M(k) and I � v as

f (k−1)
v (I ) := ∑

J∈M(k+1):J⊃I

w(J )

w(I)
· f (k)

v (J ) = ∑
J∈M(k+1):J⊃I

w(J )

w(I)
· f (k+1)(J ).

However, f
(k)
v agrees with f (k+1) on the support of πv,k , and f

(k−1)
v agrees with f (k) on the

support of πv,k−1. This validates (28).
Furthermore, using the induction hypothesis on M from level k to level 1, we have that

Entπk

(
f (k)) ≥ k · Entπ1

(
f (1)).(29)

Thus, (27) and (29) together imply that∑
v∈M(1)

π1(v)Entπv,k−1

(
f (k)) ≥ (k − 1)Entπ1

(
f (1)).(30)

Putting everything together,

Entπk+1

(
f (k+1))

= ∑
v∈M(1)

π1(v)Entπv,k

(
f (k+1)) + Entπ1

(
f (1))(by (26))

≥ k

k − 1

∑
v∈M(1)

π1(v)Entπv,k−1

(
f (k)) + Entπ1

(
f (1))(by (28))

=
(

k + 1

k
+ 1

k(k − 1)

) ∑
v∈M(1)

π1(v)Entπv,k−1

(
f (k))

+ Entπ1

(
f (1)) Entπ1

(
f (1))

≥ k + 1

k

∑
v∈M(1)

π1(v)Entπv,k−1

(
f (k)) + k + 1

k
Entπ1

(
f (1))(by (30))

= k + 1

k
Entπk

(
f (k)).(by (27))

This concludes the inductive step and thus the proof. �

REMARK. We remark that our decomposition of the relative entropy (26) is “horizontal”
with respect to elements of M(1). This decomposition is different from the decomposition by
Kaufman and Oppenheim (2018), Theorem 5.2 in a similar context, where they decompose
“vertically” across all levels.

The decomposition (25) of πk appears to be the key to Lemma 11. An alternative way to
understand it is the following. Consider the process which first draws a basis B ∼ π , and
then repeatedly removes an element from the current set uniformly at random for at most
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r repetitions. Let Xk be the outcome of this process after removing r − k elements. Then
|Xk| = k, and πk(I ) = Pr(Xk = I ) for I ∈ M(k). Moreover,

Pr
(
X1 = {v} | Xk = I

) =
⎧⎨
⎩

1

k
if v ∈ I ;

0 otherwise.

By Bayes’ rule,

Pr
(
Xk = I | X1 = {v})Pr

(
X1 = {v}) = Pr

(
X1 = {v} | Xk = I

)
Pr(Xk = I ).

Summing over v, since
∑

v∈M(1) Pr(X1 = {v} | Xk = I ) = 1, we have∑
v∈M(1)

Pr
(
Xk = I | X1 = {v})Pr

(
X1 = {v})

= Pr(Xk = I )
∑

v∈M(1)

Pr
(
X1 = {v} | Xk = I

)
(31)

= Pr(Xk = I ).

Noticing that Pr(Xk = I | X1 = {v}) = πv,k−1(I ), equation (31) recovers (25).
By recalling (22) and (23), we observe that the analysis of the “going-down” half—and,

similarly, the “going-up” half—of P ∨
k and P ∧

k−1 corresponds to premultiplying by P
↑
k−1 –

or, accordingly, P
↓
k – to a function f . Hence, Lemma 11 implies that the relative entropy

contracts by 1 − 1
k

in the “going-down” half of the random walks P ∨
k and P ∧

k−1. What we
show next is that the other half will not increase the relative entropy; a fact which is a special
case of the so-called “data processing inequality.”

LEMMA 12. For any k ≥ 2 and f : M(k − 1) →R≥0,

Entπk

(
P

↓
k f

) ≤ Entπk−1(f ).(32)

PROOF. Firstly, we verify that

Eπk
P

↓
k f = πkP

↓
k f

= πk−1f = Eπk−1f.(by Equation (20))

Thus, we can assume both are 1 without loss of generality. Then

Entπk

(
P

↓
k f

) = πk

(
P

↓
k f � logP

↓
k f

)
≤ πkP

↓
k (f � logf )(by Jensen’s inequality on x logx)

= πk−1(f � logf )(by Equation (20))

= Entπk−1(f ),

where � stands for the Hadamard product. �

With Lemmas 11 and 12 in hand, we can show the decay of relative entropy for P ∨
k and

P ∧
k .

COROLLARY 13. For any distribution τ on M(k),

• if 2 ≤ k ≤ r , then D(τP ∨
k ‖πk) ≤ (1 − 1

k
)D(τ‖πk);

• if 1 ≤ k ≤ r − 1, then D(τP ∧
k ‖πk) ≤ (1 − 1

k+1)D(τ‖πk).
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PROOF. We will only prove this corollary for P ∨
k as the case of P ∧

k is similar. We have
that D(τ‖πk) = Entπk

(D−1
k τT) where Dk := diag(πk). Since P ∨

k is reversible, D−1
k (P ∨

k )T =
P ∨

k D−1
k . Therefore,

D
(
τP ∨

k ‖πk

) = Entπk

(
D−1

k

(
P ∨

k

)T
τT

) = Entπk

(
P ∨

k D−1
k τT

)
≤ Entπk−1

(
P

↑
k−1D

−1
k τT

)
(by Lemma 12)

≤
(

1 − 1

k

)
Entπk

(
D−1

k τT
)

(by Lemma 11)

=
(

1 − 1

k

)
D(τ‖πk). �

It is well known that the decay of relative entropy implies a mLSI.

PROOF OF THEOREM 7. Given any f (k) : M(k) → R≥0 such that Eπk
f (k) = 1, let τ =

(Dkf
(k))T be the distribution corresponding to f (k). Then

D(τ‖πk) − D
(
τP ∨

k ‖πk

)
= ∑

S∈M(k)

τ (S) log
(

τ(S)

πk(S)

)
− ∑

S∈M(k)

τP ∨
k (S) log

(
τP ∨

k (S)

πk(S)

)

= ∑
S∈M(k)

[
τ
(
I − P ∨

k

)]
(S) log

(
τ(S)

πk(S)

)
− ∑

S∈M(k)

τP ∨
k (S) log

(
τP ∨

k (S)

τ (S)

)

= EP ∨
k

(
f (k), logf (k)) − D

(
τP ∨

k ‖τ ) ≤ EP ∨
k

(
f (k), logf (k)).

Thus,

EP ∨
k

(
f (k), logf (k)) ≥ D(τ‖πk) − D

(
τP ∨

k ‖πk

)
≥ 1

k
D(τ‖πk) = 1

k
Entπk

(
D−1

k τT
)

(by Corollary 13)

= 1

k
Entπk

(
f (k)).

This proves the statement for P ∨
k . The same proof can be used for P ∧

k by replacing every
occurrence of P ∨

k with P ∧
k , and the factor 1

k
with 1

k+1 . �

In fact, the contraction of relative entropy (Corollary 13) directly implies the mixing time
bound of Corollary 8, as illustrated by the following.

A DIRECT PROOF OF COROLLARY 8. We will only prove this for P ∨
k ; the case of P ∧

k is
similar. Notice that Corollary 13 implies that

D
(
τ0

(
P ∨

k

)t‖πk

) ≤
(

1 − 1

k

)t

D(τ0‖πk)

≤ e−t/kD(τ0‖πk) = e−t/k logπk(x0)
−1,

where τ0 is the initial distribution with τ0(x0) = 1 for some x0 ∈ M(k). Then we use
Pinsker’s inequality (2‖τ − σ‖2

TV ≤ D(τ‖σ) for any two distributions τ, σ on the same state
space), to show

2
∥∥τ0

(
P ∨

k

)t − πk

∥∥2
TV ≤ D

(
τ0

(
P ∨

k

)t‖πk

)
.



MLSI FOR SLC DISTRIBUTIONS 521

Setting e−t/k logπk(x0)
−1 ≤ 2ε2, we conclude that∥∥τ0

(
P ∨

k

)t − πk

∥∥
TV ≤ ε,

whenever

t ≥ k

(
log logπk(x0)

−1 + log
1

2ε2

)
.

This gives us Corollary 8 for P ∨
k . �

At the end of this section, let us comment that it is possible to prove the decay of variances
similar to Lemma 11, with Ent(·) replaced by Var(·). This provides an alternative proof for
the spectral gap of PBX,π to Anari et al. (2019), Kaufman and Oppenheim (2018). Indeed,
the induction proof of Lemma 11 does not require any change when one replaces Ent(·) by
Var(·), as both of them obey the same decomposition rules. However, the base case (namely
Lemma 10) needs to be edited as follows.

LEMMA 14. Let f (2) : M(2) →R. Then

Varπ2

(
f (2)) ≥ 2Varπ1

(
f (1)).

PROOF. We begin by observing that

diag(w1)
(
2P ∧

1 − I
) = W∅.(33)

From this identity and Proposition 5, we deduce that the symmetric matrix diag(w1)(2P ∧
1 −

I) has at most one positive eigenvalue. Premultiplying by the positive semidefinite matrix
diag(w1)

−1, we get that 2P ∧
1 − I also has at most one positive eigenvalue (see, e.g., Anari

et al. (2019), Lemma 2.6). Furthermore, the spectra of 2P ∧
1 − I and 2P ∨

2 − I are the same up
to some extra −1’s. So, if |M(2)| ≥ 2 (otherwise the lemma holds trivially), λ2(P

∨
2 ) ≤ 1/2

where λ2 is the second largest eigenvalue. Then the spectral gap λ(P ∨
2 ) = 1−λ2(P

∨
2 ) ≥ 1/2,

which means that

EP ∨
2

(
f (2), f (2)) ≥ 1

2
Varπ2

(
f (2)).

However, this is equivalent to the statement of the lemma, as can be seen by the following
equalities:

Varπ1

(
f (1)) = (

f (1))TD1f
(1) − (

Eπ1f
(1))2

= (
f (2))T(

P
↑
1

)T
D1P

↑
1 f (2) − (

Eπ2f
(2))2(by Lemma 9)

= (
f (2))TD2P

∨
2 f (2) − (

Eπ2f
(2))2(by (19))

= Varπ2

(
f (2)) − EP ∨

2

(
f (2), f (2)). �

5. Concentration. One application of the modified log-Sobolev inequalities is to show
concentration inequalities, via the Herbst argument (see, e.g., Bobkov and Tetali (2006),
Boucheron, Lugosi and Massart (2013)). In the discrete setting, concentration inequalities
have been obtained by Goel (2004), Section 5 and can also be obtained by combining various
results by Bobkov and Götze (1999), Bobkov, Houdré and Tetali (2006), Sammer (2005).
The following lemma and its proof are a small modification of Hermon and Salez (2019),
Lemma 5. For completeness, we include all details.
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LEMMA 15. Let P be the transition matrix of a reversible Markov chain with stationary
distribution π on a finite set �, and f : � →R be some observable function. Then

Prx∼π

(
f (x) −Eπf ≥ a

) ≤ exp
(
−ρ(P )a2

2v(f )

)
,

where a ≥ 0 and

v(f ) := max
x∈�

{∑
y∈�

P (x, y)
(
f (x) − f (y)

)2
}
.

PROOF. For any x ∈ � and t ∈ (0,+∞), let

Ft(x) := exp
(
tf (x) − ct2)

,

where c := v(f )
2ρ(P )

. We will use the inequality

z
(
ez + 1

) ≥ 2
(
ez − 1

)
,(34)

which holds for z ≥ 0. To see this, notice that at z = 0 the equality holds, and for z > 0 the
derivative of the left is larger than that of the right.

If f (x) ≥ f (y), we set z = t (f (x) − f (y)) in (34) and obtain

t
(
f (x) − f (y)

)(
Ft(x) + Ft(y)

) ≥ 2
(
Ft(x) − Ft(y)

)
,

which in turn implies that
(
Ft(x) − Ft(y)

)(
f (x) − f (y)

) ≤ t

2

(
Ft(x) + Ft(y)

)(
f (x) − f (y)

)2
.(35)

Notice that (35) also holds even if f (x) < f (y) by swapping x and y. Thus, we have that

EP (Ft , logFt) = t

2

∑
x∈�

∑
y∈�

π(x)P (x, y)
(
Ft(x) − Ft(y)

)(
f (x) − f (y)

)
(by (5))

≤ t2

4

∑
x∈�

∑
y∈�

π(x)P (x, y)
(
Ft(x) + Ft(y)

)(
f (x) − f (y)

)2(by (35))

= t2

2

∑
x∈�

π(x)Ft (x)
∑
y∈�

P (x, y)
(
f (x) − f (y)

)2(by the reversibility of P )

≤ t2

2
v(f )EπFt .

This, together with EP (Ft , logFt) ≥ ρ(P )Entπ(Ft ) (recall the definition of ρ(P )), yields

Entπ(Ft ) ≤ ct2
EπFt .

By noticing that

d

dt

(
logEπFt

t

)
= Entπ(Ft ) − ct2

EπFt

t2EπFt

≤ 0,

we deduce that for any t > 0,

logEπFt

t
≤ lim

h→0+
logEπFh

h
= Eπf,

or equivalently,

EπFt ≤ exp(tEπf ).
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Finally, by Markov inequality, for any a ≥ 0,

Prx∼π

(
f (x) −Eπf ≥ a

) = Prx∼π

(
Ft(x) ≥ exp

(
tEπf − ct2 + at

))
≤ exp

(
ct2 − at

)
,

where the right-hand side is minimized for t = a
2c

= aρ(P )
v(f )

. �

Corollary 2 follows from applying Lemma 15 to both f and −f together with Theorem 1.
We could also apply Lemma 15 together with Theorem 7 to get concentration inequalities for
all πk .

For a Lipschitz function f : � →R with Lipschitz constant c (under the graph distance in
the bases-exchange graph), we have that v(f ) ≤ c2. Thus, by Corollary 2, such a Lipschitz
function satisfies the following concentration inequality:

Prx∼π

(∣∣f (x) −Eπf
∣∣ ≥ a

) ≤ 2 exp
(
− a2

2rc2

)
,

when π is an r-homogeneous strongly log-concave distribution.
For general matroids, an example is the function that counts the number of elements be-

longing to a specified subset of the ground set, which has Lipschitz constant c = 1. More
examples were given by Pemantle and Peres (2014) for graphic matroids, such as functions
that count the number of leaves in a spanning tree (c = 2), or the number of vertices with odd
degrees (c = 4).

APPENDIX: STOCHASTIC COVERING PROPERTY AND STRONG
LOG-CONCAVITY

The results obtained by Pemantle and Peres (2014) and Hermon and Salez (2019) only
require a property which is weaker than the strong Rayleigh property (SRP), namely the
stochastic covering property (SCP). Since strong log-concavity (SLC) is also a generaliza-
tion of SRP, it is natural to wonder about the relationship between SLC and SCP. In this
section, we show that SLC is incomparable to SCP. As a result, Theorem 1 and Corollary 2
do not subsume the results of Hermon and Salez (2019) and Pemantle and Peres (2014), re-
spectively. Moreover, Corollary 2 is also incomparable to the concentration bound of Garbe
and Vondrák (2018), whose result requires only negative regression, a property weaker than
SCP.

First, let us define SCP. For S ⊆ [n] and x, y ∈ {0,1}S , we say x covers y, denoted by
x � y, if x = y or x = y + ei for some i, where ei is the unit vector of coordinate i. In other
words, x is obtained from y by increasing at most one coordinate. For two distributions μ and
ν, we say μ stochastically covers ν, if there is a coupling such that PrX∼μ,Y∼ν(X � Y) = 1.
With slight overload of notation, we also write μ � ν. A distribution μ : {0,1}[n] → R≥0
satisfies the SCP if for any S ⊆ [n] and x, y ∈ {0,1}S such that x � y, μy � μx , where μx is
the distribution of μ conditioned on agreeing with x over the index set S.

Furthermore, μ is said to satisfy the negative cylinder dependence (NCD), if for any S ⊆
[n],

E

∏
i∈S

Xi ≤ ∏
i∈S

EXi,

E

∏
i∈S

(1 − Xi) ≤ ∏
i∈S

E(1 − Xi),

where Xi is the indicator variable of coordinate i. It is known that SCP implies NCD
(Pemantle and Peres (2014)). However, such negative dependence even when |S| = 2 is
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known not to hold for the uniform distribution over the bases of some matroids. See Huh,
Schröter and Wang (2018) for the most comprehensive list of such examples that we are
aware of. As the uniform distribution over a matroid’s bases is SLC, SLC does not imply
SCP.

On the other hand, SCP does not imply SLC either. We give a concrete example here. Let
μ be supported on the bases of the uniform matroid of rank 2 over 4 elements. We choose μ

such that

μ
({1,1,0,0}) ∝ θ, μ

({1,0,1,0}) ∝ 2, μ
({1,0,0,1}) ∝ 1,

μ
({0,1,1,0}) ∝ 1, μ

({0,1,0,1}) ∝ 1, μ
({0,0,1,1}) ∝ 1.

It is straightforward to verify that if 0 ≤ θ < 3 − 2
√

2 ≈ 0.17157 or θ > 3 + 2
√

2 ≈ 5.82843,
then SLC fails. However, SCP holds as long as 0 ≤ θ ≤ 6. To see the latter claim, first
verify that the distribution conditioned on choosing any i ∈ [4] stochastically dominates the
one conditioned on not choosing i. Then notice that in a homogeneous distribution, such
stochastic dominance is the same as stochastic covering.

Here is some insight on how to find an example such as the above. When the generating
polynomial gμ is homogeneous and quadratic, it is SLC if and only if it has the SRP (Brändén
and Huh (2019)), which in turn is equivalent to the following condition as gμ ∈ R[x1, . . . , xn]
is multiaffine:

∂

xi

gμ(x) · ∂

xj

gμ(x) ≥ gμ(x) · ∂2

∂xi ∂xj

gμ(x),(36)

for any i, j ∈ [n] and x ∈ R
n; see Brändén (2007). If we plug in x = 1, then (36) becomes

negative dependence for a pair of variables, which is a special case of NCD and thus a nec-
essary condition for SCP. In our example, we choose μ so that (36) holds for x = 1 but not
for an arbitrary x ∈ R

n. It turns out that our choice is also sufficient for SCP in this particular
setting.
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