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Given a collection L of n points on a sphere S2
n of surface area n, a fair

allocation is a partition of the sphere into n cells each of area 1, and each
associated with a distinct point of L. We show that if the n points are chosen
uniformly at random and the partition is defined by considering a “gravita-
tional” potential defined by the n points, then the expected distance between
a point on the sphere and the associated point of L is O(

√
logn). We use our

result to define a matching between two collections of n independent and uni-
form points on the sphere and prove that the expected distance between a pair
of matched points is O(

√
logn), which is optimal by a result of Ajtai, Kom-

lós and Tusnády. Furthermore, we prove that the expected number of maxima
for the gravitational potential is �(n/ logn). We also study gravitational al-
location on the sphere to the zero set L of a particular Gaussian polynomial,
and we quantify the repulsion between the points of L by proving that the
expected distance between a point on the sphere and the associated point of
L is O(1).

1. Introduction. 3 Let n be a positive integer, and let S2
n ⊂ R3 be the sphere centered at

the origin with radius chosen such that with λn denoting surface area we have λn(S2
n) = n. For

any set L ⊂ S2
n consisting of n points, we say that a measurable function ψ : S2

n → L ∪ {∞}
is a fair allocation of λn to L if it satisfies the following:

(1.1) λn

(
ψ−1(∞)

)= 0, λn

(
ψ−1(z)

) = 1 ∀z ∈ L.

For z ∈ L, we call ψ−1(z) the cell allocated to z. In other words, a fair allocation is a way to
divide S2

n into n cells of measure 1 (up to a set of measure 0), with each cell associated to a
distinct point of L.

Let L be a random collection of n points on S2
n which is invariant in law under rotations

of the sphere, that is, φ(L) has the same law as L for any rotation φ : S2
n → S2

n. An alloca-
tion rule is a measurable map L 	→ ψL which is defined almost surely with respect to the
randomness of L, such that (i) ψL is a fair allocation of λn to L, and (ii) the map L 	→ ψL
is rotation-equivariant. The latter property means that for any rotation φ and almost every
x ∈ S2

n, we have ψφ(L)(φ(x)) = φ(ψL(x)).
Gravitational allocation is a particular allocation rule based on treating points in L as

wells of a potential function. The cell allocated to z ∈ L is then taken to be the basin of
attraction of z with respect to the flow induced by the negative gradient of this potential. When
the potential takes a particular form which mimics the gravitational potential of Newtonian
mechanics, it is ensured that a.s. each cell has area 1. In this paper, we will mainly consider
gravitational allocation on the sphere for the case when L is a set of n points chosen uniformly
and independently at random from S2

n.
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FIG. 1. Gravitational allocation to n uniform and independent points on a sphere with n = 15 and n = 40. The
basin of attraction of each point has equal area.

Let us now define gravitational allocation precisely. Consider the potential U : S2
n → R

given by

(1.2) U(x) = ∑
z∈L

log |x − z|,

where | · | denotes Euclidean distance in R3. For each location x ∈ S2
n, let F(x) denote the

negative gradient of U with respect to the usual spherical metric (i.e., the one induced from
R3). Note that F(x) is an element of the tangent space at x ∈ S2

n, and we think of it as
describing the “force” on x arising from the potential U .

For any x ∈ S2
n \L, consider the integral curve Yx(t) defined by

(1.3)
dYx

dt
(t) = F

(
Yx(t)

)
, Yx(0) = x.

Since F is smooth away from L, by standard results about flows on vector fields (see, e.g.,
the proof of Lemma 17.10 in [23]), for each fixed x ∈ S2

n \L the curve Yx can be defined over
some maximal domain (−∞, τx), where 0 < τx ≤ ∞. For x ∈ L, we set τx = 0. Note that the
force F represents the speed of a particle, rather than being proportional to its acceleration as
in Newtonian gravitation.

We then define gravitational allocation on the sphere to be the allocation rule given by

(1.4) ψ(x) =

⎧⎪⎪⎨⎪⎪⎩
z if x ∈ S2

n \L, lim
t↑τx

Yx(t) = z and z ∈ L,

x if x ∈ L,

∞ otherwise.

For z ∈ L, the set

(1.5) B(z) = {
x ∈ S2

n : ψ(x) = z
}

of points allocated to z will be called its basin of attraction. See Figures 1, 2, and 3 for
illustrations.

It turns out, as stated in the following proposition, that each basin of attraction almost
surely has unit area, so that (1.4) indeed gives rise to a fair allocation.

PROPOSITION 1. For n ∈ N, let S2
n be the sphere centered at the origin with surface area

n, and let L ⊂ S2
n be a set of n distinct points. The function ψ given by (1.4) defines a fair

allocation of λn to L.
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FIG. 2. Gravitational allocation to n uniform and independent points with n = 200 and n = 750 (see Figure 1
for smaller n). The basins become more elongated as n grows, reflecting Theorem 2. The MATLAB script used to
generated these figures is based on code written by M. Krishnapur.

The proof of Proposition 1 is given in Section 2. We are now ready to state the main results
of this paper.

1.1. Statement of main results. Our first main result estimates the average distance be-
tween a point x and the point ψ(x) it is allocated to.

THEOREM 2. Let n ∈ {2,3, . . . }. Consider any x ∈ S2
n, and let L ⊂ S2

n be a collection of
n points chosen uniformly and independently at random from S2

n. For any p > 0, there is a
constant C > 0 depending only on p such that for r > 0,

(1.6) P
[∣∣ψ(x) − x

∣∣ > r
√

logn
] ≤ Cr−p.

In particular, for some universal constant C > 0,

(1.7) E
[∣∣ψ(x) − x

∣∣] ≤ C
√

logn.

FIG. 3. Left: Illustration of Yx , B(z), and ψ(x) for x ∈ S2
n and z ∈ L. Right: Gravitational potential, by M.

Krishnapur.
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Gravitational allocation is optimal in the sense that (1.7) cannot be improved by more than
a constant factor for other allocation rules for uniform and independent points (see Remark 9).

We remark that one may obtain the bound (1.7) (without the tail estimate (1.6)) more
directly via the following identity, which is of independent interest and also applied in the
proof of Proposition 6 stated below:

(1.8)
1

n

∫
S2

n

∫ τx

0

∣∣F (
Yx(t)

)∣∣dt dλn(x) = 1

2πn

∫
S2

n

∣∣F(x)
∣∣dλn(x).

Taking the expectation over L, the left-hand side upper bounds the average value of
|ψ(x) − x|, while the right-hand side can be shown to be O(

√
logn) using simpler versions

of estimates carried out in Section 4.1 We give the short proof of (1.8) in Section 2.
Fair allocations are closely related to distance-minimizing perfect matchings between sets

of points. For example, we have the following corollary of (1.7). See Section 1.3 for two short
proofs.

COROLLARY 3. For n ∈ {2,3, . . . } consider two sets of n points A = {a1, . . . , an} and
B = {b1, . . . , bn} sampled uniformly and independently at random from S2

n. We can define a
matching ϕ of A and B (i.e., a bijection ϕ : A → B) using gravitational allocation, such that
for some universal constant C,

E

[
1

n

n∑
k=1

∣∣ϕ(ak) − ak

∣∣] ≤ C
√

logn.

The next theorem shows that the expected number of local maxima of the potential U is
of order n

logn
. The theorem addresses a question of Nazarov, Sodin and Volberg [26], Ques-

tion 12.6, who, in the context of gravitational allocation to the zero set of a Gaussian analytic
function, ask about properties of the graph whose vertices are maxima for the potential U

and whose edges formed by allocation cell boundaries.

THEOREM 4. If N ∈ N ∪ {∞} denotes the number of local maxima of U , then for some
universal constant C > 0 we have

n

C logn
≤ E[N ] ≤ Cn

logn
.

As a corollary to Theorem 4, we can deduce that the typical basin diameter is at least of
order

√
logn.

COROLLARY 5. For any ε > 0, there exists a δ > 0 such that for any fixed x ∈ S2
n, with

probability at least 1 − ε, the cell containing x has diameter at least δ
√

logn.

Note that (1.7) from Theorem 2 also gives a lower bound on |ψ(x) − x|. However, the
bound is only for the expectation, allowing for the possibility that |ψ(x) − x| is usually of
constant order but takes very large values with a small probability. Corollary 5 rules out this
possibility. The short proof is deferred to Section 1.4.

As mentioned above, the bound (1.7) is optimal among all allocation rules up to multiplica-
tion by a constant for the case where the points of L are uniform and independent. However,
there exist other rotationally equivariant point processes that are spread more evenly over the

1Alternatively, this bound for the right-hand side follows from Lemma 18, along with a basic estimate which
shows that the expected contribution from “close” points of L is of order 1.
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FIG. 4. A simulation of gravitational allocation to the zeroes of the Gaussian random polynomial (1.9). The
cells are evenly proportioned, in contrast with the more elongated shapes seen in Figure 2. The simulation was
made by R. Peled and J. Ding, based on code by M. Krishnapur.

sphere, and in these cases it is possible to have E[|ψ(x) − x|] = O(1). We now introduce
one such process constructed by taking the roots of a certain random Gaussian polynomial.
Specifically, we look at the polynomial

(1.9) p(z) =
n∑

k=0

ζk

√
n(n − 1) · · · (n − k + 1)√

k! zk,

where ζ1, . . . , ζn are independent standard complex Gaussians. The roots λ1, . . . , λn of p are
then n random points in the complex plane, which we can bring to the sphere via stereo-
graphic projection in such a way that

L = {
P −1

n (
√

nλk)
}n
k=1

is a rotationally equivariant random set of n points on S2
n (see Section 7 for details). Heuristi-

cally, the points of L are distributed more evenly than independent uniformly random points,
because roots of random polynomials tend to “repel” each other (see Figure 4). This can be
quantified as follows.

PROPOSITION 6. Let ψ : S2
n → L be the gravitational allocation to L. Then

(1.10) E
[

1

n

∫
S2

n

∣∣x − ψ(x)
∣∣dλn(x)

]
≤

√
π

4
.

1.2. Related work on allocations. Nazarov, Sodin and Volberg [26] analyzed a fair allo-
cation to the zeros of a certain Gaussian entire function g, obtained from the gradient flow
determined by the potential U = log |g| − 1

2 |z|2. The term “gravitational allocation” was in-
troduced by Chatterjee, Peled, Peres and Romik [8], who considered gravitational allocation
to the points L ⊂ Rd of a unit intensity Poisson point process (PPP) for d ≥ 3. Both papers
[26] and [8] prove an exponential tail (with a small correction for the PPP when d = 3) for
the diameter of the cell containing the origin. Phase transitions for the cells of gravitational
allocation to a PPP in Rd were studied in [9].

The gravitational allocation for a PPP in Rd as studied in [8] is not well-defined for d = 2
because the sum defining the force is divergent. Indeed, a lower bound for d ≤ 2 was given
in [19] (based on results from [17, 25]): any allocation rule for a PPP in Rd with d = 1,2
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satisfies E[Xd/2] = ∞, where X is the distance between the origin and the point it is allocated
to. Nevertheless, one can study the behavior of gravitational allocation in two dimensions by
considering a finite version of the problem, which motivates our present setting of taking
finitely many points on the sphere. Our quantitative bounds are consistent with [17], because
the average distance (after appropriate scaling) grows as

√
logn with the number of points n.

Gravitational allocation can also be viewed as an instantiation of the Dacorogna–Moser
[10] scheme for a general Riemannian manifold D with volume measure m. This scheme
provides (under certain smoothness assumptions) a coupling π between probability measures
ρ0m and ρ1m by solving the PDE 
u = ρ0 − ρ1 and then considering the flow for the vector
field −∇u. The coupling π is deterministic (i.e., if (X,Y ) ∼ π for X ∼ ρ0m and Y ∼ ρ1m

then Y is a deterministic function of X), and is called a transport map for this reason.
It was observed by Caracciolo, Lucibello, Parisi and Sicuro [7] that the differential equa-

tion 
u = ρ0 − ρ1 may be seen as a linearization of the Monge–Ampère equation, which
describes the optimal transportation map for the Wasserstein 2-distance. Based on this, they
predicted the leading order asymptotic term for optimal quadratic allocation in 2-dimensions
(in addition to related predictions for higher dimensions). The 2-dimensional prediction was
recently confirmed by Ambrosio, Stra and Trevisan [3] for optimal quadratic allocation cost
to i.i.d. points sampled from a 2-dimensional Riemannian manifold. However, they do not ob-
tain their result by studying an explicit allocation method, but via a duality argument. Finer
estimates with simpler proofs, for more general manifolds, and with sharper error bounds
were obtained by Ambrosio and Glaudo [2].

Earlier works have also studied other allocation rules besides gravitational allocation. The
stable marriage allocation [14, 15] can be defined for every translation-invariant point process
with unit intensity in Rd for d ≥ 1: it is the unique allocation which is stable in the sense of the
Gale–Shapley marriage problem. With this allocation, a.s. all cells are open and bounded, but
not necessarily connected. Allocation rules for a PPP in Rd which minimize transportation
cost per unit mass were considered in [21] with various cost functions, using tools from
optimal transportation.

We remark that the results of the current paper were announced in the work [16] by the
same authors.

1.3. Matchings: Proof of Corollary 3 and related works. In this section, we will give two
short alternative proofs of Corollary 3, and then discuss other results on matchings.

PROOF OF COROLLARY 3 USING ONLINE MATCHING ALGORITHM. See Figure 5. Con-
sider the gravitational allocation ψ to the point set B, and set ϕ(a1) = ψ(a1), so that Theo-
rem 2 gives

E
[∣∣ϕ(a1) − a1

∣∣] ≤ C
√

logn.

Define

A′ := {a2, . . . , an}, B′ := B \ {ψ(a1)
}
.

Note that since ψ is a fair allocation, ψ(a1) is uniformly distributed over elements of B (under
the randomness of a1). Thus A′ and B′ both have the law of n−1 points chosen independently
and uniformly at random from S2

n. Also, it is clear that A′ and B′ are independent since ψ(a1)

is independent of A′. Hence, we may repeat the same procedure with the sets A′ and B′ to
define ϕ(a2), and we bound |ϕ(a2) − a2| using Theorem 2 with n − 1 points. (However,
note that our matching algorithm for n − 1 points occurs on S2

n−1, so we must rescale by a
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FIG. 5. Illustration of the proof of Corollary 3. The set B \ ϕ(a1) consists of n − 1 uniform and independent
points on the sphere S2

n of area n.

multiplicative factor
√

n
n−1 .) Repeating this procedure, it follows that

E

[
1

n

n∑
k=1

∣∣ϕ(ak) − ak

∣∣] ≤ C

n

n∑
k=1

√
n

k

√
log(k ∨ 2) ≤ 2C logn.

�

PROOF OF COROLLARY 3 USING THE BIRKHOFF–VON NEUMANN THEOREM. Let ψA
and ψB describe gravitational allocation to A and B, respectively. Then we can form a cou-
pling between the uniform distributions on A and B as follows: we sample (a, b) ∈ A×B by
drawing X uniformly at random from S2

n and setting a = ψA(X) and b = ψB(X).
We have by Theorem 2 that the expected coupling distance satisfies the bound

(1.11) E|a − b| ≤ E|a − X| + E|b − X| ≤ 2C
√

logn.

By the Birkhoff–von Neumann theorem (see, e.g., [32], Theorem 5.5), any coupling between
two uniform distributions on n elements is a mixture of deterministic matchings between
the two sample spaces. By choosing a deterministic matching that minimizes the cost, there
exists some matching between A and B whose average matching distance is upper bounded
by the quantity in (1.11), that is, the average matching distance is of order

√
logn. �

REMARK 7. Each proof of the corollary gives a general procedure for obtaining a match-
ing from an allocation rule. In particular, we see from the second proof that if A,B ⊂ S2

n are
two sets of n points, and ψA and ψB are fair allocations of λn to A and B, respectively, then
there exists a matching ϕ : A → B such that

(1.12)
∑
a∈A

∣∣a − ϕ(a)
∣∣ ≤ ∫

S2
n

∣∣x − ψA(x)
∣∣dλn(x) +

∫
S2

n

∣∣x − ψB(x)
∣∣dλn(x).

Minimal matchings of random points in the plane have been extensively studied (see, e.g.,
[1, 24, 30, 31]). The asymptotic behavior of the minimal average matching distance was
identified in [1]: it was shown that for two sets A and B of n i.i.d. uniformly chosen points
from [0,

√
n]2, there exist constants C1,C2 > 0 such that

lim
n→∞ P

(
C1

√
logn ≤ 1

n
min

ϕ:A→B
bijective

∑
a∈A

∣∣ϕ(a) − a
∣∣ ≤ C2

√
logn

)
= 1.

In the limit as n → ∞, one expects minimal matching on the sphere to be essentially equiva-
lent to minimal matching in a square, as the local geometries are the same to first order; see,
for example, [3, 22] for proofs of this. For completeness, we have included a statement and
proof of one direction of the equivalence; see the Appendix for the proof.
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PROPOSITION 8. Consider any integer n ≥ 2, and write N = n2. Suppose that X and Y
are two sets of N i.i.d. uniformly random points from S2

N , and A and B are two sets of n i.i.d.
uniformly random points from [0,

√
n]2. Then, for a universal constant C,

1

n
E min

ϕ:A→B
bijective

∑
a∈A

∣∣ϕ(a) − a
∣∣ ≤ C + C

N
· E min

ϕ:X→Y
bijective

∑
x∈X

∣∣ϕ(x) − x
∣∣.

REMARK 9. Combined with [1], Proposition 8 implies that the bound of Corollary 3
is optimal up to multiplication by a constant. Using (1.12), we further get that gravitational
allocation is optimal in the sense that the bound (1.7) cannot be better for other allocation
rules up to multiplication by a constant.

Leighton and Shor studied the optimal maximal matching distance for uniform points in
the square. The lower bound derived in [28, 29] and the upper bound derived in [24] show that
for two sets A and B of n i.i.d. uniformly chosen points from [0,

√
n]2, there exist constants

C1,C2 > 0 such that

lim
n→∞ P

(
C1(logn)3/4 ≤ min

ϕ:A→B
bijective

max
a∈A

∣∣ϕ(a) − a
∣∣ ≤ C2(logn)3/4

)
= 1.

The maximal travel distance for the matching algorithm used in the first proof of Corollary 3
is of order

√
n, as compared to (logn)3/4 for the optimal matching. However, note that our

matching algorithm is online, meaning that the points of A are revealed one by one, and we
have to match a given point of A to a point of B before revealing the remaining points of A.
The typical maximal travel distance will always be at least of order

√
n for online matching

algorithms since this will be the typical distance between the two last points that are matched:
Conditioned on the position of the last point of B the law of the associated point of A will be
uniform.

The allocation and matching problems for uniform points have also been studied for do-
mains of dimension d not necessarily equal to 2, and with cost function given by the pth
power of the distance for p ≥ 1. Asymptotic results for the optimal allocation or matching
have been obtained for d = 1 or 2 and all p ≥ 1 [1, 6] as well as for d ≥ 3 and certain p ≥ 1
[4, 5, 12, 13].

1.4. Proof outline for distance bound (Theorem 2) and a heuristic picture. In order to
bound |ψ(x) − x|, we will bound separately the duration τx of the flow Yx and its speed
|F(Yx(t))| for t ∈ (0, τx). The probability distribution of τx may be calculated exactly using
Liouville’s theorem (Proposition 11) and turns out to be exponential (with a constant mean
independent of n).

It remains to control |F(y)|, which turns out to be of order
√

logn. If it is always less
than

√
logn, then combining with the tail bounds for τx yields the theorem. However, this

is not precisely the case, as |F(y)| can be very large if y is close to a point in L. We show
in Section 5 that the contribution to |F(y)| coming from points in L outside a ball centered
at y of radius �(1/

√
logn) is very unlikely to exceed C

√
logn for C � 1. Therefore, if

|F(y)| � C
√

logn, the main contribution to the force is most likely coming from points of
L rather close to y. In that case, we argue (see Lemma 20) that one of these nearby points
typically is the point of attraction for y under the gravitational flow, which gives a bound for
the distance traveled when |F(y)| is large.

The simulations in Figure 2 suggest that the cells formed by gravitational allocation on the
sphere are long and thin. This qualitative picture is depicted in Figure 6, and the accompany-
ing description gives a heuristic argument along the lines of our proof outline above for why
this is the case.
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FIG. 6. The figure gives a heuristic argument justifying Theorem 2. Since the “force” F is typically of order√
logn and the force exerted by a point at distance d has magnitude of order 1/d , the force exerted on a particle is

dominated by the forces from far away points, except if there is a point of L at distance of order 1/
√

logn or less.
The probability that there are no points in a strip of width 1/

√
logn and length R

√
logn decays exponentially in

R, which suggests (heuristically) that the probability of traveling further than R
√

logn should be smaller than
exp(−cR) for some c > 0.

Finally, we provide the proof of Corollary 5 upon an application of Theorem 4.

PROOF OF COROLLARY 5. Let E be the event that there are less than Cn/ logn local
maxima, where C is a constant depending only on ε that is chosen large enough so that
P(E) ≥ 1 − ε/2 (this is possible by Markov’s inequality and Theorem 4).

Let R =
√

(logn)ε
2Cπ

, and note that for each local maximum, the spherical cap of radius R

centered at that maximum has area less than πR2 = ε logn
2C

. Thus, on the event E, the total
area of points on the sphere within distance R of a local maximum is at most

(1.13)
Cn

logn
· ε logn

2C
= εn

2
,

meaning that at most εn
2 of the gravitational allocation cells are fully contained within spher-

ical caps of radius R around local maxima.
Next, let E′ denote the event that the cell containing x has some point which is not within

R of any local maximum. In particular, note that each cell in the allocation contains one point
in L and has at least one local maximum on its boundary, so whenever E′ holds, it means that
the cell containing x has diameter at least R. By (1.13) and rotational equivariance, we have
that

P
(
E′) ≥ P

(
E′ | E) · P(E) ≥

(
1 − ε

2

)
P(E) ≥ 1 − ε,

which gives the desired bound with δ = R√
logn

=
√

ε
2Cπ

. �

1.5. Organization of the paper. The organization of the rest of the paper is as follows.
In Section 2, we prove Proposition 1 establishing that gravitational allocation on the sphere
is in fact a fair allocation. We will then carry out most of our proofs in the complex plane
under stereographic projection rather than directly on the sphere. Basic facts about converting
between the coordinate systems are recorded in Section 3, which also contains a restatement
of Theorem 2 in terms of the plane (given as Theorem 17). Section 4 contains the proof of
Theorem 17 (and hence Theorem 2), with the proof of the main technical estimate deferred
until Section 5. In Section 6, we prove Theorem 4 on the number of local maxima of the
potential. Section 7 studies gravitational allocation to the zero set of the Gaussian polynomial
(1.9) by proving Proposition 6. Finally, we present a short list of open problems in Section 8
and relate matchings on the sphere to matchings in a square (by proving Proposition 8) in the
Appendix.
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2. Proof that gravitational allocation is a fair allocation. In this section, we prove
Proposition 1. The nontrivial property to verify is that for each z ∈ L, we have λn(B(z)) = 1
almost surely. Let 
S denote the spherical Laplacian (i.e., the Laplace–Beltrami operator on
the sphere). The key property of our potential U is that 
SU is constant outside of L, as seen
in the next proposition.

PROPOSITION 10. For a given z ∈ S2
n, let g : S2

n → R be given by g(x) = log |x − z|. We
have


Sg(x) = 2πδz − 2π

n
.

Consequently,


SU(x) = 2π
∑
z∈L

δz − 2π.

(We view δz as a distribution where
∫

S2
n
g(x)δz(x) dλn(x) = g(z) for any test function g :

S2
n → R.)

PROOF. Without loss of generality, we may assume z = (0,0, rn), where rn =
√

n
4π

is
the radius of the sphere. In spherical coordinates, we then have g(θ,φ) = log(2 sin(φ/2)) +
log rn, where θ and φ denote the azimuthal and polar angles, respectively. Using the formula
for 
S in spherical coordinates, we find that


Sg = 1

r2
n

1

sinφ

∂

∂φ

(
sinφ · ∂g

∂φ

)
+ 1

r2
n

1

sin2 φ

∂2g

∂θ2

= 1

r2
n

1

sinφ

∂

∂φ
cos2(φ/2) = 2π

n
,

which is valid at all points other than z.
Since the integral of 
Sg(x) with respect to area measure over S2

n must be 0, we deduce
that 
Sg = 2πδz − 2π

n
. �

Proposition 10 already gives an informal proof of Proposition 1 via the divergence theo-
rem. Consider any z ∈ L. If we assume that the cells B(z) have piecewise smooth boundaries,
and then note that F(x) is parallel to ∂B(z) at points x ∈ ∂B(z) for which the boundary is
smooth, we get

2π − 2πλn

(
B(z)

)=
∫
B(z)


SU dλn = −
∫
B(z)

divF dλn =
∫
∂B(z)

F · nds = 0.

We give the formal proof using a slightly different approach (following [8]) involving
Liouville’s theorem for calculating change of volume under flows, which will also be needed
in proving Theorem 2. Conveniently, this approach allows us to sidestep the technicalities
involved in analyzing the boundary of B(z).2 We now state the version of Liouville’s theorem
we need.

PROPOSITION 11 (Liouville’s theorem). Let M be an oriented n-dimensional Rieman-
nian manifold, and let dα denote its volume form. Consider a smooth vector field X on M .

2We also believe, however, that the technicalities are not too hard to overcome using arguments similar to those
in [26], Section 7.
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FIG. 7. Illustration of the proof of Lemma 12.

Let �t denote the flow induced by X, where �t(x) ∈ M is defined for all (x, t) in some
maximal domain D ⊆ M × R. Let � ⊆ M be an open set with compact closure. Then

d

dt

∣∣∣∣
t=0

∫
�t(�)

dα =
∫
�

divX dα.

PROOF. Since the maximal domain D is open (see proof of Theorem 17.9 in [23]) and
the closure of � is compact, we know that �t(�) is actually defined for all t in some open
interval containing 0. The result then follows from the formulas used in proving Proposi-
tion 18.18 in [23], where the smoothness of the relevant n-forms allows us to interchange
integration over � and differentiation with respect to t . �

Recall that for x ∈ S2
n we wrote (−∞, τx) for the maximal domain for which Yx(t) is

defined.

LEMMA 12. Fix z ∈ L, and for t ≥ 0, define

Et = {
x ∈ B(z) : τx > t

}
, Vt = λn(Et).

Let �t denote the gravitational flow for time t . Then �t(Et) = E0, and the pushforward of
λn (as a measure on Et ) under �t is equal to e−2πtλn (as a measure on E0). In particular,
we have Vt = e−2πtV0.

PROOF. We apply Proposition 11 to S2
n \L with the vector field X = F = −∇SU , so that

divX = divF = −
SU , and refer to Figure 7 for an illustration.
Recall that �−s(x) = Yx(−s) is defined for all x ∈ S2

n and s ∈ (0,∞). Thus, for all s ∈
(0, t), we have that �s is a bijection from Et to Et−s (with inverse �−s ). Now, consider
any � ⊆ Et that is open with compact closure in S2

n \ L. By Proposition 11, we obtain for
0 ≤ s ≤ t that

d

ds
λn

(
�s(�)

) = −
∫
�s(�)


SU dλn =
∫
�s(�)

2π dλn = 2πλn

(
�s(�)

)
.

Solving the resulting differential equation yields

λn(�) = e−2πtλn

(
�t(�)

)
.

Since any measurable subset of E0 can be approximated by a set of the form �t(�), this
shows that the pushforward of λn under �t is e−2πtλn. �

We can now give the formal proof of Proposition 1.

PROOF OF PROPOSITION 1. Consider any z ∈ L, and define Et and Vt as in Lemma 12.
By Lemma 12, we have for all t that

(2.1) V0 − Vt = V0
(
1 − e−2πt ) = 2πV0 · t + O

(
t2).

We will deduce that V0 = 1 by estimating V0 − Vt in another way for small t .
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For any x ∈ S2
n, let us identify the tangent space TxS2

n with a plane in R3 in the natural
way,3 so that F(x) may be regarded as a vector in R3. By a direct calculation, we have
F(x) = z−x

|z−x|2 + O(1) for x in a neighborhood of z. This implies

(2.2)
d

dt

∣∣Yx(t) − z
∣∣2 = 2

〈
F
(
Yx(t)

)
, Yx(t) − z

〉 = −2 + O
(∣∣Yx(t) − z

∣∣).
Write E0,ε = E0 \ Eε . The above estimate implies for ε → 0 that

(2.3) sup
x∈E0,ε

|x − z|2 ≤ 2ε + o(ε) and inf
x /∈E0,ε

|x − z|2 ≥ 2ε − o(ε).

Indeed, given δ ∈ (0,1), if |Yx(t) − z| > 0 is sufficiently small as compared to δ we
get from (2.2) that d

dt
|Yx(s) − z|2 ∈ [−(2 + δ),−(2 − δ)] for all s ≥ t , so |τx − t | ∈

[ |Yx(t)−z|2
2+δ

,
|Yx(t)−z|2

2−δ
], which implies (2.3) since δ was arbitrary. We get from (2.3) that E0,ε is

bounded between spherical caps of radius
√

2ε±o(
√

ε), which means it has area 2πε+o(ε).
This gives

V0 − Vε = λn(E0,ε) = 2π · ε + o(ε).

Comparing to (2.1), we conclude that V0 = 1, as desired. �

Lemma 12 is also the main observation needed to explain the identity (1.8) relating travel
distance to average force. Essentially, it implies that the gravitational flow linearly interpo-
lates between the uniform measure on S2

n and the (discrete) uniform measure on L. Conse-
quently, each gradient vector is “flowed through” by the same total mass. We turn this into a
formal proof below.

PROOF OF (1.8). Take any z ∈ L, and let Et be as in Lemma 12. Then we have∫
E0

∫ τx

0

∣∣F (
Yx(t)

)∣∣dt dλn(x) =
∫ ∞

0

∫
E0

∣∣F (
Yx(t)

)∣∣ · 1τx>t dλn(x) dt

=
∫ ∞

0

∫
Et

∣∣F (
Yx(t)

)∣∣ · dλn(x) dt

=
∫ ∞

0

∫
E0

∣∣F(x)
∣∣ · e−2πt dλn(x) dt

=
∫ ∞

0
e−2πt dt ·

∫
E0

∣∣F(x)
∣∣dx = 1

2π

∫
E0

∣∣F(x)
∣∣dλn(x).

Note that E0 = B(z) \ {z}, so averaging over all z ∈ L, we obtain (1.8). �

3. Stereographic projection. Rather than work directly on the sphere, it is more conve-
nient to work in the plane via stereographic projection. We devote this section to describing
how to transform between the two coordinate systems, and we give a restatement of Theo-
rem 2 for the plane.

Let H = R2 × {0} ⊂ R3 denote the horizontal plane, and let z0 = (0,0,1). The usual
stereographic projection map P : R3 → R3 is given by

P(x) = z0 + 2(x − z0)

|x − z0|2 .

3that is, by TxS2
n ⊂ TxR3 ∼= R3.
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Let rn =
√

n
4π

denote the radius of S2
n. We use the rescaled version of P defined by Pn(x) :=√

nP (r−1
n x). The next proposition collects a few basic facts about Pn; these can be verified by

elementary calculations. In the second bullet point, P ∗
n gPn(x) denotes the pullback of gPn(x)

by Pn.

PROPOSITION 13. The map Pn : R3 → R3 has the following properties:

• For any x, y ∈ R3, we have

∣∣Pn(x) − Pn(y)
∣∣2 = 4nr2

n · |x − y|2
|x − rnz0|2 · |y − rnz0|2 .

• Pn is a conformal map from S2
n \ {rnz0} to H . Its conformal scaling factor is 2

√
nrn

|x−rnz0|2 , that
is, if g and g′ are the respective metrics on S2

n \ {rnz0} and H , then(
2
√

nrn

|x − rnz0|2
)2

gx = P ∗
n gPn(x).

Let L̃ = {Pn(y) : y ∈ L} be the image of L under Pn. Note that the points of L̃ are drawn
independently from a measure μn on R2 that is the pushforward under Pn of the uniform
probability measure on S2

n. For x ∈ H ∼= R2, let

ρn(x) =
√

1 + |x|2
n

.

From the conformal scaling in Proposition 13, it is straightforward to check that μn has
density

dμn

dx
= 1

πnρn(x)4 .

Next, we give the planar version of our potential function. We define for any x, y ∈ R2 the
planar potential functions

(3.1) u(x, y) = uy(x) = log
|x − y|

ρn(x)ρn(y)
, u(x) = ∑

y∈L
u
(
x,Pn(y)

) = ∑
y∈L̃

u(x, y).

By Proposition 13, we see that u satisfies for all x, y ∈ S2
n \ {rnz0},

u
(
Pn(x),Pn(y)

) = log
(

4n

r2
n

|x − y|
)

= log |x − y| + log(16π),

whence u(Pn(x)) = U(x)+n log(16π). We remark that since we only care about the gradient
of the potential, the additive constant term n log(16π) is not important.

We also define for x, y ∈ R2 the planar gradient

(3.2) f (x, y) = −∇uy(x) = y − x

|x − y|2 + 1

n
· x

1 + |x|2
n

, f (x) = ∑
y∈L̃

f (x, y).

Note however that f (Pn(x)) is not simply the pushforward of F(x) under Pn for x ∈ S2
n.

Nevertheless, f (Pn(x)) and (DPn)x(F (x)) are scalar multiples of each other. To see this, we
invoke the following fact about conformal maps, which is routine to verify.
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PROPOSITION 14. Let M1 and M2 be two Riemannian manifolds of the same dimension,
and let g1 and g2 be their respective metrics. Suppose we have a conformal mapping h :
M1 → M2, and let c : M1 → R denote the conformal scaling factor, that is, h∗g2 = c2g1.
Then, for any function w ∈ C∞(M1) and x ∈ M1, we have

(Dh)x(∇w) = c2 · ∇(
w ◦ h−1).

PROOF. Consider any point x ∈ M1, and its image y = h(x) ∈ M2. Let 〈·, ·〉 denote the
natural pairing between vectors and 1-forms. For any v ∈ Tx , we have

g2
(
(Dh)xv,∇(

w ◦ h−1)) = 〈
(Dh)xv, d

(
w ◦ h−1)〉= 〈v, dw〉 = g1(v,∇w)

= c−2(h∗g2
)
(v,∇w) = c−2g2

(
(Dh)xv, (Dh)x(∇w)

)
.

Since (Dh)xv ranges over all elements of Ty , this implies

∇(
w ◦ h−1) = c−2(Dh)x(∇w),

which is the desired result upon multiplying both sides by c2. �

COROLLARY 15. For any x ∈ S2
n, let x̃ = Pn(x). Then we have

(DPn)x
(
F(x)

) = 4nr2
n

|x − rnz0|4 f (x̃) = πρn(x̃)4f (x̃).

Since f and (DPn)x(F ) are scalar multiples of each other, they have the same integral
curves up to reparameterization. Let us now make explicit the change of parameterization.

PROPOSITION 16. Consider any x̃ ∈ R2, and let x = P −1
n (x̃). To lighten notation, let

yt = Yx(t). Define

σ(t) = π

∫ t

0
ρn

(
Pn(ys)

)4
ds and Ỹx̃ (t) = Pn(yσ−1(t)).

Then Ỹx̃ (t) is an integral curve along f starting at x̃.

PROOF. The result follows from the calculation

d

dt
Ỹx̃(t) = (DPn)x

(
F(yσ−1(t))

) · d

dt
σ−1(t) = (DPn)x

(
F(yσ−1(t))

) · 1

σ ′(σ−1(t))

= (DPn)x
(
F(yσ−1(t))

) · 1

π
ρn

(
Ỹx̃ (t)

)−4 = f
(
Ỹx̃ (t)

)
,

where we have used Corollary 15 in the last step. �

Finally, we define the planar allocation function ψ̃ : R2 → L̃ by ψ̃(x̃) = (Pn◦ψ ◦P −1
n )(x̃).

The cells ψ̃−1(z) for z ∈ L̃ will correspond to basins of attraction under the flow induced
by f . We can now reduce Theorem 2 to an analogous statement in te1rms of the plane.

THEOREM 17 (Planar version of Theorem 2). For any p > 0, there is a constant Cp > 0
such that for r < n1/3 we have

P
[∣∣ψ̃(0)

∣∣ > r
√

logn
]≤ Cpr−p.
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PROOF OF THEOREM 2 FROM THEOREM 17. By rotational symmetry, we may assume
without loss of generality that x = P −1

n (0). Proposition 13 applied with y = ψ(x) ensures
that we have |x − ψ(x)| ≤ C|ψ̃(0)| for a universal constant C. Observe that it is sufficient to
prove the theorem for r < Cn1/3, since |x − ψ(x)| < √

n. Theorem 17 gives

P
(∣∣x − ψ(x)

∣∣> r
√

logn
) ≤ P

(∣∣ψ̃(0)
∣∣ > r

√
logn/C

)≤ Cp(r/C)−p,

which is the desired inequality upon renaming of constants. �

4. Tail bound for travel distance. In this section, we give the proof of Theorem 17
following the strategy described in the Introduction. For any � ⊂ R2, write

f (x | �) := ∑
y∈L̃∩�

f (x, y).

The following lemma, whose proof is deferred to Section 5, gives an upper bound of order√
logn for the magnitude of f at points not too close to L̃.

LEMMA 18. There is a constant c > 0 such that for any M1,M2,M3 ≥ 1 with M1 <

n1/3/
√

logn, and with δ = 1
M3

√
logn

, we have

P
(

max
x∈B(0,M1

√
logn)

∣∣f (x | R2 \ B(x, δ)
)∣∣ > M2

√
logn

)
≤ M2

1e−cM2/M3+O(1).

The next two lemmas control the behavior of points at which the magnitude of f is large.

LEMMA 19. Suppose x ∈ R2 and r > 0, and consider any w ∈ ∂B(x, r). Let nw =
1
r
(w − x) denote the outward pointing unit normal vector to ∂B(x, r) at w. Then, for any

y ∈ B(x, r), we have 〈
f (w,y), nw

〉≤ − 1

2r
+ |w|

n
.

PROOF. Let a = y − x and b = w − x. Note that

2〈y − w,w − x〉 = 2〈a − b, b〉 = −2|b|2 + 2〈a, b〉
≤ −|a|2 − |b|2 + 2〈a, b〉 = −|a − b|2

= −|y − w|2.
Thus, 〈

f (w,y), nw

〉 = 1

r

〈
y − w

|y − w|2 + 1

n
· w

1 + |w|2
n

,w − x

〉

≤ 〈y − w,x − w〉
r|y − w|2 + |w|

n
· |w − x|

r
≤ − 1

2r
+ |w|

n
,

as desired. �

LEMMA 20. For x ∈ B(0, n1/2) ⊂ R2 and δ ∈ (0,1) define

ξ = sup
y∈B(x,δ)

∣∣f (y | R2 \ B(y, δ)
)∣∣.

For any positive integer k < 1
16

√
n, if |f (x)| > ((5k)k+1 + 1) · max(ξ,1/δ), then either |L̃∩

B(x, δ)| > k or ψ̃(x) ∈ B(x,2δ).
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PROOF. Let y1, y2, . . . , ym be the points of L̃∩ B(x, δ), write �i = |yi − x|, and assume
without loss of generality that the �i are in increasing order. There is nothing to prove if
m > k, so assume henceforth that m ≤ k.

Note that since |f (x)| > ((5k)k+1 + 1) · max(ξ,1/δ), we have by the definition of ξ that∣∣f (x | B(x, δ)
)∣∣ > (5k)k+1 · max(ξ,1/δ).

The force exerted by yi has modulus at most 1/�i + 1/(16
√

n). Since the �i’s are increasing,
we get (

1/�1 + 1/(16
√

n)
)
k >

∣∣f (x | B(x, δ)
)∣∣ > (5k)k+1 · max(ξ,1/δ),

so �1 ≤ 1
4.9(5k)−k min(δ,1/ξ) since k,n ≥ 1 and max(ξ,1/δ) > 1. Let j be the largest index

for which �j < (5k)j �1, and let r = (5k)j �1. Note that r ≤ δ/2.
Now, consider any w ∈ ∂B(x, r), and let nw = 1

r
(w − x) denote the outward facing unit

normal vector as in Lemma 19. We will show that 〈f (w | R2), nw〉 < 0. To do this, we
consider separately the contributions from the regions R2 \ B(w, δ), B(w, δ) \ B(x, r) and
B(x, r).

For the first region, by the definition of ξ (and recalling that r ≤ δ/2), we have

(4.1)
∣∣f (w | R2 \ B(w, δ)

)∣∣ ≤ ξ.

For the second region, note that for all i > j , we have

�i − r ≥ (5k)j+1�1 − (5k)j �1 ≥ 4kr,

which implies

∣∣f (w | B(w, δ) \ B(x, r)
)∣∣ ≤ m∑

i=j+1

∣∣f (w,yi)
∣∣ ≤ m∑

i=j+1

(
1

�i − r
+ |w|

n

)

≤ 1

4r
+ k|w|

n
.

(4.2)

Finally, for the last region we have by Lemma 19 that

(4.3)
〈
f
(
w | B(x, r)

)
, nw

〉= 〈 j∑
i=1

f (w,xi), nw

〉
≤ − j

2r
+ j · |w|

n
≤ − 1

2r
+ k|w|

n
.

Combining (4.1), (4.2) and (4.3), we see that〈
f
(
w | R2), nw

〉 ≤ (
− 1

2r
+ k|w|

n

)
+
(

1

4r
+ k|w|

n

)
+ ξ

= − 1

4 · (5k)j �1
+ 2k|w|

n
+ ξ

≤ −4.9

4
max(ξ,1/δ) + 2k|w|

n
+ ξ

≤ −0.9

4δ
+ 2k|w|

n
< 0.

Since this holds for all w ∈ ∂B(x, r), it follows that no integral curves of f may escape
B(x, r). Consequently, we must have ψ̃(x) ∈ B(x, r) ⊂ B(x,2δ) as desired. �

We are now ready to prove Theorem 17.



GRAVITATIONAL ALLOCATION FOR UNIFORM POINTS ON THE SPHERE 303

PROOF OF THEOREM 17. Note that it is enough to prove the result for sufficiently
large n. We will establish the desired bound by considering the probabilities of three events.

Given p > 0 choose k ∈ {2,3, . . . } and ε > 0 such that 2(k − 1) − 4εk > p. Throughout
the proof all implicit constants may depend on p, k and ε. Define r ′ = r1−ε and r ′′ = r1−2ε .
Let δ = 1

r ′′√logn
, and define the event

E1 = ⋂
x∈B(0,r

√
logn)

{∣∣L̃∩ B(x, δ)
∣∣≤ k

}
.

Consider a (δ/2)-net S ⊂ B(0, r
√

logn) of size O(
r2 logn

δ2 ). Then

P
(
Ec

1
)≤ ∑

s∈S

P
(∣∣L̃∩ B(s,2δ)

∣∣ > k
) = O

(
r2 logn

δ2

)
· O(

δ2(k+1))

= O
(
r2δ2k logn

)= O

(
r2

(r ′′)2k(logn)k−1

)
≤ O

(
r−p).

(4.4)

Next, let

E2 =
{

max
x∈B(0,2r

√
logn)

∣∣f (x | R2 \ B(x, δ)
)∣∣ ≤ r ′√logn

}
.

According to Lemma 18 with M1 = 2r , M2 = r ′ and M3 = r ′′, we have

(4.5) P
(
Ec

2
) ≤ 4r2e−cr ′/r ′′+O(1) = O

(
e−crε/2)= O

(
r−p).

Finally, we define an event relating to the “time traveled” along integral curves of F . Recall
the notation Yz(t) for the integral curve along F starting at z ∈ S2

n. Let τ denote the largest
time for which Yz(t) is defined for all t ∈ (0, τ ); we have (almost surely) that ψ(z) = Yz(τ ).
For C0 := 2π((5k)k+1 + 1) define the event

E3 =
{
τ ≤ rε

C0

}
.

According to Lemma 12, we have

(4.6) P
(
Ec

3
) ≤ exp

(
−2π · rε

C0

)
= O

(
r−p).

Suppose now that E1, E2 and E3 all hold. We claim that in this case |ψ̃(0)| ≤ r
√

logn.
Indeed, suppose instead that |ψ̃(0)| > r

√
logn.

Let Ỹ0(t) and σ be defined as in Proposition 16, that is, Ỹ0(t) is the integral curve along f

starting at 0 ∈ R2, and it is related to Yz by

Ỹ0(t) = Pn

(
Yz

(
σ−1(t)

))
.

Since |Ỹ0(0)| = 0 and |Ỹ0(σ (τ ))| = |ψ̃(0)|, it then follows by the intermediate value theorem
that there must be some minimal time t ′ ∈ (0, τ ) for which Ỹ0(σ (t ′)) ∈ ∂B(0, r

√
logn).

Note that from the definition of σ in Proposition 16, we have

σ
(
t ′
) = π

∫ t ′

0
ρn

(
Pn

(
Yz(s)

))4
ds = π

∫ t ′

0
ρn

(
Ỹ0
(
σ(s)

))4
ds.

Since |Ỹ0(σ (s))| < r
√

logn < n1/3√logn for all s < t ′, the integrand is bounded above by 2
for sufficiently large n. Consequently, we have

σ
(
t ′
)≤ 2πt ′.
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Then, by a version of the mean value theorem, we must have for some s ∈ (0, t ′) that∣∣f (Ỹ0
(
σ(s)

))∣∣ ≥ 1

σ(t ′)
∣∣Ỹ0

(
σ
(
t ′
))− Ỹ0(0)

∣∣
≥ r

√
logn

2πt ′
≥ r

√
logn

2πτ
≥ C0

2π
r ′√logn,

(4.7)

where in the last step we have used the assumption that E3 holds.
Our next goal is to apply Lemma 20 with x = Ỹ0(σ (s)). First, we must establish that the

hypothesis holds. Note that since E2 holds, we have

ξ := sup
y∈B(x,δ)

∣∣f (y | R2 \ B(y, δ)
)∣∣ ≤ r ′√logn.

Then (4.7) gives ∣∣f (x)
∣∣ ≥ C0

2π
r ′√logn ≥ C0

2π
max(ξ,1/δ),

verifying the hypothesis for Lemma 20.
Then, we must either have |L̃ ∩ B(x,2δ)| > k or ψ̃(x) ∈ B(x,2δ). However, the first

statement contradicts the assumption that E1 holds, while the second statement contradicts
ψ̃(x) = ψ̃(0) /∈ B(0, r

√
logn). Thus, we conclude that whenever E1, E2 and E3 all hold,

then |ψ̃(0)| ≤ r
√

logn. In other words, we have using (4.4), (4.5) and (4.6) that

P
(∣∣ψ̃(0)

∣∣ > r
√

logn
) ≤ P

(
Ec

1
)+ P

(
Ec

2
)+ P

(
Ec

3
)≤ O

(
r−p),

as desired. �

5. Tail bound for gravitational force. The goal of this section is to prove Lemma 18.
In fact, we will prove the closely related bound given by Lemma 21 below, from which
Lemma 18 follows easily.

LEMMA 21. There is a constant c > 0 such that for any M ≥ 1 and z ∈ B(0, n1/3), and
with δ = 1

M
√

logn
, we have

P
(

max
x∈B(z,

√
logn)

∣∣f (x | R2 \ B(x, δ)
)∣∣ > tM

√
logn

)
≤ e−ct+O(1).

PROOF OF LEMMA 18 FROM LEMMA 21. Let S ⊂ B(0,M1
√

logn) be a
√

logn-net
with |S| = O(M2

1 ). For each z ∈ S, we apply Lemma 21 to the disk of radius
√

logn centered
at z with M = M3 and t = M2/M3. Taking a union bound, we obtain

P
(

max
x∈B(0,M1

√
logn)

∣∣f (x | R2 \ B(x, δ)
)∣∣ > M2

√
logn

)
≤ M2

1 · e−cM2/M3+O(1),

as desired. �

Throughout the section, we will often consider separately the effects of points in L̃ within
various regions. To this end, it is convenient to extend the notation f (x | �) introduced earlier
to more general functions: for any function H : R2 × R2 → Rk , we write

H(x | �) := ∑
y∈L̃∩�

H(x, y),

H(x | �) := E
[
H(x | �)

] = n

∫
�

H(x, y) dμn(y).

The proof of Lemma 21, given in Section 5.5, uses a series of lemmas which will occupy the
remainder of this section.
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5.1. Basic estimates. We first collect some basic estimates that will be used repeatedly.
Let D1f (x, y) denote the Hessian of uy(x) with respect to x, and let D2f (x, y) denote the
tensor of third partial derivatives of uy(x) with respect to x (we may regard D1f and D2f

as elements of R4 and R8, resp.). The following lemma follows from direct calculation using
the formula (3.2) for f .

LEMMA 22. For x ∈ B(0,
√

n) and any y, we have the bounds∣∣f (x, y)
∣∣≤ O

(
1

|x − y|
)

+ O

( |x|
n

)
,(5.1)

∣∣D1f (x, y)
∣∣≤ O

(
1

|x − y|2
)

+ O

(
1

n

)
,(5.2)

∣∣D2f (x, y)
∣∣≤ O

(
1

|x − y|3
)

+ O

( |x|
n2

)
.(5.3)

We also give here a general exponential tail bound which will be used repeatedly.

LEMMA 23. Suppose g : � → [−1,1]k for some � ⊂ R2. Let L̃ be a set of n points
drawn independently from μn, and let Y = ∑

z∈L̃∩� g(z). Then

log P
(|Y | ≥ t

) ≤ −1

k
· t + log(2k) + 2n

∫
�

∣∣g(z)
∣∣dμn(z),(5.4)

log P
(|Y − EY | ≥ t

) ≤ −1

k
· t + log(2k) + 2n

∫
�

∣∣g(z)
∣∣2 dμn(z).(5.5)

REMARK 24. We will only use Lemma 23 for k ≤ 4.

PROOF. We assume throughout the proof that � = R2; we may make this assumption by
setting g identically equal to the 0 vector on R2 \�. Write g(x) = (g1(x), g2(x), . . . , gk(x)),
and let x1, . . . , xn be the points of L̃. We use the inequalities

es ≤ 1 + 2|s| for s ∈ [−1,1], es ≤ 1 + s + 2s2 for s ∈ [−2,2].
Since |gi(xj )| ≤ 1, we obtain

E
[
egi(xj )]= 1 +

∫
�

(
egi(z) − 1

)
dμn(z) ≤ 1 + 2

∫
�

∣∣gi(z)
∣∣dμn(z)

≤ exp
(

2
∫
�

∣∣gi(z)
∣∣dμn(z)

)
.

Defining g̃i(w) = gi(w) − ∫
� gi(z) dμn(z), we also have

E
[
egi(xj )−Egi(xj )] = E

[
eg̃i (xj )] = 1 +

∫
�

(
eg̃i (z) − g̃i(z) − 1

)
dμn(z)

≤ 1 + 2
∫
�

∣∣g̃i(z)
∣∣2 dμn(z) ≤ exp

(
2
∫
�

∣∣g̃i(z)
∣∣2 dμn(z)

)
≤ exp

(
2
∫
�

∣∣gi(z)
∣∣2 dμn(z)

)
.

Letting Yi denote the ith coordinate of Y , summing the above bounds over all j and using
Markov’s inequality yields

log P(Yi ≥ t) ≤ −t + 2n

∫
�

∣∣g(z)
∣∣dμn(z),

log P(Yi − EYi ≥ t) ≤ −t + 2n

∫
�

∣∣g(z)
∣∣2 dμn(z).
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The above inequalities also apply for Yi replaced with −Yi . Union bounding over 1 ≤
i ≤ k and both choices of signs, and using the inequalities |Y | ≤ ∑k

i=1 |Yi | and |Y − EY | ≤∑k
i=1 |Yi − EYi |, we obtain (5.4) and (5.5), as desired. �

5.2. Bounds of averages.

LEMMA 25. Consider a point z ∈ B(0, n1/2) and a radius R ≤ n1/2. Let � = R2 \
B(z,R). Then ∣∣f (z | �)

∣∣ = O(R).

PROOF. First, note that by rotational symmetry, we have E[F(z)] = 0 for any z ∈ S2
n.

Thus, by Corollary 15, we have

(5.6) f
(
z | R2) = 0.

Next, by Lemma 22, if we (slightly abusing notation) let μn denote the density of the measure
μn, ∣∣f (z | B(z,R)

)∣∣ = ∣∣∣∣n∫
B(z,R)

f (z, y)μn(y) dy

∣∣∣∣ ≤ ∫
B(z,R)

∣∣f (z, y)
∣∣dy

= O

(∫ R

0
2πr · 1

r
dr

)
+ O

(
R2|z|/n

) = O(R).

Combining this with (5.6), we obtain∣∣f (z | �)
∣∣ ≤ ∣∣f (z | R2)∣∣+ ∣∣f (z | B(z,R)

)∣∣ = O(R). �

LEMMA 26. Consider a point z ∈ B(0, n1/2) and a radius R ≤ n1/2. Let � = R2 \
B(z,R). Then ∣∣D1f (z | �)

∣∣ = O(1).

PROOF. By direct calculation, we find that

D1f (z, y) = 2(z − y)⊗2 − |z − y|2I2

|z − y|4 + 1

n

(
I2

1 + |z|2
n

− 2z⊗2

n(1 + |z|2
n

)2

)
.

Let A(z, y) and B(z, y) denote the first and second terms, respectively. Note that for any
r > 0, we have by rotational symmetry that∫ 2π

0
A
(
z, z + reiθ )dθ = 0.

Also, since |z| ≤ n1/2, we have |B(z, y)| = O(n−1) for all y. We then have with hn denoting
the density of the measure μn,

(5.7)

∣∣D1f (z | �)
∣∣ = n

∣∣∣∣∫
�

(
A(z, y) + B(z, y)

)
μn(y) dy

∣∣∣∣
= n

∣∣∣∣∫ ∞
R

r

∫ 2π

0
A
(
z, z + reiθ )μn

(
z + reiθ )dθ dr

∣∣∣∣+ O(1)

≤ n

∫ ∞
R

r · max
y∈∂B(z,r)

∣∣A(z, y)
∣∣ · max

y,y′∈∂B(z,r)

∣∣hn(y) − hn

(
y′)∣∣dr + O(1).



GRAVITATIONAL ALLOCATION FOR UNIFORM POINTS ON THE SPHERE 307

To estimate the final expression, first note that |A(x, y)| = O( 1
|x−y|2 ). Also, for any r > 0,

we have

max
y,y′∈∂B(z,r)

∣∣hn(y) − hn

(
y′)∣∣ = 1

πn(1 + (r−|z|)2

n
)4

− 1

πn(1 + (r+|z|)2

n
)4

≤
∣∣∣∣(r − |z|)2

n
− (r + |z|)2

n

∣∣∣∣ · 4

πn(1 + (r−|z|)2

n
)5

= O

(
r|z|

n2 max(1, r10/n5)

)
.

Applying these estimates to (5.7), we have

∣∣D1f (z | �)
∣∣ ≤ O

(∫ ∞
R

|z|
nmax(1, r10/n5)

dr

)
+ O(1)

= O

( |z|
n1/2

)
+ O(1) = O(1). �

5.3. Far contributions.

LEMMA 27. Let R be a number with 1 ≤ R ≤ n1/3. Consider any point z ∈ B(0, n1/3),
and let � = R2 \ B(z,2R). Then, for some c > 0,

P
(

max
x∈B(z,R)

∣∣f (x | �)
∣∣ > t(R +

√
logn)

)
≤ e−ct+O(1)

PROOF. We first claim that for small enough c, each of the following inequalities occurs
with probability at least 1 − e−ct+O(1):∣∣f (z | �)

∣∣ ≤ t (R +
√

logn),(5.8) ∣∣D1f (z | �)
∣∣ ≤ t,(5.9)

max
x∈B(z,R)

∣∣D2f (x | �)
∣∣ ≤ t/R.(5.10)

We do this by applying Lemma 23 three times with different functions g.
First, take g(x) = 1

C1
√

logn
f (z, x) with C1 a large enough constant so that Lemma 22 gives

the upper bound

∣∣g(x)
∣∣ ≤ 1√

logn

(
1

|z − x| + |z|
n

)
≤ 1√

logn

(
1

|z − x| + n−2/3
)
.

Note that this bound ensures |g(x)| ≤ 1 for all x ∈ �, so that Lemma 23 applies. Lemma 23
then gives

log P
(∣∣f (z | �) − f (z | �)

∣∣ > C1t
√

logn
)

≤ −1

2
t + O(1) + 2n

∫
�

( 1
|z−x| + n−2/3)2

logn
dμn(x)

≤ −1

2
t + O(1) + 4n

∫
�

1
|z−x|2 + n−4/3

logn
dμn(x).

(5.11)
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We estimate the integral in the last expression by observing that μn(x) = O(1/n) for all x,
and μn(x) = O( n

|x−z|4 ) for x /∈ B(z,n1/2). Thus,

n

∫
�

1
|z−x|2 + n−4/3

logn
dμn(x)

≤ O(1)

logn

(∫ √
n

2R

(
1

r
+ r

n4/3

)
dr +

∫ ∞
√

n

(
1

r
+ r

n4/3

)
n2

r4 dr

)

= O(1)

logn

(
O(logn) + O(1)

) = O(1).

Substituting into (5.11), we obtain

log P
(∣∣f (z | �) − f (z | �)

∣∣ > C1t
√

logn
) ≤ −1

2
t + O(1).

By Lemma 25, we also have f (z | �) = O(R). Thus, after rescaling t , we see that (5.8)
occurs with probability at least 1 − e−ct+O(1) for small enough c.

Next, take g(x) = 1
C2

D1f (z, x) with C2 large enough so that Lemma 22 gives

∣∣g(x)
∣∣ ≤ 1

|x − z|2 + 1

n
.

Using Lemma 23, we obtain

log P
(∣∣D1f (z | �) − D1f (z | �)

∣∣ > C2t
)

≤ −1

4
t + O(1) + 2n

∫
�

(
1

|x − z|2 + 1

n

)2
dμn(x)

≤ −1

4
t + O(1) + 4n

∫
�

(
1

|x − z|4 + 1

n2

)
dμn(x)

= −1

4
t + O(1) + 4

n
μn(�) + O

(∫ ∞
R

1

r4 · r dr

)
= −1

4
t + O(1).

By Lemma 26, |D1f (z | �)| = O(1). Thus, after rescaling t , we see that (5.9) also occurs
with probability at least 1 − e−ct+O(1) for small enough c.

Finally, we take g(y) = R
C3

· maxx∈B(z,R) |D2f (x, y)| with C3 large enough so that
Lemma 22 gives ∣∣g(y)

∣∣ ≤ R

|y − z|3 + Rn−4/3.

Using Lemma 23, we obtain

log P
(

max
x∈B(z,R)

∣∣D2f (x | �)
∣∣ > C3t/R

)
≤ log P

(
R

C3

∑
y∈L̃∩�

max
x∈B(z,R)

∣∣D2f (x, y)
∣∣> t

)

≤ −t + O(1) + 2n

∫
�

(
R

|y − z|3 + Rn−4/3
)

dμn(y)

≤ −t + O(1) + 2n−1/3Rμn(�) + O

(∫ ∞
R

R

r3 · r dr

)
= −t + O(1).
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Thus, after rescaling t , (5.10) occurs with probability at least 1 − e−ct+O(1) for small
enough c.

Now, suppose that the inequalities (5.8), (5.9) and (5.10) all hold. Then (5.9) and (5.10)
imply that

max
x∈B(z,R)

∣∣D1f (x | �)
∣∣ ≤ 2t.

Combining this with (5.8) yields

max
x∈B(z,R)

∣∣f (x | �)
∣∣≤ t (3R +

√
logn),

which holds with probability at least 1 − e−ct+O(1). Rescaling t gives the result. �

5.4. Near contributions.

LEMMA 28. Let 0 < q < 1
2 and 2 < R < n1/3 be given. Consider any z ∈ B(0, n1/3) and

any � ⊂ B(0,R) \ B(z, q). There is an absolute constant c > 0 such that for all t > 0, we
have

P
(

max
x∈B(z,q/2)

∣∣f (x | �) − f (z | �)
∣∣ ≥ t/q

)
≤ qct−O(1)eO(q logR).

PROOF. Let �1 = � \ B(z,1) and �2 = � ∩ B(z,1).
We first apply Lemma 23 twice on �1. Taking g(y) = q

C1
maxx∈B(z,q/2) |D1f (x, y)| with

C1 large enough to ensure that |g(y)| ≤ 1 on �1, we find that

log P
(

max
x∈B(z,q/2)

∣∣D1f (x | �1)
∣∣ ≥ C1t/q

)
≤ −t + O(1) + 2n

∫
�1

∣∣g(y)
∣∣dμn(y)

≤ −t + O(1) + O(nq) ·
∫
�1

(
1

|y − z|2 + 1

n

)
dμn(y)(5.12)

≤ −t + O(1) + O
(
qμn(�1)

)+ O

(∫ 2R

1

q

r2 · r dr

)
= −t + O(1) + O(q logR).(5.13)

For our second application of Lemma 23, we take g(y) =
√

q

C2
f (z, y) with C2 large enough

to ensure |g(y)| ≤ 1 on �1. We obtain

(5.14)

log P
(∣∣f (z | �1) − f (z | �1)

∣∣ ≥ C2t/
√

q
)

≤ −1

2
t + O(1) + 2n

∫
�1

∣∣g(y)
∣∣2 dμn(y)

≤ −1

2
t + O(1) + O(nq) ·

∫
�1

(
1

|y − z| + |z|
n

)2
dμn(y)

≤ −1

2
t + O(1) + O

(
nq · |z|2

n2

)
· μn(�1) + O

(∫ 2R

1

q

r2 · r dr

)
= −1

2
t + O(1) + O(q logR).
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Combining (5.13) and (5.14) and rescaling t , we obtain

log P
(

max
x∈B(z,q/2)

∣∣f (x | �1) − f (z | �1)
∣∣ ≥ t/

√
q
)

≤ −ct + O(1) + O(q logR)

for sufficiently small c. Setting t = s/
√

q , this may be rewritten as

(5.15)
P
(

max
x∈B(z,q/2)

∣∣f (x | �1) − f (z | �1)
∣∣ ≥ s/q

)
≤ e−cs/

√
q+O(1)+O(q logR)

≤ qcs−O(1) · eO(q logR).

Next, we analyze the contribution from �2. Let g(y) = 1
C3

· q log 1
q

· maxx∈B(z,q/2) |f (x,

y)|, where C3 is a large enough constant so that (using Lemma 22)

g(y) ≤ 1

4
· q log

1

q
· 1

|y − z|
for all y ∈ �2. We cannot apply Lemma 23 directly, because we do not have |g(y)| ≤ 1 on all
of �2. However, a similar argument using a more precise analysis of exponential moments
will work. Note that

E
[
e
∑

y∈L̃∩�2
g(y)] =

(
1 +

∫
�2

(
eg(x) − 1

)
dμn(x)

)n

≤ exp
(
n

∫
�2

(
eg(x) − 1

)
dμn(x)

)

≤ exp
(

2
∫ 1

q

(
exp

(
1

4
· q log

1

q
· 1

r

)
− 1

)
· r dr

)

≤ exp
(

2
∫ q1/2

q
q−1/4 dr + O

(∫ 1

q1/2
q log

1

q
dr

))
= exp

(
O
(
q1/4)).

Markov’s inequality then implies

log P
(

max
x∈B(z,q/2)

∣∣f (x | �2)
∣∣ ≥ C3t

q log 1
q

)
≤ −t + O

(
q1/4).

Setting t = 1
C3

log 1
q

· s, this may be rewritten as

P
(

max
x∈B(z,q/2)

∣∣f (x | �2)
∣∣ ≥ s/q

)
≤ qs/C3−O(1).

Note that this also implies that |f (z | �2)| = O(1/q), and so we may conclude that

(5.16) P
(

max
x∈B(z,q/2)

∣∣f (x | �2) − f (z | �2)
∣∣ ≥ s/q

)
≤ qcs−O(1)

for small enough c. Combining (5.15) and (5.16) gives the result. �

5.5. Overall disk bound: Proof of Lemma 21. PROOF. We may assume throughout the
proof that n is chosen sufficiently large. Let � = B(z,2

√
logn). According to Lemma 27

with R = √
logn, we have for small enough c that

(5.17) P
(

max
x∈B(z,

√
logn)

∣∣f (x | R2 \ �
)∣∣ > 1

2
tM

√
logn

)
≤ e−ctM+O(1).
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We next consider contributions from within �. Let S ⊂ B(z,
√

logn) be a δ-net of
B(z,

√
logn) with |S| = O(logn/δ2). For each s ∈ S, we apply Lemma 28 with the region

�s := � \ B(s,2δ). We use the parameters q = 2δ and R = 4
√

logn. For a small enough c,
this gives

P
(

max
y∈B(s,δ)

∣∣f (y | �s) − f (s | �s)
∣∣ ≥ t/4δ

)
≤ δct−O(1)eO(δ log logn) = δct−O(1),

where we use that δ = O(1/
√

logn) in the last step. Letting S′ be a δ/2-net of B(z, δ), using
that a point of L̃ outside B(y, δ) exerts force at most 2/δ on y for sufficiently large n, and
decreasing c if necessary, we get

(5.18)

P
(

max
y∈B(s,δ)

∣∣f (y | (B(s,2δ) \ B(y, δ)
))∣∣ ≥ t/4δ

)
≤ P

(
max

y∈B(s,δ)

∣∣L̃∩ (
B(s,2δ) \ B(y, δ)

)∣∣ ≥ t/8
)

≤ ∑
y∈S′

P
(∣∣L̃∩ (

B(s,2δ) \ B(y, δ/2)
)∣∣ ≥ t/8

)
≤ e−ct/δ2

.

Combining the two estimates above,

P
(

max
y∈B(s,δ)

∣∣f (y | � \ B(y, δ)
)− f (s | �s)

∣∣ ≥ t/2δ
)

≤ P
(

max
y∈B(s,δ)

∣∣f (y | �s) − f (s | �s)
∣∣ ≥ t/4δ

)
+ P

(
max

y∈B(s,δ)

∣∣f (y | (B(s,2δ) \ B(y, δ)
))∣∣ ≥ t/4δ

)
≤ δct−O(1).

Using a union bound over all s ∈ S, we obtain

P
(

max
s∈S

y∈B(s,δ)

∣∣f (y | � \ B(y, δ)
)− f (s | �s)

∣∣ ≥ 1

2
tM

√
logn

)

≤ |S| · δct−O(1) ≤ (logn) · δ−2 · δct−O(1) = δct−O(1) ≤ e−ct+O(1).

Note that by Lemma 25 and (5.17), we have∣∣f (s | �s)
∣∣ ≤ ∣∣f (s | R2 \ B(s,2δ)

)∣∣+ ∣∣f (s | R2 \ �
)∣∣ ≤ O(1) + O(

√
logn),

so it follows that

P
(

max
s∈S

y∈B(s,δ)

∣∣f (y | � \ B(y, δ)
)∣∣ ≥ 1

2
tM

√
logn

)
≤ e−ct+O(1).

Combining with (5.17) completes the proof. �

6. Local maxima of the potential. In this section, we prove Theorem 4. The upper and
lower bounds will be treated separately, but both bounds require estimates on the probability
density of |F(x)| (or equivalently, on |f (0)| after stereographic projection). We collect the
required bounds in the following lemma, whose proof is deferred to Section 6.3. We let I2
denote the 2 × 2 identity matrix and for matrices A, B we write A � B if B − A is positive
semidefinite.
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LEMMA 29. For any x ∈ S2
n and any ε < 1, consider the stereographic projection taking

x to 0. Let f be the planar version of F as defined in (3.2). Then

(6.1) lim sup
ε→0

ε−2P
(∣∣f (0) − y

∣∣< ε
) = O

(
1

logn

)
uniformly for all y ∈ R2, and

lim inf
ε→0

ε−2P
(∣∣f (0)

∣∣ < ε and ∇f (0) � −1

5
I2

)
= �

(
1

logn

)
.

Furthermore, (6.1) still holds if, when defining f (0), we sum over n−1 (instead of n) uniform
points on L.

Throughout this section, we regard n ∈ N as fixed. For each ε ∈ (0,1), we will form a
partition of S2

n into a collection A(ε) of �(nε−2) spherically convex4 regions satisfying the
following properties:

• The diameter of each region is at most ε.
• For each region B ∈ A(ε), there exists a point xB ∈ B such that B contains all points within

distance ε/8 of xB .

Furthermore, it is possible to choose these partitions so that A(ε′) is a refinement of A(ε)

whenever ε′ < ε. Constructing partitions with the above properties is straightforward; we
omit the details.

6.1. Upper bound. For a set B ∈A(ε), we say that B is a critical set if it contains a local
maximum for U and supx,y∈B ‖∇F(x) − ∇F(y)‖op ≤ 1

2 , where the tangent spaces at x and
y are identified by the rotation along the spherical geodesic connecting x to y.5

PROOF OF THEOREM 4, UPPER BOUND. Suppose that B ∈ A(ε) is a critical set. Let
y ∈ B be a local maximum of U , so that ∇2U(y) � 0. Recall also from Proposition 10 that
Tr∇2U(y) = 
SU(y) = 2π . Thus, ‖∇2U(y)‖op ≤ 2π .

By the definition of critical set, this means also that ‖∇2U(x)‖op ≤ 10 for all x ∈ B .
Consequently, integrating along the geodesic between y and xB , we have |F(xB)| ≤ 10ε.
Then, by Lemma 29, for any B ∈ A(ε) we have

P(B is a critical set) ≤ P
(∣∣F(xB)

∣∣ ≤ 10ε
) ≤ P

(∣∣f (0)
∣∣ ≤ 20ε

) = O

(
ε2

logn

)
,

where we have used Corollary 15 to translate bounds between F(xB) and f (0).
Now, let N(ε) denote the number of critical sets in A(ε). Note that N(ε) increases as

ε decreases, and we have limε→0 N(ε) = N almost surely over the randomness of L (the
potential U is smooth away from its singularities, and its local maxima are bounded away
from its singularities). Thus, by the monotone convergence theorem, we have

(6.2) E[N ] = lim
ε→0

E
[
N(ε)

] ≤ lim sup
ε→0

(∣∣A(ε)
∣∣ · O(

ε2

logn

))
= O

(
n

logn

)
. �

4Recall that a region is spherically convex if for any two of its points, the region contains a minimal geodesic
between them.

5The symbol ∇ when applied to functions or vector fields on the sphere refers to the covariant derivative. This
gives us simple estimates when integrating over geodesics. Note however that in any case, as ε → 0, the local
geometry approaches a flat Euclidean one anyway.
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6.2. Lower bound. Consider a set B ∈ A(ε) and the stereographic projection sending xB

to 0. Defining u and f as in (3.1) and (3.2), we say that B is a candidate set if:

• ∇2u(0) � −1
5I2,

• |f (0)| ≤ ε
100 , and

• |z| ≥ 1
n

for all z ∈ L.

We first show that for small enough ε, every candidate set must contain a local maximum.
Indeed, we will show that if B is a candidate set, then u has a local maximum somewhere in
B(0, ε/16).

First, note that since all points in L are assumed at least distance 1
n

from the origin, by
Lemma 22, we have a uniform upper bound on |D2f (x)| for x ∈ B(0, ε/5) that does not
depend on ε. Thus, for ε small enough, we have that D1f (x) = ∇2u(x) � −1

6I2 for all
x ∈ B(0, ε/5).

Now, consider f as a map from R2 to R2. For any x ∈ ∂B(0, ε/16), we have〈
f (x), x

〉≤ 〈
f (0), x

〉− 1

6
· ε

16
< 0.

Then we have the homotopy ft (x) = (1 − t)f (x) − tx which satisfies ft (x) �= 0 for all t ∈
[0,1] and x ∈ ∂B(0, ε/16). It follows by standard results about topological degree (see, e.g.,
[11], §3) that f (x) = 0 for some x ∈ B(0, ε/16), and by our earlier observation that ∇2u(x)

is negative definite in this region, this must be a local maximum.
Finally, by Proposition 13 and taking ε small enough, the disk B(0, ε/16) in the plane

corresponds to points on the sphere with distance less than ε/8 from xB . Thus, our local
maximum lies within the set B .

PROOF OF THEOREM 4, LOWER BOUND. Let C(ε) denote the number of candidate sets
in A(ε), so by the preceding discussion it suffices to lower bound E[C(ε)].

Consider any B ∈ A(ε). Lemma 29 already gives us that

(6.3) P
(∣∣f (0)

∣∣ < ε

100
and ∇2u(0) � −1

5
I2

)
= �

(
ε2

logn

)
.

We next show that when the above occurs, very rarely does it happen that |z| ≤ 1
n

for some
z ∈ L. Indeed, let z1, z2, . . . , zn be the points in L ordered uniformly at random. For each i

and y ∈ R2, we have by Lemma 29 that

P
(∣∣∣∣y −∑

j �=i

f (0, zj )

∣∣∣∣ < ε

100

)
= O

(
ε2

logn

)
.

Applying the above with y = −f (0, zi) gives the estimate

P
(
|zi | ≤ 1

n
and

∣∣f (0)
∣∣ < ε

100

)
= P

(
|zi | ≤ 1

n

)
· O

(
ε2

logn

)
= O

(
ε2

n2 logn

)
.

Taking a union bound over all zi , this gives

P
(
|z| ≤ 1

n
for some z ∈ L and

∣∣f (0)
∣∣ < ε

100

)
= O

(
ε2

n logn

)
.

Combining this with (6.3), we find that B is a candidate set with probability �( ε2

logn
). Thus,

for all small enough ε,

E[N ] ≥ E
[
C(ε)

] = ∣∣A(ε)
∣∣ · �(

ε2

logn

)
= �

(
n

logn

)
,

as desired. �
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6.3. Proof of Lemma 29. In order to prove Lemma 29, we first analyze the contribution
f (0, z) from a single point z drawn from μn. A helpful property is that f (0, z) turns out to
be a mixture of Gaussians, as explained in the following lemma.

LEMMA 30. Let z ∈ R2 be a point drawn from μn, and let X = √
nf (0, z). Then X can

be sampled as a 2-dimensional Gaussian of covariance V · I2, where V itself is a real-valued
random variable. Moreover, the probability density function pV of V is

pV (x) = 1

2x2 e−1/2x.

PROOF. Note that

P
(|z| < t

) =
∫ t

0
2πr · 1

πn(1 + r2

n
)2

dr =
[
− 1

1 + r2

n

]t

0
= 1 − 1

1 + t2

n

.

Hence, since |X| =
√

n
|z| , we have

P
(|X| > t

) = 1 − 1

1 + 1
t2

= 1

t2 + 1
= P

(|z| > √
n · t).

It follows that X actually has the same distribution as z/
√

n, and so its probability density
function is given by

pX(x) = 1

π(1 + |x|2)2 .

We then have the integral identity

1

π(1 + r2)2 = 1

π

∫ ∞
0

te−t · e−tr2
dt =

∫ ∞
0

1

4πs3 e−1/2s · e−r2/2s ds

=
∫ ∞

0

1

2s2 e−1/2s ·
(

1

2πs
e−r2/2s

)
ds,

which shows that X can be sampled as a 2-dimensional Gaussian of covariance V · I2, where
V itself is a real-valued random variable with density pV (x) = 1

2x2 e−1/2x . �

The next lemma provides estimates for the sum of n i.i.d. copies of the random variable
V from Lemma 30, which will be relevant when we consider the sum of the contributions to
f (0) from all n points.

LEMMA 31. Let V be a nonnegative random variable with probability density pV (x) =
1

2x2 e−1/2x . Let V1, . . . , Vn be n i.i.d. random variables each with the same distribution as V .
Then we have

P

(
n∑

i=1

V 2
i ≤ n2

100
and

n∑
i=1

Vi ≤ 4n logn

)
= �(1)

and

E
(

1∑n
i=1 Vi

)
= O

(
n

logn

)
.



GRAVITATIONAL ALLOCATION FOR UNIFORM POINTS ON THE SPHERE 315

PROOF. For the first bound, define for each i the event Ei = {Vi ≤ n/100}, and write
E =⋂n

i=1 Ei . For each i, we have

E[Vi | Ei] =
∫ n/100

0

1

2t
e−1/2t dt ≤ logn,

E
[
V 2

i | Ei

] =
∫ n/100

0

1

2
e−1/2t dt ≤ n

200
.

By the independence of the Vi , we have E[Vi | E] = E[Vi | Ei] and E[V 2
i | E] = E[V 2

i | Ei].
Therefore,

E

(
n∑

i=1

Vi

∣∣∣E)
≤ n logn hence P

(
n∑

i=1

Vi ≥ 4n logn
∣∣∣ E)

≤ 1

4
and

E

(
n∑

i=1

V 2
i

∣∣∣E)
≤ n2

200
hence P

(
n∑

i=1

V 2
i ≥ n2

100

∣∣∣ E)
≤ 1

2
.

Thus, we have

P

(
n∑

i=1

V 2
i ≤ n2

100
and

n∑
i=1

Vi ≤ 4n logn

)
≥ 1

4
P(E) = 1

4
P(E1)

n

= 1

4

(
e−50/n)n = �(1).

For the second bound, let S = 1
n

∑n
i=1 Vi . Consider the three events

ϒ1 =
{
S <

1

n

}
, ϒ2 =

{
1

n
≤ S ≤ 1

48
logn

}
, ϒ3 =

{
1

48
logn < S

}
.

For the first event, we have

(6.4)
E
(

1ϒ1 · 1

S

)
=
∫ ∞
n

P(S < 1/s) ds ≤
∫ ∞
n

P(V1 < 1/s) ds

=
∫ ∞
n

e−s/2 ds = 2e−n.

To control the second event, let m = �1
3 log2 n�, and for each positive integer k ≤ m, let Nk

denote the number of Vi with Vi ∈ [2k−1,2k]. Note that

ENk = n · P
(
2k−1 ≤ Vi ≤ 2k) = n · (e−2−k − e−2−k−1) ≥ n

2k+2 .

By Hoeffding’s inequality, we then have

P
(
Nk ≤ 1

8
· n · 2−k

)
≤ exp

(
− 1

32
· n · 2−2k

)
.

Define the event E′ = ⋂m
k=1{Nk ≥ 1

8 · n · 2−k}, and note that on the event E′, we have

S = 1

n

n∑
i=1

Vi = 1

n

m∑
k=1

Nk · 2k−1 ≥ 1

n

m∑
k=1

1

8
· n · 2−k · 2k−1 = 1

16
m,

so that E′ ∩ ϒ2 =∅. Consequently,

P(ϒ2) ≤ 1 − P
(
E′)≤

m∑
k=1

exp
(
−1

8
· n · 2−2k

)
= O

(
n−2),
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and so

(6.5) E
(

1ϒ2 · 1

S

)
≤ n · P(ϒ2) = O

(
n−1).

Finally, we also have

E
(

1ϒ3 · 1

S

)
≤ 48

logn
.

Combining this with (6.4) and (6.5), we conclude that E( 1
S
) = O( 1

logn
), as desired. �

Finally, we need an elementary estimate for certain conditional Gaussian covariances.

LEMMA 32. Consider an n-dimensional Gaussian Z = (Z1,Z2, . . . ,Zn), and write
S = ∑n

i=1 Zi . Let � and �′ be the covariance matrices of Z and Z conditioned on S = 0,
respectively, that is, we have

�ij = E[ZiZj ] and �′
ij = E[ZiZj | S = 0].

Then
n∑

i,j=1

(
�′

ij

)2 ≤
n∑

i,j=1

�2
ij .

PROOF. Fix any v ∈ Rn. We have

〈v,�v〉 = E
(〈v,Z〉2)= E

(
E
(〈v,Z〉2 | S))

≥ E
(
E
(〈
v,Z − E[Z | S]〉2 | S))

= E
(〈v,Z〉2 | S = 0

) = 〈
v,�′v

〉
.

Since this holds for all v, it follows that �′ � �. Consequently, the Hilbert–Schmidt norm of
�′ is less than or equal to that of �, which is the desired inequality. �

We are now ready to prove Lemma 29.

PROOF OF LEMMA 29. Let Vi be as in Lemma 31, and for each i, let Xi be drawn from
a Gaussian of covariance Vi · I2. In light of Lemma 30, we may create a coupling in which

f (0) = 1√
n

n∑
i=1

Xi.

Thus, f (0) is distributed as a mixture of centered Gaussians, where the covariance has the
distribution of 1

n

∑n
i=1 Vi . Let pf denote the probability density of f (0). Then we have by

the continuity of pf and Lemma 31 that

lim sup
ε→0

ε−2P
(∣∣f (0)

∣∣ < ε
) = pf (0) = E

(
n

2π
∑n

i=1 Vi

)
= O

(
1

logn

)
,

proving the first bound in the case y = 0. The general case follows similarly, since pf is
maximized at 0 (being a mixture of centered Gaussian densities). The last assertion of the
lemma follows by a similar calculation where we sum over n − 1 instead of n points.
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For the second bound, consider any point z = (z1, z2) ∈ R2. A direct calculation shows
that

fz(0) =
(
− z1

z2
1 + z2

2

,− z2

z2
1 + z2

2

)
,

∇fz(0) = 1

(z2
1 + z2

2)
2

[
z2

1 − z2
2 2z1z2

2z1z2 z2
2 − z2

1

]
− 1

n
I2.

Thus, writing Xi = (xi,1, xi,2) and summing over all i, we see that

∇f (0) =
[
A B

B −A

]
− I2,

where A = 1
n

∑n
i=1 x2

i,1 − x2
i,2 and B = 2

n

∑n
i=1 xi,1xi,2.

Now, define the event E = {∑n
i=1 V 2

i ≤ n2

100 and
∑n

i=1 Vi ≤ 4n logn}, so that Lemma 31
gives P(E) = �(1). Conditioned on the value of the Vi’s we have that the xi,1’s are indepen-
dent of the xi,2’s. This independence still holds if we condition on the event f (0) = 0, which
implies that E[xi,1xj,1xi,2xj,2 | f (0) = 0,E] = E[xi,1xj,1 | f (0) = 0,E]2. We get

E
[
B2 | f (0) = 0,E

] = 4

n2

n∑
i=1

n∑
j=1

E
[
xi,1xj,1xi,2xj,2 | f (0) = 0,E

]

= 4

n2

n∑
i,j=1

E
[
xi,1xj,1 | f (0) = 0,E

]2
≤ 4

n2

n∑
i,j=1

E[xi,1xj,1 | E]2 = 4

n2 E

[
n∑

i=1

V 2
i

∣∣∣ E]
≤ 1

25
,

where the first inequality follows from Lemma 32. By Markov’s inequality, this implies that

(6.6) P
(
|B| ≥ 2

5

∣∣∣ f (0) = 0,E

)
≤ 1

4
.

A nearly identical argument shows that the above inequality also holds with B replaced
by A. Indeed, the quantities under consideration are invariant under the rotation (x1, x2) 	→
(x1+x2√

2
, x1−x2√

2
) which takes B to A. Define the function

r(x) = P
(
∇f (0) � −1

5
I2

∣∣∣ f (0) = x,E

)
.

Then (6.6) and the corresponding inequality for A imply that

r(0) ≥ P
(

max
(|B|, |A|)≤ 2

5

∣∣∣ f (0) = 0,E

)
≥ 1

2
.

Also, let pf |E denote the probability density of f conditioned on the event E. Note that

pf |E(0) = E
(

n

2π
∑n

i=1 Vi

∣∣∣E)
≥ 1

8π logn
.

Moreover, it can be checked that r and pf |E are both continuous functions. Thus,

lim inf
ε→0

(
ε−2 · P

(
∇f (0) � −1

5
I2 and

∣∣f (0)
∣∣ ≤ ε

))
≥ lim inf

ε→0

(
ε−2 · P(E) ·

∫
x∈B(0,ε)

pf |E(x)r(x) dx

)
= �

(
1

logn

)
. �
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7. Gravitational allocation for roots of a Gaussian polynomial. In this section, we
study gravitational allocation to the roots of a certain Gaussian random polynomial and
prove Proposition 6. Recall that we look at the polynomial given by (1.9). We bring the
roots λ1, . . . , λn ∈ C of p to the sphere via stereographic projection. More explicitly, letting
Pn be the rescaled stereographic projection map defined in Section 3 and viewing the λk as
lying in the horizontal plane in R3, it turns out that

L = {
P −1

n (
√

nλk)
}n
k=1

is a rotationally equivariant random set of n points on S2
n. The rotational equivariance comes

from the particular choice of coefficients for p; see [20], Chapter 2.3.

PROOF OF PROPOSITION 6. By (1.8) and rotational symmetry, it suffices to compute
E|F(x)| for any fixed point x ∈ S2

n. It is convenient to pick x = (0,0,−√
n/4π) = P −1

n (0).
Letting f be as in (3.2), we then have

f (0,
√

nλk) = 1√
n · λk

,

where complex numbers are interpreted as two-dimensional vectors in the horizontal plane.
Using Proposition 13 to convert between F(x) and f (0), we then have

F(x) = √
πf (0) =

√
π

n

n∑
k=1

λ
−1
k =

√
π

n
· ζ 1 · √n

ζ 0 · 1
= √

π · ζ 1

ζ 0
,

which gives a simple expression for F in terms of two independent complex Gaussians.
Taking expectations of the magnitude, we obtain

E
∣∣F(x)

∣∣ = √
πE

|ζ 1|
|ζ 0|

= π
√

π

2
,

which together with (1.8) establishes (1.10). �

8. Open problems.

1. We have proved O(
√

logn) bounds on typical distances for gravitational allocation to
uniform points, but our results do not rule out the possibility of a small set of points with
allocation distances much larger than

√
logn or, equivalently, of some allocation cells having

large diameter. Let z ∈ L be chosen uniformly at random, and consider the cell B(z) allocated
to z. What is the law of the diameter of B(z)? Furthermore, what is the law of the maximal
basin diameter, that is, the law of max{|x − ψ(x)| : x ∈ S2, ψ(x) ∈ L}?

2. The matching algorithm we consider in Corollary 3 considers the gravitational field
defined by the points B. One could attempt to define and analyze a matching algorithm where
A and B are viewed as sets of particles undergoing dynamics where they exert attractive
forces on particles of the opposite kind (as a variant, they may also repel particles of the same
kind). One difficulty is that after the dynamics have evolved for some time the points are no
longer uniformly distributed.

3. In Corollary 3, we consider a matching algorithm defined in terms of gravitational al-
location. An alternative greedy matching algorithm can be obtained by iteratively matching
nearest pairs of points, that is, we find i, j ∈ {1, . . . , n} such that |ai −bj | is minimized, we de-
fine ϕ(ai) = bj , and we repeat the procedure with A\{ai} and B \{bj }. [18], Theorem 6, sug-

gests that an upper bound for the average matching distance is
∫√

n

0 r−0.496... dr = �(n0.252...).
Can this bound be improved?
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APPENDIX: RELATING MATCHINGS IN SQUARES AND ON SPHERES

In this Appendix, we will give the proof of Proposition 8.

PROOF OF PROPOSITION 8. Let Q = [0,
√

nπ]2 ⊂ R2, and let Q̂ = P −1
N (Q) ⊂ S2

N . It
is more convenient to consider A and B having points drawn i.i.d. uniformly from Q rather
than [0,

√
n]2; clearly, the original statement follows after rescaling by

√
π .

We will construct matchings of A to B based on matchings of X to Y . We first note that
|X ∩ Q̂| ∼ Binom(N,λN(Q̂)/N), and since

λN(Q̂) = NμN(Q) = n + O(n/N),

we then have

(A.1) E
∣∣|X ∩ Q̂| − n

∣∣= O(
√

n).

Conditioned on the size of |X ∩ Q̂|, the points of Â := PN(X ∩ Q̂) are distributed as i.i.d.
points â1, . . . , â|X∩Q̂| on Q according to a density proportional to μN , which is within
O(n/N) in total variation distance to uniform. By this result on the total variation distance,
we can couple aj and âj for j = 1, . . . , |X ∩ Q̂| such that aj = âj except on an event of
probability O(n/N). Combining this with (A.1), it follows that Â may be coupled to A so
that

E|A \ Â| = O(
√

n) + O

(
n · n

N

)
= O(

√
n).

Similarly, we may couple B̂ := PN(Y ∩ Q̂) to B so that E|B \ B̂| = O(
√

n).
Now, let ϕ̂ :X → Y be a matching which minimizes

∑
x∈X |x − ϕ̂(x)|, and let dmin denote

the minimal value. Define the sets

A1 = A∩ Â,

A2 = {
a ∈ A1 : (PN ◦ ϕ̂ ◦ P −1

N

)
(a) ∈ B̂

}
,

A3 = {
a ∈ A2 : (PN ◦ ϕ̂ ◦ P −1

N

)
(a) ∈ B

}
,

which satisfy A3 ⊆ A2 ⊆ A1 ⊆ A. We may define a matching ϕ : A → B by setting ϕ(a) =
(PN ◦ ϕ̂ ◦ P −1

N )(a) for a ∈ A3 and matching the remaining points in an arbitrary manner.
Note that the distance between any two points in Q is at most

√
2πn. Also, by rotational

symmetry, we have

E
∑

a∈A3

∣∣a − ϕ(a)
∣∣ ≤ 2E

∑
x∈X∩Q̂

∣∣x − ϕ̂(x)
∣∣ = 2λN(Q̂)

N
E[dmin] = O

(
n

N

)
· E[dmin].

Thus,

(A.2)

E
∑
a∈A

∣∣a − ϕ(a)
∣∣

≤ E
∑

a∈A3

∣∣a − ϕ(a)
∣∣+ √

2πn · E|A \A3|

= O

(
n

N

)
· E[dmin] + √

2πn
(
E|A \A1| + E|A1 \A2| + E|A2 \A3|)

≤ O

(
n

N

)
· E[dmin] + √

2πn
(
O(

√
n) + E|Â \A2| + E|B \ B̂|)

= O

(
n

N

)
· E[dmin] + O(n) + O(

√
n) · E|Â \A2|.
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It remains to estimate E|Â \ A2|. We will use the fact that for piecewise smooth curves
γ, γ ′ ⊂ S2

N and a rotation ϑ ∈ SO3(R) chosen uniformly at random, the expected number of
intersections of γ with ϑγ ′ is proportional to 1

N
· |γ | · |γ ′|. (See, e.g., the spherical kinematic

formula given in [27], Theorem 6.5.6. Our statement amounts to the special case j = 0 and
A = B = S2.)

For each x ∈ X , let γx denote the geodesic in S2
N connecting x to ϕ̂(x). Then the rotational

symmetry of X and the above kinematic formula give

(A.3) E|Â \A2| ≤ E
∣∣{x ∈ X : γx ∩ ∂Q̂ �= ∅}∣∣ ≤ O(1) · |∂Q̂|

N
· E

∑
x∈X

|γx |.

Substituting (A.3) into (A.2) and using the facts that |∂Q̂| = O(
√

n) and E
∑

x∈X |γx | =
O(E[dmin]), we conclude that

E
∑
a∈A

∣∣a − ϕ(a)
∣∣ ≤ O(n) + O

(
n

N

)
E[dmin],

which gives the desired result upon dividing by n. �
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