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In this paper we establish the necessary and sufficient criterion for the
contact process on Galton–Watson trees (resp., random graphs) to exhibit the
phase of extinction (resp., short survival). We prove that the survival threshold
λ1 for a Galton–Watson tree is strictly positive if and only if its offspring
distribution ξ has an exponential tail, that is, Eecξ < ∞ for some c > 0,
settling a conjecture by Huang and Durrett (2018). On the random graph with
degree distribution μ, we show that if μ has an exponential tail, then for small
enough λ the contact process with the all-infected initial condition survives
for n1+o(1)-time whp (short survival), while for large enough λ it runs over
e�(n)-time whp (long survival). When μ is subexponential, we prove that the
contact process whp displays long survival for any fixed λ > 0.

1. Introduction. The contact process is a model of epidemics on networks introduced
by Harris in 1974 [11]. Its transitions are given as follows:

• Each vertex is either infected or healthy.
• Each infected vertex infects each of its neighbors independently at rate λ, and it is healed

at rate 1 independently of all the infections.
• Infection and recovery events in the process happen independently from vertex to vertex.

The phase diagrams of the contact processes on Z
d and on Td , the infinite d-ary tree, are

well understood. In particular, the contact process on an infinite tree has drawn particular
interest, as it has two distinct phase transitions. In a series of beautiful works [16, 26, 29], it
was shown that the contact process on Td for d ≥ 2, with an initial infection at the root, has
two different thresholds 0 < λ1 < λ2 such that:

• (Extinction) For λ < λ1, the infection becomes extinct almost surely.
• (Weak survival) For λ ∈ (λ1, λ2), the infection survives with positive probability, but the

root is infected finitely many times almost surely.
• (Strong survival) For λ > λ2, the infection survives, and the root gets infected infinitely

many times with positive probability.

A natural interest is then to study the phase diagram of the contact process on Galton–
Watson trees. In this paper we establish the necessary and sufficient criterion for λ1 > 0.
In particular, we provide the first known result for extinction in Galton–Watson trees with
unbounded offspring distribution.

THEOREM 1. Consider the contact process on the Galton–Watson tree with offspring
distribution ξ , and suppose that only the root of the tree is initially infected. If ξ has an
exponential tail, that is, Eecξ < ∞ for some c > 0, then there exists λ0 = λ0(ξ) > 0 such that
for all λ < λ0, the process dies out almost surely.
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Recently, Huang and Durrett [12] proved that, on Galton–Watson trees, λ2 = 0 if the off-
spring distribution ξ is subexponential, that is, Eecξ = ∞ for all c > 0. Combining Theo-
rem 1 with their result, we have the complete characterization on the existence of extinction
on Galton–Watson trees. Moreover, Theorem 1 establishes a stronger version of the following
conjecture by Huang and Durrett.

CONJECTURE 2 ([12]). Suppose that P(ξ ≥ k) = (1 − p)k for all k larger than some
constant K , and consider the contact process on the Galton–Watson tree with offspring dis-
tribution ξ . Then, λ2, the weak-strong survival threshold, is strictly positive.

The challenge in understanding the infection time on trees with unbounded degree distri-
butions is that the infection persists for a long time around high-degree vertices, as there are
many neighbors from which it can be reinfected. Indeed, it was shown in [2] that the infec-
tion will last time ecλd in a neighborhood of a vertex of degree d with positive probability for
some cλ > 0. Thus, exponential tails on the degree distribution are needed for there to be few
enough high degree vertices in the tree for extinction to be certain.

The next object of interest is the contact process on random graphs. For the contact process
on the Erdős–Rényi random graph Gn,d/n, no rigorous results were known regarding its phase
diagram—whether it shows short or long survival, or both. In this work we prove that, on
Gn,d/n, the contact process exhibits two different phases depending on λ as a consequence of
an analogous criterion on more general random graphs.

We focus on studying the contact process on the random graph with degree distribution μ,
which we denote by G ∼ G(n,μ) (definitions given in Section 2.2). For the contact process
on G ∼ G(n,μ), our main goal is to study how long the process survives in terms of the
size of the graph. The second result of this paper establishes the necessary and sufficient
criterion for the contact process on G ∼ G(n,μ) to display the short survival phase. We
assume throughout that μ satisfies

(1.1) ED∼μD(D − 2) > 0 and ED∼μD2 < ∞
in order to ensure the existence of the giant component and take advantage of the configura-
tion model. For details on (1.1), see Section 2.2.

THEOREM 3. Suppose that μ satisfies (1.1) and there exists some constant c > 0 such
that ED∼μecD < ∞. Consider the contact process on G ∼ G(n,μ) where all vertices are
initially infected. Then, there exist constants 0 < λ(μ) ≤ λ(μ) < ∞ such that the following
hold:

(1) For all λ < λ, the survival time of the process is at most n1+o(1)-time whp.
(2) For all λ > λ, the survival time of the process is e�(n)-time whp.

THEOREM 4. Suppose that μ satisfies (1.1) and ED∼μecD = ∞ for all c > 0. Consider
the contact process on G ∼ G(n,μ) where all vertices are initially infected. Then for any
fixed λ > 0, the survival time of the process is e�(n)-time whp.

REMARK 1.1. In the statements of Theorems 3 and 4 (and Corollary 5 below as well),
the notion whp covers the randomness coming from both the choice of graph G and the
contact process. Therefore, they should be understood as,

“There exists an event A over the choice of G which occurs whp, such that the statement
holds whp over the contact process on G given G ∈ A.”
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For the case of Erdős–Rényi random graphs, which are contiguous to G(n,μ) with μ =
Pois(d) (see Section 2.2 for details), we can show that the contact process on Gn,d/n exhibits
two different phases as a consequence of Theorem 3.

COROLLARY 5. For any fixed d > 1, consider the contact process on G ∼ Gn,d/n where
all vertices are initially infected. Then, there exist constants 0 < λ(d) ≤ λ(d) < ∞ such that
the following hold:

(1) For all λ < λ, the survival time of the process is at most n1+o(1)-time whp.
(2) For all λ > λ, the survival time of the process is e�(n)-time whp.

REMARK 1.2. One might be interested in studying the contact process on G ∼ G(n,μ),
with the initial condition such that only a single vertex is infected. When a uniformly random
vertex in G is infected, initially, while all the other ones are healthy, we will later see that
Theorems 3 and 4 continue to hold, if we change “whp” to “with positive probability” at the
end of the statements of Theorems 3(2) and 4. To be precise, by “with positive probability,”
we mean whp over the choice of G ∼ G(n,μ), with positive probability over the choice of
the initially infected vertex v and with positive probability over the contact process. Proofs
are given in Remark 5.5 for exponential distributions and Remark 6.4 for subexponential
distributions.

To sum up, we establish a “universality” criterion for the contact process on Galton–
Watson trees (resp., random graphs with given degree distributions) on the existence of the
phase of extinction (resp., short survival). Our methods do not give sharp estimates on the
critical value, and it is an interesting open problem to determine the location of the phase
transition. We also believe that the two critical values in Theorems 1 and 3 coincide. Pre-
cisely, we conjecture that λ1(GW(μ′)) = λc(G(n,μ)), where:

• λ1(GW(μ′)) is the death–survival threshold of the Galton–Watson tree with offspring
distribution μ′, the size-biased distribution of μ (see Section 2.2 for details).

• λc(G(n,μ)) is the short-long survival threshold of G(n,μ).

1.1. Related works. In [11], Harris first introduced the contact process on Z
d and showed

that the death–survival threshold λc(Z
d) satisfies 0 < λc(Z

d) < ∞ for any d . Building upon
this work, the model on Z

d has been studied intensively, and we refer to Liggett [17] for
a survey of results. Pemantle [26] studied the contact process on the infinite d-ary tree Td

and showed that it exhibits three different phases—extinction, weak survival and strong
survival—for d ≥ 3. This result was later generalized by Liggett [16] for the case d = 2.
Stacey [29] gave a shorter proof that applies for any d ≥ 2.

Less is known for the contact process on general Galton–Watson trees. Recently, Huang
and Durrett [12] proved that, on Galton–Watson trees, λ2 = 0 if the offspring distribution ξ

is subexponential. Along with Theorem 1, we now have the complete characterization of the
existence of extinction in the contact process on Galton–Watson trees.

There has been considerable work studying the phase transitions of survival times on large
finite graphs. Stacey [28] and Cranston et al. [6] studied the contact process on the d-ary tree
T

h
d of depth h starting from the all-infected state, and their results show that the survival time

Th, as h → ∞, satisfies (i) Th/h → γ1 in probability if λ < λ2(Td); (ii) |Th
d |−1logETh → γ2

in probability and Th/ETh
d→ Exp(1) if λ > λ2(Td), where γ1, γ2 are constants depending on

d,λ. In [8, 9, 24], similar results were established for the case of the lattice cube {1, . . . , n}d .
Recently, in work of Mourrat and Valesin [25] and Lalley and Su [15], it was shown that,

for any d ≥ 3, the contact process on the random d-regular graph, whose initial configuration
is the all-infected state, exhibits the following phase transition:
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• (Short survival) For λ < λ1(Td), it survives for O(logn)-time whp.
• (Long survival) For λ > λ1(Td), it survives for e�(n)-time whp.

Moreover, in [15] a “cutoff phenomenon” of the fraction of infected vertices was established.
In [25], the same result as above is proven for G ∼ G(n,μ) with bounded μ (Theorems 1.3
and 1.4). For an unbounded degree distribution μ, Chatterjee and Durrett [5] proved that if
μ obeys a power law, then the contact process always displays long survival for any λ > 0,
though their survival time was slightly weaker than exponential (en1−δ

for any δ > 0). This
result was later generalized in [22] to an exponential survival. Our Theorems 3 and 4 extend
the aforementioned results to any general μ. In [27], a long survival on general graphs for
λ > λc(Z) was settled, with survival time at least exp(|G|/{log |G|}κ) for any κ > 1. [4]
studied the contact process under similar settings as Theorem 3(2) and Corollary 5(2) with
additional assumptions on the degree distribution and showed that the expected survival time
is exponentially large in n.

On random graphs with power-law degree distributions, metastability properties on the
size of infected vertices were studied in [3, 23]. For other types of random graphs, recently
in [20] it was shown that the contact process on random geometric graphs exhibits both short
and long survival.

1.2. Main techniques. We sketch the ideas in the paper before giving the full proofs. The
analysis of the subcritical contact process (i.e., extinction and short survival) relies on three
main ideas which we now describe. Here, we assume that the offspring distribution of the
Galton–Watson trees and the degree distribution of the random graphs have exponential tails.

� Modified process: Preventing recoveries at the root. One main difficulty in studying
the contact process on Galton–Watson trees comes from complicated dependencies inside
the given tree. To overcome this obstacle, we consider the following modification of the
process:

• A vertex is added above the root that is always infected. As such the chain no longer has
an absorbing state.

• Recoveries at the root only occur when none of its descendants are infected at the time
of recovery. All the other infections and recoveries are the same as the original process.

In the modified process, when the root is infected, the processes inside each subtree from a
child of the root behave independently. By relating the stationary probability of the root being
uninfected to the extinction time we develop a recursive relationship over the tree height. As
a result, we show that the expected survival time of the contact process with small enough λ

is bounded by a constant, for any finite-depth Galton–Watson trees.
� Exponential decay of infection depth: The delayed process. To relate the finite Galton–

Watson trees to the infinite tree, we prove that the probability that the infection goes deeper
than depth h decays exponentially in h. To this end, we introduce the delayed process, which
spends exponentially longer time at states containing deeper infections. Based on a similar
argument introduced above, we show that the expected survival time of the delayed process
on the Galton–Watson tree is bounded by a constant if λ is small enough. This will imply
that, in the original process, the infection can go deeper than h at most with an exponentially
small probability in h. Thus, the contact process on the infinite Galton–Watson tree can be
regarded as that on a large-depth finite tree, and hence we establish Theorem 1.

� Coupling the local neighborhoods of G(n,μ). To study the contact process on G ∼
G(n,μ) exhibiting short survival, we attempt to dominate the local neighborhoods of the
graph by Galton–Watson trees, in terms of isomorphic inclusions of graphs. However, some
of the local neighborhoods N(v, r) will contain a cycle, and hence we introduce modified
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Galton–Watson type processes that contain a cycle and behave similarly as the Galton–
Watson trees. After dominating the local neighborhoods of G by the new branching pro-
cesses, we study the contact process on the latter graphs and bound its survival time based on
the aforementioned ideas.

On the other hand, when studying the long survival for G ∼ G(n,μ), we rely on the ex-
istence of what we call embedded expanders inside the graph. Roughly speaking, we call a
subset W of vertices in G an embedded expander, if: (i) all vertices in W have high degree,
say, at least M , and (ii) distance R-neighborhood of every subset W ′ ⊂ W of at most a certain
size intersects with W at more than 2|W ′| vertices (see a precise definition in Lemma 5.2). As
noted above, we expect an infection at a degree M vertex to last for at least time exponential
in M .

Intuitively, if a subset W ′ of an embedded expander W is infected, then the infections
inside W ′ would happen repeatedly for a reasonably long time due to its large degrees, and
hence it will not die out whp before infecting its neighbors within distance R. Thus, if W is an
embedded expander, then the infection is likely to spread over 2|W ′| vertices after some time.
In Sections 5 and 6 we make this intuition rigorous and prove the existence of an embedded
expander inside G. For the latter argument we partially rely on the cut-off line algorithm
(Definition 7.3), which was introduced in [14], to find the cores of random graphs.

For Theorem 4 we show that if μ is subexponential, then we can find an embedded ex-
pander in G such that R is arbitrarily smaller than M . Therefore, even if λ is very small, it
will be possible for infections in the embedded expander to travel the distance of R before
dying out.

1.3. Organization. The rest of the paper is organized as follows. After we set up nota-
tions and review some preliminary facts in Section 2, we prove Theorem 1, Theorem 3(1),
Theorem 3(2) in Sections 3, 4 and 5, respectively. In Section 6 we prove Theorems 4. In
Section 7 we prove a structural lemma on the embedded expanders mentioned above which
plays a crucial role in establishing Theorems 3(2) and 4.

1.4. Notations. For two positive sequences (an) and (bn), we say that an = O(bn) or
bn = �(an) if there exists a constant C independent of n such that an ≤ Cbn for all n. If
an = O(bn) and bn = O(an), we write an = �(bn).

2. Preliminaries. In this section we set up notation and briefly describe some basic prop-
erties of the contact process and random graphs which will be used throughout the paper.

For a graph G = (V ,E) (finite or infinite), the contact process on G with infection rate λ is
the continuous-time Markov chain on the state space {0,1}V , where 0 (resp., 1) corresponds
to the healthy (resp., infected) state. If the initial state is 1A, that is, the vertices in A ⊂ V are
infected, we denote the process by

(Xt) ∼ CPλ(G;1A).

We will frequently use the notation 0 for the all-healthy state 0 = 1∅ and write 1v = 1{v} if
the state has a single infected vertex v. The transition rule of the process can be described as
follows:

• Xt becomes Xt − 1v with rate 1 for each v such that Xt(v) = 1.
• Xt becomes Xt + 1u with rate λNt(u) for each u with Xt(u) = 0, where Nt(u) is the

number of neighbors v of u with Xt(v) = 1.

We sometimes write CPλ(G) when the initial condition is unnecessary. For convenience, we
usually denote the state space by {0,1}G.
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FIG. 1. A realization of the contact process on the interval V = {1, . . . ,5} with initial condition X0 = 1V . The
blue lines describe the spread of infection. We see that Xs = 1{2,3}.

2.1. Graphical representation of contact processes. We briefly discuss a coupling
method of the contact processes using a graphical representation based on Chapter 3, Sec-
tion 6 of [18]. The idea is to record the infections and recoveries in CPλ(G;1A) on the
space-time domain G ×R+. Define i.i.d. Poisson processes {Nv(t)}v∈V with rate 1 and i.i.d.
Poisson processes {N 
uv(t)} 
uv∈−→

E
with rate λ, where

−→
E = { 
uv, 
vu : (uv) ∈ E} is the set of

directed edges. Further, we let {Nv(t)}v∈V and {N 
uv(t)} 
uv∈−→
E

to be mutually independent.
Then, the graphical representation is defined as follows:

1. Initially, we have the empty domain V ×R+.
2. For each v ∈ V , mark × at the point (v, t) at each event time t of Nv(·).
3. For each 
uv ∈ −→

E , add an arrow from (u, t) to (v, t) at each event time t of N 
uv(·).
This gives a geometric picture of CPλ(G;1A), and further provides a coupling of the pro-
cesses over all possible initial states. Figure 1 tells us how to interpret the infections at time
t based on this graphical representation. We point out two lemmas which are easy conse-
quences of the above construction. For proofs, see, for example, [18].

LEMMA 2.1. Suppose that we have the aforementioned coupling among the contact pro-
cesses on a graph G. Let Tv and TG be the first time when CPλ(G;1v) and CPλ(G;1G) reach
the all-healthy state 0, respectively. Then, we have TG = max{Tv : v ∈ G}.

LEMMA 2.2. For a given graph G = (V ,E) and any A ⊂ V , let (Xt) ∼ CPλ(G;1A).
Consider any (random) subset I of R+, and define (X′

t ) to be the coupled process of (Xt) that
has the same initial state, infections and recoveries, except that the recoveries at a fixed vertex
v are ignored at times t ∈ I . Then, for any t ≥ 0, we have Xt ≤ X′

t , that is, Xt(v) ≤ X′
t (v)

for all v.

2.2. Random graphs. Let μ be a probability distribution on N and n be any integer. The
random graph G(n,μ) with degree distribution μ is defined by the following procedure:

• Let d1, . . . , dn be n i.i.d. samples from μ conditioned on {∑n
i=1 di is even}.

• Sample G by taking a simple graph on n vertices with degrees {di}ni=1 uniformly at
random among all possible choices.

Further, we consider a variant of G(n,μ) which is constructed as follows:

• Sample d1, . . . , dn as above. Here, di denotes the number of half-edges attached to ver-
tex i.

• Pair all the half-edges uniformly at random.
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The resulting graph G is called the configuration model which is denoted by Gcf(n,μ). The
difference here is that G is not necessarily a simple graph. However, if the second moment
of μ is finite, we have the following contiguity between the two models. For details, see, for
example, [30], Chapter 7.

LEMMA 2.3 ([13, 30]). Suppose that ED∼μD2 < ∞. Then, uniformly in n, we have

PG∼Gcf(n,μ)(G is simple) ∈ (0,1).

In particular, for any subset An of graphs with n vertices,

PG∼Gcf(n,μ)(G ∈ An) → 0 implies PG∼G(n,μ)(G ∈ An) → 0.

Throughout the paper we study the configuration model Gcf(n,μ) instead of G(n,μ), under
the assumption ED∼μD2 < ∞. Further, it is well known that G ∼ Gcf(n,μ) (and hence,
G ∼ G(n,μ)) whp contains the unique connected component of size linear in n, if and only
if ED∼μD(D − 2) > 0 (for details, see [21]). Hence, we always assume ED∼μD(D − 2) > 0
which is the most interesting case for us. Otherwise, the graph decomposes into many small
components, and the contact process would not exhibit e�(n)-survival time for any λ > 0.

2.3. Local weak convergence. Given a sequence of random graphs Gn, let N(v, r) be an
induced subgraph of Gn consisting of vertices of distance at most r from v. Let Pn be the
distribution of the neighborhood N(v, r) where v is a uniformly chosen vertex of Gn. We say
that a random rooted tree T is the local weak limit of Gn if for any finite r and any rooted
tree T of depth at most r ,

lim
n→∞Pn

(
N(v, r) = T

)= P(Tr = T ),

where Tr is the subtree of the first r generations of T .
We shall use the following known convergence of G(n,μ) to its corresponding Galton–

Watson tree. Define the size-biased distribution μ′ to be

μ′(k − 1) = kμ(k)∑∞
i=1 iμ(i)

, k = 1,2, . . .

Note that if μ = Pois(d), then μ′ = μ. Let T (μ) ∼ GW(μ,μ′) be the size-biased Galton–
Watson tree in which the number of children of the root has distribution μ and the number of
children of an ith generation vertex (i ≥ 1) has distribution μ′. We also stress that the Galton–
Watson tree is supercritical if and only if ED′∼μ′D′ > 1, equivalent to ED∼μD(D − 2) > 0,
which we saw above.

LEMMA 2.4 ([7], Section 2.1). Assume that μ has finite mean. Then, the size-biased
Galton–Watson tree T (μ) is the local weak limit of G(n,μ). The Galton–Watson tree with
degree distribution Pois(d) is the local weak limit of the Erdős–Rényi random graph Gn,d/n.

3. Extinction in Galton–Watson trees. Let ξ be a random variable on N having an
exponential tail, namely, E exp(cξ) = M < ∞ for some constants c,M > 0. Throughout this
section we assume Eξ > 1, which makes T ∼ GW(ξ), the Galton–Watson tree with offspring
distribution ξ , survive forever with positive probability. We also denote the depth-L Galton–
Watson tree by TL ∼ GW(ξ)L, and its root denoted by ρ.

The goal of this section is to establish Theorem 1. To this end, we prove the following in
the next two sections:
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• We first show that, for small enough λ, the expected survival time of CPλ(TL;1ρ) is
bounded by a constant uniform in L.

• Then, we prove that, for small enough λ, the probability that the infection in
CPλ(TL;1ρ) goes deeper than h decays exponentially in h.

At the end we will combine the two to see that the death–survival threshold λ1 of the in-
finite Galton–Watson tree is strictly positive. Moreover, both properties will be essential in
Section 4.

3.1. Expected survival time in finite trees. In this section we prove the following theorem.

THEOREM 3.1. Let L be an arbitrary integer and ξ,TL be defined as above. Let RL

be the first time when CPλ(TL;1ρ) reaches state 0. Then, there exist constants C,λ0 > 0,
depending only on ξ , such that for any λ ≤ λ0 and L, we have ERL ≤ C.

Let D ∼ ξ denote the degree of the root ρ and v1, . . . , vD be the children of ρ. Further,
let Tvi

denote the subtree of T rooted at vi . To establish Theorem 3.1, our attempt is to study
the effect of joining the subtrees Tvi

together at ρ, and hence expressing RL in terms of
RL−1. The main difficulty of this approach comes from the fact that the contact process on
TL does not behave independently on each subtree Tvi

. To overcome this obstacle, we study
the contact process in a slightly different setting, that is, by adding a parent ρ+ above the root
ρ which is infected permanently.

DEFINITION 3.2 (Root-added contact process). Let T be a finite tree rooted at ρ. Let T +
be the tree that has a parent vertex ρ+ of ρ which is connected only with ρ. The root-added
contact process on T is the continuous-time Markov chain on the state space {0,1}T , defined
as the contact process on T + with ρ+ set to be infected permanently (hence, we exclude ρ+
from the state space). That is, ρ+ is infected initially, and it does not have a recovery clock
attached to itself. Let CPλ

ρ+(T +;x0) denote the root-added contact process on T with initial

condition x0 ∈ {0,1}T .

By adding a permanently infected parent, we can take advantage of independence between
different subtrees as well as the stationary distribution of the process, as briefly discussed in
Section 1.2. In the following lemma we formally introduce the “modified process” explained
in Section 1.2 and construct a quantitative recursion argument in terms of the tree depth.

LEMMA 3.3. Let L be an arbitrary integer and ξ,TL be defined as above. Define SL to
be the first time when CPλ

ρ+(T +
L ;1ρ) reaches state 0. Then, there exists a constant λ0 > 0,

depending only on ξ , such that for any λ ≤ λ0 and L, ESL ≤ e.

PROOF. We build an inductive argument in terms of L, by considering the modified
contact process (X̃t ) ∼ C̃P

λ
ρ+;ρ(T +

L ;1ρ) defined as follows:

• (X̃t ) is coupled with (Xt) ∼ CPλ
ρ+(T +

L ;1ρ) in the sense that they share the same loca-

tions of recovery and infection clocks. In particular, ρ+ is permanently infected in (X̃t ).
• In (X̃t ), the recovery at ρ at time s is valid if and only if X̃s = 1ρ . Otherwise, we ignore

the recovery at ρ. In other words, when there exists an infected vertex other than ρ and ρ+,
the recovery at ρ is neglected.

Let S̃L be the first time when X̃t reaches the all-healthy state 0. Then, Lemma 2.2 tells us that
SL ≤ S̃L. Assume that we started running (X̃t ) from t = 0. Then, there are two possibilities
for the transition to the second state from the initial state 1ρ :
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A. ρ is healed.
B. ρ infects one of its children, say, vi .

When A happens, then S̃L is just the time elapsed until encountering A. If we let D denote
the number of children of ρ, then probability of the event A is 1

1+λD
and also

E[S̃L|A] = 1

1 + λD
.

On the other hand, when B happens, then the recoveries at ρ are neglected until all of its
descendants are healthy. Therefore, the infection and recovery occurring inside the subtrees
Tvi

∪ {ρ} become independent of each other until all of them become completely healthy at
the same time. Hence, after the occurrence of B, where we have 1{ρ,vi} as its new initial state,
(X̃t ) can be viewed as the product chain (X⊗

t ) of root-added contact processes, defined as
follows:

(
X⊗

t

)∼ CP⊗
ρ (TL;1vi

) :=
(

D⊗
j=1
j =i

CPλ
ρ

(
T +

vj
;0
))⊗ CPλ

ρ

(
T +

vi
;1vi

)
.

(Here, for each Tvj
, we view ρ as its permanently infected parent of the root vi .) Note that

this perspective is valid until X̃t returns back to 1ρ .
Let S̃⊗

i denote the time that the above product chain on
⋃D

j=1 Tvj
started from the state 1vi

reaches the all-healthy state 0. At time s = S̃⊗
i , X̃s is again in the state 1ρ ; hence, it again

meets with either A or B in the next step. Note that in this situation the expected waiting
time to encounter either event is 1

1+λD
. Also, define S̃⊗ to be the average of S̃⊗

i over all i,
recalling that when event B occurs, each child vi is infected with equal probability. Then, if
we continue this procedure until X̃t reaches 0, we get

E[S̃L | TL] =
∞∑

k=0

(
λD

1 + λD

)k 1

1 + λD

×
[
(k + 1)

1

1 + λD
+ kE

[
S̃⊗ | {Tvi

: i ∈ [D]}]].
(3.1)

Simplifying the sum then gives

E[S̃L | TL] = 1 + λDE
[
S̃⊗ | {Tvi

: i ∈ [D]}]
which implies

(3.2) E[S̃L | D] = 1 + λDE
[
S̃⊗ | D]

.

The next step of the proof is to estimate E[S̃⊗|D] by relating it to the stationary distributions
of the root-added contact processes. Let π(D) be the stationary distribution of the product
chain CP⊗

ρ (TL) (when defining π(D), note that the initial state of the process is irrelevant).
We also let πi be the stationary distribution of CPλ

ρ(T +
i ). Then, we have

π(D) =
D⊗

i=1

πi.

For any state x on TL \ {ρ}, π(D)(x) is proportional to the expected time that the chain
(X⊗

t ) ∼ CP⊗
ρ (TL) stays at state x. Moreover, the expected time for the chain to stay at 0 is
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(λD)−1, and, after escaping from 0, it spends time E[S̃⊗|TL] in expectation before returning
back to 0. Therefore,

(3.3) π(D)(0) = (λD)−1

(λD)−1 +E[S̃⊗ | TL] = 1

1 + λDE[S̃⊗ | TL] .
Similarly, we have

(3.4) πi(0) = 1

1 + λE[SL−1 | Tvi
] ,

where SL−1 is the first time when (Xi
t ) ∼ CPλ

ρ(T +
vi

;1vi
) reaches state 0. Here, note that

SL−1 matches with the definition from the statement of this lemma since Tvi
∼ GW(ξ)L−1.

Therefore, we obtain that

(3.5) 1 + λDE
[
S̃⊗ | TL

]=
D∏

i=1

(
1 + λE[SL−1 | Tvi

]).
Since {Tvi

}i≥1 are i.i.d. GW(ξ)L−1 for all i, integrating (3.5) over the randomness of {Tvi
:

i ∈ [D]} tells us that

1 + λDE
[
S̃⊗ | D]= (

1 + λE[SL−1])D ≤ exp
{(

λE[SL−1])D}
.

Combining this with (3.2), we get

(3.6) E[S̃L | D] ≤ exp
{(

λE[SL−1])D}
.

In the last step of the proof, we complete the inductive argument using the fact that D ∼ ξ

has an exponential tail. Let us set c,M > 0 to be the constants satisfying E exp(cD) = M .
When L = 0, we trivially have that ES0 = 1. Define K and λ0 as

K = e · max{logM,1}, λ0 = c

K
.

Suppose that E[SL−1] ≤ e. Then, for any λ ≤ λ0, we have

ESL ≤ ES̃L ≤ ED∼ξ

[
exp

(
λE[SL−1]D)]= ED∼ξ

[
exp

(
λE[SL−1]

c
· cD

)]
≤ exp

{
logM

λE[SL−1]
c

}
≤ e,

where we used Jensen’s inequality to deduce the first inequality in the second line. Finally,
an elementary induction argument implies the desired result. �

PROOF OF THEOREM 3.1. For RL,SL defined as in the statement of Theorem 3.1 and
Lemma 3.3, respectively, we have ERL ≤ ESL due to Lemma 2.2. Therefore, setting λ0 as in
the proof of Lemma 3.3 and C = e, we obtain ERL ≤ C for all λ ≤ λ0 and L. �

3.2. Exponential decay of the infection depth. In this section we show that the maximal
depth that the infection can reach before dying out decays exponentially.

For any integer L, let TL ∼ GW(ξ)L and T +
L be the graph obtained by adding a new parent

root ρ+ above ρ in TL as before. For each state x ∈ {0,1}TL , define the depth of x in T +
L to

be

r(x) = r
(
x;T +

L

)= max
{
d
(
ρ+, v

) : x(v) = 1
}
.

For x = 0, we set r(0) = 0. Consider the root-added process (Xt) ∼ CPλ
ρ+(T +

L ;1ρ) (Def-
inition 3.2), and let SL be the first time when the process reaches the state 0. Let H =
max{r(Xt) : t ∈ [0, SL]} be the maximal depth that the process reaches during an excursion
from 0. Our goal in this section is to establish the following theorem and conclude the proof
of Theorem 1.
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THEOREM 3.4. Let L > 0 be any integer and let TL, SL and H be as above. There exist
constants K,λ0 > 0, depending only on ξ , such that for all λ ≤ λ0, h > 0 and m > 0, we
have

P(H > h | TL) ≤ 2m(Kλ)h

with probability at least 1 − m−1 over the choice of TL.

In order to control the deepest depth of infection, we introduce the delayed contact process.

DEFINITION 3.5 (Delayed contact process). Let S+ be a graph rooted at ρ+ and S =
S+ \ {ρ+}. For any two states x, y ∈ {0,1}S , let Qxy be the rate of transition from x to y in
the contact process CPλ

ρ+(S+). For a fixed constant θ ∈ (0,1), the delayed contact process,

denoted by DPλ,θ
ρ+ (S+;x0), is the continuous-time Markov chain on {0,1}S with initial state

x0 and transition rate

Q(θ)
xy = θr(x;S+)Qxy = θr(x)Qxy.

According to the definition, in the delayed contact process we spend exponentially longer
time in the states with deeper depths. Let πS, νθ

S denote the stationary distributions of
CPλ

ρ+(S+) and DPλ,θ
ρ+ (S+), respectively. Then,

(3.7) νθ
S(x) = θ−r(x)πS(x)∑

y θ−r(y)πS(y)
,

where the summation is over all possible states y ∈ {0,1}S .
Suppose we have a lower bound on νθ

S(0). Then, this implies an upper bound on πS(x),
by

πS(x) = θr(x)νθ
S(x)∑

y θr(y)νθ
S(y)

≤ θr(x)νθ
S(x)

νθ
S(0)

,

which intuitively infers that it is (exponentially) unlikely to see states of having very deep in-
fections until the process comes back to 0. Based on this intuition, we establish the following
proposition.

PROPOSITION 3.6. Let L > 0 be any integer and TL ∼ GW(ξ)L. Set νθ
TL

to denote

the stationary distribution of DPλ,θ
ρ+ (T +

L ) on the space {0,1}TL . Then, there exist constants
K,λ0 > 0, depending only on ξ , such that for all λ ≤ λ0 and L,

E
[
νθ
TL

(0)−1]≤ 2,

where θ is given by θ = Kλ.

PROOF. Let Sθ
L be the first time when (Xt) ∼ DPλ,θ

ρ+ (T +
L ;1ρ) reaches state 0. We first

derive an analog of (3.2) based on the methods from Lemma 3.3. To this end, define (X̃t ) ∼
D̃P

λ,θ
ρ+;ρ(T +

L ;1ρ) to be the modification of (Xt) in such a way that:

1. (X̃t ) shares the same infection and recovery clocks as (Xt).
2. In (X̃t ), healing attempt at ρ is ignored if there exists an infected vertex other than ρ+

and ρ at that moment.
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Let D ∼ ξ denote the number of children of ρ, and let {Tui
: i = 1, . . . ,D} be the subtrees

from the children u1, . . . , uD of ρ. Then, when there is an infected vertex other than ρ+ and
ρ in X̃t , it can be regarded as the slowed-down version of process DPλ,θ

ρ (TL), where it spends
longer time by the factor of θ−1 at each state, since the tree TL is one depth lower than T +

L .
Note that in DPλ,θ

ρ (TL), ρ is the permanently infected parent that has D children.
Let S̃θ

L be the first time when X̃t becomes 0. Also, let S̃θ
i be the first time when

DPλ,θ
ρ (TL;1ui

) is 0, and set S̃θ to be the average of S̃θ
i over i = 1, . . . ,D. Then, we can

apply the same argument as Lemma 3.3 to this setting and deduce that

E
[
S̃θ

L | TL

]=
∞∑

k=0

(
λD

1 + λD

)k 1

1 + λD

[
k + 1

θ(1 + λD)
+ k

θ
E
[
S̃θ | TL

]]

= 1

θ

(
1 + λDE

[
S̃θ | TL

])
.

(3.8)

Now we relate these equations with the stationary distributions. Let ν̃θ
TL

, νθ
Tui

be the station-

ary distributions of DPλ,θ
ρ (TL), DPλ,θ

ρ (T +
ui

), respectively. Further, define ν⊗
TL

=⊗D
i=1 νθ

Tui
. In

contrast to what we had in Lemma 3.3, we do not necessarily have ν̃θ
TL

= ν⊗
TL

.

For each state x ∈ �L := {0,1}
⋃D

i=1 Tui of DPλ,θ
ρ (TL), we decompose it into x = (xi)

D
i=1,

where xi ∈ �i := {0,1}Tui . Setting πTui
to be the stationary distribution of CPλ

ρ(T +
ui

) and

π⊗
TL

:=⊗D
i=1 πTui

, the equation (3.7) implies that

ν̃θ
TL

(x) = θ−r(x;TL)π⊗
TL

(x)∑
y∈�L

θ−r(y;TL)π⊗
TL

(y)
= θ−r(x;TL)∏D

i=1 πTui
(xi)∑

y∈�L
θ−r(y;TL)

∏D
i=1 πTui

(yi)
;

ν⊗
TL

(x) =
D∏

i=1

[ θ−r(xi;Tui
)πTui

(xi)∑
yi∈�i

θ−r(yi;Tui
)πTui

(yi )

]

= θ−∑D
i=1 r(xi;Tui

)∏D
i=1 πTui

(xi)∑
y∈�L

θ−∑D
i=1 r(yi;Tui

)∏D
i=1 πTui

(yi)
.

(3.9)

Notice that

r(x;TL) = max
{
r(xi;Tui

) : i = 1, . . . ,D
}≤

D∑
i=1

r(xi;Tui
).

Therefore, deeper states tend to have larger weight in ν⊗
TL

than in ν̃θ
TL

which implies that

ν⊗
TL

(0) ≤ ν̃θ
TL

(0).

Moreover, we have the following equations as an analog of (3.3), (3.4):

(3.10) ν̃θ
TL

(0) = 1

1 + λDE[S̃θ | TL] , ν⊗
TL

(0) =
D∏

i=1

[
1

1 + λE[Sθ
L−1 | Tui

]
]
.

We combine our discussion with (3.8) to deduce that

E
[
Sθ

L | TL

]≤ E
[
S̃θ

L | TL

]≤ 1

θ

D∏
i=1

(
1 + λE

[
Sθ

L−1 | Tui

])
,
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and hence

(3.11) E
[
Sθ

L

]≤ 1

θ
ED∼ξ

[
exp

(
λE

[
Sθ

L−1
]
D
)]

.

The final step is to adjust the constants and to deduce the conclusion. Let c,M > 0 be
constants satisfying ED∼ξ exp(cD) = M . We set K,λ0 > 0 and θ as

K = max
{

2 logM

c log 2
,2
}
, λ0 = 1

2K
, θ = Kλ,

where λ ∈ (0, λ0] is arbitrary. For L = 0, we have ESθ
0 = θ−1. Suppose that ESθ

L−1 ≤ 2/θ .
Then, the right-hand side of (3.11) can be bounded by

1

θ
ED∼ξ

[
exp

(
λE

[
Sθ

L−1
]
D
)]= 1

θ
ED∼ξ

[
exp

(
λE[Sθ

L−1]
c

· cD
)]

≤ 1

θ
exp

{
logM

(
λ

c
E
[
Sθ

L−1
])}≤ 1

θ
M

2
cK ≤ 2

θ
,

where the first inequality is due to Jensen’s inequality. Therefore, for K,λ0 as above, we have
ESθ

L ≤ 2/θ for all λ ≤ λ0 with θ = Kλ. Finally, note that νθ
TL

(0) is given by

νθ
TL

(0) = 1

1 + λE[Sθ
L | TL] .

Thus, we obtain the desired conclusion by taking expectation over its reciprocal and plugging
in the estimate ESθ

L ≤ 2/θ . �

PROOF OF THEOREM 3.4. Let L > 0 be an arbitrary integer, and let TL ∼ GW(ξ)L. Also,
let K,λ0 be the constants given by Lemma 3.6, and let πTL

, νθ
TL

be the stationary distributions

of CPλ
ρ+(T +

L ) and DPλ,θ
ρ+ (T +

L ), respectively, with θ = Kλ.

Set � = {0,1}TL , and define

A := {
x ∈ � : r(x;T +

L

)≥ h
}
.

We first observe that

πTL
(A)

πTL
(0)

=
∑

x∈A θr(x;T +
L )ν̃θ

TL
(x)

ν̃θ
TL

(0)
≤ ν̃θ

TL
(A)

ν̃θ
TL

(0)
θh.

Proposition 3.6 and Markov’s inequality imply that with probability 1 − m−1 over the choice
of TL, we have ν̃θ

TL
(0)−1 ≤ 2m, and hence for such choices

(3.12)
πTL

(A)

πTL
(0)

≤ 2m(Kλ)h.

Moreover, if (Xt) ∼ CPλ
ρ+(T +

L ) hits A, then the expected time needed for Xt to escape from
A is at least 1. Indeed, it takes a unit expected time just to heal one infected site of depth at
least h. In other words, if we set SL,H as in the statement and define γL(h) := |{t ∈ [0, SL] :
Xt ∈ A}| where | · | denotes the Lebesgue measure, then

E
[
γL(h) | H ≥ h,TL

]≥ 1.

Combining this with (3.12) tells us that

P(H ≥ h | TL) ≤ E
[
γL(h) | H ≥ h,TL

]
P(H ≥ h | TL) ≤ E

[
γL(h) | TL

]
≤ πTL

(A)

πTL
(0)

≤ 2m(Kλ)h,

with probability 1 − m−1 over the choice of TL. �
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We conclude this section by completing the proof of Theorem 1.

PROOF OF THEOREM 1. Let K,λ0 be given as Theorem 3.4, and set λ ≤ λ0 to be a
constant such that Kλ < 1. Let δ > 0 be any given small number, and set h to be the constant

satisfying (Kλ)h = δ2

8 . Further, let T ∼ GW(ξ) and ρ be its root.
Define E(h) to be the event that the infection inside CPλ(T ;1ρ) does not go deeper than

depth h until dying out. Then, Theorem 3.4 implies that

P
(
E(h)

)≥ 1 − δ

which can be seen by setting m = 2
δ
.

Let Th be the truncated tree of T at depth h, and couple the processes CPλ(T ;1ρ)

and CPλ(Th;1ρ) by identifying the recoveries and infections inside Th. Then, on E(h),
CPλ(T ;1ρ) can be regarded as CPλ(Th;1ρ). Let R and Rh be the times when CPλ(T ;1ρ)

and CPλ(Th;1ρ) reaches 0. Then, Theorem 3.1 tells us that

E
[
R | E(h)

]= E
[
Rh | E(h)

]≤ ERh

P(E(h))
< ∞.

Thus, for (Xt) ∼ CPλ(T ;1ρ), we have

P(Xt = 0 for all t ≥ 0) ≤ δ.

Since this holds true for all δ > 0, we conclude that λ1(GW(ξ)) ≥ λ > 0. �

4. Short survival in random graphs. We turn our attention to the contact process on
random graphs G ∼ G(n,μ). Throughout the rest of the paper, μ is a probability distribution
on N that satisfies for D ∼ μ,

σ 2 := ED2 < ∞ and b := ED(D − 1)

ED
> 1,

as discussed in Section 2.2. In this section, in particular, we assume that μ has an exponential
tail, that is, E exp(cD) < ∞ for some c > 0. Our goal is to establish Theorem 3(1) by proving
the following.

THEOREM 4.1. Let μ be as above, and G ∼ G(n,μ). For a vertex v ∈ G, let Tv de-
note the time when CPλ(G;1v) reaches the state 0. Then, there exist events E1, E2(G) and
constants B,λ0 > 0, depending on μ, such that the following hold:

• E1 is an event over the random graphs such that P(G ∈ E1) = 1 − o(1).
• E2(G) is an event over the contact process CPλ(G) such that

P(E2 | G ∈ E1) = 1 − o(1).

• For all λ ∈ (0, λ0), we have

1

n

∑
v∈G

E[Tv | G ∈ E] ≤ B

for all large enough n.

Then, our main theorem follows simply by applying Markov’s inequality.
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PROOF OF THEOREM 3(1). Let T be the time when CPλ(G;1G) reaches the state 0. On
the event E1 and E2 = E2(G) given in Theorem 4.1, for any constant C > 0 we have

P(T > Cn | E1,E2) = P

(
max
v∈G

Tv > Cn
∣∣ E1,E2

)
≤ ∑

v∈G

P(Tv > Cn | E1,E2) ≤ B

C
,

where the first equality is due to Lemma 2.1, and the second is from Markov’s inequality.
Since the events E1 and E2 given G ∈ E1 both hold whp, we obtain the conclusion. �

In the rest of the section, we focus on proving Theorem 4.1. Our proof relies much on
the fact that the local neighborhood N(v,L) := {u ∈ G : dist(u, v) ≤ L} of a fixed vertex v

roughly looks like a Galton–Watson branching process. Hence, the results from Section 3
will play a huge role in this section as well.

However, since G(n,μ) contains cycles with nontrivial probability, we introduce a variant
of Galton–Watson trees that can cover the effect of cycles in G(n,μ), and develop a delicate
coupling argument with the local neighborhood N(v,L). This new branching process will
stochastically dominate N(v,L) in terms of isomorphic embeddings of graphs, and hence
the contact process will survive for a longer time. The result will then follow by showing
Theorem 4.1 for this new graph.

4.1. Coupling the local neighborhood. Let G ∼ G(n,μ), where μ has an exponential
tail, and let μ′ denote the size-biased distribution of μ. As discussed in Section 2.2, it
is well known that the local neighborhood N(v,L) around v ∈ G behaves roughly as the
Galton–Watson process GW(μ,μ′)L. However, the standard coupling between the two ob-
jects produces an error at least �(n−1). Therefore, we consider augmented versions of μ,μ′
to stochastically dominate N(v,L) by a larger geometry.

DEFINITION 4.2 (Augmented distribution). Let μ be a probability distribution on N with
an exponential tail. Let k0 = max{k : ∑j≥k

√
pj ≥ 1/2}, and kmax := max{k : pk > 0}, with

kmax = +∞ if the maximum does not exist. When k0 < kmax, we define the augmented dis-
tribution μ� of μ by

μ�(j) = 1

Z

{
pj/2 if j ≤ k0;√

pj if j > k0,

where Z =∑
j≤k0

pj/2 +∑
j>k0

√
pj . If k0 = kmax, then we let

μ�(j) = 1

Z

{
pj/2 if j < k0;√

pj if j = k0,

where Z =∑
j<k0

pj/2 + √
pk0 .

We observe some of the basic properties of augmented distributions in the following
lemma. The proof is based on elementary applications of estimating large deviation events
and is postponed to Appendix (Section A.1) since it is a bit technical and less related with the
main theme of the work.

LEMMA 4.3. Let μ be a probability distribution on N:

(1) If μ has an exponential tail, then so does μ�.
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(2) Let D1, . . . ,Dn be n independent samples of μ. For a subset � ⊂ [n], let {p�
k }k denote

the empirical distribution of {Di}i∈[n]\�. With high probability over the choice of Di ’s, {p�
k }k

is stochastically dominated by μ�, for any � ∈ [n] with |�| ≤ n/3.

REMARK 4.4. The i.i.d Di in the second condition of Lemma 4.3 can be viewed as a
degree sequence of G ∼ G(n,μ). Consider the exploration procedure starting from a single
fixed vertex v which, at each step, reveals a vertex adjacent to the current explored neigh-
borhood and the half-edges incident to the new vertex. Then, the second statement says that,
when the exploration process revealed N ≤ n/3 vertices inside the local neighborhood of v,
the empirical degree distribution of the n−N unexplored vertices is stochastically dominated
by μ� with high probability.

Using the above properties of augmented distributions, we develop a coupling argument
to dominate N(v,L) ⊂ G by a Galton–Watson type branching process. To this end, we first
take account of the effect of emerging cycles in N(v,L).

For a constant γ > 0, let A(γ ) be the event that N(v, γ logn) in G contains at most
one cycle for all v ∈ G. The following lemma shows that we typically have A(γ ) for some
constant γ .

LEMMA 4.5. There exists γ = γ (μ) > 0 such that for G ∼ G(n,μ), P(G ∈ A(γ )) =
1 − o(1).

This is a well-known property that holds true in general for various types of random graphs.
Our proof of this lemma will be very similar to that of Lemma 2.1 in [19]. However, it is more
technical, due to generality of the model, and hence we postpone the proof to Section A.2.

Fix a constant γ1 > 0 satisfying the condition in Lemma 4.5, and let A = A(γ1) for con-
venience. In the following we define two Galton–Watson type branching processes which are
used to stochastically dominate N(v, γ1 logn).

DEFINITION 4.6 (Galton–Watson-on-cycle process). Let s,L be positive integers with
s ≥ 2, and let ξ be a probability distribution on N. We define the Galton–Watson-on-cycle
process (in short, GWC-process), denoted by GWC(ξ ; s)L, as follows:

1. Let C be a cycle of length s, and distinguish one vertex as the root ρ.
2. On C we add (s − 1) independent GW(ξ)L trees, each rooted at a vertex of C except

for ρ.

The vertex ρ is called the root of GWC(ξ ; s)L.

DEFINITION 4.7 (Edge-added Galton–Watson process). Let l, s,L be positive integers
with s ≥ 2 and l ≤ L, and let ξ be a probability distribution on N. We define EGW(ξ ; l, s)L,
the edge-added Galton–Watson process (in short, EGW-process), as follows:

1. Generate a GW(ξ)L tree, conditioned on survival until depth l.
2. At each vertex v at depth l, add an independent GWC(ξ ; s)L−l process rooted at v.

Here, we preserve the existing subtrees from v.

Let ξ ′ be another probability measure on N. Then, EGW(ξ, ξ ′; l, s)L denotes the EGW-
process where the root has degree distribution ξ , and all the descendants have ξ ′. Here, we
also add GWC(ξ ′; s)L−l in the second step of the definition.
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We now develop an argument showing that the local neighborhood N(v,L) is dominated
by a combined law of EGW-processes. In what follows, for two probability measures ν1 and
ν2 on graphs, we say ν1 stochastically dominates ν2 and write ν1 ≥st ν2 if there exists a
coupling between S1 ∼ ν1 and S2 ∼ ν2 such that S2 ⊂ S1 in terms of isomorphic embeddings
of graphs, that is, there exists an injective graph homomorphism from S2 into S1.

Fix a vertex v ∈ G, and consider its local neighborhood N(v,Ln) where Ln = γ1 logn

with γ1 as in Lemma 4.5. For each l, s with s ≥ 2, we define the event Bl,s(v) to be the
subevent of A such that, in addition to A, N(v,Ln) forms a cycle of length s at distance l

from v.
For the given degree distribution μ, let μ′ be its size-biased distribution, and μ̃ := μ′[1,∞)

denote the distribution μ′ conditioned on being in the interval [1,∞). Let μ� and μ̃� be
the augmented distributions of μ and μ̃, respectively. Further, let η, ηl,s and η0 denote the
probability measures on rooted graphs describing the laws of N(v,Ln), EGW(μ�, μ̃�; l, s)Ln

and GW(μ�, μ̃�)Ln , respectively.

LEMMA 4.8. Under the above setting and for a fixed vertex v ∈ G, we have the following
stochastic domination:

η1A ≤st
∑

l,s:s≥2

bs,lηs,l + b0η0,

where bl,s = P(Bl,s(v)), b0 = 1 −∑
l,s bs,l .

PROOF. We study N(v,Ln), from an exploration procedure point of view, in terms of
the breadth-first search algorithm. Initially, before exploring anything we have n vertices
with each of them having i.i.d. μ half-edges. The term “explore” means that we match a pair
of half-edges and form an edge between their endpoint vertices. For convenience, we initially
impose an arbitrary ordering on all half-edges before exploring anything. We consider the
following exploration procedure:

• We start from the single vertex v and the half-edges adjacent to it.
• Suppose that we explored up to depth-t neighborhood of v. Let ∂N(v, t) denote the

unmatched half-edges on the boundary of N(v, t), and we explore the half-edges in ∂N(v, t)

one by one, respecting the aforementioned ordering. During the (t, i)th exploration step for
1 ≤ i ≤ |∂N(v, t)|, the ith half-edge in ∂N(v, t) is paired with a uniformly random unex-
plored half-edge.

Let N(v, t; i) denote the explored neighborhood until (t, i)th exploration step. Also, let
Ht = |∂N(v, t)|. During the (t, i)th exploration step, the ith half-edge of ∂N(v, t) seeks for
its uniformly random pair from the unexplored half-edges. Therefore, if we have yet explored
fewer than n

3 vertices, then, after pairing a half-edge, the number of newly added half-edges
to N(v, t; i) from N(v, t; i − 1) is stochastically dominated by μ̃�, due to Lemma 4.3. This
implies that, conditioned on the event that N(v, t; i) does not contain any cycles, N(v, t; i) is
stochastically dominated by Tt,i , where Tt,i is generated by adding new offsprings according
to μ̃� to i vertices of depth t to the Galton–Watson tree Tt ∼ GW(μ�, μ̃�)t .

Define (T , I ) to be the index of the exploration step when a cycle is formed. In other
words, the I th half-edge in ∂N(v,T ) is either paired to a j th half-edge in ∂N(v,T ) for some
j > I or to one of the newly explored half-edges during the (T , k)th exploration step for
some k < I . Note that on the event A, either the unique (T , I ) exists or it does not exist up
to exploring N(v,Ln).

Suppose that there exists unique valid (T , I ). Let C be the cycle formed at this step and
v(C) be the vertex in C that is closest to v. Up to the (T , I − 1)th exploration step, we
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can stochastically dominate N(v,T ; I − 1) by TT ,I−1 as mentioned above. Let w(C) be the
vertex in TT ,I−1 corresponding to v(C) via an isomorphic embedding of N(v,T ; I − 1) into
TT ,I−1. At (T , I )th exploration step, we add S ∼ GWC(μ̃�; |C|)Ln at w(C). Note that this
GWC-process S can be coupled with C and its descendants in N(v,Ln) in the sense that each
Galton–Watson subtree hanging to the cycle of S stochastically dominates the corresponding
subtree in N(v,Ln) hanging to C.

Let l denote the distance from v to v(C). Completing the rest of the exploration as dis-
cussed above, N(v,Ln) is stochastically dominated by EGW(μ�, μ̃�; l, |C|)Ln , given that
there exists the unique valid (T , I ). This implies that on the event A, N(v,Ln) is stochasti-
cally dominated by a combined law of EGW-processes, and, in this combination, the prob-
ability mass of appearance of EGW(μ�, μ̃�; l, s)Ln should be bl,s = P(Bl,s). This concludes
the proof of the claimed result. �

4.2. Estimating the survival time. Thanks to Lemma 4.8, we now study the contact pro-
cess on edge-added Galton–Watson processes. On such graphs, we first show that the ex-
pected survival time of the contact process is bounded by a constant, when the infection rate
is small enough, as an analog of Theorem 3.1.

PROPOSITION 4.9. Let l, s,L be any integers such that s ≥ 2 and L ≥ l. Let Rl,s,L

denote the first time when CPλ(S;1ρ) reaches at state 0, where S ∼ EGW(μ�, μ̃�; l, s)L
rooted at ρ. Then, there exist constants C,λ0 > 0, depending only on μ, such that for all
λ ≤ λ0, s, l and L, we have ERl,s,L ≤ C.

REMARK 4.10. Since the coupling given in Lemma 4.8 only works until depth Ln =
γ1 logn, we need to show that the contact process on edge-added Galton–Watson process
does not go deeper than γ1 logn with probability 1 − o(n−1). Note that the o(n−1) error is
needed when applying a union bound over all vertices in order to translate our results to
G ∼ G(n,μ). This will be done in the next section based on Theorem 3.4.

To establish Proposition 4.9, we develop a recursive argument on both s and L to deduce
an analog of Lemma 3.3 for GWC- and EGW-processes. The idea will be similar to that
of Lemma 3.3 which is to utilize the notion of root-added contact process (Definition 3.2).
We first extend the result of Lemma 3.3 to the case of GWC-processes: in the following
lemma we estimate the time that the root-added contact process CPλ

ρ(S) reaches 0, where
S ∼ GWC(μ̃�; s)L (note that the state space is now {0,1}S\{ρ}). Here, we fix the root ρ of
S to be the permanently infected parent. There is a slight difference from the previous root-
added contact processes considered in Lemma 3.3, since now the permanently infected parent
has two children rather than one. We pick a child v of ρ and study CPλ

ρ(S;1v).

LEMMA 4.11. Let s,L be any integers with s ≥ 2, and let S ∼ GWC(μ̃�; s)L be a GWC-
process rooted at ρ, with μ̃� as before. Let v be any neighbor of ρ, and let Ss,L denote the
first time when CPλ

ρ(S;1v) reaches at state 0. Then, there exists a constant λ0 > 0, depending
only on μ, such that for any λ ≤ λ0 and s,L, ESs,L ≤ 2e.

PROOF. Let us first study the case of s ≥ 3. We will develop an inductive argument on
s, similarly as in Lemma 3.3. Let (Xt) ∼ CPλ

ρ(S;1v), and consider the modified version

(X̃t ) ∼ C̃P
λ
ρ;v(S;1v) of (Xt), defined as:

1. (X̃t ) is coupled with (Xt) in the sense that they share the same locations of recoveries
and infections. In particular, ρ is infected in (X̃t ).
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2. In (X̃t ), the recovery at v at time s is valid if and only if X̃s = 1v . Otherwise, we ignore
the recovery at v. In other words, when there exists an infected vertex other than ρ and v, the
recovery at v is neglected.

The modified process C̃P
λ
ρ;v(S;1v) plays the same role as the C̃P-process introduced in the

proof of Lemma 3.3, which we now detail. Let D ∼ μ̃� to satisfy deg(v) = D + 2, and
let u1, . . . , uD be the neighbors of v which are not on the cycle of S . Let Tui

denote the
subtrees branching from ui , which has the law of i.i.d GW(μ̃�)L−1, and regard v ∈ T +

ui
as the

permanently infected parent of ui . Further, call S ′ = S \⋃D
i=1 Tui

, and define CPλ
ρ,v(S ′) to

be the contact process on S ′ in which ρ and v are set to be infected permanently. As we run
the process (X̃t ) from t = 0:

A. The second state of X̃t is 0 with probability 1
1+(D+2)λ

. Here, D + 2 comes from D + 1
possible new infections from v, and one possible infection from ρ to its child other than v.
When this happens, the expected waiting time until the transition to 0 is 1

1+(D+2)λ
.

B. Otherwise, {ρ, v} infects a uniformly random neighbor U before v is healed, and (X̃t )

then can be regarded as a product chain of CPλ
ρ,v(S ′) and {CPλ

v(T +
ui

) : i ∈ [D]} with initial
state 1U , until X̃t returns back to 1v . Denote this product chain by CP⊗

ρ;v(S) (whose state

space is {0,1}S\{ρ,v}). Here, U can be thought of the first infected vertex besides {ρ, v} in
CP⊗

ρ;v(S;0).

Let S̃s,L be the first time that C̃P
λ
ρ;v(S;1v) becomes 0, and let S⊗ denote the first time that

CP⊗
ρ;v(S;1U) reaches all-healthy state except ρ, v. Then, similarly as in Lemma 3.3, the

above reasoning implies that

E[S̃s,L | S] =
∞∑

k=0

(
(D + 2)λ

1 + (D + 2)λ

)k 1

1 + (D + 2)λ

×
[

k + 1

1 + (D + 2)λ
+ kE

[
S⊗ | S]]

= 1 + (D + 2)λE
[
S⊗ | S].

(4.1)

Therefore, we have

(4.2) E[S̃s,L | D] = 1 + (D + 2)λE
[
S⊗ | D]

.

Now, we take account of the stationary distributions of the above processes to obtain the
conclusion. Let π⊗, π ′ and πi be the stationary distributions of CP⊗

ρ;v(S),CPλ
ρ,v(S ′) and

CPλ
v(T +

ui
), respectively. Then, clearly, π⊗ = (

⊗D
i=1 πi) ⊗ π ′. We can relate these objects

with the running times similarly as (3.3), (3.4), by:

π⊗(0) = 1

1 + (D + 2)λE[S⊗ | S] ;

πi(0) = 1

1 + λE[SL−1 | Tui
] ;

π ′(0) = 1

1 + 2λE[Ss−1,L | S ′] ,

(4.3)

where SL−1 denotes the first time when CPλ
v(T +

ui
;1ui

) becomes 0 and Ss−1,L is the time it
takes for CPλ

ρ,v(S ′;0) to return to 0 after the first infection, besides {ρ, v}, occurs. Note that
the existence of the infection other than {ρ, v} in CPλ

ρ,v(S ′;0) is guaranteed by the condition
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s ≥ 3. Also, notice that S ′ can be regarded as S ′′ ∼ GWC(μ̃�; s − 1)L, since the processes
CPλ

ρ,v(S ′;1w) (with w being a neighbor of {ρ, v} in S ′) and CPλ
ρ′(S ′′;1v′) for the root ρ ′ and

one of its neighbor v′ of S ′′ share the same law. This implies that the notation Ss−1,L in (4.3)
matches with the definition of it given in the statement of the lemma.

Therefore, combining (4.2) and (4.3) gives that

(4.4) E[Ss,L | D] ≤ E[S̃s,L | D] ≤ (
1 + 2λE[Ss−1,L])(1 + λE[SL−1])D.

Since we already have a bound for E[SL−1] due to Lemma 3.3, we deduce the desired result
by manipulating (4.4), as in the final step of the proof of Lemma 3.3. Namely, for any λ ≤
min{λ0, (4e)−1} with λ0 given as in Lemma 3.3, (4.4) gives us that

E[Ss,L] ≤ e
(
1 + 2λE[Ss−1,L]),

and hence E[Ss−1,L] ≤ 2e implies E[Ss,L] ≤ 2e.
The case s = 2 is simpler, since GWC(μ̃�;2)L is the same as the law of T +

L for TL ∼
GW(μ̃�)L, except that the parent ρ+ of ρ in T +

L is now connected with ρ by two edges. From
the contact process point of view, this means that the intensity of infection from ρ+ to ρ is 2λ

and everything else is identical to the case of GW(μ̃�)L. Hence, the same proof as Lemma 3.3
can be replicated, and we obtain that there exists a constant λ0 > 0 such that E[S2,L] ≤ 2e for
all λ ≤ λ0. We leave the details of the proof to the reader. �

PROOF OF PROPOSITION 4.9. It can be proven by the same way as Lemma 4.11. For
completeness, we present the proof in the Appendix, Section A.3. �

4.3. Proof of Theorem 4.1. Let l, s,L be arbitrary integers with s ≥ 2 and L ≥ l, and
consider an edge-added Galton–Watson process S ∼ EGW(μ�, μ̃�; l, s)L.

We can extend the result of Theorem 3.4 and Proposition 3.6 to the case of edge-added
Galton–Watson processes. The method will be the same as Proposition 4.9 and Lemma 4.11,
appropriately adjusted to the current setting of delayed contact process (Definition 3.5).
We state the result in the following lemma, whose proof is deferred to the Appendix (Sec-
tion A.4), since it is similar to the previous proofs but more technical.

LEMMA 4.12. Let S ∼ EGW(μ�, μ̃�; l, s)L and νθ
S be the stationary distribution of

DPλ,θ
ρ+ (S+) on the space {0,1}S . Then, there exist constants C,λ0 > 0, depending only on

μ, such that for all λ ≤ λ0, we have E[νθ
S(0)−1] ≤ 2 for θ = Cλ.

Based on Proposition 3.6 and Lemma 4.12, we have an analog of Theorem 3.4 for EGW-
processes. Thus, we can complete the proof of Theorem 3(1) by combining the previous
results to build up a coupling between the contact processes on local neighborhood N(v,L)

and on EGW-processes.

PROOF OF THEOREM 4.1. Let G ∼ G(n,μ) for any large enough n, and let γ1 > 0 be the
constant satisfying Lemma 4.5. For each v ∈ G, let Av be the event that Nv := N(v, γ1 logn)

in G contains at most one cycle. Then, the proof of Lemma 4.5 tells us P(Av) ≥ 1 − o(n−1).
Let λ′

0 be the minimum between the λ0’s given by Proposition 4.9 and Lemma 4.12, C be
as in 4.12 and θ = Cλ for λ ≤ λ′

0. Further, let (Xt) ∼ CPλ(Nv;1v) and Hv := max{r(Xt) :
t ≥ 0}, where r(Xt) denotes the maximal depth among the infected sites in Xt . Note that
r(Xt) stays 0 after Xt becomes 0.

Define the event Bv as

Bv := {
P(Hv ≥ h | Nv) ≤ 2n2(Cλ)h, for all h

}
.
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Following the same proof as Theorem 3.4 based on Lemma 4.12, we have P(Bv) ≥ 1 − n−2

by dominating Nv by the EGW-processes as Lemma 4.8. Assume that (Cλ′
0)

γ1 logn ≤ n−4 by
making λ′

0 smaller if needed. Then, the event Cv given by

Cv = Cv(G) := {Hv < γ1 logn}
satisfies P(Cv|Av ∩ Bv) = O(n−2). Note that Av ∩ Bv is an event over the random graph G,
while Cv is an event over the contact process (Xt) given the graph G. By the aforementioned
coupling of Nv and the EGW-process, Proposition 4.9 gives that

(4.5) E[Tv | G ∈Av ∩Bv,Cv] ≤ B

for some constant B = B(μ) > 0.
Define the events

E1 := ⋂
v∈G

(Av ∩Bv) and E2(G) := ⋂
v∈G

Cv.

Then, the above discussion shows that P(G ∈ E1) = 1−o(1) and P((Xt) ∈ E2(G) | G ∈ E1) =
1 − o(1), and hence (4.5) holds the same given E1 and E2(G), namely,

E
[
Tv | G ∈ E1,E2(G)

]≤ B,

under a possible modification of B if needed. Therefore, by linearity of expectation, summing
the above over all v ∈ G gives the conclusion. �

PROOF OF COROLLARY 5(1). The statement follows immediately from the contiguity
of Gcf(n,Pois(d)) and Gn,d/n ([14], Theorem 1.1). To be precise, for any subset An of graphs
with n vertices,

PG∼Gcf(n,μ)(G ∈ An) → 0 implies PG∼Gn,d/n
(G ∈ An) → 0,

where μ = Pois(d). Since the statement is true whp for G ∼ Gcf(n,μ), the configuration
model, it is also true whp for G ∼ Gn,d/n. �

5. Long survival in random graphs: Proof of Theorem 3, part 2.

5.1. A structural lemma. Our main tool to prove long survival time is the following struc-
tural lemma whose proof is deferred to Section 7. As mentioned in Section 1.2, we show that
the random graph Gn contains a large (α,R)-embedded expander. Once some subset of this
expander is infected, it is likely to spread the infection over its R-neighborhood whose size
more than doubles the original subset. We define an embedded expander as follows.

DEFINITION 5.1 (Embedded expander). For two positive numbers α and R, we say that
a subset of vertices W0 is an (α,R)-embedded expander of Gn if for every subset A ⊂ W0
with |A| ≤ α|W0|, we have

(5.1)
∣∣N(A,R) ∩ W0

∣∣≥ 2|A|,
where N(A,R) is the collection of all vertices in Gn of distance at most R from A.

The following lemma concerns the existence of such an (α,R)-embedded expander in the
random graph Gn.

LEMMA 5.2. Suppose that μ satisfies (1.1) and there exists some constant c > 0 such
that ED∼μecD < ∞. Let G ∼ G(n,μ). There exist positive constants α,β,R, j such that the
following holds whp. There exist a subgraph Ḡn of Gn whose maximal degree is at most 2j

and an (α,R)-embedded expander W0 of Ḡn with |W0| ≥ βn.
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5.2. Proof of Theorem 3, part 2. We first make a simple observation.

LEMMA 5.3. Let R be a positive integer constant. Consider the contact process Yt with
infection rate λ on a path of length at most R connecting two vertices v and u. Then, there
exist positive constants C and λ0, depending only on R, such that for all λ ≥ λ0, we have

P(u ∈ Yt+C | v ∈ Yt ) ≥ 3

4
.

PROOF. Let C be a sufficiently large constant compared to R. Let A be the event that the
infection on N(v,1) survives in the entire time interval [t, t + C].

By [5], Lemma 1.1, for sufficiently large λ compared to C,

P(A | v ∈ Yt ) ≥ 99

100
.

Since there is a path of length at most R from v to u, by [5], Lemma 2.4,

P
(
u ∈ Yt ′′ for some t ′′ ∈ [

t ′, t ′ + R
] | N(v,1) ∩ Yt ′ = ∅

)≥ 1

e6R
,

and so, as C is large compared to R, we have

P
(
u ∈ Yt ′ for some t ′ ∈ [t, t + C + R] | v ∈ Yt

)
≥ P

(
Bin

(
C

R
,

1

e6R

)
≥ 1

)
− 1

100
≥ 98

100
.

Assume that u ∈ Yt ′ for some t ′ ∈ [t, t + C + R]. Fix a neighbor u′ of u. By [5], Lemma 1.1,
again, the contact process on the edge (u,u′) survives in the entire interval [t ′, t ′ + 3C] with
probability at least 99

100 . Since t + C + R ∈ [t ′, t ′ + 2C], there is at least one clock ring in
[t + C + R, t ′ + 3C], and the last clock ring before time t + 3C is an infection clock from u′
to u, rather than the recovery clock at u, with probability at least 99

100 . If u′ is already infected
at that time, u will be infected. Otherwise, u has already been infected and remains infected.
In either case, u is infected at time t + 3C with probability at least 96

100 ≥ 3
4 . By replacing C

by C/3, we complete the proof. �

Let α,β, j,R, Ḡn and W0 as in Lemma 5.2. It suffices to show that the contact process
(Xt) on Ḡn with all vertices infected initially survives for e�(n)-time with probability at least
1 − e−�(n) over the contact process. For the rest of this proof, all the vertices, edges, paths
and balls are of Ḡn, unless otherwise noted.

Let X0
t = Xt ∩ W0 be the collection of infected vertices of W0 at time t . We show that,

thanks to the expander property of W0, with very high probability, after some time C, the
number of infected vertices in W0 increases.

LEMMA 5.4. Let C and λ0 be the constants in Lemma 5.3. There exists a positive
constant C′, depending only on j and R, such that for all λ ≥ λ0 and for every integer
a ∈ (0, αβn],
(5.2) P

(∣∣X0
t+C

∣∣≤ 5

4
a
∣∣∣ ∣∣X0

t

∣∣= a

)
≤ 2 exp

(
− a

C′
)
.

PROOF. We will use Azuma’s inequality. Let Gn,t be the induced subgraph of Ḡn on
the set

⋃
v∈X0

t
N(v,R). Let (X̂t ′)t ′∈[t,t+C] be the contact process on Gn,t with X̂t := X0

t (so

(X̂t ′) only uses the infection and recovery clocks of vertices and edges inside Gn,t ). Let
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X̂0
t ′ = X̂t ′ ∩ W0. Let X be the infected vertices u of X̂0

t+C such that there exists v ∈ X0
t and

a directed path of infection on the graphical representation of (X̂t ′) from (v, t) to (u, t + C),
and the vertices of the path lie entirely in B(v,R). We have

X ⊂ X̂0
t+C ⊂ X0

t+C.

Since the maximal degree in Ḡn is at most 2j , the number of vertices, denoted by a′,
in Gn,t is at most a(2j)R+1. Enumerate the vertices in Gn,t by v1, . . . , va′ . For each i =
0,1,2, . . . , a′, let Fi be the σ -algebra generated by the randomness of the recovery clocks
and infection clocks during time (t, t + C] on the vertices v1, . . . , vi and edges connecting
them. Let

Xi := E
(|X | | Fi ,X

0
t ,
∣∣X0

t

∣∣= a
)
.

We have Xa′ =X . By Azuma’s inequality we have, for every s > 0,

(5.3) P
(|Xa′ −X0| ≥ s

)≤ 2 exp
(
− s2

2a′K2

)
,

where

K := max
j

‖Xj −Xj−1‖∞ ≤ ∣∣B(vi+1,R)
∣∣≤ (2j)R+1.

From Lemma 5.3 and the expander properties of W0 as in Lemma 5.2, we obtain

(5.4) X0 = E
(|X | | ∣∣X0

t

∣∣= a
)≥ 3

4

∣∣N(
X0

t ,R
)∩ W0

∣∣≥ 3a

2
.

Thus, by (5.3) for s = a
4 and the fact that Xa′ ≤ |X0

t+C |, we obtain (5.2). �

PROOF OF THEOREM 3(2). For the lower bound on survival time, initially, all vertices
in W0 are infected so |X0

0| ≥ βn. Let t1 be the first time that |X0
t1
| = αβn. At time t2 = t1 +C,

we have |X0
t2
| ≥ 5

4αβn with probability at least 1 − 2
m2 where m := exp(

αβn
2C′ ) by Lemma 5.4.

Let t3 be the first time after t2 that |X0
t3
| = αβn again. Repeating this process m times, we

get that the contact process survives until time mC with probability at least 1 − 2/m by the
union bound, proving the lower bound for Theorem 3(2).

As for the upper bound, observe that, for any time t , the probability that the contact process
dies out during the time interval [t, t + 1] is at least the probability that, for each vertex v in
Gn, at least one of the infection clocks from a neighbor u of v to v or the recovery clock at v

rings in [t, t +1] and the last clock rings before time t +1 is the recovery clock at v. Thus, the
probability that the process dies out during [t, t +1] is at least

∏
v

c
deg(v)

. By Cauchy–Schwarz

inequality and the fact that whp, the total degrees in Gn is O(n), we have
∏

v
c

deg(v)
≥ e−c′n

for some small constants c, c′. Therefore, whp, the contact process, dies out before time e2c′n.
�

REMARK 5.5. To prove the corresponding result (Remark 1.2) for μ having an exponen-
tial tail, when initially, there is only one uniformly chosen vertex v infected in Gn, observe
that with positive probability over the choice of v, v belongs to W0. Thus, it suffices to con-
dition on this event and show that with positive probability over the contact process, the
process survives until time ecn for some constant c. Let λ0,R , CR and C′

R be the constants λ0,
C and C ′ corresponding to R in Lemmas 5.3 and 5.4, respectively. By (5.1), for any bounded
number k we have ∣∣N(v, kR) ∩ W0

∣∣≥ 2k

for sufficiently large n.
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We now show that, for sufficiently large λ, at some time there will be a lot of infected ver-
tices in W0. This will then allow to take the union bound of the tail probability occurring in
Lemma 5.4. Let k be a sufficiently large constant. Since the number of vertices in N(v, kR) is
at most (2j)kR+1 = Oj,k,R(1), there are Oj,k,R(1) edges in N(v, kR). Thus, there exist con-
stants λj,k,R, tj,k,R such that, for all λ ≥ λj,k,R , the probability that each vertex in N(v, kR)

is infected before time tj,k,R and that there are no recovery clocks ring before time tj,k,R is
at least 3/4. Hence, with probability at least 3/4, there exists t1 ≤ tj,k,R at which all vertices
in N(v, kR) are infected. This implies |X0

t1
| ≥ 2k ≥ (5/4)k .

Conditioning on this event and applying Lemma 5.4, we get that with probability at least

1 −
∞∑
i=k

2 exp
(
− 5i

C′
R4i

)
,

there exists a time t ≥ t1 at which |X0
t | ≥ αβn. Since k is a sufficiently large constant, this

probability is at least 1/2. Finally, conditioned on this event, the same argument as in the
proof of Theorem 3(2) shows that, starting from this t , the contact process survives until time
e−�(n) whp. Altogether, the contact process (Xt) starting from v survives until time e−�(n)

with probability at least 1/4 − o(1) for all λ ≥ max{λ0,R, λj,k,R} as desired.

REMARK 5.6. Corollary 5(2) follows from Theorem 3(2) in the exact same way as we
deduced Corollary 5(1) from Theorem 3(1).

6. Long survival in random graphs: Proof of Theorem 4. In this section, following the
same strategy as in the proof of Theorem 3(2), we prove Theorem 4. The following structural
lemma is an analog of Lemma 5.2 for subexponential distributions.

LEMMA 6.1. Suppose that μ satisfies (1.1) and ED∼μecD = ∞ for all c > 0. Let G ∼
G(n,μ). For any δ > 0, there exist α,β, j,R > 0 with R ≤ δj such that the following holds
whp. There exists a subgraph Ḡn of Gn whose maximal degree is at most 2j and an (α,R)-
embedded expander W0 of Ḡn with |W0| ≥ βn and degḠn

w ≥ j/2 for all w ∈ W0.

Fix λ > 0. Let α,β, j,R, Ḡn, W0 be as in Lemma 6.1 where δ > 0 is a sufficiently small
constant depending on λ. It suffices to show that the contact process (Xt) on Ḡn, with all
vertices infected, initially survives for e�(n)-time with probability at least 1 − e−�(n) over
the contact process. For the rest of the proof, all the vertices, edges, paths and balls are of Ḡn.

Let X0
t be the collection of infected vertices of W0 at time t . We show the following analog

of Lemma 5.3.

LEMMA 6.2. There exists a constant c, depending only on λ, such that for sufficiently
large n and for every u ∈ N(v,R) ∩ W0, we have

(6.1) P
(
u ∈ X0

t+2ecj | v ∈ X0
t

)≥ 3

4
.

Assuming Lemma 6.2, we prove the following analog of Lemma 5.4.

LEMMA 6.3. Let c be the constant in Lemma 6.2. There exists a positive constant C0,′
depending only on j and R, such that for every integer a ∈ (0, αβn],

(6.2) P

(∣∣X0
t+ecj

∣∣≤ 5

4
a
∣∣∣ ∣∣X0

t

∣∣= a

)
≤ 2 exp

(
− a

C′
)
.
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The proof of this lemma is identical to the proof of Lemma 5.4. Using this lemma, the
proof of Theorem 4 is identical to that of Theorem 3(2). It remains to prove Lemma 6.2.

PROOF OF LEMMA 6.2. Let � be a path of length at most R connecting v and u. Since
v ∈ W0, Nv,u := {v} ∪ (N(v,1) \ �) contains a star with j/4 leaves. Let A be the event that
the infection on Nv,u survives in the entire time interval [t, t + ecj ] for some constant c,
depending only on λ.

By [2], Lemma 5.3, by choosing δ sufficiently small in Lemma 6.1 and using the inequality
j ≥ R/δ ≥ 1/δ, we have

P
(
A | v ∈ X0

t

)≥ 99

100
.

Since there is a path of length at most R from v to u, by [5], Lemma 2.4, there exists a
constant c′ > 0, depending only on λ, such that for any time t ′,

P
(
u ∈ X0

t ′′ for some t ′′ ∈ [
t ′, t ′ + R + 1

] | Nv,u ∩ X0
t ′ =∅

)≥ c′R+1.

Thus,

P
(
u ∈ X0

t ′ for some t ′ ∈ [
t, t + ecj + R + 1

] | v ∈ X0
t

)
≥ P

(
Bin

(
ecj

R
, c′R+1

)
≥ 1

)
− 1

100

≥ P

(
Bin

(
ecR/δ

R
, c′R+1

)
≥ 1

)
− 1

100
≥ 98

100

by choosing δ sufficiently small (e.g., δ = c
100 log c′−1 ) in Lemma 6.1. Since R ≤ δj , we

can replace the interval [t, t + ecj + R + 1] in the above inequality by the bigger interval
[t, t + 2ecj ].

Assume that u ∈ X0
t ′ for some t ′ ∈ [t, t + 2ecj ]. By the third inequality in [5], Lemma 2.3,

and Markov’s inequality, with probability at least 99
100 , there exists a time t ′′ ∈ [t ′, t ′ + ecj ]

such that there are at least λj/4 neighbors of u infected at time t ′′. By [5], Lemma 2.2, with
probability at least 99

100 , there are at least λj/10 neighbors of u infected at any time in the
time interval [t ′′, t ′′ + 3ecj ]. Since t + 2ecj ∈ [t ′′, t ′′ + 3ecj ], the probability that u is infected
at time t + 2ecj is at least the probability that the last clock rings before time t + 2ecj is an
infection clock rather than the recovery clock at u. Since there are at least λj/10 neighbors
of u infected at any time in the interval [t ′′, t + 2ecj ], the probability of the above event is

λ2j/10

λ2j/10 + 1
≥ 99

100
.

That completes the proof of Lemma 6.2. �

REMARK 6.4. To prove the corresponding result (Remark 1.2) for subexponential μ,
when initially there is only one uniformly chosen vertex v infected in Gn, observe that with
positive probability over the choice of v, v belongs to W0. Thus, it suffices to condition on this
event and show that with positive probability over the contact process, the process survives
until time e�(n).

Since W0 is an (α,R)-embedded expander, observe that for every A ⊂ W0 with |A| ≤
α|W0|/4, we have ∣∣N(A,2R)

∣∣≥ 4|A|.
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Thus, using the same proof as for Lemmas and 6.2 and 6.3, one can see that there exist
constants c′ and C′′ such that for all integer a ∈ (0, αβn/4],
(6.3) P

(∣∣X0
t+ec′j

∣∣≤ 2a | ∣∣X0
t

∣∣= a
)≤ 2 exp

(
− a

C′′
)
.

Let k be the largest number such that 2k ≤ αβn/4. Let A0 be the event that X0
0 = {v} ⊂ W0.

For each i = 1, . . . , k, let Ai be the event that∣∣X0
iec′j

∣∣≥ 2i .

Let A∗ be the event that the contact process survives up to time e�(n). We want to show that

(6.4) P
(
A∗ | X0

0 = {v})= �(1).

In fact,

P
(
A∗ | X0

0 = {v})≥ P

(
k⋂

i=1

Ai ∩A∗ ∣∣∣X0
0 = {v}

)

≥
k∏

i=1

P(Ai | Ai−1)P
(
A∗ | Ak

)
.

By (6.3), for each i = 1, . . . , k, P(Ai |Ai−1) ≥ 1 − 2 exp(−2i−1

C′′ ). Finally, by the same ar-
gument as in the proof of Theorem 3(2), once there are about �(n) vertices in W0 in-
fected, the contact process survives for an exponentially long time whp. In other words,
P(A∗|Ak) = 1 − o(1). Let k′ be the smallest number such that 2k′−1 ≥ 10C′′. Combining
all of these inequalities, we obtain

P
(
A∗ | X0

0 = {v})≥ 98

100

k′∏
i=2

(
1 − 2 exp

(
−2i−1

C′′
))

×
k∏

i=k′+1

(
1 − 2 exp

(
−2i−1

C′′
))

≥ 98

100

(
1 − 4e−10) k′∏

i=2

(
1 − 2 exp

(
−2i−1

C′′
))

= �(1)

as desired. That completes the proof of Remark 1.2.

7. Proof of the structural lemma. In this section we prove the structural Lemmas 5.2
and 6.1. We start by proving Lemma 6.1 for subexponential μ in Section 7.1. The proof of
Lemma 5.2 is very similar and is presented in Section 7.2.

7.1. Proof of Lemma 6.1. Step 1. Preprocessing. In this step we eliminate high-degree
vertices in Gn so that the degrees become bounded. This will allow us to control the size
of the neighborhoods that we explore in the next steps. We prove in Lemma 7.1 that the
elimination does not significantly affect relevant parameters of Gn.

Let b =
∑∞

l=1 l(l−1)μ(l)∑∞
l=1 lμ(l)

> 1 be the branching rate of μ. Let d be the mean d = ED∼μD > 1.

For a constant j , consider the graph Ḡn obtained from Gn by deleting all vertices with degree
at least 2j + 1 together with their half-edges and their matches. Let n̄ be the number of
vertices of Ḡn and 0 ≤ d1 ≤ · · · ≤ dn̄ ≤ 2j be the degree sequence of vertices in Ḡn.
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The branching rate b̄ of a (deterministic) degree sequence (di) is defined to be the branch-
ing rate of the empirical measure generated by (di), namely,

b̄ =
∑

l l(l − 1)#{i : di = l}∑
l l#{i : di = l} .

Throughout the proof, ε can be any small constant (e.g., ε = 1/2).

LEMMA 7.1 (Eliminating high-degree vertices). Let j0, ε be any positive constants with
ε < 1. There exists a positive constant j ≥ j0 such that the following hold whp:

1. Conditioned on the degree sequence (d1, . . . , dn̄), the edges of Ḡn form a uniformly
chosen perfect matching of its half-edges.

2. The number of vertices and the total degree in Ḡn (which is twice the number of edges
of Ḡn) satisfy

n̄ ≥ (1 − ε)n and d1 + · · · + dn̄ ∈ (1 − ε,1 + ε)nd.

3. The branching rate b̄ of the degree sequence of Ḡn satisfies b̄ ∈ (1 − ε,1 + ε)b.
4. For all i, 0 ≤ di ≤ 2j . The number of vertices with large degree is, as expected,

#
{
i ∈ {1, . . . , n̄} : di ∈

[
j

2
,2j

]}
≥ εnμ[j,2j ].

To simplify the notation, for the rest of this Section 7 we define

uj := μ[j,2j ].

PROOF. Since the proof of Items 1–3 is rather standard, we defer it to the Appendix,
Section A.5. Here, we only prove Item 4. Choose j large enough such that

ED∼μD1D≥2j+1 ≤ ε/4.

For each vertex v ∈ Gn, consider the random variable

Xv := degGn
(v)1degGn

(v)≥2j+1.

These random variables are independent with mean at most ε/4 and variance bounded by the
second moment of μ. By Chebyshev’s inequality, whp∑

v∈Gn

Xv ≤ εn/2.

Thus, whp, the total number of removed half-edges from vertices of degree in [0,2j ] in Gn,
is at most

∑
v∈Gn

Xv ≤ εn/2.
By Chernof’sf inequality, whp, the number of half-edges of Gn of vertices of degree in

[0, j) and [j,2j ], are (1 − ε,1 + ε)nd and (1 − ε,2 + 2ε)jnuj , respectively. Since j is
sufficiently large, juj is very small compared to d . The first deleted half-edge has probability

roughly juj

d
to be from vertices of degree in [j,2j ]. Ideally, one expects to delete at most

juj

d
εnd half-edges from these vertices. We will show that it is the case, namely,

CLAIM 7.2. The number of half-edges deleted from vertices of degree in [j,2j ] is, at
most,

10εjnuj whp.
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Assuming the claim, the number of vertices originally with degree in Gn in [j,2j ] and
with degree less than j/2 in Ḡn is, at most,

10εjnuj

j/2
= 20εnuj whp.

By Chernof’sf inequality, in Gn the number of vertices of degree in [j/2,2j ] is in (1 − ε,

2 + 2ε)nuj (where we choose j so that μ[j/2, j) ≤ (1 + ε)uj ). Hence, whp, the number of
vertices in Ḡn with degree in [j/2,2j ] is in (1 − 21ε,2 + 2ε)nuj , completing the proof of
Item 4. �

To prove Claim 7.2, we will use the following cut-off line algorithm to find the random
matches of the deleted high-degree vertices in Gn.

DEFINITION 7.3 (Cut-off line algorithm). Given a graph Gn in which each vertex v has
degree dGn(v), a perfect matching of the half-edges of Gn is obtained through the following
algorithm:

• Each half-edge of a vertex v is assigned a height uniformly chosen in [0,1] and is placed
on the line of vertex v.

• Set the cut-off line at height 1.
• Pick an unmatched half-edge independent of the heights of all unmatched half-edges

and match it to the highest unmatched half-edge. Move the cut-off line to the height of the
latter half-edge.

Figure 2 illustrates the algorithm.

PROOF OF CLAIM 7.2. For each half-edge of a vertex in Gn with degree at least 2j + 1,
we choose their matches according to the above algorithm. Assume that at the end of this
process of deleting half-edges of vertices with degree at least 2j + 1, the cut-off line is at
height h ∈ (0,1). Note that a half-edge of a vertex whose degree in Gn lies in [j,2j ] is
deleted if and only if it is above the cut-off line. We show that whp, h ≥ 1 − 4ε. Indeed,
Item 2 implies that the number of half-edges of Gn is at least (1 − ε)nd/2, and in choosing
the heights of these half-edges the number of half-edges with heights above 1 − 4ε is at least

FIG. 2. The circles “◦” represent matched half-edges and the crosses “×” represent unmatched half-edges.
The blue half-edge is chosen and matched to the red half-edge which is the highest unmatched half-edge. Then,
the cut-off line is moved to the new cut-off line (dashed).
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2ε(1 − 2ε)nd whp, by Chernoff’s inequality, which contradicts the event that we only delete
at most εnd half-edges altogether. Hence, the cut-off line is above 1 − 4ε whp. Since the
number of half-edges with degree in Gn belonging to [j,2j ] is at most (1 + ε)2jnuj whp,
the number of half-edges above 1 − 4ε is at most 8ε(1 + ε)jnuj ≤ 10εjnuj as claimed. That
proves Claim 7.2. �

Step 2. Exploration. Let W be the set of vertices in Ḡn whose degrees belong to [j/2,2j ].
We shall find the desired (α,R)-embedded expander W0 inside W . In this step we explore
the R-neighborhoods of these high-degree vertices in W .

After having preprocessed the graph Gn to obtain Ḡn, the remaining randomness is the
perfect matching of the half-edges in Ḡn. In this step we condition on the preprocessing step
and write the probability in terms of the randomness of the perfect matching in Ḡn. We run
the following exploration process to perform some matchings of the half-edges of Ḡn. Let R

and r be some large (bounded) numbers to be chosen (they are chosen in (7.15)):

1. For each vertex v ∈ W , set rv = 1.
2. If rv < R for all v ∈ W , explore the neighborhood BḠn

(v, rv) simultaneously for all
v ∈ W ; noting that if u ∈ BḠn

(v, rv) ∩ BḠn
(v′, rv′), we stop exploring the branch starting

at u. If rv ≥ R for some v ∈ W , the process terminates. Otherwise, go to (3).
3. For each vertex v ∈ W , if N(v, rv) intersects at most 100r other balls BḠn

(v′, rv′)
(v′ ∈ W ), set rv := rv + 1. Otherwise, keep rv intact. If none of the rv is increases in this
step, the process terminates. Otherwise, go back to (2).

We show that, when the exploration process terminates, the number of vertices v ∈ W at
which the process stops before reaching radius R is insignificant. For that, we choose R and
r so that the expected number of vertices of W that lie in a neighborhood N(v,2R) is small
compared to r (see (7.1)). And so, it is unlikely that the different neighborhoods N(v,R)

intersect frequently.

LEMMA 7.4. Let R and r be positive numbers bounded by some constants and satisfying

(7.1)
b̄2R−1j2uj

d
≤ r

10
.

The number of v ∈ W with rv = R is at least 0.98|W | whp.

Note that b̄ is a random variable and so are R and r. Nevertheless, we will choose R and r

so that they are bounded.

PROOF. For this proof we write N(v, rv) for BḠn
(v, rv) for simplicity. We first show that

for each v ∈ W , it is likely that rv = R; more specifically,

(7.2) P(rv = R) ≥ 0.99.

Indeed, if rv < R, then N(v,R) intersects more than 100r other balls N(u,R) (u ∈ W ) which
implies that N(v,2R) contains more than 100r elements of W . By Markov’s inequality,

P(rv < R) ≤ E|N(v,2R) ∩ W |
100r

.

By Items 2 and 4 of Lemma 7.1, we have

E
∣∣N(v,2R) ∩ W

∣∣≤ 2j b̄2R−1 2j (2 + ε)nuj

(1 − ε)nd
≤ r,

where we used (7.1). Thus, we get (7.2).
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It remains to show that whp, at least 0.98|W | vertices v satisfy rv = R. We derive this from
(7.2) and Azuma’s inequality. Let X be the number of vertices v ∈ W with rv = R. By (7.2)
and Item 4 of Lemma 7.1,

EX ≥ 0.99|W | ≥ 0.99(1 − ε)nuj .

Enumerate the vertices of Ḡn by u1, . . . , un̄. Let Fi be the σ -algebra generated by the
matchings of the half-edges of vertices u1, . . . , ui . We will apply Azuma’s inequality to the
martingale E(X −EX|Fi), i = 0, . . . , n̄. Since the maximal degree in Ḡn is 2j , we have that,
for every i,

(7.3)
∣∣E(X −EX |Fi+1) −E(X −EX | Fi)

∣∣≤ 4j max
u∈Ḡn

∣∣N(u,2R)
∣∣≤ 4j (2j)2R,

where in the first inequality, we observed that for any fixed matching of the half-edges of
vertices u1, . . . , ui and any two different matchings of the half-edges of ui+1, there exists a
bijection between the extensions of these matchings into perfect matchings of Ḡn such that
the number of different matchings are at most 4j . Using Azuma’s inequality and the fact that
j and R are constants, we obtain

(7.4) P
(|X −EX| ≥ εEX

)≤ exp
(
− ε2(EX)2

2n̄(4j (2j)2R)2

)
= exp

(−�(n)
)
.

Thus, whp, X ≥ (1 − ε)EX ≥ 0.98|W |, as stated. �

Step 3. Finding W0. We now find the desired embedded expander W0. Our strategy is
roughly as follows. In step 2 we have explored the R-neighborhoods of the high-degree ver-
tices in W . We shall show (in Lemma 7.5) that most of these neighborhoods have a lot of
unmatched half-edges. If we think about a new graph in which each of these neighborhoods
acts as a single vertex with high degree, then a high-degree core of this new graph corresponds
to the desired W0.

Consider a new graph G′
n with vertex set V ′ ∪ V ′′ where V ′′ are the vertices of Ḡn that

have not been touched in the exploration step 2 and each element of V ′ is a ball N(v, rv) in
step 2 whose half-edges are the unmatched half-edges of N(v, rv). If there is an unmatched
half-edge that belongs to at least two balls, we choose one such ball at random and associate
this half-edge to that ball. The remaining randomness is the uniform perfect matching of the
half-edges in G′

n. We show that many vertices in V ′ have high degree. Note that |V ′| = |W |.
LEMMA 7.5 (V ′ has high degree). There exist positive constants ε′, ε′′ and R0, depend-

ing only on μ, such that for all bounded positive numbers R1,R, r satisfying

R0 ≤ min{R1,R − R1}, 800r ≤ ε′2(b̄(1 − ε′′))R1−1
j,

b̄2R1−1j2uj

d
≤ 1

104 ,
b̄2R−1j2uj

d
≤ r

10
,

(7.5)

the number of vertices in V ′ with degree at least M is at least ε′
2 |V ′| whp where

(7.6) M = ε′3(b̄(1 − ε′′))R−1j

8
.

We note that in (7.5), the last two inequalities are for Lemma 7.4 to hold. The constant R1
is mainly for technical reasons. The condition that 800r ≤ ε′(b̄(1 − ε′′))R1−1j is there so that
when we ignore at most 100r possible common branches, the number of remaining branches
is still significant.

PROOF. First, we will show that:
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CLAIM 7.6. For every v ∈ W , with probability at least ε′, the number of half-edges on
the boundary of N(v,R) that do not belong to any of the balls N(v′,R), v′ ∈ W \ {v} is at
least M .

Indeed, let u1, . . . , ul be the vertices of distance R1 from v. Since b̄2R1−1j2uj

d
< 1

104 ,
by Lemma 7.4, with probability at least 0.99, N(v,R1) does not intersect any other balls
N(v′,R1).

Since b̄2R−1j2uj

d
< r

10 , by Lemma 7.4, with probability at least 0.99, N(v,R) intersects
at most 100r other balls N(v′,R), v′ ∈ W . Consider the branches B(uh,R − R1) consisting
of vertices at distance r from v and distance r − R1 from uh for R1 ≤ r ≤ R. Conditioned
on u1, . . . , ul , it suffices to show that with probability at least 0.9, for any choices of sets
A ⊂ [1, . . . , l] with |A| ≤ 100r,

(7.7)
∣∣∣∣ ⋃
h∈[1,...,l]\A

∂B(uh,R − R1)

∣∣∣∣≥ M.

Letting ZR′ be the number of children in the R′th generation of the corresponding size-biased
Galton–Watson process, we have for any ε′′ ∈ (0,1), ZR′

(b̄(1−ε′′))R′ converges almost surely to

some random variable Z (with Z not identically 0 and taking values in [0,∞]) as R′ → ∞
(see, e.g., [1], pages 24–29). For some sufficiently small constant ε′ (that only depends on μ),
we have

P
(
Z ≥ 4ε′)≥ 4ε′.

Thus, for a sufficiently large R0 and R0 ≤ R1,R0 ≤ R − R1, we have

P
(
l ≥ ε′(b̄(1 − ε′′))R1−1

j
)≥ ε′

and

P
(∣∣∂B(uh,R − R1)

∣∣≥ ε′(b̄(1 − ε′′))R−R1
)≥ ε′.

We can choose ε′′ so small that b̄(1 − ε′′) > 1. Under the event that l ≥ ε′(b̄(1 − ε′′))R1−1j ,
let Xh (h = 1, . . . , l) be the indicator of the event that |∂B(uh,R −R1)| ≥ ε′(b̄(1−ε′′))R−R1 .
When R0 is sufficiently large, l is also large. Thus, with probability at least 0.9, at least ε′l/4
indices h ∈ [1, . . . , l] have Xh = 1. Under this event, since 100r ≤ ε′l/8 by (7.5), for any
choices of sets A ⊂ [1, . . . , l] with |A| ≤ 100r, there are at least ε′l/8 indices h /∈ A with
Xh = 1 which implies ∑

h∈[1,...,l]\A

∣∣∂B(uh,R − R1)
∣∣≥ ε′2(b̄(1 − ε′′))R−R1 l/8.

Since j, b̄ and R are bounded by some constant, for each v the boundaries ∂B(uh,R − R1)

are disjoint with probability at least 0.9, proving (7.7) and Claim 7.6.
Next, by using Azuma’s inequality the same way that we used it in proving Lemma 7.4,

we obtain that whp; there are at least (1 − ε)ε′|W | vertices v satisfying the event in Claim 7.6
simultaneously. Combining this with Lemma 7.4 completes the proof of Lemma 7.5. �

Note that the (random) edges of G′
n form a uniformly chosen perfect matching of its half-

edges. On the half-edges of G′
n, consider the following coloring scheme on the half-edges:

• For each vertex v with at least M half-edges in G′
n, choose exactly M half-edges among

them uniformly at random and color them blue.
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• Perform the uniform random matching among all half-edges in G′
n, and let W ′

1 be the
induced subgraph on vertices with degree at least M .

• Let K be the number of blue edges, formed by two blue half-edges, and for each v ∈ W ′
1,

let degb(v) be the number of blue edges adjacent to v.

Conditioned on K, we see that the distribution of {degb(v)}v∈W ′
1

is given by

(7.8) {Bv}v∈W ′
1
,Bv ∼ i.i.d.Bin(M, θ) conditioned on

∑
v∈W ′

1

Bv = 2K.

Note that, due to the conditioning on the sum of {Bv}, their distribution is well defined re-
gardless of the specific value of θ . However, for explicitness, we let

θ := 2K

M|W ′
1|

.

LEMMA 7.7. Let ε′ be as in Lemma 7.5. With high probability,

(7.9) θ ≥ ε′ujM

60d
.

PROOF. By Item 4 of Lemma 7.1, Lemmas 7.4 and 7.5, the number of vertices in W ′
1 is

at least ε′|W |
2 ≥ ε′nuj

2 .

Thus, the total number of blue half-edges in W ′
1 is at least ε′nujM

2 whp, while the total
degree in G′

n is at most 2nd by Item 2 of Lemma 7.1. Let

θ0 = #{number of blue half-edges in W ′
1}

#{number of half-edges in G′
n}

=: dW ′
1

dG′
n

≥ ε′ujM

4d
.

Since dW ′
1
= M|W ′

1|, it suffices to show that whp, K ≥ θ0dW ′
1
/12. Indeed, splitting the set

of blue half-edges of W ′
1 into two parts of equal size A and B (independent of their heights).

We perform the cut-off line algorithm 7.3 to match the half-edges of A first. Since at least
dW ′

1
/4 = θ0dG′

n
/4 highest half-edges in G′

n have been matched during this step, the cut-off

line is below 1− θ0
5 whp (otherwise, by Chernoff’s inequality, the number of half-edges above

the cut-off line is at most θ0dG′
n
/4). By Chernoff’s inequality again, the number of half-edges

of B that lie above 1 − θ0/5 is at least θ0dW ′
1
/12 whp. Since all edges between A and B are

inside W ′
1, K ≥ θ0dW ′

1
/12 whp. �

Lemma 7.7 allows to find a high-degree core of W ′
1.

LEMMA 7.8. Let M and θ be as in Lemmas 7.5 and 7.7. Assume that θM ≥ 100. Then,
whp, W ′

1 contains a subgraph W ′
0 with the following properties:

• The number of vertices in W ′
0 is at least |W ′

1|/2.
• Each vertex in W ′

0 has degree at least θM
20 inside W ′

0; in other words, W ′
0 is an θM

20 -core.
• Each vertex in W ′

0 has degree at most (2j)R .

PROOF. Let s = θM
20 . The last property follows from the fact that the maximum degree

of vertices in V ′ is (2j)R . For the rest of this proof, we only look at the blue half-edges in
W ′

1 that are matched to another blue half-edge in W ′
1. To find W ′

0, we use the cut-off line
algorithm 7.3 to find a uniform perfect matching of these half-edges of W ′

1 as follows. Each
of these half-edges is reassigned a height uniformly chosen in [0,1]. If there is a vertex in
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W ′
1 with less than s unmatched half-edges (equivalently, less than s half-edges below the cut-

off line), match its half-edges to the highest unmatched half-edges and move the cut-off line
accordingly. Remove this vertex. Repeat this step until there are no such vertices left.

Let W ′
0 be the set of remaining vertices. It remains to show that |W ′

0| ≥ |W ′
1|

2 whp. Note
that, since K = �(n), the probability that

∑
v∈W ′

1
Bv = 2K in (7.8) happens with probability

�(n−C). In the rest of this proof, the tail probabilities are exponentially small in n without
conditioning on the event

∑
v∈W ′

1
Bv = 2K. And so, we can forget about the conditioning and

assume that the number of internal half-edges of each vertex v ∈ W ′
1 has degree distribution

Bin(M, θ).
We show that, after the removal, the cut-off line is above 2/3 whp. Assuming this, we have∣∣W ′

0
∣∣≥ ∣∣W ′

1
∣∣− N ′,

where N ′ is the number of vertices in W ′
1 having less than s half-edges below the line 2/3. By

Lemma 7.7 the number of internal half-edges of each vertex v ∈ W ′
1 has degree distribution

Bin(M, θ). Thus, the distribution of the number of its half-edges that lie below the line 2/3
is Bin(M, 2θ

3 ). So, the probability that v has less than s half-edges below the line 2/3 is at
most

P

(
Bin

(
M,

2θ

3

)
≤ θM

20

)
≤ exp

(
−θM

12

)
≤ 1

200
,

where we used the Chernoff inequality and the assumption θM ≥ 100. By Chernoff’s in-

equality we have whp, N ′ ≤ |W ′
1|

100 . And so, |W ′
0| ≥ |W ′

1|
2 as desired.

Now, we prove that, after the removal process above, the cut-off line is above 2/3 whp. Let
a be the number of removed vertices (0 ≤ a ≤ |W ′

1|). The total number of matched half-edges
is at most 2as because each time we remove a vertex, at most 2s half-edges are matched.
Thus, the total number of half-edges above the cut-off line is at most 2as ≤ 2s|W ′

1|.
On the other hand, given a vertex v with degree distribution Bin(M, θ), the distribution

of the number of its half-edges that lie above the line 2/3 is Bin(M, θ
3 ). By Chernoff’s in-

equality, the number of half-edges of W ′
1 above the line 2/3 is at least Mθ |W ′

1|/4 = 5s|W ′
1| >

2s|W ′
1|. Thus, whp, the cut-off line is above 2/3, completing the proof of Lemma 7.8. �

Next, we show that W ′
0 is an embedded expander.

LEMMA 7.9. Let M and θ be as in Lemmas 7.5 and 7.7. Assume that θM ≥ 100. There
exists a constant α > 0 such that whp, W ′

0 is an (α,1)-embedded expander.

PROOF. Let N = |W ′
0|, s = θM

20 . Note that N = �(n) and s ≥ 5 is a constant. It suffices
to show that, for any subset A of the vertex set of W ′

0 of size αN , the size of N(A,1) is at
least twice that of A. In other words, whp, for every m ≤ αN and subsets of vertices A,B

with |A| = m, |B| = 2m, the neighbors of A are not contained fully in B . Fix two sets A

and B with |A| = m, |B| = 2m. By Lemma 7.8 the number of half-edges in A is at least ms,
the number of half-edges in B is b ≤ (2j)R2m and the total number of half-edges in W ′

0 is
c ≥ Ns. The probability that all the neighbors of A belong to B is at most

b

c − 1

b − 1

c − 3
. . .

b − ms + 1

c − 2ms + 1
≤
(

b

Ns − 2ms + 1

)ms

≤
(

4(2j)Rm

Ns

)ms

.

Taking the union bound over m and choices of A,B , we get that the probability that W ′
0 is

not an (α,1)-embedded expander is at most

(7.10)
αN∑
m=1

(
N

2m

)2(
4(2j)Rm

Ns

)ms

≤
logn∑
m=1

C logs−4 n

Ns−4 +
αN∑

m=logn

(
Cαs−4)m
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for some constant C, depending only on j,R and s. Choosing α ≤ 1
2C

makes the RHS of
(7.10) of order o(1). This completes the proof of Lemma 7.9. �

PROOF OF LEMMA 6.1. Since W ′
0 is a subset of V ′, each of its vertices is a ball N(v, rv)

in Ḡn, a subgraph of Gn. Let W0 be the collection of all such centers v. Clearly, |W0| =
|W ′

0| = �(n) and W0 is an (α,2R + 1)-embedded expander of Gn. To finish the proof of
Lemma 6.1 for subexponential degree distributions, it remains to show that there exists a
choice of j,R, r satisfying the assumptions of the previous lemmas (in particular, Lemmas
7.4, 7.5, 7.8 and 7.9). In other words, for any given positive constants R0, δ and ε′ (δ and ε′
can be arbitrarily small and R0 can be arbitrarily large), we show that there exist a constant j

and random variables R,R1, r such that the following conditions hold:

R ≤ δj,(7.11)

R0 ≤ min{R1,R − R1},(7.12)

b̄2R1−1j2uj

d
≤ 1

104 , 800r ≤ ε′2(b̄(1 − ε′′))R1−1
j,

(7.13)
b̄2R−1j2uj

d
≤ r

10
,

ε′7(b̄(1 − ε′′))2R−2j2uj

64 · 60d
≥ 100.(7.14)

Note that (7.11) comes merely from the statement of Lemma 5.2. For given j and b̄, we
define r, R and R1 by the following equations so that (7.13) holds automatically:

(7.15)
b̄2R1−1j2uj

d
= 1

104 , 800r = ε′2(b̄(1 − ε′′))R1−1
j,

b̄2R−1j2uj

d
= r

10
.

Since μ has finite second moment, limj→∞ j2uj = 0 and so (7.12) holds when j is suffi-
ciently large. Since μ is subexponential, uj ≥ e−ε0j for any constant ε0 > 0 and for large j .
By choosing ε0 to be small compared to δ, (7.11) holds. The inequality (7.14) holds automat-
ically. This completes the proof of Lemma 6.1 for subexponential distributions μ. �

REMARK 7.10. Observe that in the above subgraph W0 is also an (α,2R +1)-embedded
expander of the graph Ḡn with degḠn

w ≥ j/2 for all w ∈ W0.

7.2. Proof of Lemma 5.2. In Section 7.1 we used the assumption that μ is subexponential
only in the last step of choosing the parameters R,R1 and r. In particular, we used this
assumption to obtain that j can be an arbitrarily large constant while uj := μ[j,2j ] remains
positive and uj ≥ e−ε0j . The inequality uj ≥ e−ε0j is only used to show that, with the choice
of parameters R,R1, r as in (7.15), (7.11) holds as stated in Lemma 6.1. Here, when μ has
an exponential tail, Lemma 5.2 does not assert that R ≤ δj , and so there is no need for
uj ≥ e−ε0j .

Thus, if μ has an infinite support, one can still find an arbitrarily large constant j for which
uj > 0. This is, therefore, enough for the rest of the proof of Section 7.1 to follow, proving
Lemma 5.2 for such μ.

If the support of μ is finite, let j be the largest integer in the support of μ. Let uj be
an arbitrarily small constant with uj ≤ μ[j,2j ] = μ(j) (uj could be much smaller than
μ(j)). Since the degrees in Gn are already bounded, there is no need to run the Step 1 of
preprocessing the graph as in Section 7.1. So, for this case, Ḡn = Gn, n̄ = n, b̄ = b and so
on. For the exploration, Step 2, we choose W by assigning each vertex in Gn of degree j to
W independently with probability uj

μ(j)
. The rest of the proof follows without any changes.

In (7.15) we choose uj to be sufficiently small so that (7.12) holds and so does (7.14). �
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APPENDIX

A.1. Proof of Lemma 4.3. Here, we prove Lemma 4.3 which is based on an elementary
analysis of large deviation events.

PROOF OF LEMMA 4.3. The first statement follows directly from the Cauchy–Schwarz
inequality: If we have ED∼μ exp(3εD) < ∞ for some ε > 0, then(∑

k

eεk√pk

)2
≤
(∑

k

e3εkpk

)(∑
k

e−εk

)
< ∞.

For the second statement, let n be a given large enough integer, and define

kn = min
{
k : ∑

j≥k

pk ≤ 1

n log logn

}
.

Let Di for i = 1, . . . n be i.i.d samples from μ. We start by studying the empirical distri-
bution of the Di . First, by a simple union bound, the definition of kn implies that

P
(∃i ∈ [n] : Di ≥ kn

)≤ 1

log logn
= o(1).

Moreover, since μ has an exponential tail, there exists a constant C > 0 depending on μ such
that kn ≤ C logn. Recall the definition of k0 = max{k : ∑j≥k

√
pk ≥ 1/2}. Our next goal is

to show that, with high probability, the number of i such that Di = k is at most 1
2n

√
pk for

all k0 ≤ k ≤ kn. We consider two possible cases of k as follows:

1. For k such that pk ≤ (n log2 n)−1, Markov’s inequality implies that

(A.16) P
(∣∣{i : Di = k}∣∣≥ 1

)≤ (
log2 n

)−1
.

2. For k such that pk ≥ (n log2 n)−1, we use the following large deviation estimate for
binomials (Corollary 22.9 of [10]): for c > 1,

P
(
Bin(n,p) ≥ cnp

)≤ exp
{−np(c log c + 1 − c)

}
.

This gives that

P

(∣∣{i : Di = k}∣∣≥ 1

2
n
√

pk

)
≤ exp

(
1

2
n
√

pk

(
1 − 2

√
pk + log(2

√
pk)

))≤ exp
(−n1/3).(A.17)

Since kn ≤ C logn, applying a union bound on (A.16), (A.17) tells us that

(A.18) P

(
∃k0 ≤ k ≤ kn : ∣∣{i : Di = k}∣∣≥ 1

2
n
√

pk

)
= o(1).

When μ satisfies k0 < kmax, (A.18) implies that the empirical distribution of {Di : i ∈ [n]} is
stochastically dominated by μ�, since μ�(k) ≥ √

pk by the definition of k0. On the other hand,
if k0 = kmax, the stochastic domination becomes trivial because we only augment the weight
of kmax in μ. Since taking out any n/3 entries from [n] can only increase each probability
mass of the empirical distribution of {Di : i ∈ [n]} by a factor of 3/2, with high probability
we have for each k0 ≤ k, ∣∣{i : Di = k}∣∣≤ 3

4
n
√

pk,

and hence we conclude the second statement of Lemma 4.3. �
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A.2. Proof of Lemma 4.5. In this section we prove Lemma 4.5. We use Lemma 4.3 to
bound the probability of N(v, c logn) having at least two cycles.

PROOF OF LEMMA 4.5. Let v be an arbitrary vertex in G ∼ G(n,μ), fixed before we
explore the matchings of half-edges. We again study the local neighborhood N(v,L) by
exploration process, particularly in terms of the breadth-first search perspective. We start
exploring from the single vertex v, and, at time s, we explore all the vertices of distance s

from v, based on what we explored until time s − 1. Let Vs be the collection of vertices
explored at time s, and set Xs = |Vs |.

We will bound the probability of discovering at least two cycles during the exploration
process until depth L = c logn (c will be determined later). Let μ� be the augmented distri-
bution (Definition 4.2), and let μ̃� := (μ�)′[1,∞) denote its size-biased distribution conditioned

on being inside the interval [1,∞). Also, let T ∼ GW(μ�, μ̃�)L, and let Ys be the number
of vertices in T at depth s. Then, Lemma 4.3 implies that there exists a coupling between
(Xs)s≤L and (Ys)s≤L in such a way that Xs ≤ Ys for all s ≤ L, as long as

∑L
s=0 Xs ≤ n/3.

Define B to be the event that
∑L

s=0 Xs ≤ n/3. On B we clearly have∑
v /∈⋃s≤L Vs

deg(v) ≥ 2n

3
.

Assume that, when moving from Vs to Vs+1, we pair the half-edges adjacent to Vs one by
one. Let Hs be the number of unpaired half-edges adjacent to the vertices in Vs . For s ≤ L

and 1 ≤ i ≤ Hs , let Fs,i be the σ -algebra generated by the exploration process until pairing
the (i − 1)th half-edge. Set Ws,i to be the collection of unpaired half-edges at that moment.
Further, let As,i be the event that the ith half-edge adjacent to Vs is paired with a half-edge
in Ws,i . Then, clearly,

P(As,i | Fs,i ,B) ≤ 3|Ws,i |
2n

.

We bound the size of Ws,i based on the following observations:

1. Since the exploration of half-edges in Hs−1 for s ≥ 1 is done independently step by
step, we can stochastically dominate |Hs | by i.i.d ζj ∼ μ̃� as

|Hs | ≤st

Ys∑
j=1

ζj
d= Ys+1.

2. Since ζ ∼ μ̃� satisfies ζ ≥ 1, we can bound |Ws,i | similarly by

|Ws,i | ≤st

Hs∑
j=1

ζj ≤st

Ys+1∑
j=1

ζj
d= Ys+2.

Therefore, combining above argument gives that
Hs∑
j=1

1As,j
≤st Bin

(
Ys+1,

3Ys+2

2n

)
,

where the LHS is conditioned on the event B . Notice that the LHS of the above inequality
stochastically dominates the number of cycles formulated during the exploration of depth
from s to s + 1. Hence, the number of cycles in N(v,L) conditioned on B is stochastically
dominated by

(A.19) Bin

(
L+1∑
s=1

Ys,
3YL+2

2n

)
.
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Now, we bound the size of Ys to conclude our argument. Let ζ ∼ μ� and ζ ′ ∼ μ̃�, and let
ε,M be the constants that satisfy max{Eeεζ ,Eeεζ ′ } ≤ M . Set K to be a large constant such
that M1/K = eε . Then, we observe that Ys/K

s has an exponential tail for all s, since

E

[
exp

(
ε

Ys

Ks

)]
= E

[
Eζ ′

[
exp

(
ε

ζ ′

Ks

)]Ys−1
]

≤ E
[
MYs−1/K

s ]= E

[
exp

(
ε

Ys−1

Ks−1

)]
,

(A.20)

where the inequality is due to Jensen’s inequality. Iterating this (s − 1)-times gives that the
LHS is bounded by eε . Set c > 0 to be the constant satisfying Kc logn+3 = n1/6. Based on the
above observation, we bound the quantity (A.19) as follows:

P

(
Bin

(
L+1∑
s=1

Ys,
3YL+2

2n

)
≥ 2

)
≤ P

(
Bin

(
n1/5,

3

2
n−4/5

)
≥ 2

)

+ P

(
L+2∑
s=1

Ys ≥ n1/5

)
.

(A.21)

It is easy to see that the first term in the RHS is bounded by o(n−1). The second term can be
bounded using (A.20). Namely,

P

(
L+2∑
s=1

Ys ≥ n1/5

)
≤ e−εn1/30

E

[
exp

(
εK−(L+3)

L+2∑
s=1

Ys

)]

≤ e−εn1/30
E

[
exp

(
εK−(L+3)

L+1∑
s=1

Ys

)
· exp

(
εK−(L+2)YL+1

)]
.

Iterating this (L + 1) more times, we obtain

P

(
L+2∑
s=1

Ys ≥ n1/5

)
≤ e−εn1/30

E

[
exp

(
ε

(
L+2∑
s=1

K−s

))]

≤ exp
(
ε
(
1 − n1/30))= o

(
n−1),

as long as K ≥ 2. Applying our estimates to (A.21), we conclude the desired result. �

A.3. Proof of Proposition 4.9. The proof follows the same technique as Lemma 4.11.

PROOF OF PROPOSITION 4.9. Let s ≥ 2 and L be any integers, and we build up an
inductive argument starting from l = 0.

Let S0 ∼ EGW(μ�, μ̃�;0, s)L, and ρ+ ∈ S+
0 be the parent of ρ as before. Define S0,s,L

to be the first time when (Xt) ∼ CPλ
ρ+(S+

0 ;1ρ) reaches state 0. Similarly, as in Lemmas 3.3

and 4.11 we consider (X̃t ) ∼ C̃P
λ
ρ+;ρ(S+

0 ;1ρ), which is coupled with (Xt) in such a way that
they share the same infection and recovery clocks, except that in (X̃t ), the recovery at ρ is
ignored if at that time there exists an infected vertex other than ρ and ρ+. Letting D ∼ μ� be
D + 3 = deg(ρ;S+

0 ), Tu1, . . . ,TuD
be the i.i.d GW(μ̃�)L−1 subtrees from the children of ρ

and S ′ be the GWC(μ̃�; s)L process that also hangs at ρ, we obtain the following by repeating
the same argument in Lemma 4.11:

(A.22) E[S0,s,L | D] ≤ (
1 + λE[SL−1])D(1 + 2λE[Ss,L]),

where SL−1, Ss,L are as in the statements of Lemmas 3.3 and 4.11, respectively.
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For general l = 0, we first develop the same argument in terms of S ′
l ∼ EGW(μ̃�; l, s)L.

Let S′
l,s,L be the first time when CPλ

ρ+((S ′
l )

+;1ρ) reaches at 0. For D′ ∼ μ̃�, denoting D′ +
1 = deg(ρ; (S ′

l )
+), the subgraphs of descendents from the children of ρ consist of D′ i.i.d

EGW(μ̃�; l − 1, s)L processes. Therefore, repeating the previous reasoning gives that

(A.23) E
[
S′

l,s,L|D′]≤ (
1 + λE

[
S′

l−1,s,L

])D′
.

Finally, the subgraphs of descendents (from children of ρ) of Sl ∼ EGW(μ�, μ̃�; l, s)L for
l ≥ 1 with deg(ρ) = D consist of D i.i.d EGW(μ̃�; l−1, s)L processes. Therefore, we deduce
that Sl,s,L, the first time when CPλ

ρ+(Sl;1ρ) reaches 0, satisfies

(A.24) E[Sl,s,L|D] ≤ (
1 + λE

[
S′

l−1,s,L

])D
.

Here, the law of D follows the conditional distribution of μ� being inside the interval [1,∞).
Combining the three equations (A.22), (A.23) and (A.24), we obtain that there exists a

constant λ0 such that for all λ ≤ λ0, l, s and L,

E[Sl,s,L] ≤ 2e,

by manipulating the constants in the same way as Lemma 4.11. Then, the standard coupling
between contact processes tells us that Rl,s,L ≤st Sl,s,L which concludes the proof. �

A.4. Proof of Lemma 4.12. To establish Lemma 4.12, we first prove the result for
GWC-processes. Let μ̃� be as in Section 4. Namely, μ̃� is the augmented distribution of
μ′[1,∞), where μ′[1,∞) is the size-biased distribution of μ conditioned on being in [1,∞).

LEMMA A.11. Let S ∼ GWC(μ̃�; s)L and νθ
S be the stationary distribution of DPλ,θ

ρ (S)

on the space {0,1}S\{ρ} which is the delayed contact process on S with ρ set to be infected
permanently. Then, there exist constants C,λ0 > 0, depending only on μ, such that for all
λ ≤ λ0 and s,L with s ≥ 2, we have E[νθ

S(0)−1] ≤ 2 for θ = Cλ.

PROOF. Let v, v′ be the two neighbors of ρ in S . Let Sθ
v denote the first time when

DPλ,θ
ρ (S;1v) reaches 0, and define Sθ

v′ analogously. Then, we set Sθ
L = 1

2(Sθ
v + Sθ

v′).
As before, we build up an inductive argument on s. The case s = 2 is essentially the same

as Proposition 3.6, since S ∼ GWC(μ̃�;2)L can be thought of as T +
L with TL ∼ GW(μ̃�)L,

where ρ+ in T +
L is connected with ρ by a double-edge. Thus, the same proof of Proposi-

tion 3.6 can be applied, and we leave the details to the reader.
The general case s ≥ 3 is also similar to the previous arguments of Propositions 4.9 and 3.6,

but there is a subtle difference in comparing the stationary distributions which makes the cur-
rent case more technical. As before, we start with introducing a modified process as follows.

Let v be a neighbor of ρ in S , and (Xt) ∼ DPλ,θ
ρ (S;1v). Define (X̃t ) ∼ D̃P

λ,θ
ρ;v(S;1v) as:

1. (X̃t ) has the same infection and recovery clocks at (Xt).
2. In (X̃t ), any recovery attempt at v is ignored if there exists an infected vertex other than

ρ and v at that moment.

If {ρ, v} infects a (random) neighbor U before v is healed, then (X̃t ) behaves as
DPλ,θ

ρ,v(S;1U) (meaning that we fix both ρ, v to be infected forever), until X̃t comes back

to 1v . Let S̃θ
s,L denote the first time when D̃P

λ,θ
ρ;v(S;1v) becomes 0, and S̃θ be the first time it

takes for DPλ,θ
ρ,v(S;0) to return to 0 after infecting a (random) vertex U other than ρ and v.
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Setting D ∼ μ̃� to be deg(v) = D + 2, the same reasoning as (3.1), (4.1) implies that

E
[
S̃θ

s,L | S]=
∞∑

k=0

(
(D + 2)λ

1 + (D + 2)λ

)k 1

1 + (D + 2)λ

×
[

k + 1

θ(1 + (D + 2)λ)
+ kE

[
S̃θ | S]]

= 1

θ

(
1 + (D + 2)λθE

[
S̃θ | S]).

(A.25)

Now, we take account of the stationary measures to compare the running times. We first
set up some notations as follows:

• ν′
S and π ′

S are the stationary distribution of DPλ,θ
ρ,v(S) and CPλ

ρ,v(S), respectively.
• Tu1, . . . ,TuD

denote the subtrees from the children u1, . . . , uD of v outside the cycle.
Note that these subtrees are i.i.d GW(μ̃�)L−1.

• Set S̃ = S \ ⋃D
i=1 Tui

. DPλ,θ
ρ,v(S̃) denotes the delayed contact process on S̃ that fixes

both ρ, v to be infected permanently which has the depth r(x; S̃) computed with respect to
ρ. In particular, all possible states of DPλ,θ

ρ,v(S̃) have depth r(x) at least one, since v is always
infected.

• νTui
and νS̃ are the stationary distributions of DPλ,θ

v (T +
ui

) and DPλ,θ
ρ,v(S̃), respectively.

Moreover, πTui
and πS̃ denote the stationary distributions of CPλ

v(T +
ui

) and CPλ
ρ,v(S̃), re-

spectively. Also, set

ν⊗
S =

(
D⊗

i=1

νTui

)
⊗ νS̃ .

Note that π ′
S = (

⊗D
i=1 πTui

) ⊗ πS̃ . Keeping in mind that r(0;S) = 1 in DPλ,θ
ρ,v(S), we obtain

by using (3.9) that

(A.26) ν′
S(0) ≥ ν⊗

S (0).

Moreover, observe that if we merge ρ and v in S̃ into a single vertex ρ′, then the resulting
graph S̃ ′ satisfies S̃ ′ ∼ GWC(μ̃�; s − 1)L, and we can consider the natural one-to-one corre-
spondence between the two state spaces {0,1}S̃\{ρ,v} and {0,1}S̃ ′\{ρ′}. Thus, we can regard
them as

� = {0,1}S̃\{ρ,v} = {0,1}S̃ ′\{ρ′}.

For any x ∈ � \ {0}, note that

r(x; S̃) ∈ {
r
(
x; S̃ ′), r(x; S̃ ′)+ 1

}
.

In particular, r(x; S̃) − 1 ≤ r(x; S̃ ′). Further, we have r(0; S̃) = 1 and r(0; S̃ ′) = 0. This
implies that if νS̃ ′ denotes the stationary distribution of DPλ,θ

ρ′ (S̃ ′), then

νS̃ ′(0) ≤ νS̃(0).

Therefore, combining with (A.26), we have

(A.27) ν′
S(0) ≥

(
D∏

i=1

νTui
(0)

)
· νS̃ ′(0).

We can relate the quantities in (A.27) with the running times of the delayed processes. Let
Sθ

L−1 be the first time when DPλ,θ
ρ (Tui

;1ui
) returns to 0. Similarly, let v1, v2 /∈ {ρ, v} be the
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two neighbors of {ρ, v} in S ′, let Sθ
vi

be the first time when DPλ,θ
ρ,v(S ′;1vi

) reaches 0 and

observe that Sθ
s−1,L

d= 1
2(Sθ

v1
+ Sθ

v2
), where the definition of Sθ

s−1,L is given in the beginning
of the proof. Continuing similarly as (4.3), (3.10), we get that

ν′
S(0) = 1

1 + (D + 2)λθE[S̃θ | S] ;

νTui
(0) = 1

1 + λE[Sθ
L−1 | Tui

] ;

νS̃ ′(0) = 1

1 + 2λE[Sθ
s−1,L | S̃] ,

(A.28)

where the additional factor of θ in the first identity comes from the fact that r(0;S) = 1 in
DPλ,θ

ρ,v(S). Plugging these into (A.27) and using (A.25), we obtain that

E
[
Sθ

s,L | D]≤ E
[
S̃θ

s,L | D]≤ 1

θ

(
1 + λE

[
Sθ

L−1
])D(1 + 2λE

[
Sθ

s−1,L

])
.

Arguing similarly as Lemma 4.11 and Proposition 3.6, we deduce that there exist constants
C,λ0 > 0, depending on μ, such that for all λ ≤ λ0 and s,L with s ≥ 2, E[Sθ

s,L] ≤ 3/θ for
θ = Cλ. Setting C to satisfy C ≥ 3 and applying this to the right-hand side of the above
equation (which is written in terms of (s − 1,L)) gives the desired conclusion. �

PROOF OF LEMMA 4.12. To finish the proof of Lemma 4.12, we argue similarly as
Proposition 4.9. Namely, we establish the result for EGW(μ̃�; l, s)L and then extend it to the
general case EGW(μ�, μ̃�; l, s)L. In both steps we appeal to the same technique as Proposi-
tion 3.6 which is simpler than what is done here for the GWC-processes. We omit the details
due to similarity. �

A.5. Proof of Lemma 7.1, Items 1–3. Item 1 follows from the definition of Gn that its
edges are obtained from a uniformly chosen perfect matching of the half-edges.

For Item 2, choose j large enough such that

δ := ED∼μD1D≥2j+1 ≤ ε/4.

For each vertex v ∈ Gn, consider the random variable

Xv := degGn
(v)1degGn

(v)≥2j+1.

These random variables are independent with mean δ and variance bounded by the second
moment of μ. By Chebyshev’s inequality, whp∑

v∈Gn

Xv ≤ εn/2.

Thus, whp, the total number of removed half-edges, is at most 2
∑

v∈Gn
Xv ≤ εn, and so is

the number of removed vertices. Thus, n̄ ≥ (1 − ε)n. Applying Chernoff’s inequality to the
random variables X̄v := degGn

(v)1degGn
(v)≤2j , we obtain that whp,∑

v∈Gn

X̄v ∈ (1 − ε,1 + ε)nd.

Combining this with the fact that the total number of deleted half-edges is at most εnd whp,
we get

(1 − 2ε)nd ≤ ∑
v∈Gn

X̄v − εn ≤ d1 + · · · + dn̄ ≤ ∑
v∈Gn

X̄v ≤ (1 + ε)nd

completing the proof of Item 2.
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To prove Item 3, let ε′ = min{ε, ε(b − 1)}. Let k0 be a large constant such that for all
h ≥ k0, the branching rate of μ[0,h] ∈ (1 − ε′,1 + ε′)b, namely

ED∼μD(D − 1)10≤D≤h

ED∼μD10≤D≤h

∈ (
1 − ε′,1 + ε′)b,(A.29)

ED∼μD10≤D≤k0 ∈ (
1 − ε′,1 + ε′)d, and

(A.30)

ED∼μD210≤D≤k0 ≥ 2

ε′ED∼μD21k0<D.

Let k ≥ k0 be such that

(A.31) ED∼μD21k0<D≤k ≥ 2

ε′ED∼μD21k<D,

which k exists because of the boundedness of ED∼μD2. Note that (A.31) implies that

(A.32) ED∼μ(D1k0<D≤k) ≥ 2

ε′ED∼μ(D1k<D).

We now show that for all constant j ≥ k, b̄ ∈ (1 − ε′,1 + ε′)b whp. Let El and Ēl be the
number of half-edges attached to vertices of degree l in Gn and Ḡn, respectively. We need to
show that whp

(A.33) b̄ =
∑2j

l=0(l − 1)Ēl∑2j
l=0 Ēl

∈ (1 − ε,1 + ε)b.

Since j is a constant and El = l
∑

v∈Gn
1degGn

(v)=l , by Chernoff’s inequality, whp we have

2j∑
l=0

El ∈ (
1 − ε′,1 + ε′) 2j∑

l=0

lμ(l)n and

2j∑
l=0

(l − 1)El ∈ (
1 − ε′,1 + ε′) 2j∑

l=0

l(l − 1)μ(l)n.

(A.34)

This together with (A.29) and (A.30) give∑2j
l=0(l − 1)El∑2j

l=0 El

∈ (
1 − 3ε′,1 + 3ε′)b and

2j∑
l=0

lμ(l) ∈ (
1 − ε′,1 + ε′)d.

Since the total number of removed half-edges is at most ε′nd whp,

2j∑
l=0

Ēl ∈
2j∑
l=0

El + (−ε′,0
)
nd ⊂ (

1 − 2ε′,1 + 2ε′) 2j∑
l=0

El.

From this and (A.34), (A.33) reduces to proving that

2j∑
l=0

lĒl ∈ (
1 − ε′,1 + ε′) 2j∑

l=0

lEl.

The upper bound is straightforward. To prove the lower bound, let Nl be the number of
vertices of degree l in Gn. Since the number of deleted half-edges is at most

∑∞
l=2j+1 lNl ,



EPIDEMICS ON RANDOM GRAPHS 285

we have by Markov’s inequality, (A.32) and Chernoff’s inequality, whp

2j∑
l=0

(El − Ēl) ≤
∞∑

l=2j+1

lNl ≤ 1

ε′E
∞∑

l=2j+1

lNl

≤ 1

2
E

2j∑
l=k0+1

lNl ≤
2j∑

l=k0+1

lNl.

(A.35)

Thus, we have

(A.36)
2j∑
l=0

l(El − Ēl) ≤
2j∑

l=k0+1

l2Nl ≤ ε′
2j∑
l=0

l2Nl = ε′
2j∑
l=0

lEl,

where the first inequality follows from (A.35) and the fact that the left-hand side of (A.36)
is largest when the deleted half-edges counted in

∑2j
l=0(El − Ēl) are drawn from vertices of

highest degrees possible and the second inequality follows from the Chernoff inequality and
(A.30). That completes the proof of (A.33) and hence Item 3. �
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