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Probabilistic hurricane storm surge forecasting using a high-fidelity
model has been considered impractical due to the overwhelming computa-
tional expense to run thousands of simulations. This article demonstrates that
modern statistical tools enable good forecasting performance using a small
number of carefully chosen simulations. This article offers algorithms that
quickly handle the massive output of a surge model while addressing the
missing data at unsubmerged locations. Also included is a new optimal de-
sign criterion for selecting simulations that accounts for the log transform
required to statistically model surge data. Hurricane Michael (2018) is used
as a testbed for this investigation and provides evidence for the approach’s
efficacy in comparison to the existing probabilistic surge forecast method.

1. Introduction. Major hurricanes such as 2005’s Katrina, 2012’s Sandy and 2017’s
Irma produced tens of billions of dollars in damages. A majority of the damage comes from
coastal flooding as high wind speeds from tropical cyclones push water from the ocean and
coastal estuaries up onto land (Resio and Westerink (2008)). This phenomenon, called storm
surge, is the rise of water associated with coastal flooding caused by storms such as tropical
cyclones. It can reach elevations of several meters above sea level and can extend over several
tens of kilometers. Storm surge is driven by tropical cyclone characteristics like location,
heading, speed, intensity and size.

This article will focus on forecasting the surge from an incoming storm. Predicting coastal
storm surge as a storm nears landfall is critical to improve evacuation management and can
be used to evaluate damage for recovery (Walker et al. (2018)). The interface between coastal
geometry and a storm is the key factor for predicting coastal flooding. In shallow areas the
seafloor acts as a ramp for the wind-driven ocean currents to flow to higher elevations. Fun-
neling land features can further amplify surges. Elevated overland areas like barrier islands
can partially block lesser storm surges but may be overtopped by larger ones, substantially
changing flooding patterns (Bilskie et al. (2015)). A storm landfalling slightly to the east
would have a radically different surge profile compared to a storm landfalling slightly to the
west because the winds on either side of a storm’s center are directed opposite of each other.
Today, computer models are considered the best way to understand and predict the complex
interactions between coastal geometry and a storm.

1.1. Computer models for forecasting storm surge. Storm surge is simulated by solving
a set of partial differential equations known as the shallow water equations to yield water ele-
vation and velocity in space and time (Bode and Hardy (1997), Resio and Westerink (2008)).
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A mesh of nodes, which are points in geographic space, is constructed to capture the shape
of the seafloor and overland topography. The partial differential equations are then solved on
the mesh and integrated forward in time over several days for a single storm simulation.

When using surge simulations for forecasting, the substantial uncertainty in meteorologi-
cal forecast of the storm itself (Cangialosi (2019)) necessitates simulating multiple possible
storm variations. Current surge forecasting in the U.S. employs a numerical model that can be
run cheaply to permit thousands of simulations: The U.S. National Hurricane Center (NHC)
publishes a probabilistic surge forecast product called P-Surge (Taylor and Glahn (2008))
that is based on the SLOSH storm surge model (Jelesnianski (1966), Jelesnianski, Chen and
Shaffer (1992)). SLOSH is used partly because of its low computational expense; a single
simulation can be run on a laptop in about one hour. SLOSH’s speed and numerics were cho-
sen given the computational capabilities of the time and have been maintained to provide a
reliable and efficient model.

SLOSH’s computational speed comes from a lower mesh resolution and simpler physics,
such as neglecting nonlinear advection terms in the momentum equations. Our study uses the
ADCIRC model (Westerink et al. (2008)) which, including differences in mesh resolution,
can be over 100 times more computationally expensive than SLOSH. In addition to its more
realistic physics, ADCIRC’s numerics allow more flexible meshes that can resolve small fea-
tures, such as coastal inlets and elevated highways, that act as crucial pathways and barriers
to flooding (Bilskie et al. (2015)) while also covering entire ocean basins to reproduce the
large-scale ocean response to storm forcing (Morey et al. (2006)). High-fidelity verification
and calibration studies on ADCIRC indicate model errors are typically below half a meter
(Bilskie et al. (2016), Dietrich et al. (2011)), though errors in forecasting are expected to be
larger due to forecast uncertainty (Cyriac et al. (2018)). To manage the added computational
cost, ADCIRC scales efficiently in parallel from one to thousands of processors on supercom-
puting systems (Tanaka et al. (2011)). Despite the advantages in accuracy of ADCIRC over
SLOSH, operational forecasting using a computationally demanding model such as ADCIRC
remains challenging. A generic (and exhaustive) thousand-member ensemble using the AD-
CIRC model for our case study would require on the order of 100,000 dedicated computer
cores in a high performance computing configuration to forecast a single geographic region.

1.2. Setting and approach. This article explains an approach to forecasting peak storm
surge using the high-fidelity ADCIRC model with a small number of carefully chosen runs
per forecast period. Using only a small number of high-fidelity model runs is crucial to pro-
vide time-sensitive information. Our proposed approach uses only 10–30 runs every 12 hours.
It does this by using statistical tools to predict water levels for unsimulated storms, borrow
information across forecast periods and intelligently choose storms to be run. Our goal was
to construct an approach with less than one hour of overhead computation using a standard
desktop computer which is time aside from the ADCIRC simulation that cannot be easily
parallelized.

The input to our process is the NHC forecasts, which are given every six hours and con-
sist of information at future intervals on location of the storm, the maximum sustained wind
speed and directional isotach radii from storm center. These forecasts typically predict storm
states for 12 hr, 24 hr, 36 hr, 48 hr, 72 hr, 96 hr and 120 hr from the time of forecast if the
tropical cyclone exists through that time period. A raw NHC storm forecast thus consists of
over a hundred values representing storm properties. Instead of examining all of these values,
we focused on the storm properties when the center of the storm first makes landfall because
these determine the bulk of the peak surge. We use a six-dimensional characterization of the
storms at landfall: latitude (LAT), longitude (LONG), heading (H), forward speed (FS), max-
imum wind speed (MWS) and radius of 34 kt isotach (R34). This characterization is unique
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FIG. 1. Hurricane forecast examples for our case study described in Section 1.4. The top panels are the NHC
forecasts, and the bottom panels are hypothetical modified storms generated by our procedure described in Sup-
plement A when the landfall characteristics are set to the (unknown at the time) actual landfall characteristics.
The thick line represents the track of the center of the hurricane. The thin lines in circular shapes are the 12 hr
increments of the 64 kt, 50 kt and 34 kt isotach lines, respectively (inward to outward). The numbers represent the
maximum wind speed.

to this paper, but it was anticipated to provide a good summary of storm properties relevant
to storm surge. It also shares similarities with existing studies (Toro et al. (2010)). Once the
landfall characteristics are specified or changed, the remaining aspects of the forecast are
then filled based on current NHC forecast. Figure 1 illustrates the results of this operation for
our case study. Using the historical error metrics published by the NHC, we also construct
a probabilistic forecast of the storm’s landfall characteristics. The derivation and procedure
for drawing from the forecasted distribution of the storm’s landfall characteristics is not the
focus of this article, but details on the new procedure are given in Supplement A (Plumlee et
al. (2021)).

Our approach involves existing and new computer model emulation and designed com-
puter experiment tools (Currin et al. (1991), Sacks et al. (1989), Santner, Williams and Notz
(2003)). The structure of our algorithm is to select computer experiments at each forecast
period and then run those storms through the ADCIRC simulator. A fast emulator of the AD-
CIRC simulator is then built using this data set which provides an ability to integrate over
thousands of storms without running them through the expensive ADCIRC simulator. The
emulator is constructed using Gaussian process inference, also widely used in geostatistics
(e.g., Cressie (1993)). The Gaussian process is used here as a statistical model of the surge
response to predict at uninvestigated storms, not in a geographic sense to interpolate between
nodes.

1.3. Contributions summary. The overarching goal of this project is demonstrating the
effectiveness of statistical computer experiment inference for forecasting storm surge of an
approaching tropical cyclone. Emulation for water level modelling has been considered pre-
viously (Parker et al. (2019), Rohmer and Idier (2012)) for forecasting surge with a fixed
dataset (Jia and Taflanidis (2013), Jia et al. (2016), Taflanidis et al. (2012)). However, there
appears to be no existing surge forecasting tool that both employs emulation techniques and
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adaptively selects new storms for sequential forecasting. We find that the integrative method-
ology described in this article results in significantly smaller predictive errors.

Several authors have applied data assimilation-based approaches to forecast storm surge
(Altaf et al. (2014), Peng and Xie (2006)), though such efforts are functionally different from
what we do here. Assimilation approaches leverage the covariance structure between ob-
served and modeled water levels to produce a probabilistic prediction. They lack a mechanism
to account for forecast uncertainties known to exist in the NHC storm forecast. Further, it
is unclear whether such assimilation-based methods can provide useful information early
enough to be of practical use (Asher et al. (2019)). This is because observations of surge,
when the storm is far from landfall, are nearly uncorrelated with surge when the storm makes
landfall, thus there is little information gained during assimilation in our forecast time period.

The novel contributions of this research can be broken into three categories. The first is
the production of speedy and accurate statistical emulator of a deterministic computer model
during forecasting. This required an agglomeration of tools but centered around parallel mod-
eling and imputation. There are roughly half a million nodes of interest where peak surge
needs to be simultaneously predicted. This can cause our computational overhead to swell if
not carefully addressed (Chang et al. (2014), Gu and Berger (2016), Higdon et al. (2008)).
We find in this setting that the partial parallel approach (Gu and Berger (2016)) is superior
to a dimension reduction approach, such as that found in Chang et al. (2014). Some new jus-
tifications for a partial parallel approach from a frequentist perspective are in Supplement B
(Plumlee et al. (2021)). The peak surges at nodes which were never below water on a given
run are undefined physically and marked as missing in the software. This issue can consume
our entire computational overhead if not consciously handled. A surface imputation approach
that maintains interpolative properties proves effective.

Our second contribution is to enable the reuse of ADCIRC output from prior forecast
periods in the current forecast. The simulation model effectively changes as new forecast in-
formation is given, even when the input vector of landfall properties remains the same. The
bottom panels of Figure 1 illustrate this fact, where the same storm landfall characteristics
produced slightly different storms because of alterations to other portions of the forecast out-
side of the landfall characteristics. This is because our approach used the NHC forecast and
the current storm track to fill in the additional storm aspects aside from the landfall charac-
teristics. One example of this effect is present in Figure 1, where at 72 and 48 hours out the
NHC storm forecast diminished into landfall but at 24 hours out the NHC storm forecast re-
versed that trend and intensified into landfall. The bottom panels contain our modified NHC
storm forecasts, where, even though all modified storms have the same landfall characteris-
tics, the progression borrowed the diminishing or intensifying trend from the current NHC
forecast. This differs from the emulation problem of computer models of dynamics (Conti
et al. (2009)) and from computer models where the output given is time dependent (Liu and
West (2009), Mak et al. (2018)). To account for this, a unique parameterization is used where
the input vector includes the forecast time. Then, during prediction, the future landfall time
is drawn and used in the input vector, correctly accounting for the future uncertainty induced
by changes to the NHC forecast aside from landfall characteristics.

Lastly, our findings are that log-transformed surge data can be fit to a Gaussian process
which has previously been used in conjunction with Gaussian process inference. Cressie
(1990) dates this transform to the origin of kriging. However, this transform implies that the
classical designed experiment criterion no longer functions, and a new criterion was needed.
Designed experimentation on computer models in a sequential setting has been investigated in
other contexts (Bect et al. (2012), Gramacy and Lee (2009), Ranjan, Bingham and Michailidis
(2008)). In the practical context of storm surge prediction, we quantify the relative value of
designed experimentation and find that the adaptive method significantly outperforms random
draws of the storm characteristics from the forecast distribution.
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TABLE 1
ADCIRC data collected and core hours used the case study described in Section 1.4. The marking ∗ on round 0

core-hours indicates the core hours are inflated due to cold starts of the ADCIRC model

Experimental data Verification data

Round # NHC advisory Approx. hours until landfall Runs Core hours Runs Core hours

0 07 72 30 23,870∗ 0 0
1 09 60 30 12,569 0 0
2 11 48 20 6141 0 0
3 13 36 20 4976 20 5161
4 15 24 10 2077 10 1818
5 17 12 10 1219 10 1195
Total: 120 50,854 40 8174

1.4. Michael case study. A case study was needed to generate an efficacy evaluation of
our approach. The computational demands of the ADCIRC model limited us to a single storm
for this evaluation. We chose to study 2018’s Hurricane Michael. Michael was a powerful but
short-lived hurricane that caused 16 direct fatalities and $25 billion in damages in the U.S. as
it made landfall in the Florida Panhandle (Beven, Berg and Hagen (2019)). Michael’s forecast
error was unusual. Forecast location errors were less than half the historical average, but
forecast intensity errors were more than triple the historical average with forecasted intensity
persistently below actual. This can be seen in Figure 1: the storm forecasts intensify closer to
landfall.

In our study we reproduced the knowledge of Michael at select forecast intervals, which
we call rounds, and let our algorithm evolve to meet the modeling demands observed at
each interval. The computational cost breakdown of our case study using the configuration
of ADCIRC from Bilskie, Hagen and Medeiros (2019) is provided in Table 1. Our attempt
required a limited number of runs at prediction periods spaced 12 hours apart, doubling the
NHC’s six hour typical window to simplify this pilot study. We gave ourselves much more
than 12 hours to build and test the statistical algorithm but kept the total run time of the
algorithm within our one hour constraint.

Table 1 lists our case study’s forecast periods, sample size and simulation computational
cost. The hours until landfall approximate to within half an hour of actual landfall (Beven,
Berg and Hagen (2019)). The number of runs per forecast period decreased in size as our
accuracy goals appeared achievable with fewer runs. The computational cost per run is also
decreasing as the ADCIRC simulation time decreases. The last three rounds of simulation
included random simulations as verification data that we used to measure the accuracy of our
emulator and evaluate designed experimentation in this setting compared to random experi-
mentation.

1.5. Structure of this article. The remainder of the article is structured as follows. Sec-
tion 2 describes the notation, and Section 3 describes our general statistical model, fitting
details and our prediction algorithm for surge forecasting. Section 4 describes the new op-
timal experimental design approach to select each round’s storms. Sections 5 and 6 give
numerical analysis to evaluate the overall performance of the approach. The article offers
some concluding remarks in Section 7.

2. Setting and data notation. In general terminology, our goal is to produce a prob-
abilistic forecast of water level using a limited number runs from an expensive computer
model of storm surge that changes based on the time at which it is evaluated. Toward this
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goal, we designed an emulator of the computer model as well as a sequential, optimal de-
signed experiment tool that selects inputs to the computer model while accounting for the
current forecast distribution. A more exhaustive description of the overall approach is located
in Supplement A.

At some point in time t , our computer model, given landfall characteristics x, is a length
M vector of peak surge labeled f (x, t) with numerical values at wetted nodes and missing
values for unwetted nodes. As stated in the Introduction, x, a landfall characteristic, is a
six-dimensional vector of storm latitude, longitude, heading, forward speed, maximum wind
speed and 34 kt isotach radius at landfall. We want to emphasize that the t in f (x, t) refers to
the time at which the model is evaluated because, depending on when the model is evaluated,
the response will reflect some underlying properties of the current NHC forecast outside of
x, as detailed in Section 1. After some time we will have generated surge data from n storms
at (x1, t1), . . . , (xn, tn) through ADCIRC simulations, where xi is a vector of landfall char-
acteristics for run i and ti is the time of run i. Simulation outputs are stored and labeled as
f (xi, ti), a column vector of length M for all nodes of interest. Let fj (xi, ti) be peak water
level for the j th node of the ith run. The geospatial locations of the M nodes are labeled
s1, . . . , sM . We chose M as roughly half a million nodes—the computer model domain con-
tains roughly two million nodes—covering overland areas and coastal waters with ground
elevation at least −4 meters (i.e., four meters below sea level) in the study region.

Hurricane forecasts have uncertainty associated with prediction errors that decrease as the
landfall draws near. The storm forecast distribution for the landfall characteristics reflecting
such uncertainty at time t is labeled as �(t). This distribution is considered an input to our
approach, specified by the NHC with some distributional assumptions pulled from historical
accuracy measures. Moreover, the landfall time of the hurricane is unknown but can be drawn.
The details of this process is in Supplement A. A random vector of landfall characteristics
and landfall time drawn from this distribution is labeled (x̃, τ̃ ), and the surge response, given
this random vector, is f (x̃, τ̃ ), where τ is used as the landfall time to distinguish it from t ,
the current time point.

Our statistical algorithm will take in the ADCIRC simulation data and the forecast distri-
bution and return two items at an arbitrary time point t . The first item is a statistical emulator
for ADCIRC simulation at time t . Due to the limited number of available runs, f (x, τ ) is
assigned a predictive distribution through statistical inference for any (x, τ ) pair. To match
current reporting practices at the NHC, we are only interested in the marginal distribution
of each element in the vector f (x, τ ). The second item we return is sequential experiments
which are new storms that can be investigated at time t . That is, if we have budget for q

storms, we want to choose (xn+1, tn+1), . . . , (xn+q, tn+q). We note that tn+1 = · · · = tn+q = t

by construction; thus, our decision is the choice of xn+1, . . . , xn+q using the past data and the
current storm forecast distribution �(t). We do this by optimizing a design criterion that con-
siders both the forecast distribution and the accuracy of the statistical estimation of f (x̃, τ̃ ).

We presume to have some initial data collected at (x1,0), . . . , (xn,0). For our case study
these landfall characteristics drawn were a Latin hypercube design of size 30. The landfall
characteristic ranges were chosen to roughly cover the southeast U.S. Gulf Coast with LONG
between −88.5 and −83.5 degrees, corresponding to the extent of the numerical model do-
main. The remaining landfall characteristics’ ranges were roughly based on the observed
ranges from historical hurricanes in the area and the current storm forecast: FS:[3 kts,15 kts],
H:[−10 deg,40 deg], MWS:[60 kts,160 kts] and R34:[75 nm,200 nm].

3. Statistical modeling and forecasting. This section explains our overall statistical
modeling approach using collected data. This includes the dry node imputation, statistical
inference and probabilistic forecasting.
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3.1. Imputation for spatial surge patterns. We require fast simultaneous prediction at M

(∼ half a million) nodes. This eliminates a computation strategy where a prediction algorithm
is used separately at each node. One simple approach that yields fast computation is to treat
each node as independent with some shared parameters to allow for shared computation (Gu
and Berger (2016)). However, surge data poses an important obstacle to the use of indepen-
dent predictions: peak surge does not exist at some nodes for some runs. The data are missing
not because of randomness nor computation error but due to the underlying physical system
of interest. If a node is dry throughout the simulation, the peak surge is reported as a missing
value. For an inland node, storm surge occurs only when the surge height is larger than the
node’s ground elevation. Moreover, higher ground near the ocean can block storm surge and
create dry nodes behind it. Two approaches are to set these missing values to zero or to the
ground elevation at the corresponding location. The former can lead to a large gap between
simulated surges and the imposed zero values. The latter introduces an undesirable depen-
dence on the ground elevation. Both of these methods lead to discarding the information
from nearby nodes that can be used to impute reasonable surge values on dry nodes.

Our research found that within-surface imputation was an adequate strategy to surrogate
the missing values in the sense that the overall forecasts are satisfactory and the prediction
time is within the one hour time limit. The more sophisticated existing alternatives would not
function well in our setting. For example, missing values in remote sensing problems are often
imputed based on observations at both the same and different time steps (see, e.g., Cressie,
Shi and Kang (2010)). Hung, Joseph and Melkote (2015) used a similar philosophy on high-
dimensional computer model output with irregular grids. Transferring these ideas to the surge
setting implies a dry node should be imputed based on runs where the same node is wet. One
concern in using these type of algorithms in our setting is the intensive computational burden
they would impose. Aside from the computational concern, storm surge data also involves
complex missingness patterns that differ from these cases. For many inland locations at high
elevation, the water level is missing unless the surge is extremely high. Storms where a node
is wetted do not always provide useful information for storms where the water level is lower.

Our imputation approach can be interpreted as compositing the original surge function
with the imputation scheme. Thus the imputation algorithm can be chosen without regard
for the statistical approach we leverage for emulation. The imputation should not change the
wet nodes’ peak surges. Also, the imputation approach should be continuous, or nearly so,
in the following sense: if a node is almost wetted, the imputed numeric value is very close
to when the node is nearly dry. Let yi = f (xi, ti) be the vector of imputed data for storm
generated with (xi, ti) and yij = fj (xi, ti) when the j th node is wetted. Our chosen within-
surface imputation approach is inverse distance weighting interpolation (Shepard (1968)).
Let zij denote the imputed value. Thus, if yij is wet, then zij = yij , and if yij is dry,

zik =
∑

j where fj (xi ,ti ) is wet yij‖sj − sk‖−1∑
j where fj (xi ,ti ) is wet ‖sj − sk‖−1 ,

where ‖s − s′‖ is the distance between the geographic locations s and s′. The only mod-
ification was that the surge level was capped at the elevation of the node where a node is
dry. This modification ensures that the presence of surge from the ADCIRC model matches
the event when the imputed water level is larger than the elevation. That is, when a node is
dry, the water level is less than or equal to ground elevation. When a node is wet, the water
level is greater than ground elevation. The rationale for inverse distance weighting is that it is
computationally fast and can impute an entire mesh’s missing values in under a minute for a
single surface. More discussions on this point are in the last section of this article.
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3.2. A fast, log-transformed Gaussian process model. After imputation filled in the miss-
ing values, we opted for an approach termed as “partially parallel” by Gu and Berger (2016).
This resulted in significant computational savings. Initially in our study, a Gaussian process
emulator failed in providing accurate prediction for simulated surges from ADCIRC. The so-
lution to the problem was to simply transform the data using a monotonic transform. While
the full Box–Cox family was available (Sakia (1992)), our approach was to simply check if
the two most popular transforms, square-root and log, would work, similar to the strategy of
Johnson et al. (2018). We found that a log-transform was superior. While this fix alone is not
particularly novel (Cressie (1990)), it is worth acknowledging the degree to which it resolved
the problems in our case. The log-transformed Gaussian process model resulted in reasonable
predictive models for the marginal distribution at each node.

To simplify notation in this section, let g(ξ) be the imputed value at ξ = (x, t), meaning
that the input to the model can be represented by ξ1, . . . , ξn. Our statistical model is

(3.1) log
(
gj (·)) iid∼ Gaussian process

(
μj ,σ

2
j r(·, ·;φ)

)
for j = 1, . . . ,M,

where μj and σ 2
j are constants associated with the j th node and r is a correlation function

depending on correlation parameters φ. In terms of the ADCIRC model, the coastal geogra-
phy implies that nodes can differ in terms of the average surge and the variation in the surge;
thus, it is important that each node be endowed with its own mean and variance parameters,
as in (3.1). However, for the correlation function it makes sense to choose the same struc-
ture and parameters for all nodes to ease the computational burden. If we did not do this, we
would have to invert hundreds of thousands of correlation matrices which by round 5 grow
to size 120 × 120. If we did this inversion 100 times during optimization, this would ex-
pend approximately four times our entire overhead computational budget on matrix inversion
alone. By using the same correlation structure and parameter φ, the speedup is massive and
the fitting process takes less than five minutes on any round. We opted for a custom nonsep-
arable power exponential correlation function; the separable variant was used by Welch et
al. (1992). Supplement B describes the specific correlation structure used for our case study
alongside a brief justification.

Let Z = log((z1, . . . , zn)
T) be an n × M matrix computed elementwise. The symbol T

represents transpose. Following known derivations, our maximum likelihood vectors are

μ̂(φ) =
⎛
⎜⎝

μ̂1(φ)
...

μ̂M(φ)

⎞
⎟⎠ = ZTR(φ)−1e

eTR(φ)−1e
and

σ̂ 2(φ) =

⎛
⎜⎜⎝

σ̂ 2
1 (φ)
...

σ̂ 2
M(φ)

⎞
⎟⎟⎠ = 1

n
diag

((
Z − eμ̂(φ)T)T

R(φ)−1(
Z − eμ̂(φ)T))

,

where e is a length n vector of 1s, R(φ) is the n by n matrix

R(φ) =
⎛
⎜⎝

r(ξ1, ξ1;φ) · · · r(ξ1, ξn;φ)
... · · · ...

r(ξn, ξ1;φ) · · · r(ξn, ξn;φ)

⎞
⎟⎠

and the function diag returns a column vector of the diagonal elements of the matrix. The
maximum likelihood estimate for the correlation parameters is then found by

φ̂ = argmin
φ

log
(
determinant

(
R(φ)

)) + n

M

M∑
j=1

log σ̂ 2
j (φ).

Supplement B gives additional computational details on how we found φ̂ in our case study.
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We use a predictive distribution for the log of the surge at a new set of storm characteristics
ξ , log(g(ξ)), as a vector of normal distributions with vector of means

m̂(ξ) = μ̂(φ̂) + (
Z − eμ̂(φ)T)T

R(φ̂)−1

⎛
⎜⎜⎝

r(ξ, ξ1; φ̂)
...

r(ξ, ξn; φ̂)

⎞
⎟⎟⎠

and a vector of variances

v̂(ξ) =

⎛
⎜⎜⎝r(ξ, ξ ; φ̂) −

(
r(ξ, ξ1; φ̂) · · · r(ξ, ξn; φ̂)

)
R(φ̂)−1

⎛
⎜⎜⎝

r(ξ, ξ1; φ̂)
...

r(ξ, ξn; φ̂)

⎞
⎟⎟⎠

⎞
⎟⎟⎠ σ̂ 2(φ̂).

These two functions, m̂ and v̂, are the conditional mean and variance of log(g(ξ)) based on
all available data and the maximum likelihood estimates for the Gaussian process parameters.
This predictive distribution ignores the estimation uncertainty in the parameters, but this is a
fast approximation compared to other popular, but slower, methods like Markov chain Monte
Carlo. Given a landfall storm characteristic vector ξ , the mean of the predictive distribution
of g(ξ), often directly referred to as the emulator, is given as follows by a property of the
log-normal distribution:

ĝ(ξ) = exp
(
m̂(ξ) + v̂(ξ)/2

)
.

The function exp(m̂(ξ)) represents our predictive median. Interestingly, ĝ(ξ) is inflated be-
yond the median at uncertain storm characteristics because of the log-transform used in our
statistical model.

3.3. Forecasting technique. Our forecast distribution for the imputed maximum water
level at node j at time t is then

(3.2) Log-Normal
(
m̂j (x̃, τ̃ ), v̂j (x̃, τ̃ )

)
, (x̃, τ̃ ) ∼ �(t),

where �(t) is the forecast distribution at time t . This implies the forecast for f (x, t), which
should have dry values indicated, should be a truncated log-normal distribution, where the
value is marked dry when the prediction is below that node’s elevation. This can be quickly
simulated without rerunning the ARCIRC model. The current NHC surge forecast provides
the 90% quantile, so we used N = 3500 samples from the forecast distribution at time t

to ensure an adequate estimation of this quantile via a large enough sample size. We label
our draws of landfall characteristics as (x̃1, τ̃1), . . . , (x̃N , τ̃N). It is important to note that
these are not the same as (x1, t1), . . . , (xn, tn) which are run through the ADCIRC simulator.
While (x̃1, τ̃1), . . . , (x̃N , τ̃N) are chosen via random sampling, (x1, t1), . . . , (xn, tn) are more
carefully chosen, as described in the next section. Moreover, t1, . . . , tn are forecast times,
whereas τ̃1, . . . , τ̃N are storm landfall times.

The usage of forecasted and actual landfall time is a unique and important component in
prediction that departs from existing studies of time and computer emulation (Conti et al.
(2009), Mak et al. (2018)). Forecast time, not landfall time, is the major driver of discrep-
ancy in surge model output. If ignored, this could break our Gaussian process inference be-
cause a storm with the same landfall characteristics could return two different outputs. While
we could treat each response as having random error, sometimes refereed to as a nugget
(Gramacy and Lee (2012)), we opted for a procedure that reflects the actual generation of the
discrepancy. The previous data include which forecast time the surge measurement is based,
t1, . . . , tn. However, the predictive distribution is based on the random landfall occurrence
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time τ̃ . When we are far from landfall, thus τ̃ is far from tn, the model output is less corre-
lated with predictions, and the predictive distribution gets more diffuse. As forecasted landfall
τ̃ draws near to tn, the model outputs and predictions become more correlated. This mirrors
the intuitive effect of nonlandfall information that is borrowed from NHC forecast: far from
landfall, many things can aggregate for large effects, and we should have a broader predictive
distribution; closer to landfall, these extraneous forecast properties are closely aligned with
the actual storm and should have a relatively minor effect. This is automatically tuned during
maximum likelihood estimation by estimating the correlation parameter corresponding to t .

4. Sequential sampling using optimal designs. In our case study the emulator using
our initial data from 30 runs was not sufficient to end the statistical learning process. This
section describes a new sequential sampling strategy for choosing storm landfall characteris-
tics using optimal designed experiments. We will select a batch of experiments of size q to be
run through the ADCIRC simulator in parallel. This section discusses how the log-transform
used in our statistical model impacts the typical optimal design criterion. Aside from this
transformation issue, our problem differs from a static problem where the goal is to improve
the emulator in a fixed environment, as done in Loeppky, Moore and Williams (2010) and
Vernon, Goldstein and Bower (2014). Two important changes happen each round as 12 hours
of wall-clock time passes and the storm marches toward landfall. First, the distribution of the
landfall storm characteristics becomes more concentrated around the unknown true storm’s
landfall characteristics, reducing the need to improve the emulator globally. Second, the sim-
ulation model changes as a function of the landfall characteristics each round, as detailed in
Section 1. These two changes affect the resulting designs and overall performance but not the
optimal design criterion we introduce.

We presume our statistical model is fitted using the previous data. Without loss of general-
ity, we refer to these as (x1, t1) . . . , (xn, tn), acknowledging that n increases after each round
of data collection. We then invert the fitted model by optimizing a criterion to find the best
possible selection of q new landfall characteristics, between 10 and 30, to investigate. One
widely used model-based criterion for computer experiments comes from Sacks et al. (1989).
This takes a Gaussian process model, with no transform applied, and evaluates designs based
on the integrated mean squared error (IMSE), given by

(4.1) IMSE = 1

MN

M∑
j=1

N∑
i=1

v̂
prop
j (x̃i , τ̃i).

The word “integrated” is used here in place of the more obvious “average” to match historical
notation. The variance v̂

prop
j is the variance of log(fj (x̃, τ̃ )) conditional on the data up to this

point, the parameter estimates at this time as well as on both the choice of the new q points
and the previously used storms. For us, it is given by

v̂
prop
j (x, τ ) = σ̂ 2

j (φ̂)

⎛
⎝r

(
(x, τ ), (x, τ ); φ̂) − h(x, τ )T

(
R H

H T G

)−1

h(x, τ )

⎞
⎠ ,

where

h(x, τ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r
(
(x, τ ), (x1, t1); φ̂)

...

r
(
(x, τ ), (xn, tn); φ̂)

r
(
(x, τ ), (xn+1, t); φ̂)

...

r
(
(x, τ ), (xn+q, t); φ̂)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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H =

⎛
⎜⎜⎝

r
(
(x1, t1), (xn+1, t); φ̂) · · · r

(
(x1, t1), (xn+q, t); φ̂)

...

r
(
(xn, tn), (xn+1, t); φ̂) · · · r

(
(xn, tn), (xn+q, t); φ̂)

⎞
⎟⎟⎠ , and

G =

⎛
⎜⎜⎝

r
(
(xn+1, t), (xn+1, t); φ̂) · · · r

(
(xn+1, t), (xn+q, t); φ̂)

...

r
(
(xn+q, t), (xn+1, t); φ̂) · · · r

(
(xn+q, t)(xn+q, t); φ̂)

⎞
⎟⎟⎠ .

These formulae leverage tn+1 = · · · = tn+q = t since we are selecting q storms at time t .
Minimizing the IMSE criterion typically avoids previously used storms, seeking to fill gaps
where needed in the input space. Minimizing the IMSE criterion also considers the fore-
cast distribution �(t) through the draws (x̃1, τ̃1), . . . , (x̃N , τ̃N). Minimizing the criterion will
place experimental landfall characteristics near the draws from the forecast distribution to
reduce the variance in those locations. Thus, minimizing IMSE will automatically both fill
gaps in the existing data while adhering to the current forecast distribution.

For us, the traditional IMSE in (4.1) is not representative of the predictive accuracy of our
emulator. IMSE is measuring the error in the log-transformed space, m̂(x̃, τ̃ ) − log(g(x̃, τ̃ )),
but our concern is the actual error in terms of storm surge, ĝ(x̃, τ̃ )−g(x̃, τ̃ ). A more nuanced
criterion for our case with a log-transformed response would incorporate the results, such as
those presented in Section 3.2.2 of Cressie (1993). This new criterion is termed an exponential
integrated mean square error (E-IMSE) criterion and is defined as

(4.2) E-IMSE = 1

MN

M∑
j=1

N∑
i=1

wj(x̃i, τ̃i)
(
1 − exp

(−v̂
prop
j (x̃i , τ̃i)

))
,

where wj(·, ·) is a weight defined as wj(x̃, τ̃ ) = exp(2m̂j (x̃, τ̃ ) + 2v̂j (x̃, τ̃ )). Supplement B
contains more details on the derivation. The weight depends only on data collected prior to
the current data collection period. The second term in our formula depends on both the prior
data and the new experimental data. We note that, although our criterion averages across all
nodes here, it effectively gives more weight to high variance or a high mean nodes because
these will have larger values of wj(x̃, τ̃ ). This focuses attention to nodes with the largest
surges.

Comparing the IMSE in (4.1) and the proposed E-IMSE in (4.2), there are two key dif-
ferences. First, 1 − exp(−v̂

prop
j (x̃i , τ̃i)) is not the same as v̂

prop
j (x̃i , τ̃i). However, at values

of v̂
prop
j (x̃ti) close to 0, where we hope our emulator lies, the first order behavior of these

functions is the same. The major difference then lies in the weight function. The IMSE cri-
terion does not give varying weight to different areas of the x space. The E-IMSE criterion,
on the contrary, gives an increased weight to those xs with large mean values. In our context,
minimizing E-IMSE naturally selects storms with higher predicted surge in addition to filling
gaps in the data and adhering to the forecast distribution.

To illustrate the real effect of our criterion, Figure 2 shows the results for round 1 of the
Michael study using IMSE and E-IMSE, each selecting 20 new storms by minimizing the
respective criterion. For illustrative purposes, only the landfall characteristics that most affect
the storm strength are modified: the maximum wind speed (MWS) and the radius of the
34 kt isotach (R34). Increasing either MWS or R34 gives an increased storm strength that,
in turn, induces larger surge levels. The resulting designs in Figure 2 show a clear trend that
IMSE emphasizes weaker storms compared to E-IMSE. Focusing on storms with larger, more
catastrophic surge is a desired behavior when examining storm surge. This feature naturally
occurs in importance sampling of storm surge (Dawson and Hall (2006)). Here, minimizing
E-IMSE replicates this behavior by acknowledging that a reasonable statistical model has a
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FIG. 2. Illustration of the differences in optimal designs decided by criterion IMSE (left panel) and criterion
E-IMSE (right panel). The small dots are the storm characteristics used in the round 0 experiment projected onto
the dimensions MWS and R34. The circles with stars represent the 20 new chosen storm characteristics. The
background contours represent the 10%,20%, . . . ,90% highest density regions of the forecast as of round 1. The
dashed lines are the marginal means for each landfall characteristic. The solid lines are the marginal sample
averages of the selected landfall characteristics.

structure where larger mean values also have higher variances. When we minimize E-IMSE,
we place storms near regions with larger surges which have high-variance.

Computationally, we rely on a randomized search algorithm. Random search is common in
design of experiments in a continuous domain as the criterion’s surface is highly nonconvex
(see, e.g., Gramacy and Lee (2009)). Our algorithm had to fit under the constraint of one
hour of overhead computation. The whole procedure takes roughly 15 minutes on a desktop
computer. A more precise description of the approach is found in Supplement B, and the
exact code is included in Supplement D (Plumlee et al. (2021)). The unknown parameters
that implicitly inform this function are set to their maximum likelihood values from the most
recent optimization.

The resulting designs are presented in Figure 3. There are a few interesting features of
Michael that become apparent. First, because of the complex coastline in this region, our
round 0 approach resulted in off-coast simulations that did not align with the remainder of the
selected storms, as demonstrated in the LAT/LONG plot of the samples. Second, the distribu-
tions indicate that Michael was originally forecast to be quite weak but rapidly strengthened
closer to landfall. This poor forecast makes Michael a challenging test case. Improving the
properties of the hurricane forecast distribution provided by the NHC is considered outside
the scope of this article. Lastly, we note that as Michael gets closer to landfall, both fore-
cast distributions and designed experiment runs get more concentrated. This means that the
prediction region gets smaller, and thus the emulation problem gets easier closer to landfall.

5. Design and emulation performance analysis. This section describes the perfor-
mance analysis of both the emulation strategy from Section 3 and of the designed experiment
strategy from Section 4. One question is the effectiveness of the partial parallel approach,
compared to the more popular decomposition-type approach, where the surge response is
dimension reduced through a tool like principal component analysis (PCA). The reduced di-
mension components are then modeled with individual Gaussian processes (potentially with
different parameters). Examples of this type of approach are Higdon et al. (2008) and Chang
et al. (2014), and the exact method is described in Supplement B.

To assess emulator accuracy, we ran through extra storms with the same counts as designed
storms for the last three efforts of data collection (see Table 1). These storms were drawn
from the forecast distribution with random landfall characteristics. This block of 40 storms



472 PLUMLEE, ASHER, CHANG AND BILSKIE

FIG. 3. Diagram of the predictive forecast distributions of the six landfall characteristics alongside the storms
chosen via the mechanism and described in Section 4. The bottom left panels show the 90% high-density region
contours for the forecast distribution for forecast periods 60,48,36,24 and 12 from landfall, where darker lines
imply closer to landfall. The diagonal panels show the one-dimensional marginal forecast densities for each
landfall characteristic where darker lines imply a later round. The upper right panels show the selected design
storms. The open circles are the round 0 storms. The smaller dots are the storms chosen by E-IMSE, where darker
dots imply a later round.

can be used as a holdout set with the 120 other storms being the training set. These random
storm runs also permit a formal investigation of the relative value of designed experiments
vs. randomly chosen storms. For the randomly chosen storms we can treat them as a (poorly)
designed experiment and replace the original designed runs with their random counterparts in
rounds 3, 4 and 5. If we leave out a single storm and build a new emulator, this would recreate
an emulator built by choosing 39 storms at random in place of our carefully chosen 40 storms.
This yields a benchmark to compare our experimental design approach, but understand there
is also a small sample size discrepancy (39 storms in the random approach vs. 40 storms in
our designed experiment approach).

Five different measures of accuracy are reported for completeness of understanding. In our
comparison, only nodes with ground elevation greater than one meter are investigated. This
focuses our analysis metrics closer to habitable areas that have a notable surge signal. For
this study we are considering our ability to predict the imputed values, thus evaluating the
emulation, not the quality, of the imputation. The study in the next section will evaluate the
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TABLE 2
The accuracy of the emulator measures as described in Section 5. The number in parentheses is the p-value of a

one-sided paired t-test with the null that the far left column has a larger mean

E-IMSE Minimizing Storms Randomly Selected Storms

Partial Parallel PCA Based Partial Parallel PCA Based

Root mean squared error 0.1234 (–) 0.1245 (0.350) 0.1684 (0.007) 0.1567 (0.018)

Mean absolute error 0.0732 (–) 0.0780 (0.007) 0.0945 (0.009) 0.0930 (0.008)

Mean Dawid-Sebastiani score −4.0516 (–) −3.5220 (0.000) −3.6650 (0.003) −3.1852 (0.000)

95 % coverage 0.9086 0.8558 0.8899 0.8510
95 % interval score 0.5713 (–) 0.6827 (0.001) 0.8453 (0.015) 0.9475 (0.005)

overall performance that accounts for both imputation and emulation. The four metrics are the
typical root mean squared error, mean absolute error, which is often used in meteorological
forecasting (Willmott and Matsuura (2005)), the Dawid-Sebastiani score, which evaluates
adequacy of both the forecast variance and the mean (Gneiting and Raftery (2007)), and the
95% coverage rate and interval score. More details of these evaluations are provided in the
Appendix.

The results are presented in Table 2, where the proposed storms do better than randomly
selected storms and the partial parallel approach does better than a PCA-based approach for
this case. We conduct hypothesis testing using a t-test with a sample size of 40 and find
significant results for chosen storms against randomly selected storms at the 0.05 level. The
partial parallel approach does better than the PCA-based approach in general, often at a sta-
tistically significant level. Our explanation is that the PCA-based approach tends to focus the
weights on high surge areas, meaning that it tends to mischaracterize variation in low surge
areas. This is perhaps because the first few principal components can be estimated based on
the sample covariance (a similar discussion can be found in Sansó and Forest (2009)). That
our surge response (at least a log-transformed version) can reasonably be modeled with a
separable covariance function implies that the partial parallel can get near optimal predic-
tions without modelling the internode covariance structure which agrees with the findings of
(Gu and Berger (2016)). In Table 2, both methods and designs yield confidence intervals that
give slight undercoverage which can be interpreted as overconfidence. One reviewer for this
article suggested this result could be due to inadequate smoothness of the covariance func-
tion or using plug-in maximum likelihood estimators of the covariance parameters. We have
no evidence for a single cause but concur these are plausible and add three more potential
causes: it is at least slightly incorrect to use the same covariance parameters across all nodes
in the partial parallel approach; the log-transform only yields approximate Gaussian behav-
ior, and/or this could be due to random chance since the confidence intervals are evaluated
on correlated observations with a relatively small sample size (40 storms). More theoretical
details are given in Supplement B.

6. Hindcast prediction performance analysis. This section discusses the efficacy of
the approach in terms of accurate surge forecasts, not just accurate emulation. We also note
that a comparison to P-Surge using a small number of real surge readings is summarized in
Supplement C (Plumlee et al. (2021)) where the conclusions are similar. Our gold standard
hindcast uses Michael’s operational best track data from the NHC because these data come
from the same source as the forecasts, providing the most level comparison. The results are,
overall, positive. This was somewhat surprising because the accuracy of the surge forecast
can be corrupted by several factors outside of the statistical approach described in this ar-
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FIG. 4. The ADCIRC hindcast peak surge (bottom right panel) and predictive median peak surge (other three
panels) using the predictive distribution in (3.2) at the marked latitude and longitude. Color is shown only if the
storm surge is above the node’s ground elevation. Color is also shown only for nodes whose ground elevation is
above −4 meters. The black line is the coastline.

ticle. These include the NHC forecast accuracy, the forecast distribution and the algorithm
that fills in missing information in the forecast. While the latter two have been designed
and tested to ensure reasonableness, the first one remains outside of our control. Figure 4
shows the geographic layout near the eastern Florida Panhandle of our forecasted surge vs.
the gold standard hindcast results. Nodes shown are in our M emulation sites, discussed in
Section 2, so these figures include some surges over the ocean as well as land. The bend in
the coastline on the right portion of the map represents a region exceptionally sensitive to
storm surge due to funneling effects mentioned in the beginning of this article. One impor-
tant observation from this plot is, despite the node independence assumption used for our
emulator, the forecast surfaces remain smooth and reasonably behaved. This agrees with the
observations from Gu and Berger (2016) that the predictive mean of the surface structure can
be preserved from the emulator despite assuming node independence. As discussed in Sec-
tion 1.4, the NHC underforecasted Michael’s intensity and this propagates into our median
forecast which is low throughout the storm, especially over 48 hours before landfall. Once
the NHC’s forecasted storm intensity increased, our median forecasted surge responded with
a corresponding increase. Overall, this prediction appears to fall in line with reasonable surge
forecasts.

To quantitatively understand the overall forecasting performance, we would like to deter-
mine not only how well we predict at wet nodes but also how well we predict dry nodes.
Thus, we introduce two quantitative measures. Define a prediction that at j contains either a
numerical water level if it is wet or the label “dry” if it is dry, call it hj . Let the true hindcast
run at j be labeled h∗

j have the same structure as hj . The elevation at a node be labeled ej .
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Then, let

Surge Score = 1

number of nodes

∑
j∈nodes

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∣∣hj − h∗
j

∣∣ if hj �= dry, h∗
j �= dry,∣∣h∗

j − ej

∣∣ if hj = dry, h∗
j �= dry,

|hj − ej | if hj �= dry, h∗
j = dry,

0 if hj = dry, h∗
j = dry,

and

Misclassification Rate = 1

number of nodes

∑
j∈nodes

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if hj �= dry, h∗
j �= dry,

1 if hj = dry, h∗
j �= dry,

1 if hj �= dry, h∗
j = dry,

0 if hj = dry, h∗
j = dry.

To our understanding, the definition of Surge Score is unique to this article but was needed
to study both the magnitude of error in our censored data environment and errors in wet/dry
classification. Otherwise, for example, one could create a better numerical prediction by re-
porting the elevation at a node.

We also compared our method to the probabilistic storm surge forecasts from P-Surge,
the NHC’s forecasting surge forecasting tool, as a benchmark. We acknowledge that we are
unfairly using our ADCIRC model as the gold standard, but this will give us an idea if the
overall procedure meets the current practice. Exact comparisons of the potential model error
between P-Surge’s SLOSH and our ADCIRC are difficult. As mentioned in the Introduction,
P-Surge’s SLOSH has a coarser mesh compared to our ADCIRC. However, P-Surge leverages
SLOSH simulations from multiple overlapping meshes of differing resolutions and extents;
thus, its exact resolution cannot be ascertained. When examining P-Surge’s data, we found
P-Surge may not report a median and thus we performed analysis on nodes with elevation
above zero meter where P-Surge reported some value during the comparison. We also only
considered nodes that, at some point during our simulation, were wetted to remove trivial
nodes.

The quantitative measures of our forecast, using the median as the prediction, are presented
in Figure 5. The results are positive both in magnitude and trend over the course of our study.
It should be noted that overland surge prediction at elevations above one meter is particularly
challenging because these areas experience the largest variance in surge. Moreover, our impu-
tation approach has significant impact at these nodes because they are often unwetted. Closer
to landfall, 36 hours out, our accuracy measures get better as the NHC forecast improves. The

FIG. 5. Accuracy quantification of the median of the predictive distribution for both the proposed approach
(solid lines) and NHC forecast mechanism P-Surge (dashed lines) as described in Section 6.
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results are promising in favor of the proposed approach which better captures the anticipated
surge earlier compared to P-Surge. An observation outside these figures is neither negative
nor positive: the proposed surge forecasts are more consistent than P-Surge. The proposed ap-
proach appears less sensitive to forecast-to-forecast fluctuations, and one theory is that data
reuse in our method induces some hysteresis. The medians of our predictive distributions are
persistently below the actual measurements. This is expected due to the underprediction of
Michael’s intensity before landfall. When Michael strengthened, this resulted in rising surge
at all sensors. As discussed in the previous subsection, this effectively is a sample size of one,
a single storm. The lack of convergence of P-Surge in Figure 5 is at least partially due to the
fact that our reference solution came from an ADCIRC model, and P-Surge employs multiple
overlapping SLOSH model grids. We also suspect P-Surge’s performance oscillates because
of how it handles the irregular timing of NHC forecast information. Nonetheless, that our
results have similar accuracy is encouraging.

7. Conclusions. Storm surge forecasting for tropical cyclones is challenging because of
the short turnaround time, substantial computational requirements and large forecast uncer-
tainties. This article explains how, using a limited number of high-fidelity model runs with
new and existing computer experiment technology, we can forecast storm-surge hazard prob-
abilities. Our results indicate that using an emulator with a targeted experimental design is
an effective strategy to leverage limited sampling of a high-fidelity computer model of storm
surge. We have completed a case study on Hurricane Michael (2018) which required only 40
model runs per day to get adequate predictive performance. This mitigates the computational
cost of running the high-fidelity model with only a small amount of overhead statistical com-
putation. Our solution performed as well as or better than the primary data product currently
available which uses more runs of a lower-fidelity model. This existing data product has over
a decade of supporting development underneath it. The proposed method’s performance, rel-
ative to an operational product, suggests that using a higher-fidelity model of storm surge
with statistical tools could improve surge forecasting.

There is extensive potential future research for both forecasting of storm surge and general
statistics. In terms of forecasting storm surge, there are potential emulator improvements,
better storm forecast distributions and consideration of other storm parameterizations. In
addition, it might be possible to reduce the current data-model discrepancies for ADCIRC
through model calibration efforts (e.g., Chang et al. (2016), Gu and Wang (2018), Gu, Xie
and Wang (2018), Plumlee (2017), Tuo and Wu (2015), Chang et al. (2019)). Another direc-
tion on the statistical side is the development of more powerful methods to handle the missing
surge values at unwetted nodes. For in-surface imputation, we did try using Nearest Neigh-
bor Gaussian process interpolation (Datta et al. (2016)) for imputation, and we saw a slight
decrease in overall accuracy in addition to taking over 30 times longer. Other potential tools,
like laGP (Gramacy (2016)), were too slow to be considered viable options. We imagine that
significant improvement in the imputation of unwetted nodes requires a specialized method
that uses some physical understanding of storm surge. Another possibility is a fully Bayesian
approach that enables emulation and imputation based on a joint posterior distribution for
all the unknowns (i.e., emulation parameters and missing values). Developing such a scheme
without causing excessive computational burden poses a significant statistical challenge and
merits more investigation. Some Markovian model that induces sparsity in the covariance
structure (e.g., Lindgren, Rue and Lindström (2011)) might be useful for formulating a com-
putationally feasible approach.

On the subject of designing sequential experiments, we have shown that a transformation
of the response leads to a new experimental design criterion with desirable properties. This
could lead to similar approaches with different transformations or generalizations to families
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of transformations. Our experimental design criterion is based on the predictive variance
which agrees with our setting where the magnitude of the prediction error is critical. Reducing
the predictive variance from 100 cm2 to 10 cm2 at one location provides more benefit than
reducing the predictive variance from 10 cm2 to 1 cm2 at another location. Currin et al. (1991)
popularized an alternative, entropy-based criterion (Lindley (1956)). Beck and Guillas (2016)
demonstrated an iterative algorithm, like the one we use (Supplement B), was an effective
approach but it may be slower than an algorithm that uses an entropy-based criterion. We
selected a design algorithm that was sufficiently fast to be employed in our setting when the
main computational cost was running the computer model (see Table 1). Perhaps a faster
experimental design algorithm would be advantageous in a setting with larger sample sizes
or a cheaper computer model.

APPENDIX: DETAILS ON QUANTITATIVE PREDICTION COMPARISONS

Let meanj , medj and varj be the median and variance of the predictive distribution at
node j . Let Uj and Lj be the 97.5% quantile and 2.5% quantile of the predictive distribution.
Let aj be the imputed peak surge value held out for testing. Root mean squared error is given

by
√

M−1 ∑M
j=1(aj − meanj )2. Mean absolute error is given by M−1 ∑M

j=1 |aj −medj |. The
Dawid–Sebastiani score is given by

M−1
M∑

j=1

(
(aj − meanj )

2

varj
+ log(varj )

)
.

The 95% coverage rate is M−1 ∑M
j=1 I (Lj ≤ aj ≤ Uj ) (where I is the indicator function),

and the 95% interval score (Gneiting and Raftery (2007)) is given by

M−1
M∑

j=1

(
Uj − Lj + 1

0.025
(aj − Uj )I (aj > Uj ) + 1

0.025
(Lj − aj )I (aj < Lj )

)
.
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SUPPLEMENTARY MATERIAL

Details on forecasting (DOI: 10.1214/20-AOAS1398SUPPA; .pdf). This contains a de-
scription of the conversion of NHC forecasts to forecast distributions as well as the updating
process for NHC forecasts given different landfall characteristics.

Additional statistical and algorithmic details (DOI: 10.1214/20-AOAS1398SUPPB;
.pdf). This contains a description of some additional statistical and algorithmic details that
could not fit in the main article due to length constraints.

More predictive performance analysis (DOI: 10.1214/20-AOAS1398SUPPC; .pdf).
This contains a description of a more prediction performance analysis and a comparison
of our approach to P-Surge using surge readings from water level meters.

Exemplar code (DOI: 10.1214/20-AOAS1398SUPPD; .zip). This contains Matlab code
and data that illustrate the predictive algorithm at a subset of nodes.

https://doi.org/10.1214/20-AOAS1398SUPPA
https://doi.org/10.1214/20-AOAS1398SUPPB
https://doi.org/10.1214/20-AOAS1398SUPPC
https://doi.org/10.1214/20-AOAS1398SUPPD
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