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As in any observational study, in a case-control study a primary concern
is potential unmeasured confounders. Bias, due to unmeasured confounders,
can result in a false discovery of an apparent treatment effect when there is
none. Replication of an observational study, which tries to provide multiple
analyses of the data where the biases affecting each analysis are thought to
be different, is one way to strengthen the evidence from an observational
study. Evidence factors allow for internal replication by testing a hypothesis
using multiple comparisons in a way that the comparisons yield independent
evidence and differ in the sources of potential bias. We construct evidence
factors in a case-control study in which there are two types of cases, “narrow”
cases which are thought to be potentially more affected by the exposure and
“marginal” cases which are thought to have more heterogeneous causes. We
develop and study an inference procedure for using such evidence factors
and apply it to a study of the effect of sigmoidoscopy screening on colorectal
cancer.

1. Introduction.

1.1. Distal and proximal colon cancer and sigmoidoscopy screening. The U.S. Preven-
tive Services Task Force (USPSTF) recommendations for colorectal cancer screening in-
clude flexible sigmoidoscopy every five years for men and women above 50 at average risk
(Preventive Services Task Force et al. (2016)). Yet, only 58% of adults aged 50–75 were up
to date with the screening recommendations (Joseph et al. (2016)). Is screening with sigmoi-
doscopy effective? Using a case-control study we aim to answer this question; more specifi-
cally, we study the effect of screening by flexible sigmoidoscopy as per USPSTF recommen-
dations on reducing mortality from colorectal cancer.

In case-control studies patients with (cases) or without (controls) an outcome of interest
are compared in terms of their exposure to treatment. Case-control studies are particularly
useful for assessing treatment or exposure effects for rare outcomes. In a case-control study
there is often a choice of how to define a case. In many settings there are two (or more)
ways to define a case, one being more “narrow,” in that it is more likely to be caused by the
exposure, if that exposure in fact has an effect, and the other being “broad” in that it may have
more heterogeneous causes. A case unit according to a narrow case definition is also a case
unit in a broad case definition. A marginal case unit is not a case in a narrow case definition
but is a case in broad case definition.

Sigmoidoscopy can evaluate the lower or distal one-third of the colon for lesions; if ab-
normal, then a full colon evaluation with a colonoscopy is typically done for confirming the
presence of cancer or precancerous polyps. The distal colon is the lower one-third part of
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the colon on the left side of the body, consisting of the descending colon, the sigmoid colon
and the rectum; the proximal colon is the higher two thirds of the colon. We consider broad
cases to be all cases of colorectal cancer, and, following Doubeni et al. (2018) and Selby et al.
(1992), we consider narrow cases to be cases where there are malignant polyps on the left
side of the colon and rectum that are within the reach of the sigmoidoscope. We expect that
sigmoidoscopy screening, if it is effective, would only directly reduce the risk of diagnosis
or death from cancers in the distal colon (narrow cases) but would also indirectly find or pre-
vent some colorectal cancers in the proximal colon because abnormal findings in the distal
colon could trigger a colonoscopy. Is it possible to learn separate evidence about the treat-
ment effect when we have two or more definitions for a case? Before answering this question
in Section 1.3, we consider why one might want to construct separate evidence and what we
mean by separate evidence.

1.2. Evidence factors in an observational study. Unlike in a randomized trial, in a case-
control study, as in any observational study, treatment is not assigned to the subjects ran-
domly. Therefore, a primary concern in a case-control study is the potential for unmeasured
confounders. In an observational study, bias, due to unmeasured confounders, can result in
a false discovery of an apparent treatment effect when there is none. In such a situation
we should consider if it possible to replicate the study without repeating the bias (Cochran
(1965), Section 4.1).

Consider the effect of exposure to radiation on leukemia incidence. Radiologists, who are
occupationally exposed to radiation, have been found to have a high incidence of leukemia
(Lewis (1963)). A replication of this observational study is a comparison of the leukemia risk
in people living in Japan near epicenters of the atomic bomb drops at the end of World War II
to people living further from them (Bizzozero, Johnson and Ciocco (1966)). Radiologists
may have higher rates of leukemia because they are more likely to diagnose it, and people
living near the atomic bomb might have higher rates of leukemia because living in an urban
area may be a confounder for leukemia, but these are two different sources of potential bias.
Concurring finding of higher rates of leukemia incidence in each exposed group relative to
its control group strengthens the evidence for a causal effect since two sources of bias, rather
than just one, would be needed to refute the evidence (Rosenbaum (2001)).

While the above two comparisons are from separate studies, in some studies there may
be two comparisons we can make within the same study that have different sources of bias,
offering an opportunity for internal replication. When these comparisons are statistically in-
dependent or “nearly” independent, the comparisons are called evidence factors (Rosenbaum
(2010)). A general perspective on evidence factors in an observational study is provided in
Karmakar, French and Small (2019), which we briefly review here, and the formal definition
is given in Section 5. Suppose two analyses are performed to test for the null hypothesis;
the first analysis requires a set of assumptions A1, and the second analysis requires a second
set of assumptions A2. Let P1 and P2 be the corresponding p-values. Then, to be evidence
factors, we require that under the null hypothesis, when both assumptions A1 and A2 hold,
for (p1,p2) ∈ [0,1]2

(1.1) Pr(P1 ≤ p1,P2 ≤ p2) ≤ p1p2.

The inequality in (1.1)—which would be an equality if P1 and P2 were independent—means
that the joint distribution of the p-values under the null hypothesis is stochastically bigger
than that of two independent p-values under the null hypothesis. So, treating them as inde-
pendent when combining them would be conservative—this is the “near independence” we
spoke of above. By asking for independence or near independence, we ensure that we are
learning two separate pieces of evidence rather than essentially one piece which would be
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the case if one uses two highly correlated tests, such as a t-test and a Wilcoxon rank sum
test (Rosenbaum (2010, 2011)). We wish to avoid the mistake of the man who bought “sev-
eral copies of the morning paper to assure himself that what it said was true” (Wittgenstein
(1958), #265, quoted in Rosenbaum (2010)). If both analyses from the evidence factors are
significant, both assumptions, A1 and A2, would have to be violated in order for there not to
be evidence of a treatment effect.

An example of the use of evidence factors is discussed in Karmakar, Small and Rosen-
baum (2020), which follows up on the question raised by Bazzano et al. (2003), does smok-
ing increases homocysteine levels? Bazzano et al. (2003) looked at the association between
homocysteine and cotinine, a biomarker for exposure to tobacco. Cotinine level is a personal
measure of a dose for exposure to tobacco. An association between homocysteine and coti-
nine can be confounded by a physiological process that affects both homocysteine levels and
the way the exposure is internalized into cotinine levels. Karmakar, Small and Rosenbaum
(2020) pair smokers with nonsmokers on their age, gender, race and education levels. Two
tests are considered. The first test is a Wilcoxon’s signed-rank test of the differences in the
homocysteine levels between the smoker and the nonsmoker in each pair. The second test is
a cross-cut test statistic that looks at the association between differences in biomarker levels
and differences in the homocysteine levels of the pairs. Pairs of test statistics that use the
same data are typically dependent, but these two test statistics are independent when there
is no effect of smoking and there is no effect of an increase in the cotinine biomarker on
homocysteine levels. Further, a bias in who reports smoking does not affect the cross-cut test,
and a confounding in the cotinine biomarker does not affect the signed-rank test. Because the
two tests are independent when there is no treatment effect and affected by different biases,
they are evidence factors. Their analysis found that the two factors concur in finding two
independent pieces of information linking smoking with increased homocysteine. For other
examples of evidence factors, see Zhang et al. (2011) and Zubizarreta et al. (2012).

Rosenbaum (2017) provides a general formulation for building evidence factors based on
multiple treatment assignment mechanisms. Starting with a set of n units, Rosenbaum (2017)
showed how to construct evidence factors using the knit product of two subgroups of the
symmetric group of size n. This and other previous work have only considered constructing
evidence factors based on different ways of assigning treatment.

In this paper we develop novel evidence factors for case-control studies that use differ-
ent definitions of a case. To the best of our knowledge, ours is the first demonstration of
using differences in outcomes to develop evidence factors. In previous presentations of evi-
dence factors, evidence factors are constructed from a study design in which treatment assign-
ment splits into multiple aspects that exhibit certain symmetries (Rosenbaum (2010, 2017)).
A case-control study differs in this view. The retrospective measure of an exposure to the
treatment does not split into multiple aspects. The implicit symmetries that create the ev-
idence factors in a case-control study come from multiple case definitions. The following
subsection elaborates on this point.

This paper further demonstrates the usefulness of evidence factors when there are overlap-
ping, but not completely overlapping, potential sources of bias for the analyses. This differs
from previous discussions of evidence factors in the literature where separate sources of bias
would affect the factors. Our quantitative demonstration of how evidence factors can work
with overlapping biases widens the applicability of evidence factors. Expansion of the scope
of evidence factors to incorporate the design aspects of case-control studies and overlapping
biases is crucial for our sigmoidoscopy study.

1.3. Evidence factors in a case-control study with narrow and marginal cases. In a case-
control study with narrow and broad cases, we expect that if the exposure has an effect and
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our theory that the narrow cases are more likely to be caused by the exposure than the more
heterogeneous broad cases is correct and also there is no unmeasured confounding, then:
(a) the exposure should have a larger association with narrow cases than marginal cases, that
is, cases that are broad but not narrow and (b) the exposure should have an association with
broad cases compared to controls. This is an elaborate theory of what a treatment effect, if
there is an effect, is expected to look like. Elaborate theories, advocated by Sir Karl Popper
and Sir Ronald Fisher, are an integral part of drawing causal conclusions from observational
data (see Popper (1959), Cochran (1965), Section 5). For related discussion on considerations
for deducing causality from observational data, see Hill (1965).

We compare the narrow cases to marginal cases to appraise association of pattern (a) in the
elaborate theory and compare broad cases to controls to appraise association of pattern (b).
To test for patterns (a) and (b), we would like to use nearly independent test statistics in the
sense of (1.1). In other words, we would like to develop evidence factors associated with
the patterns. These two comparisons could be biased differently. Continuing our discussion
of Section 1.1, in the sigmoidoscopy study unmeasured variables, such as healthy lifestyle
or greater compliance with medical treatment, could be associated with screening. Some of
these variables may be more associated with whether a person dies from any colorectal cancer
or not (broad case vs. control); some may be more associated with, among people who die
from colorectal cancer, does the person die from a colorectal cancer on the distal colon or
proximal colon (narrow case vs. marginal case)? If we find evidence for both patterns (a) and
(b), this would require a skeptic to explain more types of bias than if we found one pattern
alone; this point is developed formally in Section 6.

Using the notation in Section 3, we develop a method for building the evidence factors in
Section 4 and Section 5 which proves that the test statistics developed are evidence factors.
The data from the study is analyzed in Section 7, and in Section 8 a few other examples of
case-control studies are discussed where multiple case definitions are used. Before develop-
ing our method, we discuss the data for the sigmoidoscopy study in Section 2.

2. Sigmoidoscopy and colorectal cancer. Based on the reasoning of Section 1, we con-
sider the effectiveness of screening sigmoidoscopy in relation to mortality from distal and
proximal colon cancer. In relation to sigmoidoscopy screening, distal cancer cases are narrow
cases, and proximal cancer cases are marginal cases. Throughout the paper by sigmoidoscopy
screening we mean specifically flexible sigmoidoscopy screening.

2.1. SCOLAR data. In a nested case-control study on members of Kaiser Permanente
Northern California and Kaiser Permanente Southern California health-care systems, study
subjects were selected who were 55–90 years old between 2006 and 2012. Details of the
study design are given in Doubeni et al. (2018), Goodman et al. (2015). A selected case unit
would be a man or a woman who was 55–90 years old on the date of death with colorectal
adenocarcinoma as the underlying cause of death. Using cancer diagnosis data and tumor
characteristics, 822 proximal and 886 distal cancer cases were identified. Each case patient
was individually matched to controls on the reference date (which was the diagnosis date
for each patient who died of colorectal cancer), gender, the duration of health plan prior to
diagnosis and the health-care site. In this process 3635 controls were included.

Thus, in our design there are 822 narrow cases and 886 marginal cases. To facilitate the
comparison of narrow cases to marginal cases, we pair matched narrow (distal cancer) cases
to marginal (proximal cancer) cases using the optmatch package in R which uses methods
of Hansen and Klopfer (2006). The matching algorithm used a weighted sum of rank based
Mahalanobis distance and absolute distance of estimated logit propensity scores. It also near
fine balanced on gender (Rosenbaum, Ross and Silber (2007)). By pair matching the nar-
row and marginal cases, we obtained 822 matched sets consisting of one narrow case, one
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TABLE 1
Balance on the covariates in the matched sets. Distal cancer cases are those who have been diagnosed to have

died from cancer on the left colon or rectum; proximal cancer cases are from right colon cancer. For each
covariate the mean is calculated within a matched set, then averaged over sets

Controls Distal cancer cases Proximal cancer cases

Number of years enrolled 12 12 12
before reference date

% from Center 1 83 83 84
% of female 47 46 47

marginal cases and the controls associated with these cases and 886 − 822 = 64 matched sets
consisting of one marginal case and the controls associated with this case. Table 1 shows the
covariate balance of the matched sets. Figure 1 further shows the distribution of the diagnosis
year of the colorectal cancer patients. Gender, reference date and enrollment source are well
balanced between the narrow cases, marginal cases and controls over the matched sets.

Although the match controls well for the above covariates, there could be unmeasured
confounders. For example, lack of physical activity is a known risk factor of colorectal cancer
incidence, and people who are less active also may be less likely to get screened (Eldridge
et al. (2013)). Because we are not able to match on or adjust for physical activity in our
analysis, the comparison of all colorectal cancer cases to controls may be biased. Family
history of cancer screening is another likely unmeasured confounder in this analysis. The
comparison of sigmoidoscopy screening in proximal vs. distal cancers may also be biased by
unmeasured confounding. There are potential biological differences between proximal and
distal colon cancers such that variables such as diet (e.g., use of the Mediterranean diet) may
be differentially associated with proximal and distal colon cancer (Doubeni et al. (2012),
Missiaglia et al. (2014)). Such diet choices may be associated with screening. If we find that
sigmoidoscopy screening is associated with reduced morality from colorectal cancer when
comparing all cases to controls and with reduced mortality from proximal vs. distal cancer
cases when comparing proximal to distal cases, then, in order for these associations to arise

FIG. 1. Reference date of the colorectal cancer cases and controls in the matched sets.
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purely from bias and not at all from a causal effect of sigmoidoscopy screening on reducing
cancer, there would need to be unmeasured confounders in both comparisons rather than just
one comparison. In Section 6 we show that, even if the unmeasured confounders for the two
comparisons overlap but have different relative magnitudes, the evidence is strengthened by
finding significant associations in both comparisons.

As suggested earlier, we shall assess the effect of sigmoidoscopy screening by comparing
the prevalence of screening between all colorectal cancer cases and controls and also by
comparing the prevalence between the distal cancer cases and proximal cancer cases. Results
of this analysis will be discussed in Section 7. We first present the methodology.

3. Notation and review: Case-control studies. Let observational units be denoted by
indices l = 1, . . . ,L. We use the binary variable Zl to denote whether unit l was exposed
to treatment (Zl = 1) or spared from being exposed (Zl = 0). Under the potential response
model, suppose unit l, if exposed, would have response rT l and, if spared, exposure would
have response rCl . The observed response for unit l is Rl = ZlrT l + (1 − Zl)rCl . Conse-
quently, we cannot observe rT l and rCl simultaneously for one unit (Neyman (1923), Rubin
(1974)). Now, let xl denote the observed pretreatment covariates, that is, covariates recorded
in the study that can potentially affect the treatment assignment and the response. The un-
observed confounders are summarized by an unobserved number ul for unit l scaled to be
valued in [0,1] (Rosenbaum (1991)). Write F = {(rT l, rCl,xl , ul) : l = 1, . . . ,L}. The hy-
pothesis we are interested in studying is Fisher’s sharp null hypothesis of no treatment effect

H0 : rT l = rCl, l = 1, . . . ,L.

A case definition is a function k(·) which labels each unit as a case, or a control or neither
based on the observed response. A case definition would identify a subset of the units as cases
and a separate subset as controls.

For a given case definition, a test for the hypothesis H0 can be carried out by matching
as follows. Create S strata labeled s = 1, . . . , S where each stratum consists of a total of ts
units with some case units and the rest control units (say cs ) which are similar with respect
to the observed covariates (xl’s). Now, let Ys denote the total number of exposed case units
in stratum s. A positive linear combination T = ∑S

s=1 dsYs can be taken as a test statistic
for testing the hypothesis H0. When all ds = 1, the statistic T is exactly the total number of
exposed cases which is the Mantel–Haenszel test statistic.

We assume that the treatment assignments for distinct units are independent. We consider
the following model for treatment assignment:

(3.1) Pr(Zl = 1 | F) = exp{θ(xl) + γ ul}
1 + exp{θ(xl) + γ ul} ,

where θ(·) is an unknown function and γ ≥ 0 is an unknown parameter. Since 0 ≤ ul ≤ 1,
for two units, l and l′ (l �= l′), with the same observed covariates, xl = xl′ , under this model
their odds of exposure can vary at most by a factor of � := log(γ ). Model (3.1) is equivalent
to writing

(3.2) max
1≤l,l′≤L

{
Pr(Zl = 1 | F)/Pr(Zl = 0 | F)

Pr(Zl′ = 1 | F)/Pr(Zl′ = 0 | F)
: xl = xl′

}
≤ �.

The fact that (3.1) implies (3.2) is obvious; the proof of the reverse implication constructs a set
of ul from the odds of exposure (Rosenbaum (2002), Section 4.4.4). The parameter � (≥ 1)
is the hidden bias level. Thus, when � = 1, there is no unmeasured confounder, and there is
no bias in treatment assignment after controlling for observed covariates. As � increases, this
model allows more and more bias in treatment assignment. For example, when � = 2, due to
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the presence of unmeasured confounders, it might be possible that, for individuals who are
the same in their observed covariates, one has twice the odds of getting assigned treatment as
the other.

Let es be the number of exposed units in stratum s. Then, under model (3.2) we can bound
the tail probability of T under H0 asymptotically,

(3.3) Pr
(
T ≥ k | {ts}, {cs}, {es},F) ≤ 1 − �

(
k − ∑

ds(ts − cs)p̄s√∑
d2
s (ts − cs)p̄s(1 − p̄s)

)
,

where �(·) is the cumulative distribution function of the standard normal distribution and
p̄s = �es/(�es + (ts − es)) (Small et al. (2013)). This tail bound is sharp, in that it is attained
for a particular vector of unobserved confounders (Rosenbaum (1991), Rosenbaum (2002),
Section 4.4.4).

Therefore, given a case-control study, after constructing a satisfactory stratum structure,
when the hidden bias level is at most �, that is, (3.2) holds, (3.3) can be used to get an
upper bound for the p-value of testing the hypothesis H0. If this value is less than α, the
significance level, then we have evidence to reject the null hypothesis as long as the hidden
bias is at most �. A sensitivity analysis asks how much bias in the treatment assignment must
be present so that the observed association can be explained just from bias under H0.

4. Two case definitions and two comparisons. Following our discussion in Section 1.3,
consider a design with availability of two case definitions, one narrow and one broad. A case
unit according to a narrow case definition is also a case unit in a broad case definition. We
label a unit as a marginal case unit if it is not a case in a narrow case definition but is a case in
broad case definition. The study units which are noncases in broad case definition are, thus,
also noncases in the narrow case definition and are labeled as controls. Matching argument
similar to Section 3 can still be used with appropriate modifications.

4.1. Matched strata for the comparisons. Suppose the matching procedure creates S

strata of all three types of units: narrow cases, marginal cases and controls where units in
a stratum are similar in their observed covariates. Let a generic stratum labeled s have ns

narrow cases, ms marginal cases, thus, a total of bs = ns +ms broad cases and cs controls. In
a cohort of L units, a narrow case definition might have a much smaller number of cases than
a broad case definition. In such situations some of the stratum (s) may only have marginal
cases and controls, resulting in ns = 0, which is allowed in our notation. But each stratum
must consist of at least two different labels of units. Let the letters n, m, b or c for denoting
that the unit is a narrow case, a marginal case, a broad case or a control, respectively. For
example, Zn{si} denotes the exposure (0 or 1) for the ith narrow case in the stratum s (s in
1,2, . . . , S). The index i runs in [ns] (we use the notation [k] to denote the set {1, . . . , k}
if k is a positive integer or empty set {} otherwise). Similarly, xc{si} denotes the observed
covariate for the ith control in stratum s. Rm{si}, rCn{si}, uc{si} etc. have similar meanings.

At this point we can quantify the evidence against H0 by calculating the p-values from the
two comparisons of narrow cases vs. marginal cases and broad cases vs. controls. We focus
on the linear statistics of the number of exposed narrow cases and broad cases, respectively,
for these two comparisons. Let Yn{s} and Yb{s} for stratum labeled s; denote the number of ex-
posed narrow cases and the number of exposed broad cases. Notice that Yn{s} = ∑

i∈[ns ] Zn{si}
and Yb{s} = ∑

i∈[bs ] Zb{si}. Since broad cases encompass narrow cases, in fact,

Yb{s} = ∑
i∈[ns ]

Zn{si} + ∑
i∈[ms ]

Zm{si} = Yn{s} + Ym{s}.
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Two test statistics for these two comparisons can be written as Tnm = ∑S
s=1 dnm{s}Yn{s} and

Tbc = ∑S
s=1 dbc{s}Yb{s}, where dnm{s} and dbc{s} are nonnegative constants given F . Under

assumption (3.2) about treatment assignment distribution, we can get bounds on the p-values
for Tnm and Tbc. But there are a few subtleties here that are important to point out.

First, a p-value for Tnm should only be based on information from the narrow cases and
marginal cases. In other words, the p-value Pnm is computed based on the tail distribution

(4.1) Pr
(
Tnm ≥ k|{bs}, {ms},

∑
i∈[ns ]

Zn{si} + ∑
i∈[ms ]

Zm{si},Fb

)
,

where Fb is the subset of F restricted to the broad cases. In equation (3.3), ts was used instead
of bs , cs was used instead of ms and the sum above replaces es . Similarly, the p-value Pbc is
computed based on the tail distribution

(4.2) Pr
(
Tbc ≥ k|{bs + cs}, {cs},

∑
i∈[ns ]

Zn{si} + ∑
i∈[ms ]

Zm{si} + ∑
i∈[cs ]

Zc{si},F
)
.

Thus, in technical terms Pnm and Pbc are measurable with respect to different sigma fields.
Second, in assumption (3.2) the sensitivity parameter � bounds the odds ratio of treat-

ment assignment for all the units stratified on their observed covariates. But unmeasured
confounders are likely to affect the two comparisons in different ways (see also Section 6).
Therefore, while considering narrow versus marginal comparison, we should relax this as-
sumption only to the broad cases since these are the only ones contributing to Tnm. Hence,
we distinguish the effect of unmeasured covariates for the two comparisons by using two
sensitivity parameters �nm and �bc for the narrow vs. marginal and broad vs. control com-
parisons, respectively. Then, �nm measures the bias in treatment assignment among all the
case units, and �bc measures the bias in treatment assignment among all case and control
units which are similar in their observed covariates.

Therefore, the comparison of narrow vs. marginal cases would compute the upper bound
on the p-value for Tnm based on the tail distribution (4.1) for sensitivity parameter �nm; the
broad cases vs. controls comparison would compute the upper bound on the p-value for Tbc

based on the tail distribution (4.2) for sensitivity parameter �bc. We denote them by Pnm,�nm

and Pbc,�bc
, respectively, and, when �nm = �bc = 1, we simply write Pnm and Pbc for Pnm,1

and Pbc,1 respectively. Section 5 proves that Pnm,�nm and Pbc,�bc
are nearly independent.

4.2. Two sensitivity parameters and their amplification. In a sensitivity analysis the sen-
sitivity parameters �nm and �bc would be used to get the max p-values Pnm,�nm and Pbc,�bc

.
How does a �nm bias relate to the influence of the unmeasured confounding on the exposure
to treatment of an unit and the influence of the unmeasured confounding on the narrow to
marginal case status of the unit? The sensitivity analysis model (3.1) conditions on the in-
formation set F which includes the potential outcomes of the units. The maximum p-value
calculated under this model is achieved when there is a near perfect relationship between the
case definition and the unmeasured confounders. We discuss here that this model can be in-
terpreted differently, “amplified,” to be a model that limits the relationship between the case
definition and the unmeasured confounders as well as the relationship between the exposure
and the unmeasured confounders (Gastwirth, Krieger and Rosenbaum (1998), Rosenbaum
and Silber (2009)).

Let the confounding variable in the broad cases to controls comparison be u1 and the
confounding variable in narrow to marginal comparison be u2. Consider now the set C =
{(xl , u1l , u2l) : l = 1, . . . ,L}. As before, 0 ≤ u1l ≤ 1 and 0 ≤ u2l ≤ 1. Conditioning on the set
C does not condition on the potential outcomes.
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Consider two units i1 and i2 with the same observed covariates. We model the relationship
between the unmeasured confounding and the treatment assignment with a parameter λ, for
zi1 + zi2 = 1, as

Pr(Zi1 = zi1,Zi2 = zi2|C,xi1 = xi2,Zi1 + Zi2 = 1) = exp{λ(zi1wi1 + zi2wi2)}
exp(λwi1) + exp(λwi2)

,(4.3)

where

wl = ξ1u1l + ξ2u2l for l = 1, . . . ,L; ξ1, ξ2 ≥ 0, ξ1 + ξ2 = 1.(4.4)

If λ = 0, the probability is 1/2, and the confounders have no effect. A larger value of λ

indicates a larger influence of the unmeasured confounders on the treatment assignment.
Equation (4.4) in itself is not a new assumption. Any number wl , taking value in [0,1], can
be rewritten as wl = ξ1u1l + ξ2u2l , for ξ1, ξ2 ≥ 0, ξ1 + ξ2 = 1 and 0 ≤ u1l , u2l ≤ 1, and
vice versa. Hence, this model is similar in spirit to model (3.1) except that the principal
conditioning now changes from F to C.

Next, we model the relationship of the unmeasured confounding and the case status. Let
us denote for unit l, when not exposed to the treatment, by the indicator variable kb

Cl , whether
the unit is a case, and by kn

Cl , whether the unit is a narrow case. Thus, kb
Cl = 1 if the lth unit is

a case, either narrow or marginal, when not exposed to the treatment and kb
Cl = 0 if the unit is

a control when not exposed to the treatment. Similarly, kb
Cl = 1 if the lth unit is a narrow case

when not exposed to the treatment and kb
Cl = 0 otherwise. It might be helpful to think of kb

Cl

and kn
Cl as being determined by rCl . For two units i1 and i2 with similar observed covariates,

the following model relates the case label with the confounders:

Pr(kb
Ci1 = 1, kb

Ci2 = 0 | C,xi1 = xi2)

Pr(kb
Ci1 = 0, kb

Ci2 = 1 | C,xi1 = xi2)
= exp

{
δbc(u1,i1 − u1,i2)

};(4.5)

Pr(kn
Ci1 = 1, kn

Ci2 = 0 | C,xi1 = xi2, k
b
Ci1 = kb

Ci2 = 1)

Pr(kn
Ci1 = 0, kn

Ci2 = 1 | C,xi1 = xi2, k
b
Ci1 = kb

Ci2 = 1)
= exp

{
δnm(u2,i1 − u2,i2)

}
.(4.6)

The level of bias from unmeasured confounding u1 in being a broad case is δbc, and the
level of bias from unmeasured confounding u2 in being a narrow case over a marginal case
is δnm—the larger the value of these parameters, the higher the influence of the unmeasured
confounding.

How do λ, δbc and δnm relate to the sensitivity parameters �bc and �nm? Proposition 1
of Rosenbaum and Silber (2009) provides the correspondence. Let 
 = exp(λ), �bc =
exp(δbc) and �nm = exp(δnm). Then, �bc = (�bc
+1)/(�bc +
) and �bc = (�nm
+1)/

(�nm + 
). These formulas allow one to interpret the result of a sensitivity analysis either
using the sensitivity parameters �bc and �nm or, under model (4.3)–(4.6), using parameters
λ, δbc and δnm. For example, �nm = 1.5, �bc = 1.4 corresponds to 
 = 2, �nm = 5/3 and
�bc = 2. In words, a pair of bias levels of �nm = 1.5 and �bc = 1.4 is equivalent to an ef-
fect of unmeasured confounders that, for units that are similar in their observed covariates,
doubles the chance an exposure, while also increasing the chance of being a case by 5/3-fold
and increasing the chance of being a narrow case over a marginal case by twofold. Similarly,
�nm = 3, �bc = 2 corresponds to 
 = 5, �nm = 7 and �bc = 3 and so on.

5. Evidence factors. This section aims to establish that the two comparisons dis-
cussed in Section 4.1 explore different aspects of the study design and give separate evi-
dence and, thus, are evidence factors. The idea of evidence factors was first formalized by
Rosenbaum (2010) and extended for studies with multiple treatment assignment mechanisms
in Rosenbaum (2011), Rosenbaum (2017). As discussed in Section 1.2, Karmakar, French
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and Small (2019) provide a general formulation of evidence factors in observational study
designs. Readers interested in the results of the SCOLAR data analysis can skip this techni-
cal discussion and go to Section 5.1 and 7.

We start this section by stating the definition of evidence factors. To understand that equa-
tion (5.1) is a more general statement than (1.1) that was used to introduced evidence factors
in Section 1.2, notice that replacing X = (P1,P2), D = [0,p1] × [0,p2] and Y a uniform
distribution on [0,1]2 recreate (1.1). The main result of this section, Theorem 5.1, says that,
according to this definition, (Pnm,�nm,Pbc,�bc

) form evidence factors.

DEFINITION 1. A set D is called a decreasing set if for any pair (x,y) with x ≤ y, if
y ∈ D, then x ∈ D. For two random vectors X and Y we say that X is stochastically larger
than Y if

(5.1) Pr(X ∈ D) ≤ Pr(Y ∈ D)

for all nondecreasing sets D. If X is stochastically larger than Y, we write X � Y.

DEFINITION 2. For any pair of bias levels (�nm,�bc), (Pnm,�nm,Pbc,�bc
) are evidence

factors for testing H0, if (Pnm,�nm,Pbc,�bc
) � (U1,U2) under the bias levels �nm, �bc and

under H0 for two independent Unif[0,1] random variables U1 and U2.

Now, we state the main theorem.

THEOREM 5.1. Under H0 and for bias levels �nm and �bc, we have (Pnm,�nm,Pbc,�bc
)�

(U1,U2) for two independent Unif[0,1] random variables U1 and U2.

The rest of the section is dedicated to proving this theorem using a few lemmas. The proof
of all the lemmas are given in the Appendix. These lemmas clarify the functional relation-
ships of Pnm,�nm and Pbc,�bc

on the exposure of the units’ Zls. Since the Zl’s are the only
random variables that determine the p-values or their upper bounds, the purpose of these lem-
mas in proving the theorem is to show that Pnm,�nm and Pbc,�bc

depend on different parts of
the Zls. For a crude understanding of this, notice the term Zc{si} in the expression of Pbc,�bc

in Lemma 5.2 which is missing from the corresponding expression of Pnm,�nm—whether a
control unit is exposed to the treatment does not affect the narrow vs. marginal cases analysis.
Lemma 5.3 shows that, not only are Pnm,�nm and Pbc,�bc

stochasticaly larger than a uniform
distribution on [0,1], for they are larger than the true but unknown p-values, different condi-
tional distributions of them are also stochastically larger than a uniform distribution on [0,1].
Theorem 5.1 is about the joint distribution of (Pnm,�nm,Pbc,�bc

). Thus, the facts about the
marginal distributions of Pnm,�nm , Pbc,�bc

and their conditional distributions given certain
events, along with a general lemma, Lemma 5.5, proves the theorem.

To slightly simplify our notation in what follows, for two random vectors X and Y we
write [X | Y ] to denote the conditional distribution of X given Y . Since we are dealing with
discrete spaces, [X | Y ] is a real valued measurable function of X and Y .

The following is one of the main lemmas needed to prove Theorem 5.1:

LEMMA 5.2. There exists functions fnm and fbc on appropriate domains such that

Pnm,�nm = fnm

({
Zn{si}, i ∈ [ns];

∑
i∈[ns ]

Zn{si} + ∑
i∈[ms ]

Zm{si}|s ∈ [S]
})

and

Pbc,�bc
= fbc

({
Zc{si}, i ∈ [cs];

∑
i∈[ns ]

Zn{si} + ∑
i∈[ms ]

Zm{si}|s ∈ [S]
})

.
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Following Definition 1, let us use the notation X � D for a random variable X and a
probability distribution D to say that X is stochastically larger than D or Pr(X ≤ x) ≤
Pr(Y ≤ x | Y ∼ D) for all x ∈ R.

LEMMA 5.3. Under H0, we have the following:

(i) [Pnm,�nm | {∑i∈[ns ] Zn{si} + ∑
i∈[ms ] Zm{si}},Fb, {ns}]� Unif[0,1].

(ii) [Pbc,�bc
| {∑i∈[ns ] Zn{si} + ∑

i∈[ms ] Zm{si} + ∑
i∈[cs ] Zc{si}},F, {bs + cs}] �

Unif[0,1].
(iii) Pnm,�nm � Unif[0,1].
(iv) Pbc,�bc

� Unif[0,1].

The following lemma relies on the assumption of no interference in treatment assignment
among the units, which is to say Zl and Zl′ are independently distributed for two distinct
units l and l′:

LEMMA 5.4. Under H0,[
Pnm,�nm

∣∣∣ {
Zc{si}, i ∈ [cs]}; ∑

i∈[ns ]
Zn{si} + ∑

i∈[ms ]
Zm{si}

]
� Unif[0,1].

LEMMA 5.5. Suppose two random variables P1 and P2 satisfy

C1 random variable P1 is a function of random quantity V1,
C2 [P2 | V1] � Unif[0,1],

then for 0 ≤ q ≤ 1, Pr(P2 ≤ q | P1) ≤ q , that is, [P2 | P1] � Unif[0,1].

Now, we have all the necessary facts to prove Theorem 5.1.

PROOF OF THEOREM 5.1. In Lemma 5.5 take P1 = Pbc,�bc
, P2 = Pnm,�nm with V1 =

{{Zc{si}, i ∈ [cs]};∑
i∈[ns ] Zn{si} + ∑

i∈[ms ] Zm{si}}. Then, by Lemma 5.2 condition C1 is sat-
isfied, and condition C2 is proved in Lemma 5.4. Thus, by Lemma 5.5 [Pnm,�nm | Pbc,�bc

] �
Unif[0,1].

Let U1 and U2 be two independent uniformly distributed random variables on [0,1]. We
use the theory of Shaked and Shanthikumar ((2007), Section 6B), (U1,U2) being an inde-
pendent pair is a conditionally increasing in sequence (CIS). Then, combining this with the
facts that Pbc,�bc

� Unif[0,1] (by Lemma 5.3) and [Pnm,�nm | Pbc,�bc
] � Unif[0,1], Theo-

rem 6.B.4 of Shaked and Shanthikumar (2007) finally gives us

(Pnm,�nm,Pbc,�bc
)� (U1,U2).

Thus, the proof is complete. �

5.1. Combining evidence. In words, Theorem 5.1 says that the combined information
from the two evidence factors, Pnm,�nm and Pbc,�bc

, carries as much evidence as two anal-
yses from two independent studies. This allows us to combine these two pieces of evidence
and provide a total evidence against the hypothesis under both the comparisons. Karmakar,
French and Small (2019) discusses different methods for combining evidence. Any method
of combining p-values that is monotone in both of the p-values can be used, for example,
Fisher’s combination method (Fisher (1932)), the mean of the normal transformation (Liptak
(1958)) and the truncated product method of combining (Hsu, Small and Rosenbaum (2013),
Zaykin et al. (2002)). Also see Becker (1994). These methods of combining p-values are
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used when p-values are available from independent sources, for example, in meta-analysis.
In an observational study, even when there are independent tests, combining them does not
strengthen the evidence against the biases from unmeasured confounders if the analysis are
affected by the same unmeasured confounding. The evidence factors are two analyses that are
nearly independent and that do not share completely overlapping biases. Thus, combining the
maximum p-values from the evidence factors strengthens the evidence in an observational
study. The simulation section considers which combining method has largest power in sensi-
tivity analysis for unmeasured confounding.

Fisher’s method computes the joint evidence as the tail probability of χ2
4 distribution

over −2 log(Pnm,�nm · Pbc,�bc
). In the scenario of sensitivity analysis, since we only consider

largest possible p-values for a given value of hidden bias level, the truncated product method,
which weights the evidence by the strength of the evidence, is often preferred. For a given α̃,
the combined evidence using the truncated product method is given by FW {Ev(�nm,�bc)},
where

Ev(�nm,�bc) = 1Pnm,�nm≤α̃ log(Pnm,�nm) + 1Pbc,�bc
≤α̃ log(Pbc,�bc

) and

FW {w} = 2α̃(1 − α̃)GExp(1)

{
− log

(
w

α̃

)}
+ α̃2GGamma(2,1)

{
− log

(
w

α̃2

)}
.

(5.2)

In the above, GExp(1) is the survival function of a random variable with exponential distri-
bution with rate 1, and GGamma(2,1) the survival function of a random variable with Gamma
distribution with shape parameter 2 and rate 1. The advised choice of α̃ is 0.20 (Hsu, Small
and Rosenbaum (2013), Zaykin et al. (2002)).

We conducted a simulation study to compare the powers of Fisher’s method and the trun-
cated product method in the setting of our problem. The simulation scenario considered here
is based on the case-control study structure. We are going to look at the favorable situation
where there are no unmeasured confounders with treatment effect. Then, for varied treatment
effect sizes we compare the power of the two combining methods for different values of
(�nm,�bc).

We consider a population where the chance of exposure is 1/3. Thus, for a unit l,
Pr(Zl = 1) = 1/3. The treatment effect is denoted by β . We consider a univariate response
and two types of response distributions in the population. The two types of distributions when
spared exposure are a normal distribution with mean 0 and variance 1 and a t-distribution nor-
malized to have variance 1. Therefore, if a unit l is exposed to treatment, then the response
is a sample from N(β,1) (or β + t3/

√
3), and if not exposed, then the response is a sam-

ple from N(0,1) (or t3/
√

3). The case definition for each of the scenarios is taken such that
if the treatment effect was 0.5, then 20% of the population would be broad cases. Thus, in
the setting where the response is from normal distribution, the unit with response of more
than the 0.8 quantile of the mixture distribution 1/3N(β,1)+ 2/3N(0,1) would be labeled a
broad case, and otherwise it would be labeled as a control. In our simulation we sample 2000
broad cases, and half of them with response above the median response of these broad cases
are labeled as narrow cases. Then, we sample 2000 controls. In both comparisons of narrow
cases vs. marginal cases and broad cases vs. controls, we consider paired stratum, that is,
ns = ms = 1, cs = 2.

Tables 2 and 3 report the simulated power for the two combining methods. The simulated
power is based on 10,000 iterations with level of significance α = 0.05. Except for very few
situations in Table 2, the truncated product method has better simulated power than Fisher’s
combining method. The truncated product method seem to be less sensitive as we increase
�nm and �bc. Fisher’s method has slightly better simulated power in a few situations in the
normal response model for moderate values of (�nm,�bc) when there is a large treatment
effect (β = 0.6). After considering these simulation results, in our case-control study of the
efficacy of screening sigmoidoscopy we use the truncated product method with α̃ = 0.20.
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TABLE 2
Simulated power, in %, of a sensitivity analysis of combined evidence in a case-control study, where there is no
unmeasured confounder and Pr(Zl = 1) = 1/3. The response is simulated from N(β,1) if Zl = 1 and N(0,1) if
Zl = 0. There are 1000 narrow cases and 1000 marginal cases with 2000 controls. Based on 10,000 iterations.

Fisher = Fisher’s combination method, tP = truncated product method with α̃ = 0.20

β = 0 β = 0.2 β = 0.4 β = 0.6

�nm �bc Fisher tP Fisher tP Fisher tP Fisher tP

1 1 5 5 100 100 100 100 100 100
1.5 0.6 1 25 26 100 100 100 100
2 0.6 1 18 22 87 86 100 100
2.5 0.6 1 18 22 75 80 100 100

1.25 1.25 0 0 48 51 100 100 100 100
2 0 0 0 0.1 15 15 100 100
2.75 0 0 0 0.1 3 5 69 66
3.5 0 0 0 0.1 3 5 69 66

1.5 1.5 0 0 0.2 0.3 99.2 99.4 100 100
2.5 0 0 0 0 0 0 54 52
3.5 0 0 0 0 0 0 1 2

1.75 1.75 0 0 0 0 51 58 100 100
2 0 0 0 0 2 3 100 100
3.25 0 0 0 0 0 0 0 0

2 2 0 0 0 0 2 3 100 100
2.5 0 0 0 0 0 0 36 43
3 0 0 0 0 0 0 0.1 0.2
3.5 0 0 0 0 0 0 0 0

2.25 2.25 0 0 0 0 0 0 88 91
2.5 0 0 0 0 0 0 35 42
3 0 0 0 0 0 0 0.1 0.2

6. Evidence factors with differential effect of unmeasured confounders on the fac-
tors. The individual factors in an evidence factors analysis, if biased, are hoped to be bi-
ased by different mechanisms so that a critic would need to consider both sources of bias
to explain the observed statistical significance. As discussed in Section 2.1, in the sigmoi-
doscopy study the bias in comparing all colorectal cancer cases to controls could be due to
imbalance between the two groups in healthy lifestyle of the patients, family history and also,
potentially, due to diet. The comparison of distal cancer cases to proximal cancer cases may
be biased by diet, for example, Mediterranean diet. Hence, the main source of unmeasured
confounding in the second analysis can, to some extent, also be a source of bias in the first
analysis. The following discussion delineates the logic of evidence factors analysis for such
a scenario in which the sources of bias overlap for the two evidence factors but are different
in their relative size between the two evidence factors.

Recall that Section 4.2 provides the amplification of the sensitivity parameters �bc and �nm

in terms of the λ, δbc and δnm. There, u1 and u2 are assumed to be two separate unmeasured
confounds. The relation of the unmeasured confounding, u1 and u2, and the exposure to
treatment is model by bias level λ. The relation of u1 and the broad case status is modeled by
the bias level δbc. Finally, the relation of u2 and the broad case status is modeled by the bias
level δnm. In the following we allow for u1 and u2 to be influenced by overlapping factors.

For individual l, let v1l and v2l be unmeasured numbers summarizing two sets of unmea-
sured variables so that 0 ≤ v1l , v2l ≤ 1. We allow for both variables to bias each analysis
but to have varying importance in their relationship with the outcomes. We formalize this as
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TABLE 3
Simulated power of a sensitivity analysis of combined evidence in a case-control study, where there is no

unmeasured confounder and Pr(Zl = 1) = 1/3. The response is simulated from β + t3/
√

3 if Zl = 1 and t3/
√

3
if Zl = 0. There are 1000 narrow cases and 1000 marginal cases with 2000 controls. Based on 10,000

iterations. Fisher = Fisher’s combination method, tP = truncated product method with α̃ = 0.20

β = 0 β = 0.2 β = 0.4 β = 0.6

�nm �bc Fisher tP Fisher tP Fisher tP Fisher tP

1 1 5 5 100 100 100 100 100 100
1.5 1 1.5 0.5 0.5 100 100 100 100
2 1 1.5 0 0.1 15 18 100 100
2.5 1 1.5 0 0.1 0 0 98 98

1.25 1.25 0 0 47 54 100 100 100 100
2 0 0 0 0 14 18 100 100
2.75 0 0 0 0 0 0 71 77
3.5 0 0 0 0 0 0 0.2 0.3

1.5 1.5 0 0 0.2 0.3 100 100 100 100
2.5 0 0 0 0 0 0 98 98
3.5 0 0 0 0 0 0 0.2 0.3

1.75 1.75 0 0 0 0 82 86 100 100
2 0 0 0 0 14 18 100 100
3.25 0 0 0 0 0 0 3 5

2 2 0 0 0 0 14 18 100 100
2.5 0 0 0 0 0 0 98 98
3 0 0 0 0 0 0 24 30
3.5 0 0 0 0 0 0 0.2 0.3

2.25 2.25 0 0 0 0 0.2 0.4 100 100
2.5 0 0 0 0 0 0 98 98
3 0 0 0 0 0 0 24 30

follows. Let u1l = ψ1v1l + ψ2v2l where ψ1,ψ2 ≥ 0, ψ1 + ψ2 = 1 and ψ1 is larger than ψ2.
Also, let u2l = ψ̃1v1l + ψ̃2v2l where ψ̃1, ψ̃2 ≥ 0, ψ̃1 + ψ̃2 = 1 and ψ̃2 is larger than ψ̃1. The
fractions ψ1, ψ2, ψ̃1 and ψ̃2 are fixed numbers. The unmeasured confounders v1l and v2l

relate to the broad case status and the narrow case status by models (4.5) and (4.6) via the
variables u1l and u2l .

As for the relation between the unmeasured confounders v1l , v2l and the observed exposure
to treatment, for two units i1 and i2 with the same observed covariates we write, for zi1 +
zi2 = 1,

(6.1) Pr(Zi1 = zi1,Zi2 = zi2 | C,xi1 = xi2,Zi1 + Zi2 = 1) = exp{λ(zi1ωi1 + zi2ωi2)}
exp(λωi1) + exp(λωi2)

,

where

(6.2) ωl = ζ1v1l + ζ2v2l for l = 1, . . . ,L; ζ1, ζ2 ≥ 0, ζ1 + ζ2 = 1.

Now, consider the amplification of the sensitivity parameters �bc and �nm under the model
specified by equations (6.1), (6.2) and (4.5) and (4.6) with u1l = ψ1v1l + ψ2v2l and u2l =
ψ̃1v1l + ψ̃2v2l . This can be communicated under three different scenarios depending on the
source of bias under doubt—either bias from one of v1 or v2 or bias from both v1 and v2.
Assume a value of λ in model (6.1)–(6.2). We find the parameters δbc and δnm from λ and
�bc, �nm. Let 
 = exp(λ), �bc = exp(δbc) and �nm = exp(δnm). Then, (i) if only v1 is
the bias in question, that is, we put the restriction v2,l = v2,l′ , then �bc = {(
�bc − 1)/
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FIG. 2. Level of bias from unmeasured confounding plotted under three speculations—bias only from v1, plotted
on the x-axis and in “red”; bias only from v2, plotted on the y-axis and in “blue”; and biases from both v1 and v2,
plotted in “green” contours. The contours are of the function f (δv1 , δv2) = (1/δv1 + 1/δv2)

−1. Here, ψ1 = 3/4,
ψ2 = 1/4, ψ̃1 = 1/5 and ψ̃2 = 4/5. The bias levels δbc and δnm change with the speculation, and the required
bias level is minimized when biases from both v1 and v2 are assumed.

(
 − �bc)}1/ψ1 and �nm = {(
�nm − 1)/(
 − �nm)}1/ψ̃1 . This correspondence holds with
|v1,i1 − v1,i2| = 1. (ii) If only v2 is the bias in question, that is, we put the restriction v1,l =
v1,l′ , then �bc = {(
�bc − 1)/(
 − �bc)}1/ψ2 , �nm = {(
�nm − 1)/(
 − �nm)}1/ψ̃2 and
|v2,i1 − v2,i2| = 1. (iii) Finally, if both the confounders v1 and v2 are in question, then �bc =
(
�bc − 1)/(
 − �bc) and �bc = (
�nm − 1)/(
 − �nm). This correspondence holds with
|v1,i1 − v1,i2| = 1 and |v2,i1 − v2,i2| = 1. A closer look at these formulas immediately shows
that bias parameters δbc = log(�bc) and δnm = log(�nm) change wildly across the scenarios.

Guided by the above calculations, Figure 2 provides an illustration of the influence of
unmeasured confounders on the broad case status, δbc, and on the narrow case status to a
marginal case status, δnm. In this illustration we assume ψ1 = 3/4, so that, in determining a
broad case status, the magnitude of unmeasured confounding from v1 over v2 has the ratio
3 : 1. Whereas, in determining a narrow case status to a marginal case status, the magnitude
of unmeasured confounding from v1 over v2 has the ratio 1:4, that is, ψ̃1 = 1/5. The plot
considers three critics, showed in three colors, with different positions on their beliefs in
the source of bias from unmeasured confounding. The first critic assumes bias only from
v1, the second critic assumes bias only from v2 and, finally, the third critic assumes biases
from both v1 and v2. The x-axis on the plot (in red) shows the amount of bias the first critic
would have to assume; the y-axis on the plot (in blue) shows the amount of bias the second
critic would have to assume, and, finally, the green curves show the amount of bias the third
critic would have to assume. For example, the plot highlights the situation where the critics
want to explain the sensitivity of the comparisons at level �bc = 2 and �nm = 2, and all of
them speculate 
 = 4. The first critic would have to assume biases at the amounts of δbc ≥
1.671 and δnm ≥ 6.265. The second critic would have to assume biases at the amounts of
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δbc ≥ 1.566 and δnm ≥ 5.012. The third critic, however, can assume bias levels of δbc ≥ 1.253
and δnm ≥ 1.253. Hence, unless a skeptic of the study assumes unmeasured confounding
from both sources of bias mechanisms she would be forced to consider a larger influence of
unmeasured confounding in one case definition over the other.

Thus, when the factors overlap but do not completely overlap in their sources of bias,
evidence factors will be useful in narrowing the range of explanations for how an observed
association could not be causal.

7. Results: Efficacy of screening sigmoidoscopy. In our study of mortality from col-
orectal cancer and screening sigmoidoscopy, the two evidence factors analyses are summa-
rized in Table 4. The count for screening sigmoidoscopy represent the number of individuals
who had a screening procedure in 10 years before the reference date. The raw odds ratio,
without controlling for any covariates, of screening sigmoidoscopy between proximal and
distal cancer cases is 0.63 (95% CI, 0.55 to 0.72) and that between all colorectal cancer cases
and controls is 0.64 (95% CI, 0.50 to 0.81). To control for important covariates, we utilize the
matched sets we constructed in Section 2.1. Using this matched sets design, the p-value for
efficacy of screening sigmoidoscopy for the distal colorectal cancer cases vs. the proximal
colorectal cancer cases is 2.3×10−5, with the corresponding odds ratio 0.60 (95% CI, 0.46 to
0.76). The p-value for all cases (distal and proximal) vs. the matched controls is 5.0×10−11,
with odds ratio 0.62 (95% CI, 0.54 to 0.72) (this result is similar to previously reported odds
ratios; see Atkin et al. (2010) and Segnan et al. (2011)).

We further conduct a sensitivity analysis to assess whether possible covariates, which were
not controlled for in our study, may have been the reason behind the observed association
above. Being consistent with the notation of Section 4, we consider two sensitivity param-
eters �nm and �bc for the two comparisons. A value of 1 for a sensitivity parameter would
say that there is no bias from unmeasured confounding in the respective comparison, and the
higher the value is of the parameter, the bigger is the bias. Figure 3 shows the bias levels
where the combined evidence for a beneficial effect of screening sigmoidoscopy is sensitive.
The p-value upper bounds for each bias level of the two evidence factors are combined using
the truncated product method with α̃ = 0.20. As can be seen in this plot, only a substantial
amount of bias in both comparisons could explain the observed association in the data if, in
fact, the null hypothesis is true. For example, with a maximum bias of �nm = 1.4 in the com-
parison of distal cancer cases to proximal cancer cases, the combined evidence is sensitive
only when the bias in the second comparison of all colorectal cases to the controls is larger
than �bc = 1.45. The overall evidence remains insensitive for �nm = 2 when �bc ≤ 1.35.
Thus, the overall evidence for the efficacy of the procedure is strengthened compared to ev-
idence from an analysis that only looks at the screening rates between all colorectal cancer
cases and controls. The maximum p-values are calculated using the “mh” function in R pack-
age sensitivity2x2xk.

TABLE 4
Screening sigmoidoscopy and colorectal cancer summary data. Numbers in the parentheses show the 95%

confidence intervals

Distal Proximal All colorectal Controls
cancer cases cancer cases cancer cases

No screening sigmoidoscopy 678 662 1340 2538
Screening sigmoidoscopy 144 224 368 1097

Odds ratio from matched sets 0.60 (0.46 to 0.76) 0.62 (0.54 to 0.72)
p-value from matched sets 2.3×10−5 5.0×10−11
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FIG. 3. Sensitivity analysis of the efficacy of screening sigmoidoscopy in reducing mortality from colorectal
cancer. The darker gray color represents the bias levels where the combined evidence for a beneficial effect of
screening sigmoidoscopy is sensitive.

To better understand which part of the evidence is contributing to our inferences about
the effect of sigmoidoscopy screening, we can use closed testing (Marcus, Peritz and Gabriel
(1976)) as in Karmakar, French and Small (2019). When both biases are small, suppose
�nm = �bc = 1.1, by the closed testing procedure, the joint evidence is insensitive, and both
evidence factors are also insensitive with Pnm,1.1 = 1.36×10−7 and Pbc,1.3 = 0.0005. The
closed testing procedure also says that, when �nm = 1.5 and �bc = 1.4, the comparison of
proximal to distal cancer cases is sensitive with maximum possible p-value of Pnm,1.5 =
0.21, but there is evidence from the comparison of all colorectal cancer cases to the controls
which is insensitive with a maximum possible p-value of Pbc,1.4 = 0.034. Recall from the
discussion of Section 4.2 that the pair of bias levels �nm = 1.5 and �bc = 1.4 is equivalent to
an effect of unmeasured confounders that doubles the chance of a sigmoidoscopy screening
for a case relative to a control, while also increasing the chance of death from colorectal
cancer by 5/3-fold and increasing the chance of death from a proximal colorectal cancer
over a distal colorectal cancer by twofold. On the other hand, if the effect of unmeasured
confounders is smaller on being a proximal cancer case so that it increases the chance of
death from proximal colorectal cancer over a distal cancer only by 5/3-fold but increases
the chance of death by any colorectal cancer by twofold, the joint evidence is sensitive to
such unmeasured confounders. The closed testing procedure for two or for many evidence
factors and plots similar to Figure 3 can be produced by the R package evidenceFactors
available from CRAN (R Core Team (2020)).

8. Discussion. In this paper we have developed evidence factors in a case-control study
in which there is a narrow and a broad case definition. These evidence factors are formed
by two sets of comparisons, the first one comparing narrow cases to marginal cases and the
second one comparing all cases to controls. Use of these evidence factors in a case-control
study can provide better insight into the study especially in a discussion and analysis of
possible bias in the study.

In the sigmoidoscopy study considered in this paper, the elaborate theory (Section 1.1 and
1.3) suggested that, if there is an efficacy of sigmoidoscopy screening in reducing mortality
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from colorectal cancer, the benefit should be larger for the proximal cancer cases compared to
distal cancer cases and for any colorectal cancer case over controls. Following this theory, the
evidence factors were thus useful in assessing the hypothesis of no benefit of sigmoidoscopy
screening. While the standard discussion of evidence factors analyses emphasizes that the
biases affecting the different factors are different (Section 1.2), for the sigmoidoscopy study
it was more likely the biases overlap but not completely. For case-control studies, this paper
also shows that the evidence factors analyses also strengthens the evidence for a causal effect
when the biases from unmeasured confounders affecting the different analyses may overlap.

The technical results of Section 5 can be extended to more complex designs, for example,
to designs with more than two types of cases (see Keogh and Cox (2014)) using more com-
plex notation. But these technical results are only a part of what makes an evidence factor
useful for a case-control study. It is also equally important that the factors are coherent with
the elaborate theory of a causal effect of an exposure; for two case definitions other examples,
where an evidence factors analysis may be considered, are discussed in the final subsection.
Lastly, it would also be important to establish that under overlapping biases, which is likely
more prominent when there are multiple types of cases, the multiple analyses considered still
strengthens the evidence against a large number of plausible patterns of biases. Regarding this
point, for the arguments of Figure 2 in Section 6 to work, one has to think of appropriate ex-
tensions of the models in equations (4.5) and (4.6). Such extensions are not readily available
in the literature. We leave these developments as a potential future research direction.

Our study paired narrow cases to marginal cases on the observed covariates and included
their controls in the matched sets and, then, put the remaining marginal cases in matched
sets with their controls. Other matching methods could be used, for example, full matching
(Hansen (2004)) and variable ratio matching (Ming and Rosenbaum (2000), Pimentel, Yoon
and Keele (2015)).

8.1. Other examples with multiple case definitions. In certain diseases, like cancer in the
body of the uterus, atherosclerosis, hypertension and mental illness, multiple case definitions
are considered or often necessary (Acheson (1979), Cole (1979), Cohen et al. (2005)). Some
other specific studies where multiple case definitions have been considered are discussed
here. These studies illustrate various ways to design a broad case vs. narrow case distinction
in case-control studies. In a study to assess whether statin causes peripheral neuropathy, Gaist
et al. (2002) classify the neuropathy cases as definite and nondefinite cases of idiopathic
peripheral neuropathy based on the intensity of the symptom and the quality of the clinical
information. In the terminology of the present paper, the definite cases would be the narrow
cases where the association, if present, would be stronger compared to the marginal cases, that
is, the nondefinite cases. Small et al. (2013) use an illustrative case-control study for physical
abuse by parents in childhood and tendency for more anger in adulthood. In this study the
cases were split in two definitions based on whether or not anger score was on a higher
range. Here, a case on a higher quantile of anger score could be defined as a narrow case.
As a final example, in an effort to understand association between genetic traits and cerebral
malaria, Small et al. (2017) consider cerebral malaria cases with and without retinopathy.
The World Health Organization (WHO) defines a child as having cerebral malaria when the
child is in a coma (cannot localize a painful stimulus), has malaria parasites in his or her
blood and has no other known cause of the coma. This definition is not specific as hospitals
in malaria-endemic areas often lack diagnostic facilities to identify nonmalarial causes of
coma and many children in malaria endemic areas have nonsymptomatic malaria infections.
There are characteristic retinal abnormalities (retinopathy) that increase the specificity of
a cerebral malaria diagnosis (Taylor et al. (2004)). Cerebral malaria cases with such retinal
abnormalities could be considered as narrow cases and those without the retinal abnormalities
could be considered as marginal cases.
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APPENDIX: PROOF OF THE LEMMAS

PROOF OF LEMMA 5.2. First we note that Tnm is a function of Yn{s} which are, sim-
ply, linear functions of Zn{si}. Given the strata, from equation (4.1) we have that the max-
imum p-value of the narrow vs. marginal comparison, Pnm,�nm , is computed based on the
conditional distributions {[Zn{si} | ∑

i∈[ns ] Zn{si} + ∑
i∈[ms ] Zm{si}]}. Combining these facts,

we get the first result that marginally Pnm,�nm is a function of {Zn{si}} and
∑

i∈[ns ] Zn{si} +∑
i∈[ms ] Zm{si}.
Next, we note that Tbc is a function of

∑
i∈[ns ] Zn{si} + ∑

i∈[ms ] Zm{si}. Now, by
looking at equation (4.2), Pbc,�bc

is computed based on the family of conditional
distributions {[∑i∈[ns ] Zn{si} + ∑

i∈[ms ] Zm{si} | ∑
i∈[ns ] Zn{si} + ∑

i∈[ms ] Zm{si} +∑
i∈[cs ] Zc{si}]}. Consequently, Pbc,�bc

is determined by the number of exposed cases
{∑i∈[ns ] Zn{si} + ∑

i∈[ms ] Zm{si}} and the total number of exposed individuals
{∑i∈[ns ] Zn{si} + ∑

i∈[ms ] Zm{si} + ∑
i∈[cs ] Zc{si}}. But it is enough to know whether each

control is exposed or not, that is, Zc{si}, to know the number of exposed cases when we have
the information on total number of exposed units. Hence, the result is proved. �

PROOF OF LEMMA 5.3. For parts (i) and (ii) note that p-values or their upper bounds
are valid p-values, thus, are stochastically larger than Unif[0,1]. Parts (iii) and (iv) follows
from (i) and (ii) simply by marginalizing since marginalization preserves stochastic ordering.

�

PROOF OF LEMMA 5.4. Note that, since conditional on
∑

i∈[ns ] Zn{si} + ∑
i∈[ms ] Zm{si}

the random variables Zn{si} and Zc{si} are independently distributed, by Lemma 5.2 the con-
ditional distribution in the statement of the lemma is same as [Pnm,�nm | ∑

i∈[ns ] Zn{si} +∑
i∈[ms ] Zm{si}]. Now, the result follows from part (i) of Lemma 5.3. �

PROOF OF LEMMA 5.5. We can write for any 0 ≤ p,q,≤ 1, the conditional probability
as

Pr(P2 ≤ q | P1 ≤ p)
by C1= Pr

(
P2 ≤ q | {V1 : P1 ≤ p})

= E
[
Pr(P2 ≤ q | V1) | {V1 : P1 ≤ p}]

by C2≤ E
[
q | {V1 : P1 ≤ p}] = q.

The second equality above follows from the tower property of conditional expectation. The
lemma then follows. �

Software. An R package evidenceFactors, available from CRAN (R Core Team
(2020)), contains code for reproducing the simulation results of Section 5.1, and code used
for analyzing the sigmoidoscopy study.
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