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Abstract. Given a supercritical branching random walk on R started from the origin, let Mn be the maximal position of individuals
at the nth generation. Under some mild conditions, it is proved in (Ann. Probab. 41 (2013) 1362–1426) that as n → ∞, Mn − x∗n +

3
2θ∗ logn converges in law for some suitable constants x∗ and θ∗. In this work, we investigate its moderate deviation, in other words,
the convergence rates of

P

(
Mn ≤ x∗n − 3

2θ∗ logn − �n

)
,

for any positive sequence (�n) such that �n = O(n) and �n ↑ ∞. As a by-product, we obtain lower deviation of Mn; i.e., the convergence
rate of P(Mn ≤ xn) for x < x∗ in Böttcher case where the offspring number is at least two. We also apply our techniques to study
the small ball probability of the limit of the so-called derivative martingale. Our results complete those in (Ann. Inst. Henri Poincaré
Probab. Stat. 52 (2016) 233–260) and (Electron. Commun. Probab. 23 (2018) 1–12).

Résumé. Étant donnée une marche aléatoire branchante surcritique sur R issue de l’origine, on note Mn la position maximale des
individus à la n-ème génération. Sous des conditions raisonnables, il a été prouvé dans (Ann. Probab. 41 (2013) 1362–1426) que lorsque
n → ∞, Mn − x∗n + 3

2θ∗ logn converge en loi pour certaines constantes appropriées x∗ et θ∗. Dans cet article, nous envisageons la
déviation modérée, autrement dit, les taux de convergence de

P

(
Mn ≤ x∗n − 3

2θ∗ logn − �n

)
,

pour toute positive suite (�n) telle que �n = O(n) et �n ↑ ∞. En particulier, nous obtenons la déviation inférieure de Mn; c’est-à-dire,
le taux de convergence de P(Mn ≤ xn) avec x < x∗ dans le cas Böttcher où le nombre d’enfants est au moins deux. Nous appliquons
également ces techniques à l’étude de la petite déviation de la limite de la martingale dérivée. Notre résultats complètent ceux dans
(Ann. Inst. Henri Poincaré Probab. Stat. 52 (2016) 233–260) et (Electron. Commun. Probab. 23 (2018) 1–12).

MSC2020 subject classifications: 60F10; 60J80; 60G50

Keywords: Branching random walk; Maximal position; Moderate deviation; Lower deviation; Schröder case; Böttcher case; Small ball probability;
Derivative martingale

1. Introduction

1.1. Branching random walk and its maximum

We consider a discrete-time branching random walk on the real line, which, as a generalized branching process, has always
been a very attractive objet in probability theory in recent years. It is closely related to many other random models, for
example, random walk in random environment, random fractals and discrete Gaussian free field; see [9,26,30,33] and [3]
references therein. One can refer to [37] and [38] for the recent developments.
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Generally, to construct a branching random walk, we take a random point measure as the reproduction law which
describes both the number of children and their displacements. Each individual produces independently its children ac-
cording to the law of this random point measure. In this way, one develops a branching structure with motions.

In this work, we study a relatively simpler model which is constructed as follows. We take a Galton–Watson tree T ,
rooted at ρ, with offspring distribution given by {pk; k ≥ 0}. For any u,v ∈ T , we write u 	 v if u is an ancestor of v or
u = v. Moreover, to each node v ∈ T \ {ρ}, we attach a real-valued random variable Xv to represent its displacement. So
the position of v is defined by

Sv :=
∑

ρ≺u	v

Xu.

Let Sρ := 0 for convenience. Suppose that given the tree T , {Xv;v ∈ T \ {ρ}} are i.i.d. copies of some random variable X

(which is called displacement or step size). Let |u| denote the generation of an individual u ∈ T , i.e., the graph distance
between v and ρ. Note here that the reproduction law is given by

∑
|u|=1 δXu . Thus, {Su;u ∈ T } is our branching random

walk with independence between offsprings and motions. This independence will be necessary for our arguments. We
will discuss this at the end of this article, in Section 6.

For any n ∈N, let Mn be the maximal position at the nth generation, in other words,

Mn := sup
|v|=n

Sv.

The asymptotics of Mn have been studied by many authors, both in the subcritical/critical case and in supercritical case.
One can refer to [29,35] and [37] for more details.

We are interested in the supercritical case where
∑

k≥0 kpk > 1 and the system survives with positive probability. Let
(Sn)n≥0 be a random walk started from 0 with i.i.d. increments distributed as X. Observe that for any individual u of
the nth generation, Su is distributed as Sn. If E[|X|] < ∞, classical law of large number tells us that Sn ∼ E[X]n almost
surely. However, as there are an exponentially large number of individuals in this supercritical system, the asymptotical
behavior of Mn is not as that of Sn.

Conditionally on survival, under some mild conditions, it is known from [5,24,28] that

Mn

n
→ x∗ > E[X], a.s.,

where x∗ is a constant depending on both offspring law and step size. Later, the logarithmic order of Mn −x∗n is given by
[1,27] in different ways. Aïdékon in [2] showed that Mn − x∗n + 3

2θ∗ logn converges in law for some suitable θ∗ ∈ R
∗+,

which is an analogue of Bramson’s result for branching Brownian motion in [8]; see also [10]. More details on these
results will be given in Section 1.2.

For maximum of branching Brownian motion, Chauvin and Rouault [12] first studied the large deviation probability.
Recently, Derrida and Shi [15–17] considered both the large deviation and the lower deviation. They established precise
estimates. On the other hand, for branching random walks, Hu in [25] studied the moderate deviation for Mn − x∗n +

3
2θ∗ logn; i.e.; P(Mn ≤ x∗n − 3

2θ∗ logn − �n) with �n = o(logn). Later, Gantert and Höfelsauer [22] and Bhattacharya
[4] investigated the large deviation probability P(Mn ≥ xn) for x > x∗. In the same paper [22], Gantert and Höfelsauer
also studied the lower deviation probability P(Mn ≤ xn) for x < x∗ mainly in the Schröder case when p0 + p1 > 0. In
fact, branching random walk in the Schröder case can be viewed as a generalized version of branching Brownian motion.
Some other related works include Rouault [36] and Buraczewski and Maślanka [11].

Motivated by [22,25] and [16], the goal of this article is to study the moderate deviation P(Mn ≤ x∗n− 3
2θ∗ logn− �n)

with �n = O(n). As a by-product of our main results, in the Böttcher case where p0 = p1 = 0, we also obtain the lower
deviation of Mn, i.e., P(Mn ≤ xn) for x < x∗, which completes the work [22]. We shall see that the lower deviation of
Mn in the Böttcher case turns to be very different from that in the Schröder case. In fact, Gantert and Höfelsauer [22]
proved that in the Schröder case P(Mn ≤ xn) decays exponentially. On contrast, in the Böttcher case, we shall show that
P(Mn ≤ xn) may decay double-exponentially or sub/super-exponentially depending on the tail behaviors of step size X.
We will consider three typical left tail distributions of the step size X and obtain the corresponding decay rates and rate
functions. Finally, we also apply our techniques to study the small ball probability for the limit of the so-called derivative
martingale. The corresponding problem was also considered in [25] for a class of Mandelbrot’s cascades in the Böttcher
case with bounded step size and in the Schröder case; see also [31] and [32] for more backgrounds. Let us state the
theorems in the following subsection.

In this paper, we use (ci)i≥0 and (Ci)i≥0 to present positive constants. And we write C(x) for constant depending
on x. As usual, fn = O(gn) or fn = O(1)gn means that |fn| ≤ Cgn for all n ≥ 1. And fn = �(1)gn means that fn is
bounded above and below by a positive and finite constant multiple of gn for all n ≥ 1. fn = o(gn) or fn = on(1)gn means
limn→∞ fn

gn
= 0.
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1.2. Main results

Suppose that we are in the supercritical case where the tree T survives with positive probability. Formally, we assume
that for the offspring law {pk}k≥0:

m :=
∑
k≥0

kpk ∈ (1,∞) and
∑
k≥0

k1+ξpk < ∞, for some ξ > 0, (1.1)

and for the step size X,

E[X] = 0, and ψ(t) := E
[
etX

]
< ∞, for some t > 0. (1.2)

We define the rate function of large deviation for the corresponding random walk (Sn)n≥0 with i.i.d. step sizes X by

I (x) := sup
t∈R

{
tx − logψ(t)

}
, ∀x ∈ R.

Then it is known from Theorem 3.1 in [6] that under (1.1) and (1.2), on the survival set {T = ∞}, a.s.,

Mn

n
→ x∗,

where x∗ = sup{x ≥ 0 : I (x) ≤ logm} ∈ (0,∞). Note that if x∗ < ess supX ∈ (0,∞], then I (x∗) = logm since I is
continuous in (0, ess supX), and

∃ unique θ∗ ∈ (0,∞) such that I
(
x∗) = θ∗x∗ − logψ

(
θ∗) = logm. (1.3)

According to Theorem 4.1 in [6], it further follows from (1.3) that P-a.s.,

Mn − nx∗ → −∞.

This is typical behaviour. But whether this holds or not is the explosion problem for the general branching random walk.
One can refer to [6] and [23] for more details. Besides (1.1), (1.2) and (1.3), if we further suppose that

ψ(t) < ∞, ∀t ∈ (
0, θ∗ + δ

)
for some δ > 0, (1.4)

then it is shown in [1] and [27] that Mn = mn + oP(logn), where

mn := x∗n − 3

2θ∗ logn, ∀n ≥ 1.

Define the so-called derivative martingale by

Dn :=
∑
|u|=n

θ∗(nx∗ − Su

)
eθ∗(Su−nx∗), n ≥ 1.

It is known from [7] and [2] that under assumptions (1.1), (1.2), (1.3) and (1.4), there exists a non-negative random
variable D∞ such that

Dn
P−a.s.−→ D∞, as n → ∞,

with {D∞ > 0} = {T = ∞} a.s. Next, assume that

the distribution of X is non-lattice. (1.5)

Under (1.1), (1.2), (1.3), (1.4) and (1.5), Aïdékon [2] proved the convergence in law of Mn − mn as follows: for any
x ∈ R,

lim
n→∞P(Mn ≤ mn + x) = E

[
e−C∗e−xD∞]

, (1.6)
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where C∗ > 0 is a constant. In this work, we are going to study the asymptotic of P(Mn ≤ mn − �n) for 1 � �n = O(n),
as well as that of P(0 < D∞ < ε). Let us introduce the minimal branching/offspring number for T :

b := min{k ≥ 0 : pk > 0}.
We first present the main results in the Böttcher case where b ≥ 2.

Theorem 1.1 (Böttcher case, bounded step size: lower deviation). Assume (1.1), (1.2) and b ≥ 2. Suppose that
ess inf X = −L for some 0 < L < ∞, then for x ∈ (−L,x∗),

lim
n→∞

1

n
log

[− logP(Mn ≤ xn)
] = x∗ − x

x∗ + L
logb. (1.7)

If P(X = −L) > 0, then (1.7) holds also for x = −L.

Remark 1.1. Note that the assumptions (1.1) and (1.2) do not imply the second logarithmic order of Mn. For example, if
x∗ = ess sup X ∈R and P(X = x∗) > 1

m
, then with some extra conditions, it is shown in [1] that E[Mn −nx∗] is bounded.

In the following results, we shall work in the regime that (1.6) holds.

Theorem 1.2 (Böttcher case, bounded step size: moderate deviation). Assume (1.1), (1.2), (1.3), (1.4), (1.5) and b ≥ 2.
Suppose that ess inf X = −L for some 0 < L < ∞. Then for any positive increasing sequence �n such that �n ↑ ∞ and
lim supn→∞ �n

n
< x∗ + L,

P(Mn ≤ mn − �n) = e−e�nβ(1+on(1))

, (1.8)

where β := logb
x∗+L

∈ (0, θ∗).

Remark 1.2. Hu [25] obtained this moderate deviation (1.8) for �n = o(logn) in a more general setting with bounded
step size and without assuming independence between offsprings and motions. One could check that β = sup{a > 0 :
P(

∑
|u|=1 e−a(x∗−Xu) ≥ 1) = 1} = logb

x∗+L
is coherent with that defined in (1.10) of [25].

Remark 1.3. Suppose that all assumptions in Theorem 1.2 hold. Then Theorem 1.3 in [25] gives

P(D∞ < ε) = e−ε
− β

θ∗−β
+o(1)

, as ε → 0 + .

Theorem 1.3 (Böttcher case, Weibull left tail). Assume (1.1), (1.2), (1.3), (1.4), (1.5) and b ≥ 2. Suppose P(X ≤ −z) =
�(1)e−λzα

as z → +∞ for some constant α > 0 and λ > 0. Then for any positive increasing sequence �n such that
�n ↑ ∞ and �n = O(n),

lim
n→∞

1

�α
n

logP(Mn ≤ mn − �n) = −λC(b,α), (1.9)

where C(b,α) := (b
1

α−1 − 1)α−1 for α > 1 and C(b,α) := b for α ∈ (0,1]. In particular, for any x < x∗,

lim
n→∞

1

nα
logP(Mn ≤ xn) = −λC(b,α)

(
x∗ − x

)α
. (1.10)

Remark 1.4. In fact, our arguments in Section 3.2 for α ∈ (0,1] also work for X with polynomial left tails. For brevity,
we only state Weibull left tail in this theorem.

The weak convergence (1.6) shows the link between Mn −mn and D∞. In fact, we will see that P(Mn ≤ mn − �n) and
P(D∞ < ε) are closely related, obtained from some similar rare events. So inspired by the proof of Theorem 1.3, we get
the following result.

Proposition 1.4 (Böttcher case, Weibull left tail). Suppose that all assumptions in Theorem 1.3 hold. Then

lim
ε→0+

1

(− log ε)α
logP(D∞ < ε) = − λ

(θ∗)α
C(b,α). (1.11)
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The following theorem considers the case of Gumbel left tail.

Theorem 1.5 (Böttcher case, Gumbel left tail). Assume (1.1), (1.2), (1.3), (1.4), (1.5) and b ≥ 2. Suppose P(X ≤ −z) =
�(1) exp(−ezα

) as z → +∞ for some constant α > 0. Then for any positive increasing sequence �n such that �n ↑ ∞
and �n = O(n),

lim
n→∞�

− α
α+1

n log
[− logP(Mn ≤ mn − �n)

] =
(

1 + α

α
logb

) α
α+1

. (1.12)

In particular, for any x < x∗,

lim
n→∞n− α

α+1 log
[− logP(Mn ≤ xn)

] =
(

1 + α

α
logb

) α
α+1 (

x∗ − x
) α

α+1 . (1.13)

Again, inspired by the proof of Theorem 1.5, we obtain the following result.

Proposition 1.6 (Böttcher case, Gumbel left tail). Suppose that all assumptions in Theorem 1.5 hold. Then

lim
ε→0+

1

(− log ε)
α

α+1
log

[− logP(D∞ < ε)
] =

(
1 + α

θ∗α
logb

) α
α+1

. (1.14)

Remark 1.5. The assumption P(X > z) = �(1)e−λzα
(or P(X > z) = �(1)e−ezα

) in Theorem 1.3 and Proposition 1.4
(or in Theorem 1.5 and Proposition 1.6) is made for convenience and the results hold under the assumption that P(X >

z) = e−(λ+o(1))zα
(or P(X > z) = e−e(1+o(1))zα

) as z → ∞. The proofs carry through, albeit with some extra epsilons and
deltas.

Next theorem concerns the Schröder case where p0 +p1 > 0. Let q := P(T < ∞) ∈ [0,1) be the extinction probability
and f (s) := ∑

k≥0 pks
k , s ∈ [0,1] be the generating function of its offspring. Let Ps(·) := P(·|T = ∞). Note that (1.6)

also holds under P
s . Denote max{a,0} by a+ for any real number a ∈ R. For the step size X, we make a stronger

assumption than (1.2):

E[X] = 0, and there exists t0 > 0 such that ψ(t) := E
[
etX

]
< ∞, for all |t | < t0. (1.2a)

If (1.2a) fails, one could also consider P(Mn ≤ mn − �n). For instance, if we suppose that X has Weibull left tail with
α ∈ (0,1), i.e., P(X < −z) = �(1)e−λzα

as z → ∞, by use of Theorem 3 in [21], one can show that P(Mn ≤ mn − �n) =
e−(λ+on(1))�α

n . In the following theorem, we work under (1.2a).

Theorem 1.7 (Schröder case). Assume (1.1), (1.2a), (1.3), (1.4), (1.5) and 0 < p0 + p1 < 1. Then for any positive
sequence (�n) such that �n ↑ ∞ and that �∗ := limn→∞ �n

n
exists with �∗ ∈ [0,∞), we have

lim
n→∞

1

�n

logPs(Mn ≤ mn − �n) = H
(
�∗, γ

)
, (1.15)

where γ = logf ′(q) and

H
(
�∗, γ

) = sup
a≥�∗∨x∗

γ − I (x∗ − a)

a
. (1.16)

In particular, we have for any x < x∗,

lim
n→∞

1

n
logPs(Mn ≤ xn) = (

x∗ − x
)

sup
a≤x∧0

−I (a) + γ

x∗ − a
. (1.17)

Remark 1.6. (1.17) was obtained first by Gantert and Höfelsauer in [22]. In fact, it is shown in [22] that for any x < x∗,

lim
n→∞

1

n
logPs(Mn ≤ xn) = − inf

t∈(0,1]
{−tγ + tI

((
x − (1 − t)x∗)/t

)}
.
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Fig. 1. � may be not analytical at x0.

Then one can check that

− inf
t∈(0,1]

{−tγ + tI
((

x − (1 − t)x∗)/t
)} = (

x∗ − x
)

sup
a≤x∧0

−I (a) + γ

x∗ − a
=: −�(x).

Remark 1.7. When �n = o(logn), (1.15) was obtained by Hu in [25] in a more general framework. In fact, if restricted
to our setting, then conditions (1.5) and (1.6) in [25] are equivalent to say that there exists a constant t∗ > 0 such that

logf ′(q) + t∗x∗ + logψ
(−t∗

) = 0, and ψ(−t) < ∞ for some t > t∗.

Since �n = o(logn), then �∗ = 0. So conditions (1.5) and (1.6) in [25] make sure that a∗ := x∗ − (logψ(t))′ |t=−t∗ is
exactly the arg max of a �→ γ−I (x∗−a)

a
on [0,∞); i.e.;

γ − I (x∗ − a∗)
a∗ = sup

a≥0

γ − I (x∗ − a)

a
= t∗.

Remark 1.8. Note that there is a phase transition for � . When x ≥ arg max{−I (a)+γ
x∗−a

;a ≤ x∗} = (logψ(t))′ |t=−t∗=:
x0, (x∗ − x) supa≤x∧0

−I (a)+γ
x∗−a

= C1(x
∗ − x) with C1 := supa<x∗ −I (a)+γ

x∗−a
< 0; and when x < (logψ(t))′ |t=−t∗ ,

(x∗ − x) supa≤x∧0
−I (a)+γ

x∗−a
= γ − I (x). This phenomena has been detected in [17] for branching Brownian motion.

See Figure 1.

Remark 1.9. If all assumptions in Theorem 1.7 hold, then by Theorem 1.3 in [25], we have

P(0 < D∞ < ε) � εt∗ , as ε → 0 + .

Remark 1.10. In all the results presented above, we assume that offsprings and motions are independent. Without this
assumption of independence, we could find some examples for which the lower deviations are totally different. See
Section 6 for more details.

General strategy
Let us explain our main ideas here, especially for P(Mn ≤ mn − �n) in the Böttcher case. Intuitively, to get an unusually
low maximum, for the lower bound, we need to control both the size of the genealogical tree and the displacements
of individuals. More precisely, we need that at the very beginning, the size of the genealogical tree is small with all
individuals moving to some atypically lower place. So, we take some intermediate time/generation tn and suppose that the
genealogical tree is b-regular up to time tn and that all individuals at time tn are located below certain “critical” position
−cn. Then the system continues with btn i.i.d. branching random walks starting from places below −cn. By choosing
cn = �(�n) and tn in an appropriate way, we can expect that the maximum at time n stays below mn − �n with high
probability. For different assumptions on {pk}k≥0 and X, the optimal way for moving all btn particles to position below
−cn within tn generation changes from one case to another. If the step size is bounded from below, tn = �(�n). In the
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case of Weibull tails with α ∈ (0,1], tn = 1. If the step size has Weibull tail of α > 1 or Gumbel tail, then tn = �(log�n)

or tn = �(�
α

α+1
n ), respectively.

The proof of the upper bound goes by showing that the above strategy is optimal, that is that any other strategy would
have smaller (or equal) probability. In fact, if most particles at time tn located above some certain “critical” position −cn,
then it would be “very difficult” that the maximum of the system starting from those particles located at higher positions
stay below mn − �n at time n. This would yield the upper bound in the case of bounded step size where there is no
particle located below −Ltn because of ess infX = −L. For other cases, we need to consider the probabilities that there
are “some” particles located below −cn. In the Weibull case of α ∈ (0,1], this is done by considering b subtrees of height
tn − 1 such that for each subtree there is at least one individual located below −cn with tn = �(�n). In the Weibull case
of α > 1, via a tree-transformation, one could extract a b-regular subtree of height sn such that sn ∼ tn as n → ∞ and all
particles at sn generations are located below −cn (reminiscent of that in the lower bound). Once the genealogy is fixed, it
remains to optimize for the steps taken by the particles to obtain the upper bound. The Gumbel case is somehow similar
to the Weibull case of α > 1.

Our arguments and techniques in the Böttcher case are inspired by [13] where we studied the large deviation of the
empirical distribution of branching random walk. All these ideas also work for studying the small ball probability of D∞.
The idea to explore the Schröder case is borrowed from [22], where the lower deviation for the Schröder case is given.

The rest of this paper is organized as follows. We treat the Böttcher case with bounded step size in Section 1.2. Then,
Section 3 proves Theorems 1.3 and 1.5, concerning the Böttcher cases with unbounded step size. In Section 4, we study
P(0 < D∞ < ε) and prove Propositions 1.4 and 1.6. Finally, we prove Theorems 1.7 for Schröder case in Section 5. In
Section 6, we discuss a special example.

2. Böttcher case with step size bounded from below

In this section, we always suppose that b ≥ 2 and ess inf X = −L with L ∈ (0,∞). Assumption (1.2) yields Mn =
x∗n + o(n) with x∗ ∈ (0,∞). We are going to prove that for any −L < x < x∗,

P(Mn ≤ xn) = e−e(1+o(1))β(x∗−x)n

, as n → ∞, (2.1)

with β = logb
x∗+L

. Next, for the second order of Mn, there are several regimes. We assume (1.3), (1.4) and (1.5) to get the

classical one: Mn = mn + O(1) with mn = x∗n − 3
2θ∗ logn. In this regime, we are going to prove that for any positive

sequence �n ↑ ∞ such that lim supn→∞ �n

n
< x∗ + L,

P(Mn ≤ mn − �n) = e−e(1+o(1))β�n
, as n → ∞. (2.2)

The proofs of (2.1) and (2.2) basically follow the same idea. The optimal strategy for the lower bound is that up to
some intermediate time tn, we have a b-regular tree for which all individuals in the tnth generation are positioned around
−Ltn and then the process behaves typically. For the upper bound, since there are at least btn individuals positioned
above −Ltn in the tnth generation, we see that the following event happens with probability less than e−�(btn ): there
are at least btn BRWs started from positions above −Ltn with the maximum of all BRWs at time n − tn staying below
mn − �n ≈ mn−tn −Ltn. We use t−n to denote the intermediate time chosen for the lower bounds and t+n for upper bounds.

For later use, let us introduce the counting measures as follows: for any B ⊂R,

Zn(B) :=
∑
|u|=n

1{Su∈B}, ∀n ≥ 0.

For simplicity, we write Zn for Zn(R) to represent the total population of the nth generation. It is clear that Zn ≥ bn. For
any u ∈ T , let

Mu
n := max|z|=n+|u|,u	z

{Sz − Su}, ∀n ≥ 0, (2.3)

be the maximal relative positions of descendants of u. Clearly, (Mu
n )n≥0 is distributed as (Mn)n≥0.

2.1. Proof of Theorem 1.1

In this subsection, we are going to prove (2.1) for x ∈ (−L,x∗).



2514 X. Chen and H. He

2.1.1. Lower bound of Theorem 1.1
We first prove that for any x ∈ (−L,x∗),

lim sup
n→∞

1

n
log

[− logP(Mn ≤ xn)
] ≤ x∗ − x

x∗ + L
logb. (2.4)

As x > −L, let L′ := L − η with sufficiently small η > 0 such that x > −L + η. Notice that ess inf X = −L implies
that P(X ≤ −L′) > 0. For some intermediate time t−n , whose value will be determined later, if we let every individual
before the t−n th generation make a displacement less than −L′, then

P(Mn ≤ xn) ≥ P
(
Zt−n = bt−n ; ∀|u| = t−n , Su ≤ −L′t−n ;Mn ≤ xn

)
≥ P

(
Zt−n = bt−n ; ∀|u| = t−n , Su ≤ −L′t−n ; max

|u|=t−n
Mu

n−t−n
≤ xn + L′t−n

)
,

where {Mu

n−t−n
} are i.i.d. copies of Mn−t−n . By branching property at time t−n , we arrive at

P(Mn ≤ xn) ≥ P
(
Zt−n = bt−n ; ∀|u| = t−n , Su ≤ −L′t−n

)
P
(
Mn−t−n ≤ xn + L′t−n

)bt
−
n

≥ P
(
Zt−n = bt−n ; ∀1 ≤ |u| ≤ t−n ,Xu ≤ −L′)

P
(
Mn−t−n ≤ xn + Lt−n

)bt
−
n

= p

∑t
−
n −1
k=0 bk

b P
(
X ≤ −L′)∑t

−
n
k=1 bk

P
(
Mn−t−n ≤ xn + L′t−n

)bt
−
n

. (2.5)

Next, we shall estimate P(Mn−t−n ≤ xn + L′t−n )b
t
−
n . The sequel of this proof will be divided into two subparts depending

on whether x∗ = R := ess sup X or not, respectively.

Subpart 1: the case of x∗ = R. Note that we have R < ∞ now. Take t−n = � (R−x)n
R+L′ � so that xn + L′t−n ≥ R(n − t−n ).

Thus,

P
(
Mn−t−n ≤ xn + L′t−n

)bt
−
n = 1.

Going back to (2.5), we end up with

P(Mn ≤ xn) ≥ p
bt

−
n −1
b−1

b

(
P
(
X ≤ −L′)) bt

−
n +1−b
b−1 ≥ e−c1b

t
−
n

. (2.6)

It follows readily that for any x ∈ (−L,x∗),

lim sup
n→∞

1

n
log

[− logP(Mn ≤ xn)
] ≤ x∗ − x

x∗ + L − η
logb. (2.7)

Letting η ↓ 0 yields (2.4).

Subpart 2: the case of x∗ < R ∈ (0,∞]. Now we have I (x∗) = logm because I is finite and continuous in (0,R).
Moreover, I (x) < ∞ for some x > x∗. For any sufficiently small a > 0, one has

logm < I
(
x∗ + a

)
< ∞, and lim

a↓0
I
(
x∗ + a

) = I
(
x∗) = logm.

Recall that −x < L′. Let t = x∗+a−x
x∗+L′+a

and t−n = �tn� so that xn + L′t−n > (x∗ + a)(n − t−n ) � 1 for all n large enough.
Therefore,

P
(
Mn−t−n ≤ xn + L′t−n

)bt
−
n ≥ (

1 − P
(
Mn−t−n >

(
x∗ + a

)(
n − t−n

)))bt
−
n

.
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By Markov inequality and Chernoff inequality, one has

P
(
Mn−t−n >

(
x∗ + a

)(
n − t−n

)) ≤ P
(
Zn−t−n

((
x∗ + a

)(
n − t−n

)
,∞) ≥ 1

)
≤ E[Zn−t−n ]P(

Sn−t−n ≥ (
x∗ + a

)(
n − t−n

))
≤ e−(I (x∗+a)−logm)(n−t−n ),

which yields

P
(
Mn−t−n ≤ xn + L′t−n

)bt
−
n ≥ (

1 − e−(I (x∗+a)−logm)(n−t−n )
)bt

−
n

.

Note that log(1 − x) ≥ −2x for any x ∈ [0,1/2]. Let δ(a) := I (x∗ + a) − logm. Then for all sufficiently large n ≥ 1,

P
(
Mn−t−n ≤ xn + L′t−n

)bt
−
n ≥ e−2e−δ(a)(n−t

−
n )bt

−
n

.

Plugging this into (2.5) implies

P(Mn ≤ xn) ≥ e−c1b
t
−
n

e−2e−δ(a)(n−t
−
n )bt

−
n

. (2.8)

Thus we have

lim sup
n→∞

1

n
log

[− logP(Mn ≤ xn)
] ≤ t logb. (2.9)

Since I (x∗) = logm, letting a ↓ 0 (hence t ↓ x∗−x
x∗+L′ and δ(a) ↓ 0) gives

lim sup
n→∞

1

n
log

[− logP(Mn ≤ xn)
] ≤ x∗ − x

x∗ + L − η
logb,

which implies (2.4) because η is arbitrary small. �

2.1.2. Upper bound of Theorem 1.1
In this subsection, we show that

lim inf
n→∞

1

n
log

[− logP(Mn ≤ xn)
] ≤ x∗ − x

x∗ + L
logb. (2.10)

Note that for any 1 ≤ t+n ≤ n, Zt+n (·) is supported by [−Lt+n ,∞) a.s. Since Zt+n ≥ bt+n , then

P(Mn ≤ xn) = P
(
Zt+n

([−Lt+n ,∞)
) ≥ bt+n ;Mn ≤ xn

)
= P

(
Zt+n

([−Lt+n ,∞)
) ≥ bt+n ; max

|u|=t+n ;Su≥−Lt+n

(
Su + Mu

n−t+n

) ≤ xn
)

≤ P
(
Mn−t+n ≤ xn + Lt+n

)bt
+
n

. (2.11)

It remains to estimate P(Mn−t+n ≤ xn+Lt+n )b
t
+
n . Again, as above, the proof will be divided into two subparts depending

on whether x∗ = R or not, respectively.

Subpart 1: the case of x∗ = R < ∞. By taking t+n = � (R−x)n
R+L

� − 1 so that xn + Lt+n < R(n − t+n ), one has

P
(
Mn−t+n ≤ xn + Lt+n

)bt
+
n ≤ P

(
Mn−t+n < R

(
n − t+n

))bt
+
n

= (
1 − P

(
Mn−t+n ≥ R

(
n − t+n

)))bt
+
n

≤
(

1 − c2

n − t+n

)bt
+
n

≤ e
−c2

bt
+
n

(n−t
+
n ) , (2.12)
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where we use the fact that P(MN ≥ RN) ≥ c2/N for some c2 ∈ (0,1) and all N ≥ 1. In fact, we could construct a
Galton–Watson tree with offspring

∑
|u|=1 1Xu=R . Here E[∑|u|=1 1Xu=R] = mP(X = R) ≥ 1 since x∗ = R. Its survival

probability is positive if E[∑|u|=1 1Xu=R] > 1. Even when E[∑|u|=1 1Xu=R] = 1, it is critical and the survival probability
up to generation N is larger than c2/N for some c2 > 0 and for all N ≥ 1. In fact, its survival up to generation N implies
that some individual at time N has position RN . So, P(MN ≥ RN) ≥ c2/N . We hence conclude from (2.11) and (2.12)
that

lim inf
n→∞

1

n
log

[− logP(Mn ≤ xn)
] ≥ (R − x) logb

R + L
.

Subpart 2: the case of x∗ < R. First recall Theorem 3.2 in [22] which says that

lim
n→∞

1

n
logP(Mn > xn) = logm − I (x), for x > x∗. (2.13)

So for any sufficiently small a > 0 such that δ(a) = I (x∗ + a)− logm ∈ (0,∞), for any x > −L, let t = x∗+a−x
L+x∗+a

∈ (0,1)

and t+n = �tn� so that x∗ <
xn+Lt+n
n−t+n

≤ x∗ + a. Then for all n large enough,

P
(
Mn−t+n ≤ xn + Lt+n

)bt
+
n =

(
1 − P

(
Mn−t+n >

xn + Lt+n
n − t+n

(
n − t+n

)))bt
+
n

≤ (
1 − P

(
Mn−t+n >

(
x∗ + a

)(
n − t+n

)))bt
+
n

≤ (
1 − exp

{−(
I
(
x∗ + a

) − logm + δ(a)
)(

n − t+n
)})bt

+
n

≤ e−e−2δ(a)(n−t
+
n )bt

+
n

, (2.14)

where the second inequality follows from (2.13). Plugging (2.14) into (2.11) yields

lim inf
n→∞

1

n
log

[− logP(Mn ≤ xn)
] ≥ −2δ(a)(1 − t) + t logb.

Again letting a ↓ 0 (hence δ(a) ↓ 0 and t ↓ x∗−x
x∗+L

) gives the desired upper bound (2.10).
If P(X = −L) > 0, then the arguments for lower bound work well for x = −L and L′ = L. For the upper bound, it is

easy to see that all displacements are −L up to the nth generation. We thus could also obtain (1.7) for x = −L. �

2.2. Proof of Theorem 1.2

From now on, we further assume (1.3), (1.4) and (1.5) so that (1.6) holds. In fact, (1.4) is slightly stronger than the
conditions given in [2]. Because of this convergence in law in Böttcher case, we can find some y∗ ∈R+ so that

P
(
Mn ≤ mn − y∗) ≤ 1/2 ≤ P

(
Mn ≤ mn + y∗). (2.15)

.
Now we are ready to prove that for any increasing sequence �n = O(n) such that �n ↑ ∞ and lim supn→∞ �n

n
< x∗ +L,

P(Mn ≤ mn − �n) = e−e�nβ(1+on(1))

. (2.16)

Recall that mn = x∗n − 3
2θ∗ logn and β = logb

x∗+L
. Notice that β ∈ (0, θ∗) because of (1.3).

2.2.1. Lower bound of Theorem 1.2
Similarly to the arguments in the Section 2.1.1, for some intermediate time t−n ∈ [1, n − 1] and L′ = L − η with η > 0,
we have

P(Mn ≤ mn − �n) ≥ P
(
Zt−n = bt−n ; ∀|u| ≤ t−n ,Xu ≤ −L′;Mn ≤ mn − �n

)
≥ P

(
Zt−n = bt−n ; ∀|u| ≤ t−n ,Xu ≤ −L′; max

|v|=t−n
Mv

n−t−n
≤ mn − �n + L′t−n

)
,
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which by branching property is larger than

P
(
Zt−n = bt−n ; ∀|u| ≤ t−n ,Xu ≤ −L′)

P
(
Mn−t−n ≤ mn − �n + L′t−n

)bt
−
n

.

Here we choose t−n = � �n+K0
L′+x∗ � with K0 ≥ 1 a fixed large constant so that mn − �n + L′t−n ≥ mn−t−n + y∗. Consequently,

P(Mn ≤ mn − �n) ≥ P
(
Zt−n = bt−n ; ∀|u| ≤ t−n ,Xu ≤ −L′)

P
(
Mn−t−n ≤ mn−t−n + y∗)bt

−
n

≥ p

∑t
−
n −1
k=0 bk

b P
(
X ≤ −L′)∑t

−
n
k=1 bk

P
(
Mn−t−n ≤ mn−t−n + y∗)bt

−
n

,

where the last inequality holds because of the independence between offsprings and motions. Now note that −L =
ess inf X means qL := P(X ≤ −L′) ∈ (0,1). By (2.15),

P(Mn ≤ mn − �n) ≥ p

∑t
−
n −1
k=0 bk

b q

∑t
−
n
k=1 bk

L (1/2)b
t
−
n ≥ e−c3b

t
−
n

,

with t−n = � �n+K0
L+x∗−η

�. Letting n → ∞ then η → 0 yields that

lim sup
n→∞

1

�n

log
[− logP(Mn ≤ mn − �n)

] ≤ logb

L + x∗ .

2.2.2. Upper bound of Theorem 1.2
Similarly as in the Section 2.10, for some intermediate time t+n to be determined later, we have

P(Mn ≤ mn − �n) = P
(
Zt+n

([−Lt+n ,∞)
) ≥ bt+n ;Mn ≤ mn − �n

)
= P

(
Zt+n

([−Lt+n ,∞)
) ≥ bt+n ; max

|u|=t+n ,Su≥−Lt+n

(
Su + Mu

n−t+n

) ≤ mn − �n

)

≤ P
(
Mn−t+n ≤ mn − �n + Lt+n

)bt
+
n

.

Let t+n := � �n−y∗
L+x∗ � so that mn − �n + Lt+n ≤ mn−t+n − y∗. By (2.15),

P(Mn ≤ mn − �n) ≤ P
(
Mn−t+n ≤ mn−t+n − y∗)bt

+
n

≤ (1/2)b
t
+
n

. (2.17)

We hence obtain

P(Mn ≤ mn − �n) ≤ e−c4b
t
+
n

,

with bt+n = �(eβ�n). This is sufficient to conclude Theorem 1.2.

3. Böttcher case with step size of sub/super-exponential left tail

We prove Theorem 1.3 and 1.5 in this section. We first state some preliminary lemmas in the Section 3.1. There are mainly
two cases in the proofs of the theorems. When the left tail of X is sub-exponential, i.e., X has Weibull tail of α ∈ (0,1],
the proof is relatively simple and is stated in the Section 3.2. When the left tail of X is super-exponential, i.e., X has
Weibull tail of α > 1 or Gumbel tail, the proofs are given in the Sections 3.3 and 3.4 where we need a tree transformation
introduced in the Section 3.3.1 to get the upper bound.

3.1. Some preliminary results

In this subsection, we state some technical lemmas which will be useful later.
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3.1.1. Some large deviation probability estimates
We first state some results on the random walk (Sn)n≥0 with i.i.d. increments distributed as X and started from S0 := 0.
Recall that ψ(t) = logE[etX].

Lemma 3.1. For positive integer sequence (an) such that an = o(n),

1. if P(X < −z) = �(1)e−λzα
with α ∈ (0,1], λ > 0 and an = o(nα), then for any ε ∈ (0,1) and for n � 1 sufficiently

large,

P(San ≤ −n) < e−λ(1−ε)nα ; (3.1)

2. if P(X < −z) = �(1)e−λzα
with α > 1 and λ > 0, then for any θ > 0 and for n � 1 sufficiently large,

P(San ≤ −n) < e−θn; (3.2)

3. if P(X < −z) = �(1)e−ezα

with α > 0, then for any ε ∈ (0,1) and for n � 1 sufficiently large,

P(San ≤ −n) < c5ane
−e

( n
an

)α

. (3.3)

Proof. Proof of (3.1) Note that

P(San < −n) ≤ P

(
an∑

k=1

(Xk ∧ 0) < −n

)
≤ P

(
nα∑

k=1

(Xk ∧ 0) < −n

)
.

Then an application of Theorem 3 in [21] and the remark after its proof by taking L(n) = λ, ψ(n) = n1/α yields (3.1).
Proof of (3.2) In fact, for any θ > 0, by Markov inequality,

P(San < −n) ≤ P
(
e−θSan < eθn

) ≤ e−θn+ψ(θ)an ,

where ψ(θ) = logE[eθX] < ∞ for any θ > 0 as P(X < −z) = �(1)e−λzα
with α > 1. Moreover, as an = o(n), for n � 1

sufficiently large, one gets (3.2).
Proof of (3.3) Note that San ≤ −n implies that min1≤k≤an Xk ≤ −n/an. Therefore, for n large enough,

P(San < −n) ≤ P

(
min

1≤k≤an

Xk < −n/an

)

≤ anP(X < −n/an) ≤ c5ane
−e(n/an)α

,

as P(X < −z) = �(1)e−ezα

. �

3.1.2. Rough upper bounds
Now we are ready to get a rough upper bound for P(Mn ≤ mn − �n). The idea behind this rough upper bound is that:
either a particle is very low at some intermediate time tn, or at least btn particles at time tn have to have a very small
maixmum in their subtree.

Lemma 3.2. Assume (1.1), (1.2), (1.3), (1.4), (1.5) and b ≥ 2. For positive sequence (�n) such that �n ↑ ∞ and �n =
O(n), we have the following inequalities.

1. If P(X < −z) = �(1)e−λzα
with α ∈ (0,1] and λ > 0, then for any ε ∈ (0,1) and for all n sufficiently large,

P(Mn ≤ mn − �n) ≤ e−λ(1−ε)�α
n . (3.4)

2. If P(X < −z) = �(1)e−λzα
with α > 1 and λ > 0, then for any θ > 0 and for all n sufficiently large,

P(Mn ≤ mn − �n) ≤ e−θ�n . (3.5)

3. If P(X < −z) = �(1)e−ezα

with α > 0 as z → ∞, then there exist c6, c7 > 0 such that for all n large enough,

P(Mn ≤ mn − �n) ≤ c6 exp
(−ec7�

α
α+1
n

)
. (3.6)
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Proof. Generally, to bound P(Mn ≤ mn − �n), we take some intermediate time tn = o(�n) which will be chosen later and
let Bn := [−(1 − ε)�n,∞) with ε ∈ (0,1). As Ztn ≥ btn ,

P(Mn ≤ mn − �n) ≤ P
(
Ztn(Bn) ≥ btn;Mn ≤ mn − �n

) + P
(
Ztn(Bn) < btn

)
= P

(
Ztn(Bn) ≥ btn;Mn ≤ mn − �n

) + P
(
Ztn

(
Bc

n

) ≥ 1
)
. (3.7)

For tn = o(�n) and y∗ chosen in (2.15), we have mn − ε�n ≤ mn−tn − y∗ for all n large enough. Therefore,

P
(
Ztn(Bn) ≥ btn;Mn ≤ mn − �n

) ≤ P

(
Ztn(Bn) ≥ btn; max|u|=tn,Su∈Bn

(
Su + Mu

n−tn

) ≤ mn − �n

)

≤ P

(
Ztn(Bn) ≥ btn; max|u|=tn,Su∈Bn

Mu
n−tn

≤ mn − ε�n

)

≤ P

(
Ztn(Bn) ≥ btn; max|u|=tn,Su∈Bn

Mu
n−tn

≤ mn−tn − y∗).

By Markov property at time tn, all Mu
n−tn

are i.i.d. copies of Mn−tn for |u| = tn, and independent of (Su, |u| = tn). This
implies that

P
(
Ztn(Bn) ≥ btn;Mn ≤ mn − �n

) ≤ P
(
Mn−tn ≤ mn−tn − y∗)btn ≤ (1/2)b

tn
. (3.8)

Plugging it into (3.7) yields that

P(Mn ≤ mn − �n) ≤ (1/2)b
tn + P

(
Ztn

(
Bc

n

) ≥ 1
)

≤ (1/2)b
tn +E

[
Ztn

(
Bc

n

)]
= (1/2)b

tn + mtnP
(
Stn ≤ −(1 − ε)�n

)
. (3.9)

We shall apply Lemma 3.1 to bound P(Stn ≤ −(1 − ε)�n).
Proof of (3.4) If P(X < −z) = �(1)e−λzα

with α ∈ (0,1], we choose tn = � 2 log �n

logb
� and use (3.1) to get that

P(Mn ≤ mn − �n) ≤ (1/2)b
tn + mtne−λ(1−ε)1+α�α

n ,

which suffices to conclude (3.4) since btn ≥ �2
n and tn � �n.

Proof of (3.5) Similarly as above, we choose tn = � 2 log �n

logb
�. Then by (3.2) for α > 1 we obtain that for any θ > 0 and

for n large enough,

P(Mn ≤ mn − �n) ≤ (1/2)b
tn + mtne−θ�n(1−ε),

which suffices to conclude (3.5).

Proof of (3.6) If P(X < −z) = �(1)e−ezα

with α > 0 as z → ∞, we choose tn = � �

α
α+1
n

logb
� and 0 < ε < 1/2. Then by

(3.3) we get

P(Mn ≤ mn − �n) ≤ (1/2)b
tn + c5tnm

tn exp
{−e(1−ε)α(�n/tn)α

} ≤ c8 exp
{−ec9�

α/(α+1)
n

}
,

for some constants c8, c9 > 0. �

3.2. Proof for Theorem 1.3: Step size of Weibull tail with α ≤ 1

Let us explain the ideas before stating the proof. For the lower bound, the optimal strategy is to produce exactly b children
at the first generation and to make each of them move to some position below −�n. For the upper bound, we consider
the individuals at time tn = �(log�n), either there are at least btn−1 individuals located above −�n whose descendants
at time n can hardly go below mn − �n, or there are at most btn−1 − 1 individuals located above −�n. In the latter case,
there exists no individual at the first generation whose descendants are all located above −�n at time tn, i.e., we could find
b i.i.d. random walks moving below −�n in time tn. And the probability of this behaviour is comparable with the lower
bound.
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Lower bound
We shall show that if P(X < −z) = �(1)e−λzα

with 0 < α ≤ 1, as z → +∞, then for all n sufficiently large,

P(Mn ≤ mn − �n) ≥ c10e
−λ�α

nb.

Recall y∗ from (2.15). In fact, at the first generation, we suppose that there are exactly b individuals and that all of them
are located below −(�n + x∗ + y∗). So, as mn − �n + (�n + x∗ + y∗) ≥ mn−1 + y∗,

P(Mn ≤ mn − �n) ≥ P
(
Z1 = b; ∀|u| = 1,Xu ≤ −(

�n + x∗ + y∗);Mn ≤ mn − �n

)
= P

(
Z1 = b; ∀|u| = 1,Xu ≤ −(

�n + x∗ + y∗); max
|u|=1

(
Xu + Mu

n−1

) ≤ mn − �n

)

≥ P

(
Z1 = b; ∀|u| = 1,Xu ≤ −(

�n + x∗ + y∗); max
|u|=1

Mu
n−1 ≤ mn−1 + y∗).

By branching property, this implies

P(Mn ≤ mn − �n) ≥ P
(
Z1 = b; ∀|u| = 1,Xu ≤ −(

�n + x∗ + y∗))
P
(
Mn−1 ≤ mn−1 + y∗)b

= pbP
(
X ≤ −(

�n + x∗ + y∗))b
P
(
Mn−1 ≤ mn−1 + y∗)b

.

Recall that P(X ≤ −(�n + x∗ + y∗)) ≥ c11e
−λ�α

n for �n � 1 and P(Mn−1 ≤ mn + y∗) ≥ 1/2 by (2.15). So,

P(Mn ≤ mn − �n) ≥ c10e
−λ�α

nb,

with c10 = pb(c11/2)b > 0.

Upper bound
Take some intermediate time tn = � log�n

logb
�. For Bn = [−(1 − ε)�n,∞) with arbitrary small ε ∈ (0,1) and for any δ ∈

(0,1/b), one sees that

P(Mn ≤ mn − �n) ≤ P
(
Ztn(Bn) ≥ δbtn;Mn ≤ mn − �n

) + P
(
Ztn(Bn) < δbtn

)
≤ P

(
Ztn(Bn) ≥ δbtn; max|u|=tn,Su∈Bn

(
Su + Mu

n−tn

) ≤ mn − �n

)
+ P

(
Ztn(Bn) < δbtn

)
. (3.10)

For n large enough so that mn − �n + (1 − ε)�n ≤ mn−tn − ε�n/2, by branching property,

P

(
Ztn(Bn) ≥ δbtn; max|u|=tn,Su∈Bn

(
Su + Mu

n−tn

) ≤ mn − �n

)

≤ P

(
Ztn(Bn) ≥ δbtn; max|u|=tn,Su∈Bn

Mu
n−tn

≤ mn−tn − ε�n/2
)

≤ P(Mn−tn ≤ mn−tn − ε�n/2)δb
tn
.

It then follows from (3.4) that

P

(
Ztn(Bn) ≥ δbtn; max|u|=tn,Su∈Bn

(
Su + Mu

n−tn

) ≤ mn − �n

)
≤ e−λε�n/8×δbtn

. (3.11)

On the other hand, since δ < 1/b, the event Ztn(Bn) < δbtn implies that for any |v| = 1, {|u| = tn : u � v} �⊂ {|u| =
tn, Su ∈ Bn}. This means that

P
(
Ztn(Bn) < δbtn

) ≤ P

( ⋂
|v|=1

∪|u|=tn,u�v

{
Su ∈ Bc

n

})

≤ E

[
P

( ⋃
|u|=tn,u�v

{
Su ∈ Bc

n

})Z1
]

≤ E

[(
E

( ∑
|u|=tn,u�v

1{Su∈Bc
n}||v| = 1

))b]
,
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where the last inequality follows from the fact that Z1 ≥ b and Markov inequality. By independence between offsprings
and motions, this leads to

P
(
Ztn(Bn) < δbtn

) ≤ (
E[Ztn−1]P

{
Stn ∈ Bc

n

})b

= (
mtn−1

P
{
Stn < −(1 − ε)�n

})b
.

By (3.1), one gets that for n � 1,

P
(
Ztn(Bn) < δbtn

) ≤ c12m
b(tn−1)e−λ(1−ε)1+αb�α

n . (3.12)

Plugging it and (3.11) into (3.10) yields that for all n � 1 large enough,

P(Mn ≤ mn − �n) ≤ e−λε�n/8×δbtn + c12m
b(tn−1)e−λ(1−ε)1+αb�α

n .

According to the choice of tn = � log�n

logb
�, we could conclude that for arbitrary small ε > 0,

lim sup
n→∞

1

�α
n

logP(Mn ≤ mn − �n) ≤ −λ(1 − ε)1+αb,

which gives the upper bound for the case of α ∈ (0,1] by letting ε ↓ 0+.

3.3. Proof for Theorem 1.3: Step size of Weibull tail with α > 1

Here, we are going to use some ideas different from that in the Section 3.2. Observe that we need to control every branch
to get an atypical lower maximum at time n. The optimal choice is to control the motions at the beginning when there are
not so many individuals. So we need to have a b-regular tree up to some intermediate time tn = �(log�n) and to make
sure that each individual in this generation moves to some position below −�n. As just modifying a few displacements
near the root can have a significant effect on the maximum, we force the individuals of earlier generations to make larger
displacements. This helps us to get the lower bound.

For the upper bound, one sees that if there are more than btn−δn individuals positioned above −�n at some time
tn = �(log�n), it will be extremely difficult to make maximal position at time n less than mn − �n. So we should have
more than btn − btn−δn individuals positioned below −�n. By the tree transformation introduced below, we could get a
b-regular tree up to generation tn for which one individual in the δnth generation with all its descendants is removed.
For this almost b-regular tree, the event that all individuals at time tn stay below −�n is reminiscent of that in the lower
bound.

3.3.1. A technical lemma and tree transformation
Here we introduce a technical lemma and the associated tree transformation in the deterministic setting which will be
used later for the upper bound estimates with super-exponential tails.

Let t be a fixed tree of H generations such that every individual u ∈ t with |u| ≤ H − 1 has at least b offsprings. Mark
each u ∈ t \ {ρ} with xu ∈ R and mark ρ with xρ = 0. Set su := ∑

ρ≺v	u xv with sρ := 0. Then we regard su as the spatial

position of u. Assume that in the H th generation, there are at most bH−K individuals located below a given level � > 0.
Here H,K ∈ N and � ∈R+.

Lemma 3.3. Let α > 0. For any C2 ≥ 0 and ε ∈ (0,1), let M ≥ 1 be a large fixed integer such that

∞∑
x=M

e−λεxα+C2 < 1.

Then for α > 1, λ > 0 and all � sufficiently large,

�Weibull(t) :=
∑

(xu)u∈t\{ρ}∈(N∩[M,∞))#t−1

exp

{
−

∑
u∈t\{ρ}

λxα
u + C2(#t − 1)

}
1{∑|u|=H 1{su≤�}≤bH−K }

≤ exp
{−λ(1 − ε)C(b,α)

(
1 − b−K

)α+1
�α

}
, (3.13)

where C(b,α) is defined in Theorem 1.3.
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Fig. 2. We first exchange u1’s blue child with u2’s red child; then we exchange u2’s blue children with two of u3’s red children. So we color u1 and u2
red and color u3 and u4 blue (notice that one of u3’s children is red). Next, we exchange u2 and its subtree with u4 and its subtree. Then w is colored
red and v is colored blue.

Similarly, for any C2 ≥ 0 and ε ∈ (0,1), take M ≥ 1 a large fixed integer such that

∞∑
x=M

e−εexα +C2 < 1 and x �→ e−exα

is convex on [M,∞).

Then for α > 0 and all � sufficiently large,

�Gumbel(t) :=
∑

(xu)u∈t\ρ∈(N∩[M,∞))#t−1

exp

{
−

∑
u∈t\{ρ}

exα
u + C2(#t − 1)

}
1{∑|u|=H 1{su≤�}≤bH−K }

≤ exp
{−(1 − ε)

(
1 − b−K

)
e(

(α+1) logb
α

(1−b−K)�)
α

α+1 }
. (3.14)

To prove Lemma 3.3, we will introduce a tree-transformation. Recall that t is a fixed tree of H generations. We mark
each u ∈ t \ {ρ} with xu ∈ R and mark ρ with 0. For each x ∈ {(xu)u∈t\{ρ} : xu ∈ R}, we regard t(x) := {(u, xu), u ∈ t} as
a marked tree. Then t is just the genealogical tree of t(x).

Given x ∈ {(xu)u∈t\{ρ} : xu ∈ R}, we shall show that by manipulating the order of u ∈ t according to x, one could
construct a new marked tree t∗(x), where the lexicographical orders of individuals are totally rearranged so that the most
recent common ancestor u∗ of individuals located below a given level � at the H th generation is of the generation J with
H ≥ J ≥ K . However, t∗(x) and t(x), viewed as sets of individuals, contain exactly the same individuals. And the mark
of each individual remains the same. The detailed construction will be explained in the following.

We first colour the individuals in H th generation. At the H th generation, there are at most bH−K individuals positioned
below �, which are all coloured blue. The other individuals above � are coloured red.

At the (H − 1)th generation, the individuals are called u(1), u(2), . . . , u(|t|H−1) according to their positions such that
su(1)

≥ su(2)
≥ · · · ≥ su(|t|H−1)

, where |t|H−1 =: #{u ∈ t : |u| = H − 1}. Let us start with u(1) and its children. If all children
of u(1) are red, then we turn to u(2). Otherwise, we keep its red children and replace its blue children by the red children
of other individuals of the (H − 1)th generation. More precisely, saying that there are k blue children of u(1), we collect
the red children of u(2) and then the red children of u(3), . . ., until we find exactly k red ones to be exchanged with the
original k blue children of u(1).

Note that in this way the number of children u(1) is unchanged and that all of them are positioned above � and red.
Now, we put u(1) aside and restart from u(2) by doing the same exchanges with u(3), u(4), . . . . We would stop at some u(k)

such that there is no red child left for u(k+1), . . .. At this stage, there are at most 3 types of individuals at the (H − 1)th
generation: the ones with only red children; the ones with only blue children and the one with red children and blue
children (note that there is at most one individual who has both red and blue children). Then the individuals with only red
children are all coloured red. The others of the (H − 1)th generation are coloured blue. An example is given in Fig. 2.
Notice that the number of blue individuals of the (H − 1)th generation are at most bH−K−1.
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Fig. 3. Both u1 and u2 have two offsprings. After exchanging subtrees rooted at w and v, u1 is colored red and u2 is colored blue.

By iteration, we exchange individuals and colour the tree from one generation to the previous generation. When we
exchange two individuals w and v, we exchange two subtrees rooted at w and v, as well as their displacements; see Fig. 3.
Therefore, the positions of red individuals get higher, and obviously stay above �. Finally, we stop at some generation J

where only one individual is coloured blue for the first time. We hence obtain the new marked tree t∗(x), which depends
on t and x. Note that the ancestor u∗ of blue ones is in the J th generation with J ≥ K . Observe that, for all red individuals,
their descendants at H th generation are positioned above �. Note also that J depends on H , K , � and t.

In particular, if there is no blue individuals at all, we take J = H and take one of individuals in the H th generation to
be u∗.

Now we cut this u∗ and remove all its descendants from t∗(x) to get a pruned tree t\u
∗

∗ (x). Note that all individuals

of this tree t\u
∗

∗ (x) up to the generation H − 1 have at least b children, except the parent of u∗. And the parent of u∗
has at least b − 1 children. So we can extract from t\u

∗
∗ (x) an “almost” b-ary regular tree tb(x) so that its all descendants

in the H th generation are located above �. Here in tb(x), the parent of u∗ has b − 1 children (as u∗ is removed), and
all others except the leaves have exactly b children. Notice that in this construction, we do not change the mark xu for
any individual u. Denote by tsb(x) the genealogical tree of the marked tree tb(x). Let Tt be the collection of all possible
genealogical trees of tb(x) from t. That is

Tt := {
tsb(x) : x ∈R

t},
where R

t := {(xu)u∈t\{ρ} : xu ∈ R}. With a little abuse of notation, we still use {xu}u∈tsb(x) and {su}u∈tsb(x) to represent the
displacements and positions of individuals in tsb(x).

Remark 3.1. A similar idea of tree transformation is used in [13]. However, in [13], a B-regular tree is extracted from
the underlying tree, when b < B := sup{k ≥ 1 : pk > 0} < ∞.

Now we are ready to show this technical lemma by using the above tree transformation.

Proof of Lemma 3.3. First, one sees that the tree transformation introduced above ensures{
x ∈R

t :
∑

|u|=H ;u∈t

1{su≤�} ≤ bH−K

}
⊂

{
x ∈R

t : min
u∈tsb(x),|u|=H

su > �
}

=
⋃

t0∈Tt

{
x ∈R

t : tsb(x) = t0, min
u∈t0,|u|=H

su > �
}
.

Now, let us turn to bound �Weibull(t) and �Gumbel(t). Recall that the choice of M ensures∑
x∈M t

N

e
−∑

u∈t\{ρ} λεxα
u +C2(#t−1) =

∏
u∈t\{ρ}

∑
xu∈N∩[M,∞)

e−λεxα
u +C2 < 1, (3.15)
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where

M t
N := {

(xu)u∈t\ρ : xu ∈ N∩ [M,∞)
} =

⋃
t0∈Tt

{
x ∈ M t

N : tsb(x) = t0
}
.

Therefore, if we consider all possible choices of tb , then

�Weibull(t) ≤
∑

x∈M t
N

exp

{
−

∑
u∈t\{ρ}

λxα
u + C2(#t − 1)

}
1{minu∈ts

b
(x),|u|=H su>�}

=
∑

t0∈Tt

∑
x∈M t

N

tsb(x)=t0

exp

{
−

∑
u∈t\{ρ}

λxα
u + C2(#t − 1)

}
1{minu∈t0,|u|=H su>�}

≤
∑

t0∈Tt

∑
x∈M t

N

tsb(x)=t0

exp

{
−

∑
u∈t\{ρ}

λεxα
u + C2(#t − 1)

}
exp

{
−λ(1 − ε)

∑
u∈t0\{ρ}

xα
u

}
1{minu∈t0,|u|=H su>�}.

Let

MWeibull(t) := max
t0∈Tt

max
x∈M t

N

tsb(x)=t0

exp

{
−λ(1 − ε)

∑
u∈t0\{ρ}

xα
u

}
1{minu∈t0,|u|=H su>�}

= max
x∈M t

N

exp

{
−λ(1 − ε)

∑
u∈tsb(x)\{ρ}

xα
u

}
1{minu∈ts

b
(x),|u|=H su>�}.

We hence get from (3.15) that

�Weibull(t) ≤MWeibull(t)
∑

t0∈Tt

∑
x∈M t

N

tsb(x)=t0

exp

{
−

∑
u∈t\{ρ}

λεxα
u + C2(#t − 1)

}

=MWeibull(t)
∑

x∈M t
N

exp

{
−

∑
u∈t\{ρ}

λεxα
u + C2(#t − 1)

}

≤MWeibull(t). (3.16)

Similarly for �Gumbel(t), we have

�Gumbel(t) ≤MGumbel(t) := max
x∈M t

N

exp

{
−(1 − ε)

∑
u∈tsb(x)\{ρ}

exα
u

}
1{minu∈t0,|u|=H su>�}. (3.17)

It remains to bound MWeibull(t) and MGumbel(t).
For any t0 ∈ Tt, let |t0|k := #{u ∈ t0 : |u| = k} denote the population size of the kth generation of t0 and xk :=∑

|v|=k,v∈t0
xv

|t0|k denote the averaged displacement at the kth generation. Here we shall bound
∑H

k=1 xk from below on
{minu∈t0,|u|=H su > �}. According to the construction of tb(x) as above, there exists an integer J ∈ [K,H ] such that

|t0|k = bk, ∀1 ≤ k ≤ J − 1; and |t0|k = bk − bk−J , ∀J ≤ k ≤ H. (3.18)

Observe that on {minu∈t0,|u|=H su > �},
∑

|u|=H,u∈t0

su ≥ � × |t0|H . (3.19)
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On the other hand,

∑
|u|=H,u∈t0

su =
∑

|u|=H,u∈t0

∑
ρ≺v	u

xv =
H∑

k=1

∑
|v|=k,v∈t0

(
xv

∑
|u|=H

1{v	u}
)

,

where
∑

|u|=H 1{v	u} ≤ bH−|v| as t0 is a pruned b-ary tree. So, it follows from (3.19) and (3.18) that

H∑
k=1

∑
|v|=k,v∈t0

xvb
H−k ≥ �

(
bH − bH−J

)
. (3.20)

Again by (3.18),

H∑
k=1

∑
|v|=k

xvb
H−k = bH

(
J−1∑
k=1

xk + bk − bk−J

bk

H∑
k=J

xk

)
≤ bH

H∑
k=1

xk,

which, together with (3.20), gives

H∑
k=1

xk ≥ (
1 − b−J

)
�. (3.21)

We shall treat MWeibull(t) and MGumbel(t) separately.
Proof of (3.13) For any t0 ∈ Tt, let us find a suitable lower bound for

min
(xu)u∈t0\{ρ}∈[M,+∞)#t0−1

∑
u∈t0\{ρ}

λxα
u ,

on {minu∈t0,|u|=H su > �}. For α > 1, by convexity on R+ of x �→ xα , one has

∑
u∈t0

xα
u =

H∑
k=1

∑
u|=k,u∈t0

xα
u ≥

H∑
k=1

|t0|k(xk)
α.

So,

∑
u∈t0

xα
u ≥ (

1 − b−J
) H∑

k=1

bk(xk)
α. (3.22)

Let us take a positive sequence (μk)k≥1, which will be determined later, with μα := ∑H
k=1 μα

k and write

H∑
k=1

bk(xk)
α = μα

H∑
k=1

μα
k

μα

(
μ−1

k bk/αxk

)α
,

which again by convexity implies

H∑
k=1

bk(xk)
α ≥ μα

(
H∑

k=1

μα
k

μα

μ−1
k bk/αxk

)α

= μ1−α
α

(
H∑

k=1

μα−1
k bk/αxk

)α

. (3.23)

We choose μk = b
− k

α(α−1) so that μα−1
k bk/αxk = xk for any k ≥ 1. Moreover,

μα =
H∑

k=1

b− k
α−1 ≤ 1

b
1

α−1 − 1
.
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So, (3.23) yields

H∑
k=1

bk(xk)
α ≥ (

b
1

α−1 − 1
)α−1

(
H∑

k=1

xk

)α

. (3.24)

Plugging it into (3.24) yields that

H∑
k=1

bk(xk)
α ≥ (

b
1

α−1 − 1
)α−1((1 − b−J

)
�
)α

.

Going back to (3.22), as J ≥ K , we end up with

∑
u∈t0

xα
u ≥ (

b
1

α−1 − 1
)α−1(1 − b−K

)α+1
�α.

This shows that

MWeibull(t) ≤ exp
{−λ

(
b

1
α−1 − 1

)α−1(1 − b−K
)α+1

�α
}
.

Plugging it into (3.16) proves (3.13).
Proof of (3.14) Similarly, to bound MGumbel(t), we shall find a suitable lower bound for

∑
u∈t0\{ρ} exα

u on

{minu∈t0,|u|=H su > �} for any t0 ∈ Tt. Note that for any α > 0, there exists M ≥ 1 such that x �→ exα
is convex on

[M,∞). For such M , one sees that

∑
u∈t0

exα
u =

H∑
k=1

|t0|k
∑
|u|=k

1

|t0|k exα
u ≥

H∑
k=1

|t0|kexα
k .

As |t0|k ≥ (1 − b−J )bk for any 1 ≤ k ≤ H , one gets that

∑
u∈t0

exα
u ≥ (

1 − b−J
) H∑

k=1

bkexα
k ≥ (

1 − b−J
)
e�H , (3.25)

where

�H := max
1≤k≤H

{
xα

k + k logb
} ≥ H logb + Mα.

By this definition, one sees

xk ≤ (�H − k logb)1/α, ∀k ∈ {1, . . . ,H }.
So, combining it with (3.21) yields

H∑
k=1

(�H − k logb)1/α ≥ (
1 − b−J

)
�.

On the other hand, by monotonicity of x �→ (�H − x logb)1/α on [0, �H

logb
], one has

H∑
k=1

(�H − k logb)1/α ≤
∫ H

0
(�H − x logb)1/α dx ≤ α

(1 + α) logb
�

1+ 1
α

H .

We then deduce that

�H ≥
(

(α + 1) logb

α

(
1 − b−J

)
�

) α
α+1

.
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Going back to (3.25), one gets

∑
u∈t0

exα
u ≥ (

1 − b−K
)

exp

{(
(α + 1) logb

α

(
1 − b−K

)
�

) α
α+1

}
.

since J ≥ K . This shows

MGumbel(t) ≤ exp
{−(1 − ε)

(
1 − b−K

)
e(

(α+1) logb
α

(1−b−K)�)
α

α+1 }
.

Plugging it into (3.17) proves (3.14). �

3.3.2. Lower bound
We shall prove here that if P(X < −z) = �(1)e−λzα

with α > 1, as z → +∞, then

lim inf
n→∞

1

�α
n

logP(Mn ≤ mn − �n) ≥ −λ
(
b

1
α−1 − 1

)α−1
. (3.26)

By the assumption of Theorem 1.3, there exist two constants 0 < c13 < c14 < ∞ such that for any x > 0,

c13e
−λxα ≤ P(X ≤ −x) ≤ c14e

−λxα

. (3.27)

We choose t−n = o(�n) such that t−n ↑ ∞ and suppose that up to the t−n th generation, the genealogical tree is a b-regular
tree. For any individual |u| = k with 1 ≤ k ≤ t−n , we suppose that its displacement Xu is less than −ak with some ak > 0.
We will determine t−n and the sequence (ak)k≥1 later. Therefore,

P(Mn ≤ mn − �n) ≥ P
(
Zt−n = bt−n ; ∀|u| = k ∈ {

1, . . . , t−n
}
,Xu < −ak;Mn ≤ mn − �n

)
≥ P

(
Zt−n = bt−n ; ∀|u| = k ∈ {

1, . . . , t−n
}
,Xu < −ak; max

|z|=t−n

(
Sz + Mz

n−t−n

) ≤ mn − �n

)

≥ P

(
Zt−n = bt−n ; ∀|u| = k ∈ {

1, . . . , t−n
}
,Xu < −ak; max

|z|=t−n
Mz

n−t−n
≤ mn − �n +

t−n∑
k=1

ak

)
.

Once again by branching property, one has

P(Mn ≤ mn − �n)

≥ P
(
Zt−n = bt−n ; ∀|u| = k ∈ {

1, . . . , t−n
}
,Xu < −ak

)
P

(
Mn−t−n ≤ mn − �n +

t−n∑
k=1

ak

)bt
−
n

. (3.28)

For the first term on the right hand side, by independence of branching structure and displacements,

P
(
Zt−n = bt−n ; ∀|u| = k ∈ {

1, . . . , t−n
}
,Xu < −ak

)

= p

∑t
−
n −1
k=0 bk

b

t−n∏
k=1

P(X < −ak)
bk

,

which by (3.27), is larger than

p
bt

−
n −1
b−1

b

t−n∏
k=1

c13
bk

e−λ(ak)
αbk = p

bt
−
n −1
b−1

b c13
bt

−
n +1−b
b−1 exp

{
−λ

t−n∑
k=1

aα
k bk

}
. (3.29)

Now, we take the values of ak . Let bα := b
1

α−1 and ak = (bα−1)

bk
α

�n. Note that
∑t−n

k=1 ak = (1 − b
−t−n
α )�n. Take t−n =

�(α − 1)
log�n

logb
� so that for n large enough,

mn − �n +
t−n∑

k=1

ak = mn − �n + (
1 − b

−t−n
α

)
�n ≥ mn−t−n + y∗, (3.30)
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with y∗ chosen in (2.15). Meanwhile, one obtains that

bt−n = �
(
�α−1
n

)
and

t−n∑
k=1

aα
k bk = �α

n(bα − 1)α−1(1 − b
−t−n
α

) = �α
n(bα − 1)α−1 − �

(
�α−1
n

)
.

Plugging them into (3.29) yields

P
(
Zt−n = bt−n ; ∀|u| = k ∈ {

1, . . . , t−n
}
,Xu < −ak

) ≥ exp
{−λ�α

n(bα − 1)α−1 − �
(
�α−1
n

)}
. (3.31)

Applying it and (3.30) to (3.28), together with (2.15), gives that

P(Mn ≤ mn − �n) ≥ exp
{−λ�α

n(bα − 1)α−1 − �
(
�α−1
n

)}
P
(
Mn−t−n ≤ mn−t−n + y∗)bt

−
n

≥ exp
{−λ�α

n(bα − 1)α−1 − �
(
�α−1
n

)}
(1/2)�

α−1
n .

This suffices to conclude (3.26).

3.3.3. Upper bound
We are going to use the rough upper bound (3.5) in Lemma 3.2 and get a better estimate. We still use some intermediate
time t+n = �t+ log�n� where t+ > 0 will be determined later. The rough idea is similar to what we used above to prove
(3.5). Take Bn = [−(1 − ε)�n,∞) with ε ∈ (0,1). Observe that for δn := δ log�n with some δ ∈ (0, t+), we have

P(Mn ≤ mn − �n) ≤ P
(
Zt+n (Bn) ≥ bt+n −δn;Mn ≤ mn − �n

) + P
(
Zt+n (Bn) < bt+n −δn

)
. (3.32)

Similarly to (3.8), by branching property at time t+n , one has

P
(
Zt+n (Bn) ≥ bt+n −δn;Mn ≤ mn − �n

) ≤ P(Mn−t+n ≤ mn − ε�n)
bt

+
n −δn

≤ P(Mn−t+n ≤ mn−t+n − ε�n/2)b
t
+
n −δn

.

By use of the rough upper bound (3.5) with θ = 4, we get

P
(
Zt+n (Bn) ≥ bt+n −δn;Mn ≤ mn − �n

) ≤ e−ε�nbt
+
n −δn

. (3.33)

It remains to bound P(Zt+n (Bn) < bt+n −δn). Let t denote a fixed tree of t+n generations and P
t(·) denote the conditional

probability P(·|Tt+n = t) where Tt+n denotes the genealogical tree T up to the t+n th generation. Observe that

P
(
Zt+n (Bn) < bt+n −δn

) =
∑

t

P(Tt+n = t)Pt(Zt+n (Bn)<bt+n −δn
)
. (3.34)

Here for convenience, for C2 = (log c14)+ and ε ∈ (0,1), we can replace each displacement Xu by X+
u := (−Xu) ∨ M

for some large and fixed constant M chosen in (3.13) of Lemma 3.3. Now denote the new positions achieved by these
new displacements by

S+
u :=

∑
ρ≺v	u

X+
v , ∀|u| ≤ t+n .

Obviously, S+
u ≥ ∑

ρ≺v	u(−Xv) = −Su. So, if Zt+n (Bn) < bt+n −δn , then

∑
|u|=t+n

1{S+
u ≤(1−ε)�n} ≤

∑
|u|=t+n

1{Su∈Bn} = Zt+n (Bn) < bt+n −δn .

Therefore, for ε ∈ (0,1/2) and for n sufficiently large such that t+n = �t+ log�n� ≤ ε�n,

P
t(Zt+n (Bn) < bt+n −δn

)
≤ P

t
( ∑

|u|=t+n

1{S+
u ≤(1−ε)�n} ≤ bt+n −δn

)
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≤
∑

(xu)u∈t∈(N∩[M,∞))#t

∏
u∈t\{ρ}

P
(
X+

u ∈ [xu, xu + 1
)
)1{∑|u|=t

+
n

1{su≤(1−2ε)�n}≤bt
+
n −δn }

≤
∑

(xu)u∈t∈(N∩[M,∞))#t

exp

{
−

∑
u∈t\{ρ}

λxα
u + C2(#t − 1)

}
1{∑|u|=t

+
n

1{su≤(1−2ε)�n}≤bt
+
n −δn }, (3.35)

where su := ∑
ρ≺v	u xv and C2 = (log c14)+ and for the second inequality, we use the fact that as xu ≤ X+

u < xu + 1,
one has su ≤ S+

u < su + t+n and

1{S+
u ≤(1−ε)�n} ≥ 1{su≤(1−ε)�n−t+n } ≥ 1{su≤(1−2ε)�n}.

So {∑|u|=t+n 1{S+
u ≤(1−ε)�n} ≤ bt+n −δn} ⊂ {∑|u|=t+n 1{su≤(1−2ε)�n} ≤ bt+n −δn}. Now by use of (3.13) with H = t+n , K = δn,

� = (1 − 2ε)�n, we obtain

P
t(Zt+n (Bn) < bt+n −δn

) ≤ exp
{−λ(1 − ε)C(b,α)

(
1 − b−δn

)α+1
(1 − 2ε)α�α

n

}
.

Plugging it into (3.34) brings out

P
(
Zt+n (Bn) < bt+n −δn

) ≤ exp
{−λ(1 − ε)C(b,α)

(
1 − b−δn

)α+1
(1 − 2ε)α�α

n

}
, (3.36)

which, combined with (3.32) and (3.33), implies

P(Mn ≤ mn − �n) ≤ e−ε�nbt
+
n −δn + e−λ(1−ε)C(b,α)(1−b−δn )α+1(1−2ε)α�α

n ,

with t+n = �t+ log�n�, δn = δ log�n. We choose here t+ = 3α−1
3 logb

and δ = 1
3 logb

so that

�nb
t+n −δn ∼ �

α+1/3
n .

Consequently, letting n ↑ ∞ and then ε ↓ ∞ shows

lim sup
n→∞

1

�α
n

logP(Mn ≤ mn − �n) ≤ −λC(b,α),

which is what we need.

3.4. Proof of Theorem 1.5: Step size of Gumbel tail

The arguments for Gumbel tail are similar to that for Weibull tail of α > 1. For upper bound, we will employ the tree-
transformation and Lemma 3.3 in Section 3.3.1 again.

3.4.1. Lower bound of Theorem 1.5
We are going to demonstrate that if P(X ≤ −z) = �(1) exp(−ezα

) as z → +∞ with α > 0, then

P(Mn ≤ mn − �n) ≥ exp
{−eβ(α,b)�

α
α+1
n +o(�

α
α+1
n )

}
,

where β(α, b) := ( 1+α
α

logb)
α

α+1 .
By the assumption of Theorem 1.5, there exist two constants 0 < c15 < c16 < ∞ such that for any x ≥ 0,

c15e
−exα ≤ P(X < −x) ≤ c16e

−exα

. (3.37)
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Note that here α > 0. Using the similar arguments as in Section 3.3.2, we take some intermediate time t−n = o(�n) and a
positive sequence (ak)1≤k≤t−n . Then, observe that

P(M ≤ mn − �n) ≥ P
(
Zt−n = bt−n ; ∀|u| = k ∈ {

1, . . . , t−n
}
,Xu ≤ −ak;Mn ≤ mn − �n

)

≥ P
(
Zt−n = bt−n ; ∀|u| = k ∈ {

1, . . . , t−n
}
,Xu ≤ −ak

)
P

(
Mn−t−n ≤ mn − �n +

t−n∑
k=1

ak

)bt
−
n

= p

∑t
−
n −1
k=0 bk

b

t−n∏
k=1

P(X < −ak)
bk

P

(
Mn−t−n ≤ mn − �n +

t−n∑
k=1

ak

)bt
−
n

.

By (3.37), one has

P(M ≤ mn − �n) ≥ p
bt

−
n −1
b−1

b c15
bt

−
n +1−b
b−1 exp

{
−

t−n∑
k=1

eaα
k bk

}
P

(
Mn−t−n ≤ mn − �n +

t−n∑
k=1

ak

)bt
−
n

. (3.38)

Here we take t−n := t−�
α

α+1
n and ak := (logb)1/α(t−n + 1 − k)1/α with t− := ( 1+α

α
)

α
α+1 (logb)−

1
α+1 . Now observe that for

arbitrary small ε > 0 and n large enough,

t−n∑
k=1

ak = (logb)1/α

t−n∑
k=1

(
t−n + 1 − k

)1/α ≥ (logb)1/α

∫ t−n

1

(
t−n + 1 − s

)1/α
ds

= �n − �(1) ≥ �n − (
mn − mn−t−n − y∗).

This leads to the fact that

P

(
Mn−t−n ≤ mn − �n +

t−n∑
k=1

ak

)bt
−
n

≥ P
(
Mn−t−n ≤ mn−t−n + y∗)bt

−
n

≥ e−�(bt
−
n ).

On the other hand, note that

t−n∑
k=1

eaα
k bk =

t−n∑
k=1

bt−n +1 = bt−n e(t− logb)�

α
α+1
n .

Going back to (3.38), as bt−n � t−n e(t− logb)�

α
α+1
n and t−n = eo(�

α
α+1
n ), one obtains that

P(M ≤ mn − �n) ≥ exp
{−t−n e(t− logb)�

α
α+1
n − �

(
bt−n

)} = exp
{−eβ(α,b)�

α
α+1
n +o(�

α
α+1
n )

}
,

where β(α, b) = t− logb = ( 1+α
α

logb)
α

α+1 .

3.4.2. Upper bound of Theorem 1.5
It remains to prove that if P(X ≤ −z) = �(1) exp(−ezα

) as z → +∞ with α > 0, then

lim inf
n→∞

1

�
α

α+1
n

log
[− logP(Mn ≤ mn − �n)

] ≥
(

α + 1

α
logb

) α
α+1

.
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Let t+n := t+�
α

α+1
n = o(�n) and δn := δ�

α
α+1
n with some 0 < δ < t+ < ∞. Using the similar arguments as in the Sec-

tion 3.3.3, in view of (3.32) and to (3.33), one sees that for any ε ∈ (0,1/2),

P(Mn ≤ mn − �n) ≤ P
(
Zt+n (Bn) ≥ bt+n −δn;Mn ≤ mn − �n

) + P
(
Zt+n (Bn) < bt+n −δn

)
≤ P(Mn−t+n ≤ mn−t+n − ε�n/2)b

t
+
n −δn + P

(
Zt+n (Bn) < bt+n −δn

)
,

which by (3.6) is bounded by

exp
(−ec31(ε�n/2)

α
α+1

bt+n −δn
) + P

(
Zt+n (Bn) < bt+n −δn

)
.

Similarly to (3.34) and (3.35), one also sees that

P(Mn ≤ mn − �n)

≤ exp
(−ec31(ε�n/2)

α
α+1

bt+n −δn
) +

∑
t

P(Tt+n = t)Pt(Zt+n (Bn) < bt+n −δn
)

≤ exp
(−ec17(ε�n/2)

α
α+1

bt+n −δn
)

+
∑

t

P(Tt+n = t)
∑

(xu)u∈t∈(N∩[M,∞))#t

exp

{
−

∑
u∈t

exα
u + C2#t

}
1{∑|u|=t

+
n

1{su≤(1−2ε)�n}≤bt
+
n −δn }, (3.39)

with M chosen in accordance with C2 = (log c16)+ and ε ∈ (0,1). Applying (3.14) yields

P(Mn ≤ mn − �n) ≤ exp
(−ec17(ε�n/2)

α
α+1

bt+n −δn
)

+ exp
{−(1 − ε)

(
1 − b−δn

)
e(

(α+1) logb
α

(1−b−δn )(1−2ε)�n)
α

α+1 }
. (3.40)

Here we choose t+ = [(α+1
α

(1 − 2ε) logb)
α

α+1 − ηε/6]/ logb and δ = ηε

6 logb
where ηε = c17(

ε
2 )

α
α+1 so that

ec17(ε�n/2)
α

α+1
bt+n −δn � e( α+1

α
(1−2ε) logb)

α
α+1 �

α
α+1
n .

This suffices to conclude

lim inf
n→∞

1

�
α

α+1
n

log
[− logP(Mn ≤ mn − �n)

] ≥ (1 − ε)

(
α + 1

α
(1 − 2ε) logb

) α
α+1

,

for arbitrary small ε > 0. This is exactly what we need.

4. Small ball probability of D∞ in Böttcher case

This section is devoted to proving Propositions 1.4 and 1.6. In fact, we only prove Proposition 1.4 where P(X < −x) =
�(1)e−λxα

as x → ∞. And we feel free to omit the proof of Proposition 1.6 as it follows from similar arguments.
Write D for D∞ in (1.6) for simplicity. It is easy to see that for any time n ≥ 1,

D
a.s.=

∑
|u|=n

eθ∗(Su−nx∗)D(u), (4.1)

where given (Su; |u| = n), (D(u)){|u|=n} are i.i.d. copies of D. It is known from [34] that under (1.1), (1.2), (1.3), (1.4)
and (1.5), there exists a constant CD > 0 such that as x → +∞,

P(D > x) ∼ CD

x
. (4.2)

However, on the survival set, the left tail of D has different regimes. In fact, from (4.1), one sees that to get {D < ε}, we
could force all individuals of some generation tε to move to some much lower position than tεx

∗ so that eθ∗(Su−tεx
∗
) � ε

and D(u) are typical. This idea is very similar to that used in the previous sections. That is how we get Propositions 1.4
and 1.6 parallel to Theorems 1.3 and 1.5, respectively. The detailed arguments are in the following.
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4.1. Lower bound of Proposition 1.4

First observe from (4.1) that for any n ≥ 1 and δ > 0,

P(D < ε) = P

( ∑
|u|=n

eθ∗(Su−nx∗)D(u) < ε

)

≥ P

(
∀|u| = n, eθ∗(Su−nx∗) ≤ ε1+δ;

∑
|u|=n

D(u) < ε−δ

)
,

where
∑

|u|=n D(u) = �P(Zn logZn) because of (4.2) and weak law for triangular arrays (Theorem 2.2.6 in [18]). There-
fore, by independence,

P(D < ε) ≥ P

(
∀|u| = n, eθ∗(Su−nx∗) ≤ ε1+δ;Zn = bn;

∑
|u|=n

D(u) < ε−δ

)

= P

(
∀|u| = n,Su ≤ (1 + δ)

log ε

θ∗ + nx∗;Zn = bn

)
P

(
bn∑

k=1

Dk < ε−δ

)
,

where Dk; k ≥ 1 are i.i.d. copies of D. Again by weak law for triangular arrays (Theorem 2.2.6 in [18]),
∑bn

k=1 Dk =
(CD + oP(1))bn log(bn). As long as we take n = tε � −δ log ε

logb
so that nbn � ε−δ , P(

∑bn

k=1 Dk < ε−δ) = 1 + o(1). So for
ε > 0 small enough,

P(D < ε) ≥ 1

2
P

(
∀|u| = tε, Su ≤ (1 + δ)

log ε

θ∗ + tεx
∗;Ztε = btε

)
. (4.3)

The sequel of this proof will be divided into two parts for Weibull tail with α > 1 and α ∈ (0,1]. Write aε := − log ε for
convenience.

Subpart 1: the case of α > 1
Recall that bα = b1/(α−1). Choose tε = � log((1+δ)aε/θ

∗x∗)
logbα

� and xk = (bα−1)(1+δ)aε

θ∗bk
α

. Then tε � 1 and
∑tε

k=1(−xk) = (1 −
b

−tε
α )

−(1+δ)aε

θ∗ ≤ (1 + δ)
log ε
θ∗ + tεx

∗. As a consequence,

P(D < ε) ≥ 1

2
P

(
∀|u| = tε, Su ≤ (1 + δ)

log ε

θ∗ + tεx
∗;Ztε = btε

)

≥ 1

2
P
(
Ztε = btε ; ∀|u| = k ∈ {1, . . . , tε},Xu < −xk

)

≥ exp

{
−λ

(
1 − b−tε

α

)( (1 + δ)aε

θ∗

)α

(bα − 1)α−1 − �

((
(1 + δ)aε

θ∗x∗

)α−1)}
, (4.4)

where the inequality follows from the same reasonings as (3.31). Letting ε ↓ 0 then δ ↓ 0 implies that

lim inf
ε→0+

1

(− log ε)α
logP(D∞ < ε) ≥ − λ

(θ∗)α
(
b

1
α−1 − 1

)α−1
.

Subpart 2: the case of α ∈ (0,1]
Choose tε = 1. Then it follows from (4.3) that for ε > 0 sufficiently small,

P(D < ε) ≥ 1

2
P

(
Z1 = b;Xu ≤ (1 + δ)

log ε

θ∗ + x∗, for all |u| = 1

)

≥ c18e
−λb((1+δ)

− log ε

θ∗ −x∗)α , (4.5)

which implies

lim inf
ε→0+

1

(− log ε)α
logP(D∞ < ε) ≥ −λ(1 + δ)α

(θ∗)α
b.

Then we obtain the lower bound by letting δ → 0.
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4.2. Upper bound of Proposition 1.4

Again we divide the proof into two parts for Weibull tail with α > 1 and α ∈ (0,1]. Define

U0(t, �) := {
u ∈ T : |u| = t and θ∗(Su − tx∗) ≥ �

}
.

Subpart 1: The case of α > 1
By (4.1), observe that

P(D < ε) = P

(∑
|u|=t

eθ∗(Su−tx∗)D(u) < ε

)

≤ P
(
eθ∗(Su−tx∗)D(u) < ε, ∀|u| = t

)
. (4.6)

We first obtain a rough bound. In fact,

P(D < ε) ≤ P
(
D(u) < 1, ∀u ∈ U0(t, log ε);#U0(t, log ε) ≥ bt

) + P
(
#U0(t, log ε) < bt

)
≤ P(D < 1)b

t + P

(
Zt

([
log ε

θ∗ + tx∗,∞
))

< bt

)

≤ e−c18b
t + P

(∑
|u|=t

1{Su<
log ε

θ∗ +tx∗} ≥ 1

)
, (4.7)

because P(D < 1) < 1 and Zt ≥ bt . By Markov inequality and Chernoff inequality,

P

(∑
|u|=t

1{Su<
log ε

θ∗ +tx∗} ≥ 1

)
≤ E[Zt ]P

(
St <

log ε

θ∗ + tx∗
)

≤ eθ
log ε

θ∗ +c19t ,

for any θ > 0 and c19 = c19(θ) > 0. Recall that aε = − log ε. We take t = �2 logaε/ logb� so that bt � aε and t � aε for
ε > 0 small enough. As a consequence, for ε > 0 sufficiently small,

P(D < ε) ≤ e−2aε , (4.8)

which is a rough upper bound. Now again by (4.6), for any δ ∈ (0,1), tε ∈N+ and δε ∈ (0, tε) ∩N,

P(D < ε)

≤ P

(
sup

u∈U0(tε,(1−δ) log ε)

D(u) < εδ,#U0
(
tε, (1 − δ) log ε

) ≥ btε−δε

)
+ P

(
#U0

(
tε, (1 − δ) log ε

)
< btε−δε

)

≤ P
(
D < εδ

)btε−δε + P
(
#U0

(
tε, (1 − δ) log ε

)
< btε−δε

)
. (4.9)

By (4.8), one sees that

P
(
D < εδ

)btε−δε ≤ e2δbtε−δε log ε.

On the other hand, for the second term on the r.h.s. of (4.9), for tε = �(logaε) � aε ,

P
(
#U0

(
tε, (1 − δ) log ε

)
< btε−δε

) ≤ P

( ∑
|u|=tε

1
Su≥tεx∗+(1−δ)

log ε

θ∗ < btε−δε

)

≤ P

( ∑
|u|=tε

1Su≥−(1−2δ)
aε
θ∗ < btε−δε

)
,

which by the same arguments as deducing (3.36), is less than

exp

{
−(1 − δ)λ(bα − 1)α−1

(
aε

θ∗

)α

(1 − 4δ)α
(
1 + oε(1)

)}
.
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Consequently, (4.9) becomes that

P(D < ε) ≤ e−2δbtε−δε aε + exp

{
−λ(1 − δ)(bα − 1)α−1

(
aε

θ∗

)α

(1 − 4δ)α
(
1 + oε(1)

)}
.

Let tε = �α−1/3
logb

logaε�, δε = � 1/3
logb

logaε� so that

btε−δεaε � aα
ε � btε log

(
eC2Aaε

)
, Aα ≥ 2

θ∗ (bα − 1)α−1.

This implies that for any δ ∈ (0,1/4),

lim sup
ε↓0

1

(− log ε)α
logP(D < ε) ≤ −(1 − δ)

λ

(θ∗)α
(bα − 1)α−1(1 − 4δ)α,

which gives the upper bound for the case of α > 1.

Subpart 2: The case of 0 < α ≤ 1
For δ ∈ (0,1/b), similar to (4.7), we have, for any tε ∈ (0, aε) ∩N,

P(D < ε) ≤ P
(
D(u) < 1, ∀u ∈ U0(tε, log ε);#U0(tε, log ε) ≥ δbtε

) + P
(
#U0(tε, log ε) < δbtε

)
≤ P(D < 1)δb

tε + P
(
#U0(tε, log ε) < δbtε

)
≤ e−c32δb

tε + P

( ∑
|u|=tε

1Su≥tεx∗− aε
θ∗ < δbtε

)
. (4.10)

Note that for tε = �(logaε) ≤ δ′aε with some δ′ ∈ (0,1) and for 0 < ε � 1,

P

( ∑
|u|=tε

1Su≥tεx∗− aε
θ∗ < δbtε

)
= P

(
Ztε

[
tεx

∗ − aε

θ∗ ,∞
)

< δbtε

)

≤ P

(
Ztε

[
−(

1 − δ′) aε

θ∗ ,∞
)

< δbtε

)
,

which by the same reasonings as (3.12), yields that

P

(
Ztε

[
−(

1 − δ′) aε

θ∗ ,∞
)

< δbtε

)
≤ e−λb(1−δ′)1+α(

aε
θ∗ )α+�(tε).

Going back to (4.10), one sees that

P(D < ε) ≤ e−c18δb
tε + e−λb(1−δ′)1+α(

aε
θ∗ )α+�(tε).

By taking tε = � 2
logb

logaε�, one obtains that for any δ′ ∈ (0,1),

lim sup
ε↓0

1

(− log ε)α
logP(D < ε) ≤ − λb

(θ∗)α
(
1 − δ′)1+α

.

The the desired upper bound for the case of α ∈ (0,1] follows obviously.

5. Moderate deviation in Schröder case: Proof of Theorem 1.7

This section is devoted to studying the moderate deviation of P(Mn ≤ mn − �n) in the case where p0 + p1 > 0. Inspired
by the ideas in Böttcher case, we need that there is only one branch up to some generation with this single random walk
moving to some lower place and then from this lower place we start a typical branching random walk. However, we can
not use this idea to get the upper bound for which we will consider the first time when the population exceeds �3

n. In fact,
this idea is borrowed from [22] where the Lemma 5.1 helps us to couple the branching random walk at the beginning
generations with one single random walk.
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We first recall some results in the literature, which will be used later. The following result is the well-known Cramér
theorem; see Theorem 3.7.4 in [14].

Lemma 5.1. Under the assumption (1.2a), we have for any a > 0, as n → ∞,

lim
n→∞

1

n
logP(Sn ≤ −an) = −I (−a). (5.1)

Remark 5.1. Note that if X has Weibull left tail with α ∈ (0,1), i.e., P(X < −z) = �(1)e−λzα
, Theorem 3 in [21] shows

that for any x > 0, P(Sn ≤ −n1/αx) = e−(λ+on(1))xα
.

The next two statements characterize asymptotic behaviors of lower deviation probability for Galton–Watson process;
see Corollary 5 in [19] or Proposition 3 in [20]. Define b1 := min{k ≥ 1 : pk > 0} and recall γ = logf ′(q) and P

s(·) =
P(·|T = ∞).

Lemma 5.2. Assume (1.1) and 0 < p0 + p1 < 1. Then

lim
n→∞

1

n
logPs(Zn = b1) = lim

n→∞
1

n
logP(Zn = b1) = γ, (5.2)

with b1 the minimal positive offspring number, and for every subexponential sequence an with an → ∞,

lim
n→∞

1

n
logPs(Zn ≤ an) = γ. (5.3)

We also have the following fact whose proof can e.g. be found in Lemma 1.2.15 in [14]. For i ≥ 1, let (ai
n)n≥1 be a

sequence of positive numbers and ai = lim supn→∞ 1
n

logai
n. Then, for all k ≥ 2 it holds that

lim sup
n→∞

1

n

k∑
i=1

logai
n = max

i∈{1,...,k}
ai . (5.4)

5.1. Lower bound

For the lower bound, we consider the case that there are only b1 particles at some generation tn, and the random walk
of one of those b1 particles moves to the level −atn. Furthermore, families induced by other b1 − 1 particles at tnth
generation die out before time n.

Recall that �∗ = limn→∞ �n

n
∈ [0,∞). For any ε > 0 and y ≥ (x∗ − �∗) ∨ 0 such that a = �∗ − x∗ + 2ε + y > 0, let

tn = � �n

�∗+y+ε
�. Note that tn < n for n large enough. By using Markov property at time tn, we have for n large enough,

P
s(Mn ≤ mn − �n)

≥ P
s

(
Ztn = b1; ∃|u| = tn, Su ≤ −atn, Su + Mu

n−tn
≤ mn − �n,

⋃
|v|=tn,v �=u

{|w| = n : v ≺ w
} =∅

)

≥ P(Ztn = b1)P(Stn ≤ −atn)P
s(Mn−tn ≤ mn + atn − �n)P(Zn−tn = 0|Z0 = b1 − 1)

≥ P(Ztn = b1)P(Stn ≤ −atn)P
s(Mn−tn ≤ mn + atn − �n)(q/2)b1−1, (5.5)

where in the last inequality we use the fact that limn→∞ P(Zn−tn = 0|Z0 = b1 − 1) = qb1−1. Recall that mn = x∗n −
3

2θ∗ logn. Then one can check for n large enough,

mn + atn − �n − mn−tn ≥ εtn + 3

2θ∗ log

(
n − tn

n

)
≥ 0.

Thus

lim inf
n→∞ P

s(Mn−tn ≤ mn + atn − �n) > 0
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and then for n large enough,

P
s(Mn ≤ mn − �n) ≥ c20P(Ztn = b1)P(Stn ≤ −atn). (5.6)

Combining it with (5.1) and (5.2) yields that

lim inf
n→∞

1

�n

logPs(Mn ≤ mn − �n) ≥ −I (−a) − γ

�∗ + y + ε
.

Letting ε ↓ 0, together with the fact that l.h.s. is independent of y, gives

lim inf
n→∞

1

�n

logPs(Mn ≤ mn − �n) ≥ sup
y≥(x∗−�∗)∨0

−I (x∗ − �∗ − y) + γ

�∗ + y

= sup
a≥�∗∨x∗

γ − I (x∗ − a)

a
.

5.2. Upper bound

For simplicity, write Zt for Z�t� and t ≥ 0. Let

Tn = inf
{
t ≥ 0 : Zt�n ≥ �3

n

}
and for δ > 0 and ε > 0 small enough set

F(δ) =
{
δ,2δ, . . . ,

1

(�∗ ∨ x∗)(1 + 2ε)

}
.

Then

P
s(Mn ≤ mn − �n)

≤ P
s
(
Z �n

(�∗∨x∗)(1+2ε)

≤ �3
n

) +
∑

t∈F(δ)

P
s
(
Mn ≤ mn − �n;Tn ∈ (t − δ, t]). (5.7)

Note that by (5.3), we have

lim
n→∞

1

�n

logPs
(
Z �n

(�∗∨x∗)(1+2ε)

≤ �3
n

) = γ

(�∗ ∨ x∗)(1 + 2ε)
(5.8)

and

lim sup
n→∞

1

�n

logPs
(
Tn ∈ (t − δ, t]) ≤ lim

n→∞
1

�n

logPs
(
Z(t−δ)�n ≤ �3

n

) = γ (t − δ). (5.9)

Meanwhile,

P
s
(
Mn ≤ mn − �n|Tn ∈ (t − δ, t])
= P

s
(

max|u|=t�n

(
Su + Mu

n−t�n

) ≤ mn − �n|Tn ∈ (t − δ, t]
)

≤ P
s
(
St�n + max|u|=t�n

Mu
n−t�n

≤ mn − �n|Tn ∈ (t − δ, t]
)

≤ P
(
St�n ≤ mn − (1 − ε)�n − mn−t�n

) + P
s
(

max|u|=t�n

Mu
n−t�n

≤ mn−t�n − ε�n|Tn ∈ (t − δ, t]
)

=: I1 + I2,
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where in the first inequality, we use Lemma 5.1 in [22] and the fact that (Su) and (Mu
n−t�n

) are independent. We first
estimate I1. For any t ∈ F(δ), one can check that tx∗ − 1 + ε < 0 and

mn − (1 − ε)�n − mn−t�n = 3

2θ∗ log

(
n − t�n

n

)
+ (

tx∗ − 1 + ε
)
�n

≤ (
tx∗ − 1 + ε

)
�n.

Thus

lim sup
n→∞

1

�n

logP
(
St�n ≤ mn − (1 − ε)�n − mn−t�n

) ≤ −tI

(
tx∗ − 1 + ε

t

)
.

Next, we turn to I2.

I2 = E
s
[
P

s(Mn−t�n ≤ mn−t�n − ε�n)
Zt�n |Tn ∈ (t − δ, t]]

≤ P
s(Mn−t�n ≤ mn−t�n − ε�n)

�2
n + P

s
(
Zt�n ≤ �2

n|Tn ∈ (t − δ, t]).
Notice that as Ps(Tn ∈ (t − δ, t]) ≥ 1−qn3

1−q
P(Tn ∈ (t − δ, t]), we have

P
s
(
Ztn ≤ �2

n|Tn ∈ (t − δ, t]) ≤ (
1 − q + o(1)

)
P
(∃k ≤ δn, Zk ≤ �2

n|Z0 = �3
n

) ≤
(

�3
n

�2
n

)
q�3

n−�2
n .

And by (1.6), one sees that for all n sufficiently large,

P
s(Mn−t�n ≤ mn−t�n − ε�n) ≤ e−c21 < 1,

with some c21 > 0. Thus I2 ≤ e−c21�
2
n and hence

lim sup
n→∞

1

�n

logPs
(
Mn ≤ mn − �n|Tn ∈ (t − δ, t]) ≤ −tI

(
tx∗ − 1 + ε

t

)
. (5.10)

Going back to (5.7), together with (5.8), (5.9) and (5.4), one has

lim sup
n→∞

1

�n

logPs(Mn ≤ mn − �n)

≤ γ

(�∗ ∨ x∗)(1 + 2ε)
∨ sup

t∈F(δ)

(
(t − δ)γ − tI

(
tx∗ − 1 + ε

t

))
,

which by letting ε ↓ 0 and δ ↓ 0 implies

lim sup
n→∞

1

�n

logPs(Mn ≤ mn − �n)

≤ sup
t∈(0, 1

�∗∨x∗ )

(
tγ − tI

(
tx∗ − 1

t

))

= sup
y≥(x∗−�∗)+

−I (x∗ − �∗ − y) + γ

�∗ + y
. (5.11)

We have completed the proof.

6. Discussions

In this paper, we study the branching random walk by assuming that the branching and the motions are independent.
However, things will be more complicated in the general setting where the reproduction law is given by a point process
representing the displacements of children of one individual. Let us give an example here. Suppose that the point process
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is
∑

|u|=1 δXu = δX1{X≥0} + 2δX1{X<0} with X a random variable such that P(X ≥ 0) ∈ (0,1) and E[etX] < ∞ for any
t ∈ R. Obviously, the branching random walk generated by the law of this point process is in Schröder case with b1 = 1.
However, for the lower bound of P(Mn ≤ mn −�n), the strategy for the Schröder case does not work: if there is one single
individual at time tn, it has to move to some positive level. One may instead apply the arguments in the Böttcher case. So,
it seems to have more regimes in the general setting.
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