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We obtain explicit error bounds for the d-dimensional normal approxi-
mation on hyperrectangles for a random vector that has a Stein kernel, or ad-
mits an exchangeable pair coupling, or is a nonlinear statistic of independent
random variables or a sum of n locally dependent random vectors. We assume
the approximating normal distribution has a nonsingular covariance matrix.
The error bounds vanish even when the dimension d is much larger than the
sample size n. We prove our main results using the approach of Gotze (1991)
in Stein’s method, together with modifications of an estimate of Anderson,
Hall and Titterington (1998) and a smoothing inequality of Bhattacharya and
Rao (1976). For sums of n independent and identically distributed isotropic
random vectors having a log-concave density, we obtain an error bound that
is optimal up to a logn factor. We also discuss an application to multiple
Wiener—Itd integrals.

1. Introduction and main results. Motivated by modern statistical applications in
large-scale data, there has been a recent wave of interest in proving high-dimensional cen-
tral limit theorems. Starting from the pioneering work by Chernozhukov, Chetverikov and
Kato (2013), who established a Gaussian approximation for maxima of sums of centered
independent random vectors, many articles have been devoted to the development of this
subject: For example, see Chernozhukov, Chetverikov and Kato (2017a), Chernozhukov et
al. (2019) for generalization to normal approximation on hyperrectangles and improvements
of the error bound, Chen (2018), Chen and Kato (2019), Song, Chen and Kato (2019) for
extensions to U-statistics, Chernozhukov, Chetverikov and Kato (2019), Zhang and Cheng
(2018), Zhang and Wu (2017) for sums of dependent random vectors and Belloni et al. (2018)
for a general survey and statistical applications. In particular, for W = n—!/? " Xi where
{X1,..., Xy} are centered independent random vectors in R and satisfy certain regularity
conditions, Chernozhukov et al. (2019) proved that

(1.1) sup  |ER(W) — ERh(Z)| < Co
h=14:AeR

log’ (dn)\ /4
< n ) ’
where R := {H?Zl(aj, bj),—00 <aj <bj <00}, Z is a centered Gaussian vector with the
same covariance matrix as W and Cj is a positive constant that is independent of d and n.
The distance between two probability measures on R considered in (1.1) is stronger than
the multivariate Kolmogorov distance. The error bound vanishes if logd = o(n'/), which
allows d to be much larger than n. The result in (1.1) is useful in many statistical applications
in high-dimensional inference such as construction of simultaneous confidence intervals and
strong control of the family-wise error rate in multiple testing; see Belloni et al. (2018) for
details. In the literature, people have also considered bounding other (stronger) distances in
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multivariate normal approximations. However, they typically require d to be sublinear in n.
We discuss some of the recent results in Section 1.1 below.

To date, the proofs for results such as (1.1) in the literature all involve smoothing the max-
imum function maxi<;<q x; by % log Z?:] eP¥i for a large B (cf. Theorem 1.3 of Chatterjee
(2005)). In this paper, we use a new method to prove high-dimensional normal approxima-
tions on hyperrectangles. We assume the approximating normal distribution has a nonsingu-
lar covariance matrix. Our method combines the approach of Gotze (1991) in Stein’s method
with modifications of an estimate of Anderson, Hall and Titterington (1998) and a smoothing

inequality of Bhattacharya and Rao (1976). We improve the bound in (1.1) to Co(k’gét#) 1/3
when the smallest eigenvalue of Cov(W) is bounded away from O by a constant independent
of d and n (cf. Corollary 1.3 below). We further improve the bound to CO(@)” 2 logn,
which is optimal up to the logn factor, for sums of independent and identically distributed
(i.i.d.) isotropic random vectors with log-concave distributions (cf. Corollary 1.1 below).
Moreover, our method works for general dependent random vectors and we state our main
results for W that has a Stein kernel, or admits an exchangeable pair coupling, or is a nonlin-
ear statistic of independent random variables or a sum of locally dependent random vectors.
We prove our main results in Section 2. We also discuss an application to multiple Wiener—Itd
integrals. Some details are deferred to an Appendix.

Throughout the paper, we always assume d > 3 so that logd > 1. Also, W denotes a
random vector in R? with EW = 0. We use Z ~ N (0, ¥) to denote a d-dimensional Gaussian
variable with covariance matrix ¥ = (X x)1<j k<4 and denote

=2 =2
= Y)= max Xijj,
7 () 12)2q
1.2 2:=0%(¥)= min %;;,
(1.2) o i=a"(%) | n i
af = af( >) = smallest eigenvalue of X.

Note that in the isotropic case ¥ = I, 6> =02 = o*f = 1. We use C to denote positive ab-

solute constants, which may differ in different expressions. We use 9, f', 9« f, etc. to denote
partial derivatives. For an R9-vector w, we use w j» 1 < j <d to denote its components and
write ||w]leo = maxi<j<q |w;jl.

We first consider random vectors that have a Stein kernel, which was defined in Ledoux,
Nourdin and Peccati (2015) and used implicitly in, for example, Chatterjee (2009) and
Nourdin and Peccati (2009) (see also Lecture VI of Stein (1986)).

DEFINITION 1.1 (Stein kernel). A d x d matrix-valued measurable function % =
(riz-v)lfi,jfd on R? is called a Stein kernel for (the law of) W if Elrl-z.V(W)| < oo for any
i,jef{l,...,d}and

d
Jj=

d
E[3; f(WW;]= > E[8;;f(W)z)) (W)]
1 i,j=1

for any C* function f : R? — R with bounded partial derivatives of all orders.

If W has a Stein kernel, then in applying Stein’s method, we only need to deal with the
second derivatives of the solution to the Stein equation. In this case, we obtain the following
simple bound.
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THEOREM 1.1 (Error bound using Stein kernels). Suppose that W has a Stein kernel
W= (rJ.V,Z)lij,kid. Let Z ~ N(0, X). Then we have
A
log<g_ W)’ \Y 1),
fofeps

= LW
Aw ._E[lg,%);d|zjk rjk(W)|].

A
(1.3) sup  |ER(W) — ER(Z)]| < C—”zv(logd)(
h=14:A€R o2

where the o’s are defined in (1.2) and

REMARK 1.1. In practice, we typically choose X = Cov(W) (so that EIJV,Z(W) =X ),
although it is not required in the above theorem. Moreover, since

sup |ER(W)—Eh(Z)|= sup |ER(MW)—Eh(MZ)|
h=14:AeR h=14:AeR

for any diagonal matrix M, we have the freedom to do component-wise scaling for W so
that the right-hand side of (1.3) is minimized. This minimization problem seems nontrivial,
except that one should obvious shrink each component of W as much as possible for a given
value of o,. This remark applies to all the general bounds below (cf. Theorems 1.2—1.4). For
simplicity, in applications below (cf. Corollaries 1.1-1.3), we do the most natural component-
wise scaling for W so that Var(W;) =1, 1 < j <d and choose ¥ = Cov(W). As a result,
o =0 =1 and only 1/0, appears in the upper bound. This factor can be removed if o is
bounded away from O by an absolute constant. We call it the strongly nonsingular case. One
example is the isotropic case where ¥ = 1.

REMARK 1.2. Chernozhukov et al. ((2019), Theorem 5.1) proved1 that if W has a Stein
kernel t% = (r%)lfj,kfd and Z ~ N(0, X) with the diagonal entries X;; > c for all j =
1,...,d and some constant ¢ > 0, then

(1.4) sup  |P(WeA)—P(ZeA)|<C A logd,

h=14:AeR
where C’ depends only on c. They also showed that the bound (1.4) is asymptotically sharp
(personal communication). Theorem 1.1 shows that under the additional assumption that ¥ is
nonsingular and the ratio of the largest and the smallest diagonal entries of X, g is bounded,
the bound (1.4) can be improved to B

CiAwlogd(|log Aw| Vv 1),

where C, depends only on o,. Since X is singular in the example attaining the upper bound
in (1.4) asymptotically, this improvement comes from the nonsingularity assumption on X.

As an illustration, we apply Theorem 1.1 to sums of i.i.d. variables with log-concave densi-
ties. Recall that a probability measure « on R has a log-concave density if it is supported on
(the closure of) an open convex set 2 C R4 and, on €, it has a density of the form e~V with
V : 2 — R a convex (hence continuous) function; see Saumard and Wellner (2014) for more
details. Note that the support of i must be full dimensional because © has a density. In this
situation, under some regularity assumptions, Fathi (2019) provides a way to construct Stein
kernels having some nice properties. This enables us to obtain the following near optimal
error bound.

1(1.4) is deduced from their result together with the proof of Chernozhukov, Chetverikov and Kato ((2017a),
Corollary 5.1) and the Stein kernel for (WT, —whHT.



HIGH-DIMENSIONAL CENTRAL LIMIT THEOREMS 1663

COROLLARY 1.1. Let u be a probability measure on R with a log-concave density.
Suppose u has mean 0 and a covariance matrix % with diagonal entries all equal to 1 and
smallest eigenvalue 0*2 >0.Let W=n"12 Y Xie RY with n > 3, where {X1,..., Xn}
are i.i.d. with law . Let Z ~ N (0, X). Then

log®d

C
sup  |ER(W) — ER(Z)| < —
h=14:AeR Oy

logn.

As we see in the following proposition, if o, is bounded away from O by an absolute

log d

constant, is generally the optimal convergence rate in this situation, so the above

corollary glves a nearly optimal rate.

PROPOSITION 1.1. Let X = (X,])?‘j | be an array of i.i.d. random variables such
that Ee'Xiil < oo for some ¢ > 0, EX;j =0, EX2 =1 and y := EX3 # 0. Let

W =n12 T Xi with X; = (X1, ..., Xia)". Suppose that d depends on n so that
(log3 d)/n — 0 and d(log3 d)/n — oo asn— 0. Also, let Z ~ N (0, 1;). Then we have

ligso%p | log? dxeﬁ‘P(lgljai(dW <x) P(1TJa§dZ <x>‘ > 0.

Proposition 1.1 is proved in Section A.1. Note that it is possible to find an example which
simultaneously satisfies the assumptions in both Corollary 1.1 and Proposition 1.1. In fact, in
the setting of Proposition 1.1, if the law of X;; has a log-concave density, the assumptions of
Corollary 1.1 are satisfied due to the independence across the coordinates of X;. For example,
this is the case when X;; follows a normalized exponential distribution.

Theorem 1.1 is also interesting in the context of the so-called Malliavin—Stein method
(see Nourdin and Peccati (2012) for an exposition of this topic). For simplicity, we focus on
the case that the coordinates of W are multiple Wiener-It0 integrals with common orders.
We refer to Nourdin and Peccati (2012) for unexplained concepts appearing in the following
corollary (and its proof).

COROLLARY 1.2. Let X be an isonormal Gaussian process over a real separable
Hilbert space $). Let g € N and denote by 1,(f) the qth multiple Wiener—Ito integral of
f € 991 with respect to X, where 4 denotes the qth symmetric tensor power of §). For
every j=1,...,d, suppose W; = I,(f;) for some f; € $H%4. Suppose also Cov(W) =
with diagonal entries all equal to 1 and smallest eigenvalue 0*2 > 0. Let Z~ N(0, X). Then
we have

(1.5) sup |ER(W) — Eh(Z)| < Cq (logq d)(llog Aw| V1),
h=14:AeR >x<

where C, > 0 is a constant depending only on g and

Aw := max \/EW‘} — 3(EW.2)2.
1<j<d I J

Corollary 1.2 is comparable with Corollary 1.3 in Nourdin, Peccati and Yang (2020), where
an analogous bound to (1.5) is obtained when R is replaced by the set of all measurable con-
vex subsets of R? (see also Kim and Park (2015) for related results). Meanwhile, consider-
ing the restricted class R, we improve the dimension dependence of the bounds: Typically,
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the bound of Corollary 1.3 in Nourdin, Peccati and Yang (2020) depends on the dimension
through d*!/24*1 while our bound depends through log? d.

We also remark that Nourdin, Peccati and Yang (2020) succeeded in removing the loga-
rithmic factor from their bound by an additional recursion argument. However, it does not
seem straightforward to apply their argument to our situation.

Stein kernels do not exist for discrete random vectors. Next, we apply other commonly
used approaches in Stein’s method to exploit the dependence structure of a random vector and
obtain error bounds in the normal approximation. First, we consider the exchangeable pair ap-
proach developed in Stein (1986) in one-dimensional normal approximations and Chatterjee
and Meckes (2008) and Reinert and Rollin (2009) for multivariate normal approximations.

THEOREM 1.2 (Error bound using exchangeable pairs). Suppose we can construct an-
other random vector W' on the same probability space such that (W, W') and (W', W) have
the same distribution (exchangeable), and moreover,

(1.6) EW —W|W)=—-A(W+R)

for some invertible d x d matrix A (linearity condition). Let D = W' — W and suppose
E||D||‘Cto < 00. Also, let Z ~ N(0, ). Then, if n > 0 and t > 0 satisfy n//t < ox/+/logd,
we have

sup |ER(W)— Eh(Z)|
h=14:AeR

1 1
< C{o—*E(lmax IR; |),/1ogd + 0‘_*2A1(| logt| v 1)logd

<J=

1 logd
+F(A2+A3(n))(°g )’ +Z flogd}

*
where the o’s are defined in (1.2),

Al = E[ max
1<j,k<d

ik — %E[(AID)J.DHW]H,

. -1
Ay = E[lfjg{l,%de[\(A D); D D; Dy IW]],

— -1
Az(n) = E[lijfi{%ngdl(A D), > n]-

REMARK 1.3. The exchangeability and the linearity condition in the statement of Theo-
rem 1.2 may be motivated by considering a bivariate normal vector (W, W) with correlation
pand EW —W|W)=—1—p)W.If W =3Y"_, & is a sums of independent random vec-
torsand W =W —&; + & 7> where I is an independent random index uniformly chosen from
{1,...,n} and {Si’ : 1 <i <n}is an independent copy of {&; : 1 <i <n}, then it can be ver-
ified that (1.6) is satisfied with A = %Id and R = 0. The exchangeable pair approach was
proved to be useful for dependent random vectors as well; See Reinert and Rollin (2009) and
the references therein for many applications.

REMARK 1.4. Wecantake n=0and t = ( A3(0) log d)?/3 in Theorem 1.2 to obtain
a simpler bound

C{GL*E(lrgjax IR; |>,/logd + %szl(

=2 1/3
+ (%A3(O) 10g4d> }
ooy

log<%A3(0)>’ v 1> logd
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We can simplify the bound in Theorem 1.3 below similarly. However, these simplified bounds
result in a worse bound C (B,ﬁ' (log6 d)/ o*:f n)'/3 for Corollary 1.3. We introduce the parameter
n in the same spirit as in the Chernozhukov—Chetverikov—Kato theory: It plays a similar
role to the parameter y in Chernozhukov, Chetverikov and Kato (2013) and serves for better
control of maximal moments appearing in the bound.

We note that Meckes (2006) introduced an infinitesimal version of the exchangeable pairs
approach. Her method can be used to find the Stein kernel for certain random vectors with
a continuous symmetry; hence, we can apply Theorem 1.1 to obtain a near optimal rate of
convergence. In general, however, the convergence rate obtained using Theorem 1.2 is slower,
as demonstrated below in Corollary 1.3.

Next, we consider nonlinear statistics along the lines of Chatterjee (2008a), Chen and
Rollin (2010) and Dung (2019).

THEOREM 1.3 (Error bound for nonlinear statistics). Let X = (X1,...,X,) be a se-

quence of independent random variables taking values in a measurable space X. Let
F: X" — RY be a measurable function, and let W = F(X). Let X' = (X}, ..., X)) be an
independent copy of X. For each A C {1, ..., n}, define X4 = (X%, ..., X,‘:‘) where

1

A |Xiifiea,
PTX ifi ¢ A,

Let WA = F(X*). Suppose E(W) =0 and E||W|%, < co. Also, let Z ~ N(0, ). Then, if
n>0andt > 0 satisfy n//t < o4//logd, we have

sup |ER(W) — Eh(Z)|
h=14:A€eR

where the o’s are defined in (1.2),

1 n

1 1 F
< C<0—51(| logt| v 1)logd + — (82 +53(77)) (logd)z + ;ﬁlogd),
ik — 3 Z(W{l:i} _ W{l:(i—l)})

* >x<
|
i=l

1:G—1) 4
8 _E|:1r<nja§dz i) wilG=Dh }+E|:max Z W)},

81 :=FE| max
1<jk=d

j(W{i} - W)k

1<j=<d!

83(n) = ZE[ max (W) — GO ) > ]

i} _ w2
* ZEL??%(W W)

wiih — W||OO > n]

and

{1:1_}::{{1,2,...,1'} zfzzl
%] lfl=

Using either Theorem 1.2 or 1.3 with a truncation argument, we can improve
Chernozhukov et al. ((2019), Theorem 2.1) in the strongly nonsingular case.
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COROLLARY 1.3. Let W=n"1/2 Z;’=1 X; € RY, where {X1,...,X,} are centered in-
dependent variables with Cov(W) = X with diagonal entries all equal to 1 and smallest
eigenvalue 0*2 > 0. Let Z ~ N(0, X). Suppose that there is a constant B, > 1 such that
max; ; Eexp(Xizj/an) <2 and max;n —lymn EX4 < B2 where X;; denotes the jth com-
ponent of the vector X;. Then we have

(B,% log4(dn)>1/3

4
ogn

(1.7) sup |ER(W) — ER(Z)| <C
h=14:A€eR

Finally, we consider sums of random vectors with a local dependence structure. Unlike in
Theorems 1.2 and 1.3, there is no longer an underlying symmetry that we can exploit. In the
end, we obtain a third-moment error bound with a slower convergence rate.

THEOREM 1.4 (Error bound for sums of locally dependent variables). Let W =3}7_, X;
with EX; =0 and Cov(W) = X. Let Z ~ N(0, X). Assume that for each i € {1, ...,n},
there exists A; C {1, ...,n} such that X; is independent of {X; : i’ ¢ A;}. Moreover, assume
that for each i € {1, ...,n} and i’ € A;, there exists A;; C {1, ...,n} such that {X;, X;/} is
independent of {X;» :i" ¢ A;}. Then we have

sup |ER(W) — Eh(Z)|
h=1,:A€R

(1.8) ( ZZ > ELJ,“;?’? (1Xi; X X

- * i=li'eA;i"eA;y

12
+|Xl~jx,-/k|E|X,-~1|)](logd)5/2) ,
where the o’s are defined in (1.2).

Theorem 1.4 may be improved using a truncation as in Theorems 1.2 and 1.3. We leave it
as it is for simplicity.

1.1. Literature on multivariate normal approximations. There is a large literate on mul-
tivariate normal approximations. Here we discuss some of the recent results providing error
bounds on various distributional distances with the best-known dependence on dimension.

Let W =n—1/2 Y Xi€ R?, where {X1,..., X} are centered independent variables
with Cov(W) = X. Bentkus (2005) proved that, with Z ~ N (0, X),

cdlit &
(1.9) sup |ER(W) — Eh(Z)| < 7 ZE [|=2x; ],
h=14:AeC /
where C is the collection of all (measurable) convex sets of R? and | - | denotes the Eu-

clidean norm when applied to a vector. The bound (1.9) is optimal up to the d'/# factor
(Nagaev (1976)). See Raic (2019) for a bound with explicit constant. In the typical case where
E[|Z~Y2X;|?] is of the order O(d>/?), the error bound in (1.9) is of the order 0(#)1/2.
Chernozhukov, Chetverikov and Kato (2013) and subsequent works showed that by restrict-
ing to the class of hyperrectangles, one may obtain much better dependence on d.

If we restrict to the class of Euclidean balls and assume ¥ = I;, then we can obtain a bound
as in (1.9) but without the factor d'/*. This follows from Rai¢ ((2019), Theorem 1.3 and
Example 1.2) and Sazonov ((1972), Remark 2.1), for example. For Euclidean balls centered
at 0, it is known that (cf. G6tze and Zaitsev (2014)) the dependence on n may be improved
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from 1/4/n to 1/n for d > 5, which is in general the smallest possible dimension for such
an improvement. See also Esseen (1945), Bentkus and Gotze (1997), Gotze and Ulyanov
(2003), Bogatyrev, Gotze and Ulyanov (2006) and Prokhorov and Ulyanov (2013) for earlier
and related results. We do not know any results with explicit dependence on d and such
improved dependence on 7.

Another class of distributional distances of interest is the L? transportation distance for
a number p > 1, also known as the Kantorovich distance or the p-Wasserstein distance. For
two probability measures p and v on R, it is defined to be

1/p
W, (u,v) = inf / —ylPdy(x, ) )
puvyi=( int [ le=yirdy e
where A (i, v) is the space of all probability measures on R? x R? with 1 and v as marginals.
If X and Y are random variables with distributions p and v, respectively, we will also write

Wp(X,Y)=W,(u,v).

Let W =n"1/2 Y Xi € R4, where {X1,..., Xy} are centered i.i.d. variables with
Cov(W)=%,and let Z ~ N (0, ). Suppose | X;| < B almost surely for some g > 0. Eldan,
Mikulincer and Zhai (2020) proved that

Bd /32 F 21og, (n)

Vn '
The bound in (1.10) is optimal up to the log,(n) factor (Zhai (2018)). See Courtade, Fathi
and Pananjady (2019) and Eldan, Mikulincer and Zhai (2020) for results for the log-concave
case. Following the proof of Proposition 1.4 of Zhai (2018), these bounds on the L? trans-
portation distance can be used to deduce a bound on sup,_,,.4cr |[ER(W) — Eh(Z)|. For
example, we can obtain the following proposition. We defer its proof to the end of the Ap-
pendix.

(1.10) Wh(W, 2) <

PROPOSITION 1.2. Let T be any R4 -valued random variable. Let Z ~ N (0, ) where
Ejj >1,Vl fj <d. Then,

sup |Eh(T) — ER(Z)| < C(logd) PWy(T, 2)*3.
h=14:AeR

Applying Proposition 1.2 to (1.10), we have the following corollary.

COROLLARY 1.4. Let W=n"1/2 Z;’Zl X; € RY, where {X1,..., X, )} are centered i.i.d.
variables with Cov(W) = Z. Suppose ¥;; > 1, V1 < j <d. Suppose further that | X;| <
almost surely for some B > 0. Let Z ~ N (0, X). Then,

4323

sup  |ER(W) — ER(Z)| < Clogd)'? ———
h=14:AeR nl/

(1+logm)'/3.

Since the W error bound in (1.10) scales like +/d, we see that such a deduced bound again
requires d to be sublinear in n. Allowing to go well beyond this restriction is a key feature of
this paper.

If we assume in addition that the mixed third moments of X; are all equal to zero, then it
is possible to improve the dependence on n from 1/./n to 1/n. See, for example, Bobkov,
Chistyakov and Gotze (2013) for such improved rate in total variation in dimension one and
Fathi (2021) for results on the 2-Wasserstein distance in multi-dimensions.
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2. Proofs.

2.1. Lemmas. We first state four lemmas that are needed in the proofs of the main results.
Set R(0;¢€) :={x e R? : ||x|loo < €} for € > 0. Throughout this section, we denote by ¢ the
density function of the standard d-dimensional normal distribution.

LEMMA 2.1 (Gaussian anti-concentration inequality). Let Y be a centered Gaussian vec-
tor in RY such that minj <<y Esz > ngor some o > 0. Then, for any y € R and ¢ > 0,

P(Y <y+e)— P(Y <) < =(2logd +2),
a
where {Y <y}:={Y; <y;j:1=<j<d}
A proof of Lemma 2.1 is found in Chernozhukov, Chetverikov and Kato (2017b).

LEMMA 2.2 (Modification of (2.10) of Anderson, Hall and Titterington (1998)). Let
K > 0 be a constant and set n = ng := K /+/logd. Then, for all r € N, there is a constant
Ck r > 0 depending only on K and r such that

d
sup Z sup
AGR]'I jrzl yGR(O;n)

.....

The special version of Lemma 2.2 with n = 0 is found in the proof of (2.10) of Anderson,
Hall and Titterington (1998). Introduction of the parameter n is motivated by a standard argu-
ment used in the Chernozhukov—Chetverikov—Kato theory to efficiently control maximal mo-
ments appearing in normal approximation error bounds; see Equation (24) in Chernozhukov,
Chetverikov and Kato (2013), for example.

To clarify the structure of the proof, we first give a proof of the case withr =1 and n =0
here. The proof of the general case follows the same strategy and will be given in Section A.2,
where we need a few technical lemmas and more complicated notation.

PROOF OF LEMMA 2.2 WITH r =1 AND n =0. We denote by ¢ and @ the density
and distribution function of the standard normal distribution, respectively. We set ¢1 (1) :=
¢1(u)/ P1(u).

For any A = ]_[?Zl(aj,bj) € R, we have, by considering x; := |a;| A |b;| in the first
inequality,

d d
Zfam(z)dz =Y lo1(by) —p1@@p| [] (®1(bx) — 1(ap))
=174 =1 kik+j
d
@2.1) < sup Y ¢i(x) [ ©1(0)

x€l0,00)¢ j=| kik#j

d d
= sup Y di(x) [] Prx).
x€[0,00) j=] k=1
Therefore, it suffices to prove sup, ¢ )¢ f (x) = O(y/logd), where
d d
fX)=Fx)G(x) with F(x)=) ¢i1(x;) and G(x) =[] P1(x).

j=1 k=1
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The remaining proof proceeds as follows. We first show that f has a maximizer x*
satisfying xi' = --- = xJ =: u*. From this, we will see sup,c(g o) f(x) = O(u*) and
u* = 0(y/logd) as d — oo. This completes the proof.

Noting that ¢{ (u) = —(u + ¢1 (1)1 (1), we have

df () =@ (x)Gx) + F(x)p1 (x1)G(x)
={—(x +¢1(x)) + F(x)}p1(x)) G (x).

In particular, 3 f(x) < 0 if x € [0,00)? and x; > d because F(x) < d+/2/m < d for all
x € [0, 00)?. This means f(x) < f(x; Ad,...,xqg Ad) for all x € [0, 00)¢, and thus we
obtain sup, ¢(o oc)d f (X) = Supypo )¢ f (x). Note also that 9; f (x) > 0 if x; = 0. As a result,
f has a maximizer x* satisfying x* € (0, d)? and V f (x*) = 0. The latter equation yields

(2.2) xf o (xf) = =xb+d1(x)) = F(x¥).
Now, it is easy to see that the function [0, 00) > u — u + q§1 (u) € (0, 00) is strictly increasing
(this is in fact a special case of Lemma A.2). Consequently, we obtain x{' = --- = xJ =: u™.

Now, from (2.2) we have u* = (d — 1)¢1 (u*). So we obtain

u*d>1 (u*)d <

sup () = f(+") = <

x€[0,00)4

d—1

Therefore, we complete the proof once we prove u* = O(/logd).
Setting g2 (u) :=u — (d — 1)¢1 (u), we have gr(u™) = 0 and g2(/2logd) — oo as d — oo.
Since g3 is increasing on [0, 0c0), we conclude u™ = O (y/logd) asd — co. [

From Lemma 2.2, we can obtain the following lemma. For any bounded measurable func-
tion f :R? — R and o > 0, we define the function Ny f : RY — R by

@3 Nof @)= [ fa+one@di= [ fec—x/o)d

Note that \V, f is infinitely differentiable.

LEMMA 2.3. Let K > 0 be a constant and set 1 = ng4 := K //logd. Then, for all r € N,
there is a constant Cg , > 0 depending only on K and r such that

d
sup  sup > sup  [9j,
h=14:A€eR xcR4 1 jr=1 yeR(0;0n)

i Nah(x +y)| < Ck o~ (logd)'"?

,,,,,

.....

foranyh =14, A€ R and o > 0.

PROOF. Fix h =14, A € R, arbitrarily. For any x, y € R4 and Ji,---sjref{l,...,d},
we have

D N5 +9) = (<10 [ h(02)0)1..8(c = (5 +9)/0) dz
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where 071 (A — x) := {0~ !(z — x) : z € A} € R. Hence we obtain

d
sup  [9j,,....j Noh(x +y)|

1w jr=1 YER QM)

.....

d
<o~ sup Z sup

AERJ'] peenjr=1 yeR(0;n)

/A jy,...jp®(z+ y)dz|.

Now, the desired result follows from Lemma 2.2. O

Next, we state a smoothing lemma. The test function # = 14 we deal with in bounding
SUpy—i,:.4er |ER(W) — Eh(Z)] is not continuous. It is a common strategy to smooth it first,
then quantify the error introduced by such smoothing, finally balance the smoothing error
with the smooth test function bound. We follow Bhattacharya and Rao (1976) to smooth A
by convoluting it with a Gaussian distribution K with a small variance.

LEMMA 2.4 (Modification of Lemma 11.4 of Bhattacharya and Rao (1976)). Let u, v,
K be probability measures on R¢. Let € > 0 be a constant such that

o :=K(R(0;¢€)) > 1/2.

Let h : R? — R be a bounded measurable function. Then we have

Vhd(u — )| < Qo — D7 y*hi e) + T¥(h; 26)],
where
y*(h;€) = sup y(hy;e€), T*(h; 2€) = sup t(hy; 2€), hy(x) =h(x +y),
yeRd yeRd

y(h;e>=max{th(-;e)d<u—v)*K,—fmhc;e)d(u—v)*K},

(5 2€) = f [M (- 2€) — my (- 26)] dv,

Mp(x;¢€) = sup h(y), mpu(x; €)= inf h(y)

yilly=xlloo <€ Yilly=xlloo <€
and * denotes the convolution of two probability measures.

Lemma 2.4 can be shown in a completely parallel way to that of Lemma 11.4 in
Bhattacharya and Rao (1976) by changing the e-balls therein to e-rectangles, so we omit
its proof.

2.2. Basic estimates. In Theorems 1.1-1.4, we aim to bound

8:= sup |Eh(W)—Eh(Z) , Z~N(0,X).
h=14:AeR

In this subsection, we collect some basic estimates used in all of their proofs. Fix A € R. Let

h=1y, h=14— P(Z € A).

Toh(x) = Eh(e~x +4/1 - e22).

For s > 0, let
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Note that ETsfz(Z) = Efz(Z) =0. Let Q and G be the laws of W and Z, respectively. For a
probability distribution 1 on R4 and o > 0, we denote by us the law of the random vector
oY with Y ~ . For ¢ > 0 to be chosen, we are going to apply Lemma 2.4 with

,u:Qeft, v:Geft, KIGm, hIIA,
and € be such that

Gm{|lzl|m <e}=17/8.

We first bound 7*(h; 2¢) in Lemma 2.4. Recall the definition of ¢’s from (1.2). Markov’s
inequality and Lemma 2.1 of Chatterjee (2008b) yield

€e<Cyl1—e2E|Z|oo <Coy/1—e"2 [logd.

Thus, applying the Gaussian anti-concentration inequality in Lemma 2.1 with ¥ = (e " Z T,
—e'Z") T, we obtain

logd

5
(2.4) *(h; 2¢) < Cé' €< —Ge’\/;logd,
o

o
where we used the elementary inequality 1 — ™ < x for all x > 0.

Now we turn to bounding y *(%; €) in Lemma 2.4. Note that M}, (-; €) and m,(-; €) are again
indicator functions of rectangles. Note also that the class R is invariant under translation and
scalar multiplication. Therefore, it suffices to obtain a uniform upper bound for the absolute
value of

(2.5) fhd(,u—v)*K:/ﬁdu*K=Ethz(W)

overall A =14, A € R. In fact, we have by Lemma 2.4 and (2.4)—(2.5)

(2.6) 8 < C( sup  |ETh(W)| + zel\/;logd).
h=14:AeR [

We use (various versions of) Stein’s method to bound E T,ﬁ(W). Similar to (1.14) and
(3.1) of Bhattacharya and Holmes (2010), one can verify that

Y (x) = — /too Tsh(x)ds
is a solution to the Stein equation
(2, Hess yir (w)) 5 — w - Vi (w) = Trh(w).
Thus we have
2.7) ET,h(W) = E[(Z, Hess (W), g — W - Vi (W)].

Set ¥ := ¥ — 021,. Note that ¥ is positive semidefinite because o is the smallest eigen-
value of X. Let us take independent random vectors Z and Z' such that Z ~ N(0, 2),
Z' ~ N (0, I;) and they are independent of everything else. Then, since 7+ oxZ' ~N(0, ),
we can rewrite Tsfz(x) as

T = (e x4y 1 = e 22+ o/1 -2 7)

2.8)
= ENU \/l_e—_zsljl(eisx +/ 1-— e_ZSZ),
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where ./\/'U mfz is defined by (2.3). Therefore, applying Lemma 2.3 with n = 0 and
noting (3.14)—(3.15) of Bhattacharya and Holmes (2010), we obtain

2.9) Z|a,¢,(x)| <Co; !\ /logd,
j=1
d
(2.10) > 3k (x)| < Co*(llogt| v 1) (logd),
jk=1
d 1
(2.11) Y (i (x)| < Co P —(logd)*>.
jok,I=1 Vi

2.3. Proof of Theorem 1.1. Without loss of generality, we may assume i”z" < 1; other-

*

wise, the bound (1.3) is trivial. Since W has a Stein kernel 7%, we obtain by (2.7)
~ d
ETh(W) = E[ > 0 (W)(Zjx — r}Z(W))}.
jk=1
Therefore, we deduce by (2.10)
~ C
|[ET,h(W)| < ;(logd)AW(Hogtl v 1).
*

Consequently, we have by (2.6)

3<c{ e'Vtlogd + — (logd)AW(|logt|\/1)}

Setting /t = Z

2.4. Proof of Corollary 1.1.  Without loss of generality, we may assume

1 [log’d
0*2 n

(2.12) <1.

As in the proof of Fathi ((2019), Theorem 3.3), we first prove the result when u is com-
pactly supported and its density is bounded away from zero on its support. Then, by Theo-
rem 2.3 and Proposition 3.2 in Fathi (2019), u has a Stein kernel T = (7jx) 1< x<a such that
T(x) is positive definite for all x € R4 and maxi<j<q E[|7j;(X1)|P] < 8Pp21’ forall p>1
(here we used the assumption that Var(W;) = 1,V1 < j < d). Note that we indeed have
max|<;k<d E[|Tjx(X1)|P] < 81’172’7 for all p > 1 due to positive definiteness. In particular,
Lemma A.7 in Koike (2019a) (with g = 4) yields

[Tir(X
(2.13) max FE exp( M) <2.
1<jk<d C

Now we define the function t" : R — R?*4 py

n

w _ l . _ d
T (x)_E[nZt(XZ))W_x], x e R%.

i=1
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It is well known that " is a Stein kernel for W (cf. page 271 of Ledoux, Nourdin and Peccati
(2015)). Jensen’s inequality yields

We will use Theorem 3.1 and Remark A.1 in Kuchibhotla and Chakrabortty (2018) to bound
the right-hand side of (2.14). We need the following definitions.

n

1
W ! X Y
(2.14) E[lsr?’z]g;d}zjk rjk(W)|]§E[lsnﬁ>;dn?_l(r,k(x,) k)

DEFINITION 2.1 (Orlicz norms). Let g : [0, 0c0) — [0, o0) be a nondecreasing function
with g(0) = 0. The “g-Orlicz norm” of a random variable X is given by

X, :=inf{n >0:E[g(IX|/n)] <1}.

DEFINITION 2.2 (Sub-Weibull variables). A random variable X is said to be sub-Weibull
of order @ > 0, denotes as sub-Weibull («), if

I Xly, <00, where ¥y (x) =exp(x¥) — 1 forx > 0.

DEFINITION 2.3 (Generalized Bernstein—Orlicz norm). Fix @ > 0 and L > 0. Define the
function W, 1 (-) based on the inverse function

W1 (1) = /log(1 +1) + L(log(1 +1)'/* forall > 0.

The generalized Bernstein—Orlicz (GBO) norm of a random variable X is then given by
| X|lw, , asin Definition 2.1.

Applying Theorem 3.1 of Kuchibhotla and Chakrabortty (2018) to the sequence of in-
dependent mean zero sub-Weibull (%) random variable (cf. (2.13)) {tjx(X;) — Zjr :i =
1,...,n}, we have

C
‘~I/1 [

2L

1 n
H; > (kX)) — k)

i=1

for some L,, = C/+/n. Combining with Remark A.1 of Kuchibhotla and Chakrabortty (2018),
we have,

1 n

E X

|:1<H]1211(X<d ;(rﬂ(( )= Zjk) ]
1 n
(2.15) <C max ;Z(Tjk(Xi)— T jk) (,/logd + L, log*d)
=PRI o 1L,

1 1

< C—(,/logd + —log® d)
Vn Vi

From (2.14) and (2.15), we have
/ 1 2
E[1<rnax< |2 k—TJk(W)|:|§ T( log +ﬁ10g d)

3/2
logd<1+log d)fC logd
Jn n

=C

k)

n
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where the last inequality follows from (2.12). Therefore, an application of Theorem 1.1, to-
gether with the fact that x(|log x| V 1) is an increasing function for x > 0 and the assumption
(2.12), yields the desired result.

Next we prove the result when p is supported on the whole space R?. We take a se-
quence of convex bodies F; that converge to R?. Define the probability measure vy on RY
by ve(A) = u(A N Fp)/u(Fy) for any Borel set A C R? (note that Ww(Fg) = 1as £ — oo by
construction, so u(Fy) > 0 for sufficiently large £). Then, let u, be the law of the variable
M, 1/ 2(Yg — EYy), where Y, is a random vector with law v, and M, is the diagonal matrix
with the diagonal entries equal to those of Cov(Y;) (note that Cov(Yy) — X as £ — oo by
construction, so M, 12 exists for sufficiently large £). Note that My, — I;. Also, the density
of ¢ is bounded away from zero on its support because s is supported on R? and has a
continuous density. Hence, letting W, = n—1/2 X l@ e R? with {X (Z), e, X,(,e)} being
1.i.d. with law p, and using the result for the compactly supported case above, we have, for
sufficiently large ¢,

C [log’d
sup |ER(Wy) — ER(Z)| < — logn.
h=1,:AcR 02

Moreover, it is also easy to verify that the density of W, converges almost everywhere to that
of W as £ — oo. Thus, Scheffé’s lemma yields

sup |ER(Wg) — ER(W)| =0 (£ — 00).
h=14:AeR
This yields the desired result.

Finally, to prove the result in the general case, take € > 0 arbitrarily and let . be the law
of the variable /1 — €2X| +€¢, where £~ N (0, ¥) and is independent of {X1, ..., X, }. Itis
evident that s, has covariance matrix ¥ and is supported on the whole space R?. Moreover,
e has a log-concave density by Proposition 3.5 in Saumard and Wellner (2014). Hence we
have forany A € R

3
‘EIA(W)_EIA(Z”S’EIA(W)—EIA(WG)‘_{_% log”d
(o3

*

logn,

where W€ :=+/1 —e2W + €. Since W has a density and W€ converges in law to W as
€—0,|E14(W)—E14(W€¢)| — 0as € — 0. Thus, letting ¢ — 0 and taking the supremum
over A € R in the above inequality, we complete the proof.

2.5. Proof of Corollary 1.2. By Proposition 3.7 in Nourdin, Peccati and Swan (2014), W
has a Stein kernel T = (r}Z)lfj,kfd given by

T} (x) = E[(-DL™'W;, DWi)g|W =x], xeR’,

where (-, -) i denotes the inner product of ), while D and L~! denote the Malliavin derivative
and pseudo inverse of the Ornstein—Uhlenbeck operator with respect to X, respectively. By
Jensen’s inequality and Lemma 2.2 in Koike (2019a), we have

W DLW,
E[lgf}();d|21k rjk(W)|]§E[1§n}’z}(de|Ejk (~DL™'W;, DWy)g|]

< C,(log? " d) Ay,

where C,; > 0 depends only on g. Thus the desired result follows from Theorem 1.1.
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2.6. Proof of Theorem 1.2. Without loss of generality, we may assume ¢ < 1; otherwise,
the theorem is trivial because sup;_,.4cr |ER(W) — ER(Z)| < 1. By exchangeability we
have

0= %E[ D (Y (W) + Vi (W))]

1
= E[ 71D (VW) = V(W) + A7 D V()|

1 d
E[E Y (A™'D); Dydj (W) + E+A™'D- sz(W)}
J.k=1
where
1 d
g = 3 ]; A~ID) ); Dk DU 3y (W + (1 — U)D)
Jk, =1

and U is a uniform random variable on [0, 1] independent of everything else. Combining this
with (1.6), (2.7) and (2.9)—(2.10), we obtain

i 1 1
ET,h(W) < —E(gj@gd |R,-|),/1ogd + G—*ZAl(llogtl v 1)logd + |E[Z]|.

O
To estimate | E[ E]|, we rewrite it as follows. By exchangeability we have
E[(A™'D); Dy DiUd (W + (1= U)D)]
= —E[(A™'D),; Dy DU 31y (W' — (1 = U)D)]

= —E[(A™'D),; Dy D1U 3y (W + U D)].

Hence we obtain

1 d
=1 Z E[( DleU{ djx (W + (1 =U)D)
jok =1
(2.16) — dju¥ (W + UD)}]
| ~
- X | E[(A™'D); DiDiDnU (1 = 2U)jiam ¥ (W + D],
Jklm=

where D:=UD + V(1 —2U)D and V is a uniform random variable on [0, 1] independent
of everything else. Note that |[U + V(1 —2U)| <U Vv (1 —U) <1 and thus || D|co < | Dl cc-
Now, note that j;"__zy < 1/4/2logd for every s >t by assumption. Hence, (2.8) and

oxA/ 1—e

Lemma 2.3 imply

d

1
Sup (8 ¥ (x + y)| < Co*—log*d.
ik l,m=1YERO:m)
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Combining this with (2.16) and ||D||OO < ||D|ls0, We obtain

[um—

|EE| < - E||[(A7'D).DyDiD,| sup |3;
4, Zm: | ! " yern)

<]

1 ~
+Z Z E[|(A—‘D)jDszDmajkzmwt<W+D)1;||D||oo>n]

log d

<Co* (A2 4+ A3 ().

Now the desired result follows from (2.6).

2.77. Proof of Theorem 1.3. Without loss of generality, we may assume ¢ < 1; otherwise,
the theorem is trivial because sup,_;,.scgr |[ER(W) — ER(Z)| < 1. We follow the proof of
Theorem 1.2 and bound E(Av; (W) — W - Viy;(W)). From the independence of X’ and X
and the assumption that £(W) = 0 and using the telescoping sum, we have

EW -V, (W) = E(W — W) . vy, (W)
— ZE(W{l(l_l)} _ W{l:i}) . Vw[(w).

Exchanging X; with X/, we have
Therefore,

EW - Vi (W)

d
Z Z Z E W{lll} _ W{ll(l—l)})j(W{l} _ W)kajkWt(W)

l 1j,k=1
u d 1: 1:(i—1 j
5 Z: Xl:_ W{ I 7 AU U )})./_(W{l} _ W)k

x UWW — W), 89, (W+UV(WH —w)),

where U, V are independent uniform random variables on [0, 1] and independent of every-
thing else. Exchanging X; with X/ gives

E(w! — wlte=Dh (wth —w) o (W — w),0,uy: (W + UV(WH - w))
=—g(W! —wit=Dh (w —w) u(W — W), 80y (W — UV (W —w)).

Following similar arguments as in the proof of Theorem 1.2, we obtain the desired result.

2.8. Proof of Corollary 1.3. Without loss of generality, we may assume

21 4
2.17) (av/5y0 Balog @n)

ogn
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We prove the assertion in three steps. In Steps 1 and 2, we truncate the random variables and
show that the error introduced by the truncation is negligible. In Step 3, we apply Theorem 1.3
to the truncated variable.

Step 1. Set k, := Bp+/Slog(dn).Fori=1,...,nand j=1,...,d, define

Xij = Xijlx, =) — EXij 11x,j 1200}
and set X := (X )i, with X = (X,l, ...,)N(id)T. Note that max; ; I)?ijl < 2k,. Also, since

P(X}; > x) <2/ Bi for all x > 0, Lemma 5.4 in Koike (2019b) yields

B2 log(dn)

(2.18) EX}ix2 o) < Ce™ /B < C S

L

Step 2. Let W:=n"1/2 1 X,~. On the event maxj<;<p || X |loo < kn, we have

~ B, v/log(dn)
(W= W;l= ‘\/—ZEXul{an = Z EXjli g SC————
Therefore, Lemma 6.1 in Chernozhukov et al. (2019) yields
~ By +/log(dn) 1
P(IW = Wlow = 21 ) < p(max X1l > 62) = 5.
n 1<i<n 2n
From this estimate and the Gaussian anti-concentration inequality, we obtain
1 B logd./log(d ~
sup  |ER(W) — ER(Z)| < C(—4 4 2n 08 > og(dn) +6>,
h=14:A€R 2n n
where
§:= sup |ER(W)—Eh(Z)|.

h=14:AeR

Therefore, the proof is completed once we show

_ 2 1/3
8§C<B logi (dn))
ogn

Step 3. We apply Theorem 1.3 to X and W with n := 4k, /+/n. By construction we have
63(n) = 0. Meanwhile, we have
1 & SN ~ ~ SN =
s (% = Ko~ %) - (5 - %)~ Ka)|

E|: max
i=1

1<jk=d

n

Jlogd - 2 2
<C E lsr?’a}();d;(X;j—Xij) (Xix — Xik)” | = Cy/82l0gd,

where the first inequality follows from Nemirovski’s inequality:

LEMMA 2.5 (Lemma 14.24 in Biihlmann and van de Geer (2011)). Let Y; be independent
random variables taking values in a measurable space ) and let y\, ..., y, be real-valued
measurable functions on Y such that Ey;(Y;) exists. Form > 1 and p > "1 we have

n m

> (yj(Y)) — Eyj(Yy)

i=l

E max
1<j<p

n m/2
< [81og2p)]"’ ZE[lrgjapr y%(m} ,
——ri=1
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and the second one follows from the Schwarz inequality. We also have

1 & ~ ~ e~ ~ 1N o~ ~
o E[(X]; — Xij)(Xj, — Xix)] = = Y_ E[Xij Xt
"=l i

and Ejk = 5 ?zlE[Xinik]- Therefore, noting X,‘j — )?ij = Xijl{lxi_j|>Kn} —
EX;jlyx, AL the Schwarz inequality and (2.18) imply that

1 & ~ ~ ~ ~
(max (Ej— o 2 E[(X; — Xij) (X — Xik)]‘

< max max (E(X;j — Xi)2EX2 + JEX2E(Xit — Xi)?)

T 1<jk=d1<i=n 7
B;+/log(dn) _ _ B;log(dn)

=C 52 =C .

n n

Consequently, we obtain

——— B2log(d
n

Moreover, Lemma 9 in Chernozhukov, Chetverikov and Kato (2015) yields

C LY = ~ =
8 < —2= max E[Z(X,’] — X,-j)4:| + E[max max (X;; — X,-j)4] logd}

n 1<j=d i=1 I<isnl<j=<d
2 4 3 2
- C(ﬁ n B, log (dn)) <Cﬁ,
- n n? ~ T n

where the last inequality follows from (2.17). Therefore, for any ¢ > 0 satisfying n/+/t <

o«/+/logd, we have

1 B21 3d B21] 2d1
< C<—2 /M(Ilogtl V. 1) + #— +ﬁlogd).
lofs n o;n t

Now let t = (B,% log(dn)/afn)2/3. Then we have

Sl

4/3
1 i< a5 BB il gy,
\/; - \/ﬁ 33/310g1/3(d7’l) O':}n x = Ox

by (2.17). So we can apply the above estimate with this ¢ and obtain

B2log? (dn) "

4
ogn

B2 log(dn) N (B,flog“(dn))m}
4

4
ogn

ESC{

*

< C(B,% 10%4((111))1/3’
ogn

where the last line follows from the inequality |logx| < C/x!/® for 0 <x < 1.

2.9. Proof of Theorem 1.4. Without loss of generality, we assume that the right-hand side

of (1.8) is finite. Let
Yi= ) Xi, Yie= ) X

i'eA; i"eA;y
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From the independence assumption and EX; =0, we have, with U being a uniform distribu-
tion on [0, 1] and independent of everything else,

EW -V (W)=Y EX; (Vi (W) = Vi (W = 1))

n d
= Z Z Z EXijXindjxye (W —=UY;)

i=li'eA; j.k=1

n d
= Z Z Z EXijXi[0jx (W —UY;) — 83y (W — Yiin) ]

i=1i'eA; jk=1

n d
+> 3 Y EXijXikEdjry (W — Yyin).

i=li'cA; jk=1

Because
n

YD EXijXikEdjxyi(W) = Sk Edjv (W),

i=li'eA;
we have by (2.11)
|ET,h(W)]
= |E[(Z,Hess ; (W) ¢ — W - Vi (W)]|

J(logdf/zzz Y E[ max_ (1XyXinXonl +1Xi; Xin | E1Xi]) |
i=li'eA;i"eA;y J>

Optimizing ¢ gives the desired bound.

APPENDIX

A.1. Proof of Proposition 1.1. It suffices to show that there is a sequence (x,),- ; of
real numbers such that

[ n
:=lims — P max W; < — P(max Z; <
P ln»o%p log3d‘ 1<]§d x") (1<_]§d x")

We denote by ¢ and @ the density and distribution function of the standard normal distribu-
tion, respectively. For every n, we define x,, € R as the solution of the equation ®1(x)? = e~!,
that is, x, := CI>171 (e~1/4). Then we have Xn/+/2logd — 1 and d(1 — ®1(x,)) — 1 as
n — oo (cf. the proof of Proposition 2.1 in Koike (2019b)). Applying Theorem 1 in Arratia,

Goldstein and Gordon (1989) with I ={1,...,d}, By = {a} and X = 1{w,>x,}, We obtain

> 0.

P (max, W = x0) =7

<dP(W; > xn)

where A, :=d P (W) > x,). By an analogous argument we also obtain

Pt 7 220) =0 a8

Hence we have

P (max, W = x0) = P(max 2 <)

> |e 7 — e~ I=21E) | _ g P(W) > x,)? — d(1 — @1 (x))*.
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Now, since x, = O(4/logd) = o(n'/%) by assumption, Theorem 1 in Petrov ((1975), Chap-
ter VIII) (see also eq. (2.41) in Petrov ((1975), Chapter VIII)) implies

P(Wi > xy,) ( y 3) (xn—i-l)
A.l — = — o\ ——|.
A ot \eyn ™) T
In particular, since d(1 — ®1(x,)) — 1, we have dP(W; > x)2 od~ 1) and d(1 —
®1(x,))? = 0(d~1). Thus we obtain

(A.2) p > limsup |e—ln - e—d(1—<1>1(xn))|

n— oo log3 d

because d~! = o(n~"'log? d) by assumption. Moreover, using the Taylor expansion of the
exponential function around 0, we deduce from (A.1)

X
dp=d(1=P1(x,)) + 6\—fx" +0(f>

and

{n—d (1= @1 (x,))} Y x,
—An— - Xn —
e ! =1- 6fx" + 0(f>
Therefore, by (A.2) we conclude that
_1 \/§|)/|
ze —F
3

because x,/+/2logd — 1. This completes the proof.

A.2. Proof of Lemma 2.2. First we introduce some notation. We denote by ¢ and &
the density and distribution function of the standard normal distribution, respectively. We set
(/Sl(u) = ¢1(u)/ D1 (u). Obviously, q_bl is strictly decreasing on [0, 00).

For a nonnegative integer v, the vth Hermite polynomial is denoted by H,: H,(u) =
(=D (u)~ 1¢ ) (u). When v > 1, we define the functions 4, and /, on R by

hy(u) = Hy—1 ()1 (u), hy(u) = hy )/ ®1(w) = Hy_1 ()1 (u)  (u €R).

A simple computation shows

(A.3) By () = —hyt1 (w), hy, () = —{ Hy(u) + hy (u) }1 (u).
Also, we define the functions A and A on [0, co) by

D o, @1 ()

AMu)y=—— Au)=——— 0, .
= giuran) W= Gwray 0D
A simple computation shows
(A4) A () = Aw) {1 () — 1 (u +2n)}.

In particular, A is nondecreasing on [0, 00).

To extend the proof for the case with r = 1 and n = 0 to the general case, we need to
deduce a bound analogous to (2.1). Roughly speaking, we need to replace ¢ in the middle
equation of (2.1) by 4, to accomplish this. In the derivation of (2.1), it plays a crucial role that
¢1 is decreasing on [0, 0o). However, &, does not have this property in general, so we will
dominate it by an appropriate decreasing function to proceed analogously to the derivation of
(2.1). For this purpose, we need to introduce some additional notation. We denote by u,, the
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maximum root of H,,. For example, u; =0, us =1, uz = V/3. It is evident that H, is positive
and strictly increasing on (u,, 00). We also have u; < ur < --- (see, e.g., Szeg6 ((1939),
Theorem 3.3.2)). Finally, set M, :== maxo<y<y, |Hy—1(1)| < oo and define the function ﬁv :
[0, 00) — (0, o0) by

By () = Myt () 1[0,u,1 () + hy ()1 (4,000 ) (€ [0, 00)).
LEMMA A.1. h, is decreasing on [0, 00) and |h, ()| < hy(|u]) for all u € R.

PROOF. Note that 4}, (1) <O when u > u,. Then, hy is evidently decreasing on [0, 00)
by construction. The latter claim is also obvious by construction. [

We will also need a counterpart of the latter part of the proof for the case with » = 1 and
n = 0. The subsequent two lemmas will be used for this purpose.

LEMMA A.2. The function u — H, (u)r(u) + hy(u) is strictly increasing on [u,,, 00).

PROOF.  Since H, (u)A(u) + hy () = Hy(w){(u) — 1} + {H, () + h,(u)} and the func-
tion u — H,(u){A(u) — 1} is nondecreasing on [u,, 00), it suffices to prove g := H, + h, is
strictly increasing on [u,,, 00). We have

g'(u) = Hj(u) — {Hy () + hy (u) } b1 ()
= @1 () {H) @)1 () = hyo1 () = hy ()1 () }.

So we complete the proof once we show g1 (u) := H),(u) P (u) — hyy1(u) — hy ()1 (u) >0
for all u > u,. We have

1) = H) ()@ (u) + Hy )1 () + hyio(u) — i, ()1 (u) + uhy ()1 (u)

= vV — D) Hy—2 ()@ () + uHy )1 () — b, )1 () + uh, )y (1),

where the identity H,41(u) = uH,(u) — H),(u) is used to deduce the last line. Since Hj (1) >
0 for k <vand u > u,, we have gi(u) > 0 for u > u,. Thus

g1(w) > gi(uy) = Hv—l(”v){Vch(uv) - ¢l(uv)q;1(uv)} >1/2-1/7>0

forall u > u,. O

Define the functions F, and G on R? by

d d
Fy(x) =Y hy(xj)Alx)), Gx)=[] @1k +2n) (x eRY).
j=1 k=1
LEMMA A.3. Forany >0,
sup  Fo,(x)?G(x) = O((logd)?"?)

x€luy,,00)4

as d — o0.

PROOF. Define the function f on R4 by f(x)=F, (x)PG(x), x € RY. First we prove f
has a maximizer on [u,, 00)4. Using (A.3)-(A.4), we obtain

O f (x) = BF,(x)P AL () A(xr) + hy () A (x) )G (x) + Fo(x)P 1 (31 4 20) G (x)
= [—B{H, )M (x)) + 7y ()} A (x) + Fy (x)]d1 (xy + 20) Fy (x)P 71 G (x).
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Now, since S{H, (x)A(x) + hy(X)}A(x) = 00 as x — oo while SUPy ey, . 00)d F,(x) < o0,
there is a number # > u, such that for all x with x; > &, J;f(x) < 0. This means
SUDPe[u,.00) J (¥) =SUP,¢,, ¢ J (x) and thus f has a maximizer on [u,, o0)?.

Let x* be a maximizer of f on [u,, 00)?. Then the proof is completed once we show
f(x*) = 0((logd)P"/?) as d — oo. Let m be the number of components in x* greater than
u,.If m =0, then

f(X*) = {dflv(uv)A(uv)}ﬁch(uu + 217)d =o(1)

as d — 00, so it suffices to consider the case m > 1. Since f is symmetric, any permutation
of x* is a maximizer of f. Thus, from the definition of m, we may assume x7, ..., x; > u,
and x| =---=xj = u, without loss of generality. Then, for every / =1, ..., m, we must
have 9; f (x*) = 0. Thus we obtain

{Hy ()2 (F) + o ()} A () = - = {Ho (052 () + B () JA () = B4 Fo (x).
Since A is nondecreasing, the function u — B{H, (u)1(u) + hy(W)}A (1) is strictly increasing
on [u,, 00) by Lemma A.2. Therefore, we have x{ = --- = x,;, =:u* and hence

BLH, (w)A (™) + hy (u*)} A (u*) = Fy(x*) = mhy (u*) A (u*) + (d — m)hy, () A(uy).

Recall that u* = u*(d) depends on d. Then, dividing the sequence {u*(d)}3, into two
parts and separately handling them if necessary, it suffices to consider the following two
cases: (i) u™ < /8logd for all d. (ii) u* > /8logd for all d. In the first case, we have
A(*) = 0O(1) as d — oo and thus

f (&) < BPLH () (") + ho ()} = O((ogd)™?)

as d — oo. In the second case, note that me—®/4 5 0 as d — oo because u* > J/8logd.
This yields mh, (u*) A(u*™) — 0. Hence we obtain

£ = 0({(d = m)hy () A} @1y +20) ™) = O(1)
as d — oo because @ (u, +27) < 1 and /1, (u,) A(uy) is a constant. In the end, we complete
the proof. [

Now we are ready to prove Lemma 2.2.

PROOF OF LEMMA 2.2. Forevery q €{l1,...,r}, set
Ny(r) = {1, svg) €Z9 vy, ,vg > Lo+ vy =71},

Tgd):={G1,....jpell,....d¥ : j, # jyif p#£p'}.
Then we have forall A e R
d

sup
Jte jr=1YEROM)

<C; Z Z sup

q=1 (Ve v) ENG () (oo Jq)EJ(d)yeR(O”)

[ a0+ dz).

where C, > 0 depends only on r. Therefore, we obtain the desired result once we prove

O((logd)?) asd — oo

sup Z sup
AER (i, ..., jg)eTy(d) YERO:M)

for any (fixed) (vi,...,vy) € Ny(r) withg € {1,...,r}.

0jl 9,1 (z+ y)dz| =
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Take A = ]'[‘;:1 (aj,bj) € R arbitrarily and set

Iy = sup
Goeees Jq>ej (d) YERO:1)

[ oo+ s

Then we have

q
IA: Z sup <n|hvp(bj1, +yj1;) _hvp(ajp +y]p){)

Utoeees i) €T (d) YERO:D) \ p=

x [T A@1r+y0 — Pr(ax + yo)}

A
™

q
sup (1_[(|hvp(bJp +y]p)| + |th(aj17 +y]p)|)>
(1o i) €74 (d) YEROM N p=i

x ] A®i+y0) + @1(—ax — y) — 1},
where we use the identity 1 — ®1(x) = ®;(—x) to deduce the last line. Set c¢; := (la;| A

[bj)Vvn, j=1,...,d. Then, we have min{|a; + y;|,|b; + y;|} > ¢; —n > O for all j. Thus,
noting that @ is increasing and bounded by 1, we obtain by Lemma A.1

q ~
Iy <21 > (1_[ hy,(cj, — 77)) [T ®ic+mn

(J1:-:Jg) €Tq(d) \p=1

9 h (cj,—n) Pi(c;i, —
= 2(1 ( Vp\~Jp Jp (I)l(ck 4 77)
Ui /;)ejq(d) }_[1 ®i(cj, —m Pilcj, + n) 1_[

el hv (Cj —n) q)l(cj )
X p\“Jp p ® +
: (1!_[1 JZ ®i(ej, —=m) Pilej, +m) H e

Now, since }_, v, =r, the generalized AM-GM inequality yields

I

A

vy (& (g, = m) @ile, —m)\
203 LY q:,, j.p ® j.p [T®itck+mn
ot 7\ 21 Pulej, =) Pulej, + ) Pale]

q d r/vp
<C Z{(Z (Cj—ﬂ)A(Cj—U)>
p:

d

d r/vp
(Z _n)A(Cj_U)l(uup,oo)(cj_n)> } 1_[<D1((Ck—77)+277)

k=1

{ sp FI(x)" G+ sup F, (077G,

1 xe[0,00) x€luy,,00)¢

ki MQ

where C,. > 0 depends only on r (note that h, is positive on [u,, 00)). Consequently, by
Lemma A.3 we conclude sup s 14 = O((logd)"/?) asd — oco. O
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A.3. Proof of Proposition 1.2. We follow the proof of Proposition 1.4 of Zhai (2018).
Let A € R be a given hyperrectangle. For a parameter € to be specified later, define

A€ = {x eRY: inf |x — aflo < e},
acA

A, = {x eRY: inf |Ix —alle ze}.
acRI\A

Applying the Gaussian anti-concentration inequality in Lemma 2.1 with ¥ = (Z7, -2 )T
gives

P(Z € A\A) < Ce\logd, and P(Z € A\A,) < Ce,[logd.
We may regard T as being coupled to Z so that E[|T — Z|*] =W, (T, Z)*. Then
P(TeA) <P(IT-Z|<e,TeA)+P(IT —Z| > ¢)
< P(Z € A%) + €W (T, Z)?
< P(Z € A) + Ce\Jlogd + € *Wi(T, 2)*.
Similarly,
P(Z € A) < P(Z € A.) + Ce,flogd
<P(T - Zl<e.Z € A)+P(IT - Z| > €) + Ce,flogd

< P(T € A) + € >Ws(T, Z)> + Ce,/logd.

Thus,
|P(T € A) — P(Z € A)| < e *Wh(T, Z)* + Ce,Jlogd,
and taking € = % gives the result.
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