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Abstract. Single cell sequencing technologies are transforming biomedical
research. However, due to the inherent nature of the data, single cell RNA
sequencing analysis poses new computational and statistical challenges. We
begin with a survey of a selection of topics in this field, with a gentle in-
troduction to the biology and a more detailed exploration of the technical
noise. We consider in detail the problem of single cell data denoising, some-
times referred to as “imputation” in the relevant literature. We discuss why
this is not a typical statistical imputation problem, and review current ap-
proaches to this problem. We then explore why the use of denoised values
in downstream analyses invites novel statistical insights, and how denois-
ing uncertainty should be accounted for to yield valid statistical inference.
The utilization of denoised or imputed matrices in statistical inference is not
unique to single cell genomics, and arises in many other fields. We describe
the challenges in this type of analysis, discuss some preliminary solutions,
and highlight unresolved issues.

Key words and phrases: Single cell biology, RNA sequencing, imputation,
post-denoising inference, empirical Bayes, deep learning.

1. INTRODUCTION

1.1 Statistics: The Lens That [Single] Cell Biology
Needs

Karl Pearson called statistics “the grammar of sci-
ence” in the context of how statistical models can pro-
vide structure and meaning to physical or biological data
(Pearson, 1982). Today’s biologists increasingly recog-
nize that statistics is indispensable to their work, and sim-
ilarly, biology-driven problems continue to inspire statis-
tical thinking. In this paper, we will survey a relatively
recent domain in biology, one where instead of analyzing
the average signals from many cells through the sequenc-
ing of whole tissue, scientists can examine the proper-
ties of individual cells. Single cell technologies have be-
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come immensely popular over the past five years, mak-
ing this an exciting time for statistical and computational
developments in the field. Through this review, we will
first give the reader a general background on single cell
RNA sequencing data, and then focus on the problem
of data denoising. Data denoising is one way of enhanc-
ing the biological signals in single cell sequencing data,
but it is also a topic imbued with statistical challenges
which we hope to clarify. Beyond single cell sequenc-
ing, data denoising and imputation is a common data pre-
processing step in many other fields, such as genetics,
proteomics, metabolomics and neuroimaging (Hsu et al.,
2005, Chiron et al., 2014). Often, denoised/imputed data
matrices, rather than the original raw matrices, are used
for downstream visualization, parameter estimation and
hypothesis testing. We will examine the validity of using
denoised matrices for such types of analyses and discuss
future directions for statistical research.

1.2 Why Single Cell?

As multicellular organisms, each patch of tissue in our
bodies is a heterogeneous community of dissimilar cells,
where the cell is the basic unit of structure and function.
Comprehensive study of a population requires observa-
tion of its multifaceted members. Analogously, compre-
hensive study of a tissue necessitates nuanced informa-
tion about its member cells. Until about a decade ago,
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FIG. 1. Common types of analyses with scRNA-seq data: (a) cell type identification and detecting disease-associated cell populations, (b) dif-
ferential expression analysis and comparison of expression distributions across cell types, (c) analyses involving gene-gene correlations, network
reconstruction, and (d) trajectory inference.

biologists relied on high throughput assays, such as mi-
croarrays or bulk sequencing, that required the pooling of
materials (e.g., RNA, DNA) over a large number of cells.
Thus, it was very difficult to study the heterogeneity of
cells within a tissue. Especially, if the dynamics of com-
ponent populations are offset in time, or if a cell type of
interest is rare, much information is lost in bulk tissue ex-
periments (Raj and van Oudenaarden, 2008, Gossett et al.,
2012).

The instructions needed to build and maintain cells are
encoded in its DNA, and cells carry out these instruc-
tions by reading and transcribing DNA into RNA. The
RNA readouts for a given gene are called transcripts, and
the collection of all gene readouts, the transcriptome. Al-
though recent technological advances have made possible
the high throughput single-cell profiling of many types of
features, such as DNA copy number, chromatin accessi-
bility, methylation, RNA and surface level proteins (see
the review by Stuart and Satija (2019)), this paper will
focus on single cell RNA sequencing (scRNA-seq). In
scRNA-seq, the entire transcriptome is profiled for each
cell, across a large number of cells simultaneously. This
technology has allowed the comprehensive cataloging of
the different cell types that constitute organs, leading to
the discovery of new subpopulations of cells that were
previously hidden by bulk sequencing analyses. Through
scRNA-seq, we are gaining a deeper understanding of
what constitutes specific cell types, how cell types func-
tion, and how they may change during disease.

Single cell sequencing has spurred rapid methods de-
velopment to address its manifold challenges, reviewed

recently in Zappia, Phipson and Oshlack (2018) and
Hwang, Lee and Bang (2018). In this review, we focus
on an inherent limitation of scRNA-seq: only a small
fraction of the transcripts present in each cell are se-
quenced, leading to unreliable gene quantification that
hinders downstream analysis. Denoising scRNA-seq data
and imputing the missing transcripts can be an effective
pre-processing step. However, while accurate denoising
can enhance downstream visualization and analysis, it
can also introduce biases and spurious correlations be-
tween genes and cells. We will take an in-depth look at the
problem of denoising scRNA-seq data, and, in particular,
examine the validity of downstream statistical estimation
and testing procedures based on the denoised values. We
envision that the lessons learned here may also apply to
denoising/imputation efforts in other fields.

1.3 Outline

We start, in Section 2, with a gentle introduction to sin-
gle cell biology and a brief survey of some of the typical
questions that drive single cell studies (Figure 1). Since
there has been rapid progress in this area, we will point
the reader to other review papers when available. In Sec-
tion 3, we will discuss the technical noise in single cell
experiments, focusing on experiments that utilize a bar-
coding strategy called unique molecular identifier (UMI,
more on this in Section 3.2). In Section 4, we will turn
to the specific topic of scRNA-seq denoising. We discuss
why this is not a typical statistical imputation problem,
canvass current strategies, and highlight common pitfalls.
Data denoising uses correlations detected in the data ma-
trix to reduce the noise in each matrix entry, and there
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is a concern that this introduces bias and spurious corre-
lations. In Section 5, we examine the issue of bias and
explore strategies for bias-adjustment.

2. A BRIEF SKETCH OF SINGLE CELL BIOLOGY

2.1 What’s in a Cell Type, Anyway?

The multimillion dollar global initiative, Human Cell
Atlas, will soon “create comprehensive reference maps of
all human cells to give us a unique ID card for each cell
type” (Regev et al., 2017). The Human Cell Atlas begins
in the rather philosophical quest of defining a cell type.
Canonical cell types—think of muscle (myocyte), nerve
(neuron) or fat (adipocyte)—were originally defined by
both the functions of the tissues in which they reside and
histological cell classifications based on morphology, of-
ten based on imaging of stained cells mounted on a micro-
scope slide. To reconsider the definition of a cell type, let
us revisit what a cell is. On the one hand, it is a collection
of “stuff”: mainly DNA, RNA, proteins and metabolites
enclosed by a cell wall. On the other, a cell is a dynamic
entity that operates in an ecological niche: in response to
its environment, it can adapt and modify. With technolo-
gies such as scRNA-seq, one can begin to quantify both
the fixed and dynamic states of single cells, and broaden
the existing catalogue of cell types. Are existing classifi-
cations appropriate, or should cell types be defined to en-
compass the dynamic landscapes on which cells reside?
This question, which marks the beginning of a paradigm
shift on how cell types should be defined by the scientific
community, is an open invitation for statistical ideas.

Although the transcriptome of single cells can be used
to ascribe cell type identity, there is considerable cell-to-
cell variation in expression within a given cell type. This
variation can reflect the inherent stochasticity of RNA
transcription and degradation at the single cell level, as
well as differences in micro-environment, in cell cycle
stage, and in other latent factors. Furthermore cells of-
ten don’t fall into discrete classes, and can transition dy-
namically between similar types (Clevers et al., 2017) or
have multiple ID cards! Just as there is no singular, all-
encompassing way of classifying people, maybe there is
none for cells.

And as with people, history and context matters for
cells. How is a cell related to another cell and from where
did it arise? What molecular events or external stimuli in-
fluenced its transcriptome? What identity might a cell as-
sume next, given its current environment and its history?
The concept of a cell type becomes particularly important
if we think of them not just as static molecular snapshots,
but as histories unfolding in time (Trapnell, 2015). Each
cell in the human body has its origins in a single fertilized
oocyte (female egg cell). Cells make decisions as they di-
vide along their developmental journey; some decisions

are definitive, and others are more flexible with poten-
tial for reversal. For understanding both normal develop-
ment and disease, it is imperative to have a fundamen-
tal grasp of the cell-fate transitions that occur in complex
cellular ecosystems. Although scRNA-seq captures only
a static snapshot of each cell’s transcriptome, ingenious
computational methods have been developed to infer the
dynamic context. For example, there are many methods
that use graphical representations in low dimensional pro-
jections to reconstruct developmental trajectories. Others
have adapted optimal transport methods to longitudinal
cell sampling designs to infer population dynamics. The
work of La Manno et al. (2018) is particularly noteworthy,
which exploits the fact that freshly transcribed mRNA is
unspliced and thus uses the ratio of unspliced mRNA to
spliced mRNA to deduce the future transcriptomic state
of cells. Recently, (Saelens et al., 2019) reviewed more
than 70 software tools for constructing cellular trajecto-
ries from scRNA-seq data, highlighting the interest on this
type of analysis.

2.2 Biological “Noise,” Does It Matter?

Cell types and cell trajectories connote macroscopic
changes in a cell’s phenotype, often realized through
broad, sweeping changes in its transcriptome. Zooming
into cells of the same type, or cells at the same point in
a differentiation trajectory, how do we expect gene ex-
pression to vary at this level? The stochastic variation in
RNA count between cells of the same overt type is often
referred to as “gene expression noise.” Studies of gene ex-
pression noise and its functional ramifications date back
to the early 1950s, when Novick and Weiner (Novick
and Weiner, 1957) showed that the production of beta-
galactosidase in bacteria grown in a homogeneous en-
vironment is random and highly variable across genet-
ically identical cells. Since then, many studies, mostly
conducted on yeast and bacteria, have demonstrated the
generality and relevance of biological noise. The impact
of noise on biological pathways has also been explored
by computational models (McAdams and Arkin, 1997,
Arkin, Ross and McAdams, 1998). For unicellular organ-
isms, gene expression noise is now understood as a mech-
anism through which populations hedge bets in an unpre-
dictable environment (Raj and van Oudenaarden, 2008).

What role does transcriptional noise play in multicellu-
lar organisms, where cells are expected to act in concert to
maintain the fitness of the whole? In fact, stochastic vari-
ations in gene expression play key roles in tissue devel-
opment and maintenance (Losick and Desplan, 2008). In
development, the inherent stochasticity of early cellular
events allows for the diversification needed for cell type
differentiation (Eldar and Elowitz, 2010). Such stochas-
ticity may also affect disease progression and cellular re-
sponse to treatment. Preliminary evidence has emerged



DATA DENOISING IN SINGLE CELL TRANSCRIPTOMICS 115

from scRNA-seq studies that show an increase in biolog-
ical noise with aging (Enge et al., 2017, Song, Sarnoski
and Acar, 2018). Interestingly, in some situations, vari-
ation between cells can drive inter-cellular competition
within a seemingly homogeneous tissue niche, and such
competition can be fundamental to the health of the tissue
(Di Gregorio, Bowling and Rodriguez, 2016).

Single cell technologies provide an unprecedented op-
portunity to study gene expression noise and character-
ize its functional roles. However, what seems missing is a
clear formulation of biological noise that can be estimated
from sequencing data. Recall that “noise” refers to varia-
tion between cells of the same type. However, in multicel-
lular organisms, “cell type” is now appreciated as a some-
what fluid concept, where detailed analysis can often par-
tition a previously presumed homogeneous cell type into
finer subtypes. If gene expression noise is estimated based
on a clustering of the data, how should the resolution be
chosen? What types of inter-cellular expression variation
can be attributed to noise, rather than to latent macro-
scopic variables? We found an insightful description by
Elowitz et al. (2002), who highlighted two mechanisms
that underlie noise. The expression of a gene can vary be-
tween similar cells due to differences in factors such as
cell size, cell location within tissue, and fluctuations in
the expression of upstream genes. Variation due to such
global, environmental factors are referred to as “extrinsic
noise.” In contrast, Elowitz et al. (2002) defined “intrinsic
noise” to be noise due to “stochasticity inherent in the bio-
chemical process of gene expression,” that is, noise due to
the stochasticity in cis-regulatory binding, transcription,
and RNA degradation. Borrowing from these definitions,
it seems natural to think of extrinsic noise as latent fac-
tors that induce correlations between genes and cells, and
intrinsic noise as fluctuations that are independent across
genes and cells. In Section 4.2, we will adopt this frame-
work to formulating the SAVER-X denoising model.

3. TECHNICAL NOISE IN SINGLE CELL RNA
SEQUENCING

Although protocols for RNA sequencing in individual
cells were first described in the 1990s (Van Gelder et al.,
1990, Eberwine et al., 1992), it was not until 2009 that the
entire transcriptome was quantified for six individual cells
(Tang et al., 2009). Technology has evolved during the
past ten years to allow current studies to easily scale up
to thousands of cells per run (Svensson, Vento-Tormo and
Teichmann, 2018). In this parallelization across cells, usu-
ally only a small fraction of the RNA molecules in each
cell are sequenced and thus counted. Due to this low per-
cell coverage and other technical issues, scRNA-seq data
is much noisier than bulk RNA sequencing data. The tech-
nical noise of scRNA-seq has been extensively studied
(see reviews in Kolodziejczyk et al. (2015), Ziegenhain
et al., 2017), here we will provide a brief overview and
describe a Poisson model for UMI-based data.

3.1 Sources of the Technical Noise

There are many scRNA-seq protocols (Papalexi and
Satija, 2018, Hedlund and Deng, 2018), which differ in
how the cells are dissociated and isolated into individual
compartments for processing, as well as how the RNA is
barcoded and amplified. For simplicity, we focus on er-
ror propagation in the steps that follow RNA extraction,
shown in Figure 2.

First, the reverse transcription (RT) step, which con-
verts RNA (Xgc for gene g and cell c) into cDNA (Wgc),
has a limited efficiency where only a fraction of the RNA
molecules in the cell are successfully reverse transcribed.
This is called a “dropout” event in scRNA-seq. The effi-
ciency of this step can be both gene- and cell- specific.
The cDNA molecules are given a cell-specific barcode
and pooled across cells. Then, each cDNA molecule is
amplified into multiple copies (W̃gc), accumulating am-
plification noise which are exponential in magnitude and
difficult to model (Degrelle et al., 2008, Parekh et al.,
2016). Most protocols use a barcoding strategy, unique
molecular identifiers (UMI) (Islam et al., 2014), where
each cDNA molecule is tagged with a unique barcode
before amplification, and thus amplified copies from the
same cDNA molecule all share the same barcode. Then,
reads for the same barcode can be collapsed and we can
simply count the number of unique barcodes, instead of
the number of reads, mapping to each gene.

In the final sequencing step, a random sample (Ygc)
of the amplified (and barcoded) cDNA library is read by
the sequencer, and the reads are mapped to an annotated
genome template. This step is the same as for bulk se-
quencing, and a simple binomial sampling model suffices.
The average per cell coverage, that is, the average num-
ber of reads sequenced per cell, is a parameter that can
be approximately controlled. The higher the coverage, the
lower the sampling noise.

As in bulk RNA sequencing, external RNA controls,
such as ERCC spike-in mixtures (Brennecke et al., 2013),
have been used to characterize technical noise. ERCC
spike-ins are comprised of distinct synthetic RNAs, at
varying concentrations, which are added into each cell at
known dilution ratios. As the expected concentration of
these spike-ins is known and does not vary across cells,
we can use their measured reads/UMI counts to character-
ize measurement error. However, researchers have shown
that the technical bias for spike-ins can be quite differ-
ent from that for real genes (Tung et al., 2017), which
has limited their practical utility. Additionally, it is not al-
ways possible to add spike-ins to each cell, especially in
microfluidic and droplet-based protocols.

3.2 Models for the Technical Noise

Compared to bulk RNA-seq data, scRNA-seq data is
much more sparse and highly dispersed (Svensson et al.,
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FIG. 2. Propagation of measurement error during scRNA-seq a experiment. In the notation, subscript c indexes cells and g indexes genes. See the
Supplementary Material (Agarwal, Wang and Zhang, 2020) for details.

2017). It is difficult to quantify technical noise in scRNA-
seq because it is impossible to have true technical repli-
cates. We cannot sequence a cell twice, and comparisons
between cells are confounded by true biological differ-
ences. Early studies performed variance decomposition
to calculate how much of the between cell variance can
be attributed to technical noise (Klein et al., 2015, Kim
et al., 2015). Such calculations, based only on moment
equations, avoid explicit assumptions about the noise dis-
tribution.

Yet, assumptions about the technical noise is needed
to denoise the data and estimate the underlying gene ex-
pression values. We focus here on scRNA-seq that utilize
UMIs, and refer the reader to the Supplementary Material
(Agarwal, Wang and Zhang, 2020) for modeling the mea-
surement error in general. Assume that the true number of
RNA copies of gene g in cell c is Xgc and the observed
UMI count is Ygc. UMI allows us to ignore the PCR am-
plification variation (σ 2

g = o(μg) in Figure 2), and Kim
et al. (2015) derived a Poisson model,

Ygc|Xgc ∼ Binomial(Xgc,αgc),

where αgc is the overall efficiency.
Since αgc is typically small (less than 10%), we further

get

(3.1) Ygc|Xgc ∼ Poisson(αgcXgc).

Through a deconvolution approach, Wang et al. (2018)
found extensive empirical evidence for this Poisson model.

Compared with noise models for read counts in experi-
ments without UMI, an important advantage is that we
do not need an extra zero inflation term for dropouts, and
all technical zeroes are modeled by Poisson-based down-
sampling (Wang et al., 2018). Evidence of overdispersion
for UMI-based data has motivated more sophisticated
models (Hafemeister and Satija, 2019), yet we found that
for most genes, the Poisson-alpha model gives an ade-
quate approximation, and its computational attractiveness
motivates its use.

As with other high-throughput genomics experiments,
scRNA-seq data is plagued by batch effects (Hicks et al.,
2018). Batch adjustment is difficult in scRNA-seq as
batch can be confounded with important features such
as cell type. Recently, many methods (Haghverdi et al.,
2018, Butler et al., 2018, Stuart and Satija, 2019) were
proposed to remove batch effects (also called “data align-
ment” in the literature). However, given the complexity of
the issue, more statistical treatment is needed in this direc-
tion. In simple scenarios, the efficiency αgc in (3.1) can
also be modeled as being linearly depending on known
covariates, such as batches. We refer the reader to Wang
et al. (2018) for a more detailed discussion.

4. DENOISING SINGLE CELL DATA

4.1 A Review of Current Approaches

Single cell sequencing gives a patchy picture of gene
expression wherein most (usually > 90% and sometimes
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up to 99%) of the entries in the cell-by-gene count ma-
trix are zeros. This motivates the question of whether we
could “denoise,” that is, recover the original RNA counts
for each gene in each cell. This has sometimes also been
referred to as “imputation,” although it differs from the
classical imputation setup in important ways. Many of
the zeros in scRNA-seq data are true zeros due to lack of
expression. For genes that are expressed, the likelihood
of a technical zero, either due to dropout during reverse
transcription or due to sampling during sequencing, de-
creases with its expression level. Thus, not all zeros are
due to dropout, and those that are missing are not missing
at random.

In data denoising, we not only want to recover the genes
that are missing (a.k.a. the technical zeros), but also im-
prove the estimates for all genes. All methods for scRNA-
seq denoising work by borrowing information across re-
lated genes or similar cells. A large category of meth-
ods, for example, estimate the expression of each gene in
each cell by smoothing across “neighboring” cells that are
proximal in some lower-dimensional geometrical repre-
sentation, such as a manifold. Examples of such methods
include kNN-smoothing (Wagner, Yan and Yanai, 2017),
scImpute (Li and Li, 2018), VIPER (Chen and Zhou,
2018), DrImpute (Gong et al., 2018) and Markov Affinity-
based Graph Imputation of Cells (MAGIC) (Van Dijk
et al., 2018).

Alternatively, one can also exploit gene-gene correla-
tions. Such methods, which include SAVER (Huang et al.,
2018), DCA (Eraslan et al., 2019), scVI (Lopez et al.,
2018), ALRA (Linderman, Zhao and Kluger, 2018), at-
tempt to improve the estimates for each gene using the
observed counts for related genes in the same cell. In such
gene-level models, it is natural to leverage public data
sets to more accurately estimate gene-gene relationships.
Transfer learning from public datasets is particularly en-
ticing in light of recent initiatives to build detailed cellu-
lar atlases for each anatomic organ in mouse (Han et al.,
2018, The Tabula Muris Consortium, 2018) and human
(Rozenblatt-Rosen et al., 2017). Recent methods that look
to transfer information across scRNA-seq datasets include
SAVER-X (Wang et al., 2019) and TRANSLATE (Badsha
et al., 2018); both use an autoencoder, a neural network
that compresses the input into a latent-space representa-
tion, and then reconstructs the output from this represen-
tation.

In general, denoising can be a double-edged sword. It
can be tempting, during denoising, to tune algorithms to
introduce structures into the data that the eye wishes to
see. We believe that denoising methods should be eval-
uated under the null—does it introduce correlations that
are not real? In particular, methods that learn from exter-
nal data should not introduce bias, or force the new data
to conform to patterns that only exist in the external data.

Ultimately, denoising should increase the reproducibility
of discoveries across replicate experiments and varying
protocols.

Since the truth is unknown in almost all scRNAseq
datasets, benchmarking methods is difficult. Several stud-
ies have performed evaluations that assess methods in
their ability to: (i) recover gene-gene correlations, (ii) en-
hance the visualization of distinct cell clusters, and (iii)
improve other downstream analyses such as differential
expression. For example Tian et al. (2019) created “gold
standard” benchmarking data sets by mixing distinct cell
populations at known ratios. Comparison of twelve nor-
malization and denoising methods on these data showed
substantial differences between methods in their ability to
minimize bias (introducing false signals in the data). An-
other comparison of denoising methods on negative bi-
nomial simulations and data from the Mouse Cell Atlas
stressed that most methods, except SAVER (Huang et al.,
2018), tend to introduce spurious correlations between
genes (Andrews and Hemberg, 2018). Moreover, detec-
tion of differentially expressed genes in denoised data can
have type-1 error inflation, depending on which denoising
approach is employed (Zhang and Zhang, 2018). These
studies motivate our inquiry in Section 5, where we inves-
tigate the effects of existing denoising methods on down-
stream analyses, and explore remedies to bias and type-1
error inflation.

4.2 The Single-Cell Analysis via Expression
Recovery (SAVER) Model

In Section 5, we will investigate the issue of bias across
several denoising methods and explore how to obtain un-
biased estimation under the framework of the SAVER
model we proposed in (Huang et al., 2018). Here we will
review the SAVER model in more depth, which should
further clarify the concepts of technical versus biological
variation, and of intrinsic versus extrinsic noise.

In denoising scRNA-seq data, the quantity we would
like to recover is well defined: within each cell c, each
gene g had a true realized expression level Xgc when the
cell’s RNA molecules were extracted. Then, each step in
the experiment introduces technical noise, eventually re-
sulting in the observed expression count Ygc. We seek
to recover the true, unobserved value Xgc. Focusing on
UMI-based data, let Ygc be the count of the number of
unique UMI barcodes for gene g in cell c. To recover
the true expression levels we need to distinguish biolog-
ical variation from technical noise in the matrix Y, and
thus require careful choice of a technical noise model. In
SAVER and SAVER-X, we assume the technical noise to
follow (3.1). To quantify the biological variation between
cells, consider a general framework where the true gene
expression Xgc is derived by adding independent stochas-
tic noise to an underlying correlated component �gc:

(4.1) Xgc|�gc
indep∼ F(�gc,ϕg�gc),
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where F is an arbitrary distribution with mean �gc and
variance ϕg�gc. The independence in (4.1) is across both
genes and cells. �gc can be interpreted as the portion of
gene g’s expression that is predictable given the expres-
sion of other genes. As discussed in Section 2.2, at the
level of single cells, gene expression can be idiosyncratic
and unpredictable due to intrinsic noise. This motivates
the independent deviations from the “predictable” com-
ponent �gc. Thus, one can interpret F to be the distribu-
tion for the intrinsic noise. An alternative argument for the
conditional independence of Xgc given �gc is that this is
a natural consequence of the model’s construction, that is,
we assume that all of the dependence between genes has
already been absorbed into �. So far the only assumption
on F is that the expected magnitude of the deviation of
Xgc from �gc is controlled by a single gene-specific dis-
persion parameter ϕg . This is, of course, a simplification,
as it would not be surprising for the magnitude of intrinsic
noise to, say, vary across cell states. One could envision a
more complex model for φg , but for now we abide by this
simple assumption.

We have yet to specify the model for the correlated
component �, on which we need restrictions to allow
identifiability. In the first version of this model (Huang
et al., 2018), we assumed that each gene can be predicted
with only a small set of other genes (sparsity). Then, in
Wang et al. (2019), SAVER-X assumes that � is low-rank
and smooth, that is, the points �c = (�gc : g = 1, . . . ,G)

lie on a manifold.
As we described in Section 2, currently the most com-

mon types of scRNA-seq analyses are the detection cell
types and continuous cell trajectories, followed by the
identification of genes that show differential expression
patterns across types or along trajectories. Since cell types
and continuous cell trajectories are characterized by the
concerted up- and down-regulation of groups of genes, we
expect these features to be fully captured by the correlated
component �. In contrast, if one were interested in char-
acterizing intrinsic transcriptional noise within a cell type
(Enge et al., 2017, Martinez-Jimenez et al., 2017, Barroso,
Puzovic and Dutheil, 2018), or in estimating the entropy
of cells (Teschendorff and Enver, 2017), one would need
to look at X and its deviation from �. Although denois-
ing methods may have a propensity to over-smooth the
data to yield an output that is close to �, the SAVER and
SAVER-X models are unique in that they try to differenti-
ate between intrinsic biological noise and technical noise.

5. POST-DENOISING ANALYSIS AND INFERENCE

A naive plug-in approach after denoising is to treat the
denoised/imputed matrix X̂ as the unknown true X and
use it for downstream analyses. However, this ignores
estimation uncertainty. For which types of downstream

analyses would this be problematic? As mentioned in Sec-
tion 4.1, some benchmark studies have found data denois-
ing to introduce bias and spurious correlations. In this sec-
tion, we discuss denoising bias, bias adjustment, and post-
denoising inference based on the SAVER model, with a
focus on two types of downstream analyses: (1) estima-
tion of functions of X (measures of gene dispersion, gene-
gene correlations, cell-cell distances, and cell clustering
labels) and (2) hypothesis testing (differential expression
analysis).

5.1 Estimating Functions of X

A wide range of applications require reliable estimation
of functions of X. For instance, we may want to quan-
tify the biological variation of a gene g across cells. Or,
we may want to quantify functions of X involving two or
more genes, for example to compute pairwise gene-gene
correlations or cell-to-cell distances for clustering or tra-
jectory analysis.

Let f (X) be the function of interest. Directly plug-
ging in X̂ to estimate f (X), which is relatively straight-
forward and widely used in practice, ignores any uncer-
tainty in the estimation of X̂. Since the SAVER frame-
work also gives the posterior distribution of X, we may
get improved estimates of f (X) by its posterior mean:

(5.1) E
[
f (X) | Y,�

]
.

Since � is not known, we would ideally also like to in-
corporate the uncertainty in the estimation of � as well.
However, we have found this to be very difficult and, as
yet, have not found strategies that are computationally at-
tractive. Thus, we propose to use the plug-in estimate

(5.2) E
[
f (X)|Y,� = �̂

]
.

Below, we will examine how well this strategy works.

5.1.1 Variance, correlation, and other simple func-
tions. There are two strategies one could employ to es-
timate (5.2). For simple functions of X, such as the vari-
ance of a gene, or the Pearson correlation between two
genes, we can directly derive an analytical formula of
E[f (X) | Y,�].

For example, let f (X) = Vg(X) = 1
C

∑C
c=1(Xgc −

X̄g·)2 be the true biological variance of gene g. The de-
noised matrix X̂, given by SAVER, is an estimate of
E[X|Y, �̂]. For gene g cell c let vgc = Var[X|Y,�] be the
posterior variance, and let v̂gc be the estimated posterior
variance computed by SAVER, the latter assuming that �

is known and equal to �̂. Then, it is easy to show (see
the Supplementary Material (Agarwal, Wang and Zhang,
2020)) that

E
[
Vg(X) | Y,�

]
(5.3)

≈ 1

C

[
C∑

c=1

(X̂gc − ¯̂Xg·)2 +
C∑

c=1

v̂gc

]
.
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If we were to simply use the variance of the gene com-
puted from the denoised values, we would underestimate
by approximately the amount that is the sum of the vari-
ances vgc across cells, ignoring the uncertainty in the esti-
mate of �. However, with SAVER’s estimates of vgc, we
can attempt to correct for this bias by using (5.3) instead.

Next, consider Pearson’s correlation between two genes
g1 and g2, denote

Cg1g2(X) =
1
C

∑C
c=1(Xg1c − X̄g1·)(Xg2c − X̄g2·)√

Vg1(X)
√

Vg2(X)
.

When the number of cells C is sufficiently large,

E
[
Cg1g2(X) | Y,�

]
(5.4)

≈
1
C

∑C
c=1(X̂g1c − ¯̂

Xg1·)(X̂g2c − ¯̂
Xg2·)

E[
√

Vg1(X) | Y,�]E[
√

Vg2(X) | Y,�]
.

To estimate the denominator, we will simply plug-in the
square-root of (5.3) for genes g1 and g2.

For more complicated functions f (X) where an ana-
lytic formula is harder to derive, one could sample from
the estimated posterior distribution of X to get at (5.1).
We will show in simulations the performance of the sam-
pling strategy when f (X) is the Spearman correlation or
a cell-to-cell distance function.

Following the strategy of Huang et al. (2018), we
perform down-sampling simulations on four datasets—
(Baron et al., 2016, Chen et al., 2017, La Manno et al.,
2016, Zeisel et al., 2015). For each dataset, we select
a subset of cells and highly expressed genes, and treat
them as the underlying true X. Then we down-sample
the counts in each entry and obtain a simulated Y follow-
ing (3.1), where the average α is 10% for the first three
datasets and 5% for the last dataset. We then denoise Y

and compare the denoised X̂ with X.
We compare four recent scRNA-seq denoising meth-

ods: SAVER-X (without transfer learning), DCA (Eraslan
et al., 2019), scVI (Lopez et al., 2018) and ALRA
(Linderman, Zhao and Kluger, 2018). DCA and scVI use
an autoencoder while ALRA uses a thresholded SVD to
approximate the data matrix.

First, we evaluate the estimation of three gene-level
functions: (1) coefficient of variation (CV) measuring
gene expression dispersion, (2) gene-gene Pearson corre-
lation, and (3) the gene-gene Spearman correlation. For
SAVER-X, We compare the estimates obtained by di-
rectly using the denoised values with those obtained using
sampling-based bias correction. For CV and Pearson cor-
relation, since analytic formulas (5.3), (5.4) are available,
we also include these analytic corrections in the compar-
isons.

As shown in Figure 3, the down-sampled observed
counts Y always overestimate the dispersion and under-
estimate gene-gene correlations due to the introduction of

technical noise. In contrast, directly using the denoised
values tends to underestimate the dispersion and overesti-
mate gene-gene correlations. For SAVER/SAVER-X, we
found that the estimation bias can be effectively removed
by incorporating the uncertainty in X̂ through the pro-
posed analytical and sampling strategies that use �̂ as a
plug-in for � in the approximation of the posterior. Since
other denoising methods face the issue of over-smoothing
as well, we surmise that taking the posterior randomness
of X into consideration can provide a general strategy for
ameliorating such biases.

Note that this down-sampling simulation is not perfect.
Our “true” X is a filtered, high-quality matrix of observed
UMI counts. Here, the gene-gene sample correlations are
close to 0, and as a consequence, the underestimation of
gene-gene correlations using Y is not apparent in some
simulation datasets. In other datasets, however, the actual
underlying true gene-gene correlation would be higher,
and thus the denoising methods would easily facilitate the
recovery of such correlation patterns.

5.1.2 Dimension reduction and visualization. Visual-
ization is an integral part of exploratory data analysis, and
single cell data is often first scrutinized by eye. Dimension
reduction tools, such as PCA, tSNE and UMAP, are part
of every scRNA-seq analysis pipeline. Such methods start
with a cell-to-cell similarity or distance matrix, and find
lower dimension projections that preserve the distances.
Treating this distance matrix as a function on X, does de-
noising improve its estimation and enhance visualization?
What role does denoising uncertainty play? When com-
puting the cell-to-cell distance (d), Euclidean distance is
a commonly used metric, although other measures have
also been proposed. For a detailed overview and compari-
son of the similarity measures, we encourage the reader to
see Skinnider, Squair and Foster (2019), Kim et al. (2019).

For simplicity, we will consider how the use of denoised
expression estimates affects d , and in turn, the subsequent
visualization of cell clusters. For two cells, c and c′, the
Euclidean distance between their true transcriptome pro-
files is

d2(
c, c′) = ∑

g

(Xgc − Xgc′)2.

Using the notations from the last section, we condition on
the observed data Y and plug in �̂ for � to get

E
[
d2(

c, c′)|Y,�
]

(5.5)
≈ ∑

g

(X̂gc − X̂gc′)2 + ∑
g

v̂gc + ∑
g

v̂gc′ .

Please also see the Supplementary Material (Agarwal,
Wang and Zhang, 2020) for a more lengthy discussion.
(5.5) is fast to compute and simple to interpret: The sec-
ond and third terms are the sums of the posterior variances
across genes for cells c and c′, respectively, and can be
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FIG. 3. Effectiveness of various estimates (5.2) for estimates of gene coefficient of variation, Pearson correlatoin, and Spearman correlation. The
boxplots are grouped by data set (Baron, Chen, La Manno, and Zeisel). For each data set, the left-most boxplot in gray shows the distribution of
f (X) on the original X, followed by six boxplots in differing colors showing the distribution of ̂f (X) − f (X) with ̂f (X) obtained by the methods
listed in the legend at bottom.

interpreted as quantifying the uncertainty in the cell po-
sitions. It is natural that the distances computed from the
denoised matrix must be adjusted accounting for cell po-
sition uncertainty. In this formula, distances between cells
with higher denoising uncertainty would be expanded
more than distances between cells with lower denois-
ing uncertainty. Note that (5.5) could also be computed
through sampling from the posterior distribution using
the posterior parameters given by SAVER and SAVER-
X. This would be more computationally intensive as one
would need to repeatedly sample X|Y,� = �̂ and then
compute d2 from the sampled X’s. We will refer to this as
the posterior sampled distances, as opposed to the analyt-
ically corrected distances given by (5.5).

Should these corrections help visualization? To explore
whether and how these corrections might affect down-
stream visualization results, we test their effects on sev-
eral scRNA-seq data sets. First, consider data generated
from healthy mouse kidneys from Park et al. (2018).
Since the kidney is a multifaceted organ containing di-
verse cell types, we chose a subset of cell types that

have a protective and immunomodulatory role (viz. NK
cells, macrophages and podocytes) to visualize. We con-
sidered the cell type labels assigned by the authors to
be the “ground-truth,” and performed denoising on this
dataset using SAVER-X (without pretraining on external
data sets). First, we compared the scales of the plug-in
distances

∑
g(X̂gc − X̂gc′)2 to the added cell uncertainty

terms
∑

g vgc. As one might expect, we want to exam-
ine not only the absolute magnitude but also the level
of variation in these terms: If the variation in

∑
g vgc

is, on the whole, much smaller than the variation in∑
g(X̂gc − X̂gc′)2, then the analytical correction would

be less likely to affect visualization. On the other hand,
if E[d2(c, c′)|Y,� = �̂] is dominated by the variation in
the cell uncertainty terms, then we would expect visual-
ization based on corrected distances to be very different
from that based on plug-in estimates. As shown in Fig-
ure 4, the correction terms are small in magnitude and
also have much smaller variation across cell pairs as com-
pared to the distance terms computed directly from the
denoised matrix, and this trend holds true for the three



DATA DENOISING IN SINGLE CELL TRANSCRIPTOMICS 121

FIG. 4. Density plots showing the distribution of the plug-in distances and the correction terms for three datasets. Across the different datasets,
we observe that the variance term that accounts for uncertainty (blue) is, in general, much smaller in magnitude compared to the corresponding
signal (red).

datasets shown in the figure. Hence, we do not expect the
uncertainty adjustment to change broad, strong patterns
in the visualization, but may affect more local, subtle pat-
terns.

Figure 5 shows the tSNE plots for the three data sets
in Figure 4, constructed from: the raw data (without de-
noising), the denoised data without adjustment, and the
denoised data with two types of adjustments: analytical
via (5.5) and Monte Carlo sampling form posterior. As
expected, in terms of macro-structures, for these three
datasets neither analytical correction nor sampling from
the posterior produced tSNE plots that have apprecia-

ble differences from the one derived from plug-in esti-
mates.

Yet denoising correction can sometimes remove arti-
facts or highlight local structures that are not evident with-
out the correction. Consider the second data set in Fig-
ures 4 and 5 consisting of cells from the mouse heart
(The Tabula Muris Consortium, 2018). Although the five
large clusters representing the five major cell type groups
(erythrocyte, cardiomyocyte, endothelial, fibroblast, and
endocardial) don’t change, the corrected distances (both
analytical and posterior-subsampled) allow for the sepa-
ration of a fibroblast subcluster that is not visible in the

FIG. 5. Visualizations obtained from three types of denoised distance matrices. tSNE visualizations of three immune cell types in the mouse kidney
(Park et al., 2018), five major cell types that constitute the mouse heart (The Tabula Muris Consortium, 2018), and human T cells (Zheng et al.,
2017) using distance matrices computed from raw and denoised data are shown.
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tSNE plots derived from raw or uncorrected denoised dis-
tances. Although one needs to be careful that embedding
artifacts in tSNE plots can produce spurious structures,
the fact that this subcluster is evident after both the an-
alytical and posterior-subsampling corrections makes it
more likely to be real. Follow-up, either through anno-
tation of differentially expressed genes or wet lab experi-
ments, would be needed to confirm the biological mean-
ing of this subpopulation.

Now consider the third data set in Figures 4 and 5 con-
sisting of human T cells from Zheng et al. (2017). Com-
pared to the previous two examples, this is a more “dif-
ficult” data set, as T cell subtypes are much more similar
to each other than are the major cell type groups in the
mouse heart and kidney. Thus, denoising produces more
drastic changes, for example, We see that the separation
of the memory and naive CD8+ T cells, and between the
CD4+ and CD8+ major groups, is improved. See Wang
et al. (2019) for an extensive analysis of this data set.
Here, we want to point out that the sampling-based cor-
rection seems to perform worse than the analytical correc-
tion, as it blurs the distinction between subpopulations.

5.1.3 Clustering. Clustering, usually coming hand-in-
hand with visualization, is a recurring scRNA-seq anal-
ysis. For any clustering method, the cell membership la-
bels can be viewed as functions of X. Here, we evaluate
whether post-denoising adjustment would help give more
accurate labels.

As in dimension reduction, most clustering algorithms
start with cell-to-cell distances, which are also functions
of X. In Section 5.1.2, we discussed how estimation of
these distances could be biased if we were to simply use
X̂ as a plug-in for X. However, as for visualization, cell-
to-cell distances are only the means to an end, and how
slightly biased estimates of cell-to-cell distances affect
clustering accuracy is unclear. Here, we evaluate clus-
tering accuracy on the aforementioned four simulation
datasets using Seurat (Stuart et al., 2019).

We utilize the Adjusted Rand Index (ARI) to compare
clustering results obtained by using denoised values, ver-
sus those obtained by using the “true” X. We perform
the sampling-based post-denoising correction by gener-
ating a new X� from the estimated posterior distribution
of X given Y and � = �̂. As shown in Figure 6, all of
the denoising methods improve clustering accuracy. For
SAVER-X, there is not much difference between the ARIs
obtained by clustering using X̂ and those obtained by us-
ing X�. This leads us to conclude that, at least for this set
of 4 benchmark data sets, post-denoising correction does
not appear to give appreciable difference.

This is only an exploratory discourse on how denoised
matrices can be used for visualization and clustering.
More research in how to account for uncertainty in a
computationally efficient way would be necessary as such

FIG. 6. Effect on cell clustering. Heatmap of the adjusted rand index
for Seurat clustering of the four data sets (Baron, Chen, La Manno
and Zeisel) starting from the denoised values obtained from 7 methods
(Original data treated as truth, down-sampled raw counts, SAVER-X,
SAVER-X with posterior sampling, DCA, scVI, and ALRA).

analyses become mainstream. As a practical guide, we do
indeed find denoising to improve clustering and visualiza-
tion for low-coverage scRNA-seq data. If the downstream
algorithm allows, analytical corrections such as (5.5) or
posterior-subsampling have the potential to enhance visu-
alization.

5.2 Gene Expression Differential Testing

In scRNA-seq, we are often faced with the task of
finding genes that have different distributions between
two groups of cells, and testing for differentially ex-
pressed genes is a common analysis. A relevant concept
here is that of “marker genes,” which are genes that are
highly expressed in only select cell types, as opposed to
housekeeping genes, which may be expressed in several
or even all cell types. See the Supplementary Material
(Agarwal, Wang and Zhang, 2020) a more detailed review
and Soneson and Robinson (2018) for a detailed com-
parisons of some existing DE methods. Many denoising
methods can heighten the contrast of marker genes be-
tween cell clusters in low dimensional visualizations, thus
aiding the identification and labeling of cell types. How-
ever, beyond improving visualization, does denoising im-
prove the power of differential expression testing, while
keeping the false positive rate controlled? As reviewed in
Section 4.1, all scRNA-seq denoising methods tend to in-
flate the false positive rate beyond the nominal value. This
is expected as, intuitively, denoising introduces correla-
tion across cells. Entries of the denoised matrix X̂ cannot
simply be treated as i.i.d. across cells, thereby violating
a common assumption made by differential testing meth-
ods. Here, we examine the severity of false positive rate
inflation under various denoising methods, and propose
strategies to minimize false discoveries.
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FIG. 7. Complete null permutation simulation.

5.2.1 In silico experiments to evaluate power and type I
error control. To accurately assess false positive rate and
power, datasets where the set of true positives is known
are needed. For real scRNA-seq data, we are, at best, cer-
tain of only a small set of known marker genes, and the
full set of true differentially expressed genes is unknown
and perhaps not meaningful (practically, does a tiny ε

shift in expression matter?) Thus, the common strategy
is to create artificial data sets through some combination
of permutation, data splitting, subsampling, or simulation.
Through our engagement of this topic, we learned of the
difficulty in creating a realistic dataset that allows us to
give realistic evaluations of both the type I and type II
error of methods, and we have yet to find a satisfactory
procedure.

First, let’s begin by appreciating the subtle pitfalls of
the three existing simulation designs as they have ap-
peared in the single cell literature. The first strategy is
a complete null scenario, implemented in Huang et al.
(2018). In this design, a population of relatively homo-
geneous cells is randomly split into two groups, creating
a situation where all genes are null, and thus any rejection
counts as a false positive. However, this design would not
allow us to assess power. Furthermore, valid type I er-
ror control under the complete null setting does not imply
that the validity would hold as signals (i.e., true non-null
genes) are introduced. In fact, any denoising method cou-
pled with a permutation-based significance testing pro-
cedure would give valid p-values under such design, so
long as the group labels are ignored while denoising. As
shown in Figure 7, all methods indeed effectively control
the false positive rate at the nominal level under this com-
plete null scenario.

A second approach, as used in Soneson and Robinson
(2018), adds simulated shifts to a set of genes in the com-
plete null design described above. Here, starting with a
permutation of a real dataset, a fraction of genes are then
randomly selected to be the non-null genes. For these

genes, the directions and magnitudes of their between-
group fold changes are randomly generated, and their
observed counts are modified to give their target fold-
change. The problem with this design is that the non-null
genes are randomly chosen, and and thus are not corre-
lated with each other. This is not true in real data, where
marker genes are involved in similar processes and of-
ten have highly correlated expression. Denoising methods
all rely on such correlations between true signals to boost
power, and thus, in the absence of such correlations this
scheme does not accurately reflect the sensitivity boost al-
lowed by denoising.

A third design, used in Andrews and Hemberg (2018),
is based on permutation of only a proportion of the genes
of a real dataset. Starting with two cell populations that
are known to have biological differences, a set of dif-
ferentially expressed (DE) genes is identified. For genes
that are not identified as DE, their values are permuted
across cells to guarantee that they are true nulls. The
identified DE genes are kept fixed. Such simulations de-
tected greatly inflated false positive rates after denois-
ing (Andrews and Hemberg, 2018). However, since most
methods are testing for DE in relative expression, where
the expressions of all genes in a given cell are normal-
ized to sum to 1, the permuted genes are not guaranteed
to be true nulls after normalization unless the fold changes
of the non-null genes are balanced (they usually are not).
Thus, false positive inflation in real data should be much
less severe than what Andrews and Hemberg (2018) de-
scribed.

Given the above considerations, we compared existing
denoising methods using a modification of the third de-
sign. First, we selected two cell types—using the labels
provided in the original papers—from each of the four
datasets:

• Baron et al. (2016): acinar, ductal
• Chen et al. (2017): Ependy, Tany
• La Manno et al. (2016): hRgl2a, hRgl3
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• Zeisel et al. (2015): Oligo3, Oligo6

For each data set, we chose cell types that have at least 100
cells and that are very similar to each other, so as to cre-
ate a difficult DE testing scenario. Let X denote the true
relative expression matrix where

∑G
g=1 Xgc = 1. First, we

select from X a set of differentially expressed genes G by
identifying those genes whose Wilcoxon Rank sum test
p-value is less than 0.05 after Benjamini–Hochberg (BH)
adjustment. The rest of the genes (GC) are considered as
nulls. To guarantee that GC are truly null after permu-
tation and normalization, we perform rescaling for each
cell:

(5.6) Xnew
gc =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
kXgc

/( ∑
g∈GC

Xgc

)
if g ∈ GC,

(1 − k)Xgc

/(∑
g∈G

Xgc

)
if g ∈ G,

where k is the mean of (
∑

g∈GC Xgc) across c.
With such rescaling, the relative expressions are guar-

anteed to be the same between the two groups for the null
genes after permutation. The genes in GC are permuted
jointly so as to keep their gene-gene correlations intact.
We down-sample Xnew to get the sparse “observed” Y new,
which is the input to the denoising method. Such a process
is repeated 10 times to quantify the uncertainty of the false
discovery proportion (FDP).

As shown in Figure 8, all four denoising methods
(SAVER-X, DCA, scVI, ALRA) indeed increase the FDP
beyond the pre-selected nominal value of 0.05. This ob-
servation raises concerns in drawing strong inferences
based on the denoised data in real applications, and moti-
vated us to consider whether, and how, one might be able
to reduce the FDP inflation.

5.2.2 Adjusted Wilcoxon-rank sum test for denoised
data. Conducting valid statistical tests using denoised
data is an important point of inquiry, especially as more
and more applications involve datasets that are first de-
noised before downstream inference. We propose a mod-
ification to the Wilcoxon rank sum test that appears to
effectively alleviate type 1 error inflation in our experi-
ments.

Suppose that we run the standard Wilcoxon rank sum
test for each gene between two groups of cells in X. Let
the indices of cells in group 1 be {i1, i2, . . . , im}, and the
indices for group 2 be {j1, j2, . . . , jn}.

In the SAVER/SAVER-X models, we have assumed
that the underlying � is fixed. However, for DE testing
we need to allow � to be random, independent and iden-
tically distributed according to one distribution for group
1, and another (possibly the same) distribution for group
2. In other words, we need to impose i.i.d. assumptions
on � thus X within each group for the differential testing

FIG. 8. Permutation simulation with true differentially expressed
genes obtained from the DE analysis of two similar cell types. The
true data for each of the four datasets was obtained as described in
the main text.

problem to be well defined, though such an assumption is
not needed in denoising.

Now we can assume that

Xgi1,Xgi2, . . . ,Xgim

i.i.d.∼ Fg1

for group 1, and

Xgj1,Xgj2, . . . ,Xgjn

i.i.d.∼ Fg2

for group 2. Were we observing X, assume that we have
some standardized test statistic U(·) for the null hypothe-
sis

H0g : Fg1 = Fg2.

By the large sample approximation,

U(Xg·) ∼ N(0,1).

This is the case when U(Xg·) is the Wilcoxon Rank sum
test statistic for gene g computed using the matrix X.
However, X is not observed, and the test statistic using
denoised values U(X̂g·) can largely deviate from N(0,1),
that explains why we would have type 1 error inflation af-
ter denoising.

With SAVER and SAVER-X, we can approximate the
posterior distribution of U(Xg·) | Y,� by sampling from
the estimated posterior distribution of X. Our simulations
show that empirically, the posterior distribution of the test
statistic is also approximately Gaussian. In other words:

U(Xg·) | Y,�
·∼ N

(
μ̂g, σ̂

2
g

)
,
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TABLE 1
Differential testing between regulatory CD4+ T cells and other cells on pre-selected marker genes for regulatory CD4+ T cells. P -values are

adjusted using BH on all measured genes. Significant p-values (FDR level : 0.05) with a positive logFC are highlighted in red

logFC (raw data) logFC (SAVER-X) adjusted p-values (raw data) adjusted p-values (post-denoising)

FOXP3 0.14 2.3 2.6e-01 8.2e-03
IL2RA 0.66 2.3 2.0e-04 6.1e-04
DUSP4 0.42 2.5 7.4e-04 6.8e-04
RGS1 0.17 1.3 6.8e-01 3.3e-02
IL2RB 0.48 1.2 8.1e-03 5.1e-04

where μ̂g and σ̂ 2
g are obtained from the posterior samples.

Thus, the unobserved quantity U(Xg·) can be written as

(5.7) U(Xg·) ≈ μ̂g + σ̂g(Y,�)ε,

where ε ∼ N(0,1).
It is hard to approximate the null distribution of U(X̂g·)

but we may have information on the null distribution of
μ̂g under H0g . With (5.7), we have

Var
(
μ̂g − U(Xg·)

) = E
(
Var

[
μ̂g − U(Xg·) | Y,�

])
+ Var

(
μ̂g − U(Xg·)

) ≈ σ̂ 2
g ,

where μg = E[U(Xg·) | Y,�]. Under H0g , the unob-
served U(Xg·) ∼ N(0,1). Thus, μ̂g = U(Xg·) + μ̂g −
U(Xg·) can be approximated by a Gaussian distribution

μ̂g
·∼ N

(
0, τ 2)

with τ 2 conservatively estimated by

τ̂ 2 = 2
(
1 + σ̂ 2

g

)
.

This leads to a post-denoising adjusted p-value.
If (5.7) is exact, then it always holds that

Var(μ̂g) ≤ Var
(
U(Xg)

) = 1

under H0g as ε is independent of Y and �.
In simulations we find that μ̂g across the null genes al-

ways has a dispersion larger than 1, indicating that the un-
certainty in estimating the posterior distribution of U(Xg)

cannot be ignored.
As shown in Figure 8, type 1 error inflation is effec-

tively reduced with this post-denoising adjustment, al-
though it still does not achieve the nominal value. More
effective ways to obtain exact error control post-denoising
are needed.

5.2.3 Power in marker gene identification. We showed
in Wang et al. (2019) that denoising substantially en-
hances the contrast of marker genes across cell clusters
and facilitates the labeling of cell types. Yet, often we
would like to discover new marker genes through a mul-
tiple hypothesis test. How does the above correction to
the Wilcoxon Rank Sum test affect marker gene identi-
fication in such a formal test? Are known marker genes
significant in the denoised data after the correction? To
address this, we re-examined the 500 PBMC T cells ana-
lyzed in Wang et al. (2019), where the raw data was taken
from Zheng et al. (2017). SAVER-X, pretrained on a large
set of publicly available PBMC T cells, improved the vi-
sual contrast for a set of known marker genes across T cell
subtypes. We compared the DE p-values of these known
marker genes computed on raw data to those computed on
the denoised data with our proposed correction.

We focus on the pre-selected known markers genes
(displayed in the third panel of Figure 2b in Wang et al.
(2019)), and limit our discussion here to two cell types—
regulatory CD4+ T cells and naive CD4+ T cells—where
the known marker genes are among the hardest to iden-
tify in raw data. For each cell type, differential testing is
conducted using Wilcoxon rank sum test between cells of
the given type and all remaining cells. For both the raw
p-values and the post-denoising corrected p-values, we
control false discover rate (FDR) using the BH procedure
at the nominal level of 0.05.

Results of the comparisons between using the raw data
without denoising and using post-denoising correction are
shown in Table 1 for regulatory CD4+ T cells, and in

TABLE 2
Differential testing between naive CD4+ T cells and other cells on pre-selected known marker genes for naive CD4+ T cells. P -values are

adjusted using BH on all measured genes. Significant p-values (FDR level : 0.05) with a positive logFC are highlighted in red

logFC (raw data) logFC (SAVER-X) adjusted p-values (raw data) adjusted p-values (post-denoising)

LEF1 0.273 0.638 7.19e-01 4.28e-04
TCF7 0.106 0.42 8.04e-01 1.21e-02
SATB1 0.143 0.695 8.04e-01 8.48e-02
SELL 0.615 0.748 4.01e-04 6.84e-07
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Table 2 for naive CD4+ T cells. First, note that denois-
ing followed by Wilcoxon rank sum test (with adjust-
ment as proposed) allows us to detect all but one of the
marker genes; some of them were insignificant in the raw
data. Also, note that the log fold-change (logFC) com-
puted from the denoised data are typically larger. This is a
surprising insight because we expect denoising to reduce
standard errors but keep the effect sizes approximately
the same. The increase in logFC is likely due to the fact
that denoising allows the computing of fold changes with-
out the addition of pseudocounts, which would be other-
wise necessary due to the extreme sparsity of the observed
count matrix. Denoising obviates the need of this ad hoc
hack, and therefore gives more realistic fold-change esti-
mates.

6. CONCLUSION

We set out in this paper with three main goals—
introduce the burgeoning field of single cell transcrip-
tomics to the statistics community, review the statistical
framework (SAVER/SAVER-X) for data denoising in the
context of scRNA-seq, and explore the challenges and
opportunities that lie in statistical inference using the de-
noised values. The latter, in particular, harbors interesting
challenges and invites novel methodological ideas. Since
denoising, imputation, and/or data-smoothing is now a
routine pre-processing step in many applications, it is im-
portant to understand how these steps impact downstream
statistical estimation and testing.

We explored a plug-in strategy (5.2) for denoising-
uncertainty correction in obtaining more accurate esti-
mates of functions of the data, such as gene dispersion,
gene-gene correlations, and cell-cell distances (for clus-
tering and visualization). For achieving unbiased esti-
mates of gene-level functions, we found (5.2) to work
well. For clustering and visualization, (5.2) gives more
precise estimates of cell-cell distances. Although, in our
analyses, this has not affected the detection of macro-
structures in the data, it may allow more accurate iden-
tification of more subtle subpopulations.

Furthermore, we demonstrated that directly using the
denoised values for differential testing may severely in-
flate the false positive rate, corroborating the findings
of Andrews and Hemberg (2018) and Zhang and Zhang
(2018). We developed a post-denoising correction that
mitigates the type-I inflation, but there is still ample room
for improvement. Further work needs to be done to find
strategies to control type-1 error, while preserving power,
for general tests using denoised data.
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