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Comment: Statistical Inference from
a Predictive Perspective
Alessandro Rinaldo, Ryan J. Tibshirani and Larry Wasserman

Abstract. What is the meaning of a regression parameter? Why is this the de
facto standard object of interest for statistical inference? These are delicate
issues, especially when the model is misspecified. We argue that focusing on
predictive quantities may be a desirable alternative.
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1. INTRODUCTION

Professors Buja, Berk, Brown, Kuchibhotla, George,
Pitkin, Traskin, Zhao and Zhang have presented a the-
ory of parametric regression that allows one to use the
model without requiring that the model be correctly
specified. We congratulate these authors for delivering
such a masterful treatment of statistical inference for
misspecified models. The ideas in these papers are very
important and should be required reading for all statis-
ticians. Indeed, essentially all parametric models are
misspecified which makes their work extremely rele-
vant.

The papers discuss a number of issues related to in-
terpretation and statistical inference for parameters in
misspecified models. The first paper focuses on the lin-
ear model and the second generalizes the results con-
siderably. The formalism of a well-specified model is
clearly laid out.

In our discussion, we focus on the linear model for
simplicity, though similar points hold in general. We
take a critical look at the standard regression parameter
β , and discuss an alternative predictive view that may
be of interest.
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2. WHY SHOULD WE CARE ABOUT β?

Well-Specified Model

Consider a standard regression setup where we ob-
serve independent draws (X,Y ) ∼ P , satisfying a lin-
ear model

(1) Y = βT X + ε,

where E[ε] = 0. Here X = (X1, . . . ,Xd) ∈ R
d and

β = (β1, . . . , βd) ∈ R
d . Even in this idealized setting,

we would argue that β is commonly misinterpreted.
Many users (and papers and books) implicitly inter-
pret the components of β causally. This interpretation
is valid only if every possible confounding variable is
included in the model (or if the data are from a ran-
domized experiment).

For example, suppose that Y measures lung damage,
while X1 measures air pollution. In a typical under-
graduate class, we might explain the meaning of β1
as follows: “If we increase air pollution by one unit,
and hold all other covariates fixed, then we expect lung
damage to increase by β1 units.” This is, at its core, a
causal interpretation of the β1: it describes the effect
of an intervention. If the data are observational, there
may be many unobserved confounding variables which
makes the interventional interpretation of β1 incorrect.

Most often, the conclusions in a regression analysis
are reported in more cautious language but the causal
interpretation lurks below the surface. For example, a
negative estimate of β1 in the lung damage and air pol-
lution example would typically lead to some effort to
explain why the estimate is negative. No such expla-
nation is required unless one is attempting to interpret
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β1 causally. Unless the experiment is suitably random-
ized or unless all confounders are measured, the causal
interpretation is wrong. In the literature on causal in-
ference, it is not uncommon to use notation such as
E[Y | set X1 = x] to emphasize a causal effect. Perhaps
we should adopt this notation more widely in statistics.
It might remind us that the causal slope is

E[Y | set X1 = x + 1] −E[Y | set X1 = x],
and thus β1, which is not equal to the causal slope,
must be interpreted with great care, or else, it should
no longer the standard object of interest, and an alter-
native perspective should be taken; more on this in the
next section.

These are not new points, and all statisticians are
aware of them (at one level or another). But causation
is rarely formalized in textbooks on regression. There
may be the standard warning that “correlation does not
imply causation,” but rigorous presentations in terms of
counterfacuals, structural equation models, or directed
graphs are typically lacking. As a result, many well-
trained statisticians do not question what β actually
means, even in the idealized case where linearity holds.

Misspecified Model

Let us now turn to the more realistic situation where
the linear model does (1) not hold. In this case, the au-
thors propose that β should be interpreted as a func-
tional of P . In particular, we can define

β = �−1α,

where � = E[XXT ] (assumed invertible) and α =
E[XY ]. The interpretation is that �(x) = βT x is the
best linear predictor, or in other words, that β mini-
mizes E[(Y − bT X)2] over b.

This definition is mathematically clean and natural.
To statisticians, the idea of a best linear predictor is
straightforward: it is just a projection, after all. But we
should back up and ask: does this define a useful pa-
rameter for practitioners? We suspect many are likely
to misinterpret β; that is, they are likely to interpret β

as if the linear model was correctly specified. This is in
addition to the danger of interpreting β causally.

3. WHAT CAN BE DONE WITHOUT A MODEL?

Variable Importance

Throwing the causal interpretation aside, it is still
common to interpret βj as a measure of importance for
variable Xj . But if the linear model is wrong, then per-
haps we should look for more direct methods. A gen-
eral model-free approach to this problem is based on

assessing conditional independence. For example, to
check if Xj is important we can test

(2) H0 : Y is independent of Xj given X−j ,

where X−j ∈ R
d−1 denotes the vector containing all

covariates except Xj . Some recent methodological
breakthroughs have been made in testing such hypothe-
ses, for example, the model-X knockoffs methodology
by Candès et al. (2018). This has the potential to be a
highly useful tool for practitioners. However, we must
note that testing conditional independence is very dif-
ficult in a model-lean world, and in fact, was recently
shown by Shah and Peters (2018) to be essentially im-
possible in the absence of any distributional assump-
tions. In practice, the assumptions needed to derive a
useful test of conditional independence are very strong.

Testing conditional independence is one approach to
determining variable importance under model misspec-
ification. In addition to variable importance, practition-
ers are often interested in variable effect sizes, which
are quantitative (how much does a variable contribute?)
rather than binary (does a given variable contribute or
not?). It is unclear how a notion of variable effect size
can be derived from a test for conditional independence
as in (2). We discuss some model-free possibilities be-
low.

Nonparametric Proportion of Variance Explained

Consider the nonparametric proportion of variance
explained (or nonparametric R2) defined by

(3) θj = E[(Y − μ−j (X))2] −E[(Y − μ(X))2]
Var(Y )

,

where μ(X) = E[Y |X] and μ−j (X) = E[Y |X−j ]. On
the positive side, the meaning of θj is clear, and it
is model-free. Unfortunately, estimating the parameter
θj is difficult. Indeed, this is a semiparametric prob-
lem. This was recently studied by Williamson et al.
(2017), who use a plug-in estimator with a bias cor-
rection based on the first-order influence function. But
the resulting inferences rely on very strong assump-
tions. Moreover, the influence function vanishes under
the null hypothesis that θj = 0, leading to invalid con-
fidence intervals.

Predictive Proportion of Variance Explained

Now consider a predictive variant of θj in (3),

(4) φj = E[(Y − μ̂−j (X))2] −E[(Y − μ̂(X))2]
Var(Y )

,
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where μ̂ and μ̂−j are estimates of μ and μ−j , respec-
tively. We fit the estimates to training data, using any
algorithm: μ̂ is trained by running an algorithm A on
samples (Xi, Y i), i = 1, . . . , n, and μ̂−j is trained us-
ing the same algorithm A on the samples ((X−j )

i, Y i),
i = 1, . . . , n, once we exclude variable Xj . Impor-
tantly, while any algorithm A can be used, it should
be emphasized that the parameter φj and its interpre-
tation are inextricably tied to A: this parameter repre-
sents the inflation in prediction error exhibited by the
specific algorithm A after dropping variable Xj , rela-
tive to the marginal variance. If A is a good-predicting
algorithm, then this may be an interesting parameter to
make inferences on (if A is poorly-predicting, then it
is probably not).

Lei et al. (2018) considered a parameter as in (4),
and called it LOCO (leave-one-covariate-out). Some
minor differences: Lei et al. (2018) did not consider
the normalized version (scaled by Var(Y )), and pro-
posed absolute instead of squared loss. As shown in Lei
et al. (2018) (and further studied by Rinaldo, Wasser-
man and G’Sell, 2019), it is relatively simple to get
distribution-free confidence intervals for a parameter
like φj , provided that we treat μ̂ and μ̂−j as fixed, and
interpret the expectation as being with respect to a fu-
ture pair (X,Y ) only. In practice, we accomplish this
by sample splitting: we use the first half of the sample
to fit μ̂ and μ̂−j , and the second half to evaluate test
errors and form a confidence interval. Therefore, for-
mally, the parameter is defined conditional on the first
half of the data.

In some problem settings (where we expect new data
will never arrive, and a model will remain indefinitely
fixed after it has been initially fitted), this conditional
perspective is reasonable. But in others (where we ex-
pect new data will arrive, and a model will be refitted
as soon as it does), this is not the right perspective, and
instead a marginal perspective should be taken: that is,
φj should be defined and interpreted with respect to the
randomness both in (X,Y ) and in μ̂, μ̂−j . Markovic,
Xia and Taylor (2017) showed a marginal version of
the LOCO parameter can be covered using random-
ization techniques combined with normal approxima-
tions; this is interesting progress, but requires assump-
tions. As far as we can tell, distribution-free inference
for the marginal version of φj is an open problem.

Shapley Effect Sizes

A principled measure for variable effect sizes can be
defined using the Shapley value, which originated in

game theory (Shapley, 1953). Consider

(5) σj = ∑

S

|S|!(d − |S| − 1)!
d!

[
L(S) − L

(
S ∪ {j})],

where S varies over all subsets of {1, . . . , d} \ {j},
and L is any real-valued function on sets, for exam-
ple, L(S) can represent the prediction error using vari-
ables in S only. The Shapley value is the unique mea-
sure of variable importance satisfying a few simple
axioms such as additivity, symmetry, and others. Of
course, the Shapley value (5) presents considerable
computational and inferential challenges. Advances
were recently made in Chen et al. (2017) for structured
data.

Conformal Effect Sizes

We finish by describing a measure that relates to φj

in (4), but is a random variable. Define

(6) 
j(X,Y ) = ∣∣Y − μ̂−j (X)
∣∣ − ∣∣Y − μ̂(X)

∣∣.

(We use absolute loss and do not scale by Var(Y ) to
adhere to the notion in Lei et al., 2018, but this is
unimportant.) This is the increase in prediction loss
at a test point X,Y , using estimates μ̂ and μ̂−j fit on
an independent training set, say (Xi, Y i), i = 1, . . . , n.
We emphasize that 
j(X,Y ) is a random quantity.
As shown in Lei et al. (2018), we can produce a
distribution-free prediction interval for 
j(X,Y ), that
has finite-sample validity, using conformal predic-
tion.

The idea is that, based on (Xi, Y i), i = 1, . . . , n, we
can produce a conformal prediction band Cn satisfy-
ing

P
(
Y ∈ Cn(X)

) ≥ 1 − α for all distributions P,

where α ∈ [0,1] is a desired miscoverage level. The
probability is taken over the test point (X,Y ) (which
is unavailable to us) and the training samples (Xi, Y i),
i = 1, . . . , n (which are available and used to construct
Cn). All that we require is that these samples are i.i.d.
(or even more weakly, that they are exchangeable). The
construction of conformal bands is described in detail
in Vovk, Gammerman and Shafer (2005) and Lei et al.
(2018). Now define

Wj(x) = {∣∣y − μ̂(−j)(x)
∣∣ − ∣∣y − μ̂(x)

∣∣ : y ∈ Cn(x)
}
.

It follows immediately that

P
(

j(X,Y ) ∈ Wj(X) for all j = 1, . . . , d

)

≥ 1 − α for all P,
(7)
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FIG. 1. Underlying functions in additive models example.

FIG. 2. Prediction intervals for 
j (X,Y ) across all covariates. The prediction intervals are evaluated as X varies over the training
covariates. Intervals lying strictly above zero are drawn in green.
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Hence, we have distribution-free, finite-sample cover-
age for all variables simultaneously.

To see how this works in practice, we revisit an ex-
ample from Lei et al. (2018). The data consist of 1000
samples drawn from an additive model

Y =
6∑

j=1

fj (Xj ) + ε,

where f4 = f5 = f6 = 0. Figure 1 plots the underlying
functions f1, . . . , f6. The estimates μ̂ and μ̂−j were
fit using additive regression splines (with each compo-
nent function having 5 knots) in the definition of (6),
and we used conformal prediction in order to obtain
intervals with the guarantee (7). Figure 2 plots these
intervals as X varies over the training samples. For
f1, f2, f3, we see that intervals vary considerably with
X, specifically, the intervals which portray a signifi-
cant increase in prediction loss line up exactly with the
regions over which the underlying functions f1, f2, f3

are nonzero.

4. CONCLUSION

The authors have written two compelling papers
on statistical inference when models are misspecified.
With few exceptions, all models are misspecified. But
it is still possible to do inference as long as we interpret
parameters correctly. As we have noted in our discus-
sion, there is some room for choosing interpretable pa-
rameters. We need not confine ourselves to the standard
choices, and in the event of model misspecification,
we believe these choices deserve some skepticism, and
predictive alternatives may be fruitful.
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