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Comment: Matching Methods for
Observational Studies Derived from Large
Administrative Databases
Mark M. Fredrickson, Josh Errickson and Ben B. Hansen

1. INTRODUCTION

In the era of big data, finding a comparable control
group for a set of treated units provides new opportunities
and challenges. When controls vastly outnumber treated
subjects, there will likely be many good potential matches
for each treated subject. On the other hand, with larger
data sets, increased computation time prevents applying
existing methods to find the best possible match. Yu et al.
propose a fast caliper solution that restricts the possible
controls for each treated subject, making matching with
large databases tractable. Their results on determining the
narrowest caliper that is compatible with pair matching
(without replacement) will be of great practical use.

We take issue with the labeling of this caliper as “op-
timal.” The label is accurate in a certain sense—it does
minimize an objective of caliper width, subject to the con-
straint that pair matching remain feasible while no treat-
ment group member is discarded—but these are quite dif-
ferent objectives and constraints from those otherwise tar-
geted in the course of optimal matching. The meaning
of “optimal” in “optimal matching” is already obscure to
many, as Yu and Rosenbaum have themselves acknowl-
edged (Yu and Rosenbaum, 2019). Adding a new and dis-
tinct connotation seems a step in the wrong direction.

It happens that Yu et al.’s optimal caliper can have the
surprising result of forcing matches to be suboptimal, at
least for the matching problem’s original objective. We
demonstrate this phenomenon in a small stylized exam-
ple (Section 2). Full matching is less affected; also, the
narrowest caliper that is compatible with full matching
is simple to describe and quick to calculate (Section 3).
In another large surgical outcomes study, a form of full
matching with restrictions is shown to generate matches
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faster and with better optimality properties, while still
maintaining a structure similar to pairs (Section 4). These
critiques of pair matching notwithstanding, we expect
caliper width to continue to be a leading determinant of
matching speed, even as optimal matching in statistics
assimilates algorithmic developments from related fields
(Section 5).

2. OPTIMALITY AND THE EYE OF THE BEHOLDER

For a set of treated units T and a set of control units
C, the match m = (mij : (i, j) ∈ T × C)T has mij = 1 if
treated unit i is matched to control unit j , 0 otherwise.
The total distance of m is given by

(1) f (m) = ∑
i∈T

∑
j∈C

mijdij ,

where dij is the distance between i and j . Yu et al.
contribute to a body of work that uses careful applica-
tion of network flow algorithms or advances in integer
programming to minimize f (Rosenbaum, 1989, Hansen
and Klopfer, 2006, Yang et al., 2012, Zubizarreta, 2012,
Pimentel et al., 2015, Pimentel, Yoon and Keele, 2015,
Rosenbaum, 2017, Pimentel et al., 2018). Yu et al. focus
on pair matching, minimization of f (·) over

(2)

{
m ∈ T × C : ∑

j∈C
mij = 1, all i ∈ T ;

∑
i∈T

mij ≤ 1, all j ∈ C
}
.

Matched sets corresponding to such m maintain a strict
1 : 1 ratio of treated to control subjects. In contrast, full
matching minimizes over strictly broader classes of m,
permitting both i ∈ T with

∑
j∈C mij > 1 and j ∈ C

with
∑

i∈T mij > 1, while requiring that: for each i ∈ T ,∑
j∈C mij ≥ 1; if

∑
j∈C mi′j > 1 then

∑
i∈T mij ′ = 1 for

each j ′ ∈ C s.t. mi′j ′ = 1; and similarly if
∑

i∈T mij ′ > 1
then

∑
j∈C mi′j = 1 for each i′ ∈ T such that mi′j ′ = 1

(Rosenbaum, 1991). That is, both many-one and one-
many matched sets are permitted, as are 1 : 1 matched
pairs; however, many-many configurations are excluded.
Since optimal pair matching minimizes (1) over (2) and
optimal full matching minimizes the same objective over
a strictly broader domain, it is clear that for objective (1),
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full matching can be better than pair matching, but never
worse.

In its unrestricted form, full matching suffers from
other limitations. First, highly skewed matching ratios
threaten efficiency (Hansen, 2004), as well as the sim-
plicity that makes matched analysis uniquely accessible
to nontechnical audiences (Rosenbaum and Rubin, 1985).
This points toward full matching with structural restric-
tions, upper limits on the integers a for which a : 1
matches are permitted, and/or on integers b for which 1 : b
matching ratios are allowed (Gu and Rosenbaum, 1993,
Hansen and Klopfer, 2006). Second, as Yu et al. persua-
sively argue in the case of pair matching, computation-
ally feasible matching in large databases calls for spe-
cial measures (such as calipers) to reduce the number of
(i, j) ∈ T ×C for which the possibility that mij �= 0 is en-
tertained; we refer to this number as the size of the match-
ing problem. Their argument applies with equal force to
full matching, with or without structural restrictions.

Adding or subtracting any of these restrictions changes
the nature of the matching problem, whether it be full or
pair matching; generally one loses one form of optimal-
ity even as one gains another. Consider the pair match-
ing problem, minimize (1) over (2), with T = {A,B},
C = {C,D,E}, and dij equal to the absolute difference of
i and j on an underlying scalar measure for which A = 0,
B = 2, C = −3, D = 0 and E = 6. Figure 1 visualizes
these parameters in terms of an isomorphic minimum cost
flow problem (Rosenbaum, 1989), set up for pair match-
ing. In addition to the arcs between treated and control
nodes, there are additional edges connecting these nodes
to others at which flow enters or exits the system. Mini-
mum cost flow analogues of full matching require addi-
tional nodes and structure (Rosenbaum, 1991), not shown
here. Without further restrictions, the optimal pair match
is {(A,D), (B,E)} with a total distance of 4. With the ad-
dition of a caliper of 3, this match is no longer permitted.
Pair matching remains feasible, but is forced to pair A to
C in order to allow B its only permitted match to D; total
distance increases to 5. This is the smallest caliper com-
patible with pair matching, the one Yu et al. term “op-

FIG. 1. Network flow diagram for a simple matching problem. All
edge capacities are fixed at 1. Dashed lines would be eliminated for a
caliper value of 3, the minimum feasible caliper for a pair match.

timal”; yet it has precluded making the pair match that
would otherwise be optimal.

3. FULL MATCHING: CALIPERS, RESTRICTIONS
AND WEIGHTS

Adapting Yu et al.’s proposal from pair to full match-
ing leads to an interestingly different result. A sufficient
condition for full matching is that all i ∈ T have at least
one j ∈ C for which mij > 0 is permitted. In the flow di-
agram analogous to that of Figure 1, each T node must
be connected to at least one C node (Rosenbaum, 1991,
Corollary 4). Thus the smallest caliper compatible with
unrestricted full matching is the maximum over the treat-
ment group of minimum distances to members of the con-
trol group.

PROPOSITION 1. For an unrestricted full match, the
minimum feasible caliper value ct that discards no treated
units is given by

ct = max
i∈T min

j∈C dij ,

where dij is the distance between treated unit i and con-
trol unit j .

If calculating a distance is a constant time operation,
Proposition 1 gives a O(|T ||C|) time algorithm for find-
ing the minimum feasible full match caliper. Proposition 1
does not place convexity or other conditions on the dis-
tances {dij }. In the situation where dij = |vi − vj | for
some scalar index v, the Algorithm 1 determines ct in
O(|T | log(|T |) + |C| log(|C|)) operations.

It may be the case that a caliper of ct discards some con-
trol units. An analogous caliper, call it cc, can be formed
by switching the roles of treated and control in Propo-
sition 1, and a sufficiently wide caliper to remove nei-
ther treated nor control group members would be c =
max(ct , cc).

The caliper of Proposition 1 has the property that it
serves as a lower bound on the minimum feasible caliper

Algorithm 1 Minimum feasible full match caliper on
scalar index v

Let ui be the sorted v for the treated units.
Let wj be the sorted v for the control units. Set w0 =
−∞,w|C|+1 = ∞.
ct ← 0
j ← 1
for i = 1, . . . , |T | do

while wj < ui do
j ← j + 1

end while
ct ← max(ct ,min(|ui − wj−1|, |ui − wj |))

end for
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for any restricted match, such as pair matching. A re-
searcher seeking a narrow caliper, but committed to pair
rather than full matching, can compute ct and then check
if the caliper is also feasible for pair matching. If not, the
caliper size can be increased until a feasible caliper value
is found for the pair match problem. Yu et al.’s adapta-
tion of Glover’s algorithm leads to the same destination,
and is surely quicker, but this method is nicely flexible, as
demonstrated in Section 4.

Working within narrow calipers, full matching may cre-
ate highly imbalanced structures, sets with a large num-
ber a of treatment subjects sharing a single control or,
alternately, sets pairing 1 treatment subject to b 	 1 con-
trols. The method of Yu et al. permits only 1 : 1 pairs,
widening the caliper ct just enough to make such match-
ing feasible. As an alternative to pair matching, consider
full matching with symmetric restrictions: matching in ra-
tios of k : 1 up to 1 : k, for some positive integer k, plac-
ing into matched sets each member of the treatment group
and precisely as many controls as pair matching would
have matched. Analogously to finding the Yu et al. opti-
mal caliper for pair matching, the skewedness parameter k

can be increased upward from 1 until just large enough for
a caliper-respecting, symmetrically restricted full match
to exist. By leaving the caliper fixed at ct , this approach
avoids both degrading the quality of matches, in the sense
of (1), and increasing the number of potential matches to
be stored in memory and then selected from among by the
solver.

In post-matching analysis. it is relatively straightfor-
ward to account for pairs. Full matching, on the other
hand, calls for analysis weights that vary with matched
sets’ sizes and treatment-control ratios. Under one fre-
quently used weighting scheme, if a matched set has
nt treated units and nc controls, they receive analysis
weights wt = 2nc/(nt + nc) and wc = 2nt/(nt + nc), re-
spectively. The factor of 2 ensures that when nt = nc,
wt = wc = 1, recovering the natural weights for pair
matching. This is the implicit weighting scheme of many
common methods such as regression with fixed effects
for matched sets, as well as tests based on sum statistics
(Rosenbaum, 2002). Under various assumptions, it opti-
mizes power (Kalton, 1968, Hansen and Bowers, 2008).

While a pair match will always have |T | pairs, the num-
ber of sets in a symmetrically restricted full match is not
fixed a priori. One useful way to measure the size of a full
match is the effective sample size (Hansen, 2011), which
is the sum of wt over all treated units (or equivalently the
sum of wc over all control units). This quantity expresses
the information content of the matched sample (Kilcioglu
and Zubizarreta, 2016) in terms of the number of similarly
informative pairs that would be needed to equal it.

FIG. 2. Estimated propensity scores (logit scale) for patients under-
going percutaneous coronary intervention followed by manual closure
of the arteriotomy site (“control”) versus closure assisted by a vascu-
lar closure device (“treatment”).

4. APPLICATION: OPTIMAL MATCHING TO OPTIMIZE
SURGICAL PROCEDURE

Gurm et al. (2013) performed a propensity score
matched analysis of the use of vascular closure devices
(VCD) on patients undergoing percutaneous coronary in-
tervention compared to patients for whom a VCD was not
employed. As in Yu et al.’s surgical outcomes analysis of
Medicaid data, the available sample was relatively large,
with 31,000 treatment group members and 54,000 poten-
tial controls. Our reanalysis uses one of Gurm et al.’s three
propensity scores, along with the same 192 exact match-
ing categories respected by their match.

Figure 2 shows logits of estimated propensity scores.
Two extreme outliers are present, one each in the treat-
ment and control groups. While the control units with ex-
treme values may raise little concern, particularly when
the database of control units is large relative to the treated
units, the extreme treated unit could lead to problems
when picking a single caliper for all units. The nearest
control in its exact matching group is separated from it by
10.3 logits, about 17 pooled standard deviations. A caliper
of this size applied to all edges would remove only edges
connected to the outlier, giving no meaningful reduction
in matching problem size.

Design of observational studies typically involves re-
stricting the analysis sample to a region of “common
support,” explicitly or implicitly dropping outliers on the
propensity score (Rosenbaum, 2002, Crump et al., 2009,
Traskin and Small, 2011, Hill and Su, 2013, Imbens and
Rubin, 2015, Fogarty et al., 2016), as a component or
supplement of the matching process. Excluding the treat-
ment outlier, Algorithm 1 finds the minimum feasible full
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TABLE 1
Symmetrically restricted full match of the Gurm et al. (2013) sample.

Matched set configurations and corresponding weights for treated
(wt ) and control (wc) units appear at left, with corresponding counts

and effective sample size contributions at right (after rounding)

Design

nt : nc wt wc Number of Sets Effective Size

3 : 1 0.5 1.5 2500 3800
2 : 1 0.7 1.3 2600 3500
1 : 1 1.0 1.0 12,900 12,900
1 : 2 1.3 0.7 2900 3900
1 : 3 1.5 0.5 2300 3500

Totals: 23,300 27,600

match caliper to be 0.48 logits. In addition to the treatment
group outlier recognized in Figure 2, another 51 mem-
bers of the treatment group lacked control group coun-
terparts within 0.48 logits that also shared their values of
exact matching variables. We removed caliper restrictions
on these, and only these, treatment group members, per-
mitting them to match any control unit within their ex-
act matching subclasses. (Our optmatch package of-
fers a simple means of excluding designated units from
a caliper, through an optional exclude argument that
can be invoked in tandem with caliper.) The combi-
nation of caliper and exact matching categories decreased
problem size by 99%.

Pair matching was not feasible with these caliper and
exact matching requirements. Following the spirit of the
Yu et al. caliper, we increased caliper width (as it ap-
plied to all but 52 members of the treatment group) in
increments of 10%, stopping once pair matching became
feasible. This process terminated after 18 iterates, with a
caliper of width 1.344. This widening of the caliper in-
creased matching problem size by a factor of 1.91.

Given the same caliper and exact matching require-
ments, optimal full matching produced 22,874 matched
sets, 13,549 being 1 : 1 pairs but 690 having 5 or more
units of one group matched to a single unit of the other. To
avoid these imbalanced groupings, we explored feasibil-
ity of full matches with symmetric restrictions, beginning
with k = 1 (pair matching) and then increasing k in incre-
ments of 1. This procedure terminated at k = 3. Table 1
presents the structure of the resulting match.

One straightforward comparison of these different
matches is in terms of f (·), the total of within set dis-
tances. The comparison, however, does not reflect the dif-
fering structures of the two matching strategies. To better
reflect these differences, we normalize f (·) by the to-
tal number of treatment-control comparisons implied by
the match (or equivalently, the number of arcs in the net-
work diagram that carry flow from treated nodes to con-
trol nodes). Using this metric, the pair match had a total

(normalized) distance over 10 times larger than that of the
restricted full match.

The pair match also required significantly more compu-
tation time. On a 2.30 GHz Intel Xeon E5-2630, produc-
ing the restricted full match required just under 16 min-
utes of computation time. Producing the pair match re-
quired nearly 30 minutes. This timing does not include the
additional time required to find the parameters that lead to
feasibility. Our approach required only two steps to find
a feasible restricted full match. For the pair matching, the
10% steps required 18 increments to find a sufficiently
wide caliper for pair matching.

5. OPTIMAL MATCHING’S FASTER FUTURE

While the paper of Yu et al. and this comment have
focused on using calipers to make matching possible in
large databases, we conclude with some notes on im-
proving the matching algorithms themselves. Both the ap-
proach of Yu et al. and Algorithm 1 used the special struc-
ture of the distance measure to find the minimum feasible
calipers quickly. While network flow-based matching al-
gorithms, such as the one used in optmatch, gain no ad-
ditional benefits from this structure, other algorithms have
similar time complexity in this setting (Karp and Li, 1975,
Colannino et al., 2006, Colannino et al., 2007, Mohamad,
Rappaport and Toussaint, 2015, Rajabi-Alni and Bagheri,
2016). If a caliper value—or a suitably smooth caliper
function—is prespecified, Ruzankin (2019) provides fast
algorithms that maximize the number of pairs, and also
minimize (1) for many problems.

For general problems without such structure, we see
great promise in parallelizing algorithms to make large
matching problems tractable. While the relaxation-based
algorithms that optmatch and rcbalance use do not
lend themselves to parallelization, related “auction algo-
rithms” do (Bertsekas, 1998, Chapter 7), even admitting
implementation on massively parallel GPUs (Vasconcelos
and Rosenhahn, 2009). For sufficiently small treatment
groups, multiple matches can be run in parallel and com-
bined to produce globally optimal results (Cohen and
Brassil, 2000). Slight modifications of the distance met-
ric can also have computational benefits. Sävje, Higgins
and Sekhon (2017) present a highly scalable variant of
full matching optimizing the largest matched set diame-
ter.

6. SUMMARY

Ruoqi Yu, Jeff Silber and Paul Rosenbaum have done
the field an excellent service in demonstrating computa-
tional and other advantages of matching within narrow yet
feasible calipers. Analysts should be aware that imposing
any caliper, even an “optimal” caliper, can have the para-
doxical effect of worsening match quality in the sense of
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(1). Our case study underscored the need to deploy meth-
ods such as Yu et al.’s with attention to issues of com-
mon support. It also found full matching with symmetric
restrictions to outperform pair matching significantly, in
terms of both speed and quality of matching.
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