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Comment: Matching Methods for
Observational Studies Derived from Large
Administrative Databases
Fredrik Sävje

I first want to commend Yu, Silber and Rosenbaum
(2019) for their paper. The matching procedure they have
developed will help countless researchers improve their
causal inferences in settings where randomized experi-
ments are infeasible or impractical but where observa-
tional data is plentiful.

The aim of my remaining comments is to extend and
complement the authors’ discussion. I start by compar-
ing their procedure with similar approaches developed in
the computer science literature. This broader perspective
provides some suggestions for possible improvements and
extensions. I continue with a discussion about how opti-
mality may be viewed with respect to statistical perfor-
mance, match quality and runtime, and I describe an alter-
native procedure that may better align with some of these
objectives. I conclude with some general remarks. To the
greatest extent possible, I use the authors’ notation.

1. A BROADER PERSPECTIVE

1.1 Previous Work on the Matching Problem

In its most condensed form, the problem the authors
consider is to find a μ in M that minimizes some objec-
tive function L where M collects all injective functions
mapping treated units T to controls C. A common choice
for L is the sum of some cost function δ : T × C →
R

+ over the matches, in which case the problem be-
comes

M
∗ = arg min

μ∈M

∑
t∈T

δ
(
t,μ(t)

)
.

The task is the same as finding a minimum-cost maxi-
mum independent edge set in the complete bipartite graph
with T and C as parts.1 Such an edge set can be found
as the solution to a minimum-cost network flow prob-
lem.

Fredrik Sävje is Assistant Professor, Department of Political
Science and Department of Statistics and Data Science, Yale
University, Rosenkranz Hall, 115 Prospect Street, New Haven,
Connecticut 06520, USA (e-mail: fredrik.savje@yale.edu).

1An independent edge set is called a “matching” in the computer
science literature, but the term has an extended meaning in the causal
inference literature.

Through an impressively productive research program,
the authors and their collaborators have described how
a large number of variations of the objective function
and constraints on M also can be encoded as minimum-
cost network flow problems. Many of these variations,
such as fine balancing, are reviewed in detail by the au-
thors.

The network flow approach admits great flexibility, but
the associated algorithms do not scale sufficiently well to
accommodate large samples. The authors note that run-
time tends to grow as O(NE + N2 logN) where N is the
number of vertices in the network and E is the number
of edges. Generally in matching problems, E = �(N2)

and N = �(T + C), where � denotes asymptotic lower
bounds, so the time complexity is cubic in the sample
size.

One way to reduce runtime is to prune edges in E in
a preprocessing step. For example, if one can achieve
E = O(N logN), runtime grows at only a quasi-quadratic
rate. Such pruning must, however, be done with care. One
potential problem is that the optimal flow derived from
the reduced edge set may not be a maximum independent
edge set in the full problem; that is, the matching pro-
duced from the pruned edge set may not be in M. A sec-
ond concern is that the solution might not be an optimal
solution in the full problem; that is, the matching may not
be in M

∗.
The authors set out to develop a procedure to prune

edges while ensuring that the network flow solution is
in M. To that end, they solve another optimization prob-
lem:

M
B = arg min

μ∈M
max
t∈T δ

(
t,μ(t)

)
.

Problems that aim to minimize the maximum edge cost
are called bottleneck problems. Bottleneck problems
rarely have unique solutions. This does not concern the
authors, however, because they seek a preprocessing step.
With M

B in hand, they substitute it for M in the orig-
inal problem and find a μ in M

B that minimizes L.
Because M

B is smaller than M, the procedure will re-
duce runtime as long as the preprocessing can be com-
pleted quickly. Furthermore, because M

B is a subset of
M, the matching found in this way will be admissi-
ble.
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To better understand the authors’ approach, it is help-
ful to reformulate the problem slightly. Let M(x) = {μ ∈
M : L(μ) ≤ x} be the set of admissible matchings with a
lower value of the objective than x. Solving the matching
problem is the same as finding the smallest x such that
M(x) is nonempty. Finding this minimum is generally no
easier than the original problem because M(x) tends to be
hard to construct or characterize. Bottleneck problems are
exceptions.

With a bottleneck objective, each element in M(x) must
correspond to a subgraph of the largest bipartite graph in
which all edges are shorter than x. Such graphs are some-
times called bottleneck graphs. Thus, to check whether
M(x) is empty, we can instead check whether there exists
a μ in M as a subgraph of the corresponding bottleneck
graph. This, in turn, is the same as determining whether a
T -perfect matching exists in the bottleneck graph, which
is a well-studied decision problem. Once we find a suit-
able decision algorithm, the search for the smallest admis-
sible x, which the authors denote κ, is straightforward.
Algorithms of this type are called threshold algorithms.

When viewed from this perspective, the authors con-
sider the bottleneck matching problem when δ induces a
convex graph. They describe a threshold algorithm using
Glover’s algorithm for the decision subproblem, and they
use binary search over the number line to find κ. This fo-
cus overlaps with questions of long-standing interest to
the computer science community, and it appears the au-
thors have rediscovered part of that literature. To the best
of my knowledge, the bottleneck matching problem was
first studied by Fulkerson, Glicksberg and Gross (1953),
and the first threshold algorithm for the problem was in-
troduced by Garfinkel (1971). The first discussion of a
threshold algorithm based on Glover’s algorithm appears
to be Rinnooy Kan (1976), page 66.

1.2 Possible Improvements and Extensions

A few improvements and extensions present themselves
when we better understand how the procedure relates
to previous work. The first improvement is an alterna-
tive method to search for κ. The authors suggest binary
search. Binary search on the number line may, however,
take a long time to terminate. It will fail to terminate al-
together if decimal precision is unlimited. The solution
the authors offer is to find an upper bound for κ based
on a tolerance parameter. While this will suffice in many
situations, there are cases in which the method performs
poorly. In particular, the tolerance parameter ensures that
the upper bound is close to κ, but it does not ensure that
the number of edges between the bound and κ is small.

The alternative method, commonly used for threshold
algorithms, is to search over the edges. We know that κ
must be equal to δ(t, c) for some (t, c) in T × C when
we use a bottleneck objective. If we find this edge, we

find κ. A straightforward procedure is to sort the edges by
cost and run binary search over the indices of the sorted
edges. The sorting is the most time-consuming step here,
completed in O(N2 logN) time. If this is deemed too
slow, convexity allows for improvements. For example,
one may do binary search among the edges separately for
each treated unit, thereby bypassing the need to calculate
and sort all edges at once. The time complexity is still
quasi-quadratic in the worst case, but the average runtime
is greatly reduced.

Turning now to extensions, the obvious focus is to re-
lax the need for convexity. The authors use the absolute
difference in propensity scores as their cost function. This
induces a convex graph and ensures that Glover’s algo-
rithm can be used. The procedure cannot be used when
practitioners want to prune edges for other cost functions.
Fortunately, several algorithms exist for the bottleneck
matching problem. To the best of my knowledge, the one
with the lowest time complexity for general edge costs is
by Punnen and Nair (1994). Runtime grows as O(N2.5)

here. While this is a considerably higher complexity than
for convex graphs, it is still lower than the cubic rate of
the network flow problem that follows, so it may be ac-
ceptable.

Algorithms for general costs are rarely required in prac-
tice, however, because the edge costs are often distances
in metric spaces with some additional structure. Efrat, Itai
and Katz (2001) introduce a set of algorithms for the bot-
tleneck problem when the costs are distances in various
normed vector spaces. The time complexity is between
O(N1.5) and O(N2), depending on the dimensionality of
the space and the choice of norm. For example, runtime
grows as O(N1.5 logN) for Euclidean distances in two-
dimensional space.

2. OPTIMALITY

2.1 Optimal in What Sense?

The authors open their paper by stating that they pro-
pose new optimal matching techniques, and they refer to
κ as the optimal caliper. There are several senses in which
a matching procedure can be optimal. The authors do not
state which one they have in mind.

The ultimate objective of matching in causal inference
is to reduce bias from confounded treatment assignment.
There might be secondary objectives, such as precision in
estimation. It is, however, rare that theoretical investiga-
tions of matching methods focus on these statistical objec-
tives. Instead, such investigations tend to focus on match
quality. A matching method is then said to be optimal if
it minimizes the surrogate objective function used in the
matching problem (such as the sum of edge costs in the
previous section). Matchings that are optimal in this sense
need not be optimal in a statistical sense. Statisticians and
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FIG. 1. Best matchings before (A, C) and after (B, D) bottleneck pre-
processing. Filled nodes represent treated units.

methodologists are aware that the two optimality concepts
do not coincide, but practitioners do not appear to always
appreciate the difference. It may therefore be helpful to
note that the procedure the authors present is not optimal
in a statistical sense.

What might be puzzling also to statisticians is that the
authors depart from the conventional definition of opti-
mality. The matching produced by the network flow algo-
rithm with κ as a caliper may not be optimal with respect
to the surrogate objective function. That is, the matching
need not be in M

∗. The authors allude to this, but the de-
parture from the current literature is not stated explicitly,
nor is it made clear that match quality can be consider-
ably worse after preprocessing. Figure 1 provides two ex-
amples. Panels A and B illustrate the consequence of bot-
tleneck preprocessing when the caliper is imposed on the
propensity score, as described above. Panels C and D do
the same when the caliper is on the ranks of the propensity
score, as it is in the authors’ application.

Further departures from optimality in match quality is
caused by the authors’ use of different cost functions in
the preprocessing step and the main matching step. They
use absolute differences in propensity scores for the bot-
tleneck problem, which ensures convexity, and Maha-
lanobis distances in the underlying covariate space for
the network flow problem. This disconnects the two steps,
and the procedure as a whole would not be optimal even
if each step maintained optimality with respect to its cost
function. The approach is motivated by a heuristic in-
troduced by Rosenbaum and Rubin (1985). This may be
sound but, by virtue of being a heuristic, is not optimal.

The authors appear to instead have computational con-
cerns in mind when they discuss optimality. The caliper
provided by the authors’ algorithm produces the sparsest
network flow problem among all admissible calipers. This
means that κ is the caliper with the largest reduction in
runtime while ensuring that the resulting matching is in
M. This is the sense in which it is optimal. I do not nec-
essarily object to this use of the term, but casual readers
may not notice that it differs from how the term is used in
most of the current matching literature.

2.2 How Optimal Is the Procedure?

To investigate how effectively the authors’ procedure
reduces runtime, we need to know how quickly κ shrinks.
The only study I could find of the question was by
Pferschy (1996). He shows that κ converges to zero at
a fast rate when the edge costs are independent and uni-
formly distributed on the unit interval. This seems encour-
aging, but the edge costs are not uniformly distributed
when based on propensity scores, and Pferschy’s result
does not apply. The concern is that control units are rare
relative to treated units for larger propensity scores, so a
large κ may be necessary to ensure that all treated units
have matches. The authors’ discussion about how outliers
can make κ large is a related concern.

The authors offer two alternative approaches to ensure
that sufficiently many edges are pruned even when κ con-
verges slowly. The first approach is to include only edges
between each treated unit and a fixed number of its nearest
neighbors. The second approach has already been men-
tioned, namely to impose a caliper on the ranks of the
propensity score rather than the score itself. The near-
est neighbors approach appears to prune edges more ef-
ficiently in the authors’ application, and it is used in their
complexity proof, so it will be the focus here.

The approach dictates that an edge between a treated
unit and a control is included in the network flow prob-
lem only when the control is among the x nearest neigh-
bors of the treated unit. The authors use a threshold algo-
rithm to find the smallest x that produces an admissible
matching. The minimum, denoted by ν, is used in Propo-
sition 6 to investigate the overall time complexity. The au-
thors first show that E = O(νN). They then assume that
ν = O(logN), to conclude that number of edges grows at
a quasi-linear rate. If true, this would indeed demonstrate
that the procedure is optimal in a computational sense.
However, assuming ν = O(logN) appears to be begging
the question.

We need to better understand ν to know whether
the assumption is reasonable. Characterizing ν directly
is difficult, so a lower bound is the focus. Let TR =
{t ∈ T : ρ(t) ≥ 0.5} collect all treated units with a propen-
sity score greater than 0.5, and let CR be defined anal-
ogously for controls. If |TR| > |CR|, then at least D =
|TR| − |CR| units in TR must be matched with controls in
C \ CR. It follows that ν is bounded from below by D.

The next step is to characterize D. Consider when units
are sampled independently and identically distributed ac-
cording to some density f (z) over the propensity score
z ∈ [0,1]. By construction, the probability that a unit
with propensity score z is treated is z, or equivalently,
Pr(i ∈ T | ρ(i) = z) = z. It follows that

E[D] = N

∫ 1

0.5
zf (z)dz − N

∫ 1

0.5
(1 − z)f (z)dz.
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This implies that E[D] = �(N) whenever Pr(ρ(i) > 0.5)

is positive, and ν will then grow proportionally to N . For
example, if f (z) = 32(1−z)/15 for z ∈ [0,0.75] and zero
otherwise, then E[D] is about N/25.

The conclusion is that the authors’ procedure will gen-
erally not reduce the time complexity. It will reduce run-
time because it will always prune some edges, but the
runtime will grow at the same rate as without preprocess-
ing. The issue is that edges are pruned using global con-
straints, either by κ or by ν, so the same amount of prun-
ing will be done in regions where controls are plenty as
where they are scarce.

2.3 An Alternative Procedure

The authors’ goal is computational optimality. Some
practitioners may also wish to retain optimality in match
quality. An alternative preprocessing procedure is then re-
quired. Glover’s algorithm provides some helpful hints to-
ward that end.

Glover used convexity to construct matches in a greedy
fashion. He showed that the procedure yields a matching
of maximum cardinality, but the matching is not neces-
sarily of minimum cost. The reason is that a treated unit
matched to a control may force a second treated unit to be
matched to a more distant control because the first con-
trol is already matched. An optimal matching procedure
must consider such chain effects, and Glover’s greedy
construction does not. These chain effects rarely extend
throughout the sample, however, and one can greedily
prune edges while retaining optimality.

Where Glover used convexity, the procedure described
here similarly takes advantage of the underlying geome-
try of the matching problem when the costs are based on
propensity scores. In particular, when the costs are abso-
lute differences in a one-dimensional score, at least one
μ exists in M

∗ without crossing matches. Two matches
are said to be crossing if μ(t) > μ(s) for t, s ∈ T such
that t < s, where the unit indices have been sorted by the
score. If a crossing exists, the sum of edge costs can be
made weakly smaller by matching t with μ(s) and s with
μ(t). I will not prove this formally, but Figure 2 may pro-
vide some intuition.

The observation that an optimal solution exists without
crossings could prove useful more generally, and it may
even allow us to find a minimum-cost solution directly,
but it will here be used to prune edges.

FIG. 2. Matchings with (A) and without (B) crossings.

Consider the following algorithm. Sort the units by their
scores and assign indices according to their ranks. Initial-
ize a queue with capacity T , and initialize (ai, bi) = (i, i)

for each i ∈ C. Traverse the units from left to right, and do
the following for each unit i:

• If i ∈ T , enqueue i.
• If i ∈ C, dequeue the front index, j , and set ai = j . Do

nothing if the queue is empty.

Clear the queue and repeat the process, but substitute bi =
j for ai = j and traverse the units from right to left this
time. Once finished, find the minimum-cost network flow
using E = {(t, c) ∈ T × C : ac ≤ t ≤ bc} as the edge set.

This alternative approach has a few attractive proper-
ties. First, it maintains optimality with respect to the sum
of edge costs. That is, a minimum-cost matching with the
reduced edge set is a minimum-cost matching also with
the full edge set, so it is in M

∗. The reduced edge set may,
however, not retain optimality with respect to more intri-
cate network flow problems.

Second, disregarding the time spent on initialization,
the procedure traverses the units twice with a constant
time requirement for each unit. This is approximately
the same runtime as two calls to Glover’s algorithm. The
overall complexity, including the sorting during initializa-
tion, is quasi-linear.

Third, the pruning is local. That is, the pruning will be
more aggressive in regions where controls are plenty and
more conservative in regions where they are scarce. This
will remove more edges than the corresponding global re-
strictions. In the worst case, the number of retained edges
is still O(N2), but this tends to happen when overlap (in
the causal inference sense) is poor, and we might be oc-
cupied by statistical concerns in such situations.

3. CONCLUDING REMARKS

Readers should remember that covariate adjustments
using matching largely is an exercise in heuristics. The-
oretical discussions of matching methods, including my
comments here, have yet to prove themselves particularly
informative. Instead, experience gained from either ap-
plications or simulation studies provide the most help-
ful insights. The usefulness of the preprocessing proce-
dure the authors describe becomes clear when seen in this
more pragmatic light. Samples containing several million
observations are rare, but samples with a few hundred
thousand observations are common. The authors’ proce-
dure and their R package make complex network flow
matching possible in these moderately large samples. This
makes it an important and welcome contribution.

Before practitioners start pruning edges, however, there
are a few things they may wish to consider. First, the pur-
pose of the caliper in the authors’ procedure differs from
its typical use. Calipers are conventionally used to prune
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treated units that lack matches of sufficiently high qual-
ity. Here, the caliper is used to prune edges. In fact, the
caliper is chosen under the restriction that it cannot ex-
clude any treated units. If a caliper is used for its con-
ventional purpose, there is no reason to separately prune
edges in this way because a conventional caliper will be
smaller than κ. Edge pruning based on nearest neighbors
may, however, still be useful.

Second, practitioners do not always need complex
matching procedures for their investigations. I have en-
countered researchers desperately trying to find a match-
ing method that will work when the number of observa-
tions is in the millions, only to discover that they want
to match on a handful of binary covariates. The best
approach in such cases is exact matching or stratifica-
tion. Even stratification on coarsened continuous vari-
ables might be reasonable because large samples allow
the coarsening to be quite detailed. The authors mention
that fine-balancing constraints might be difficult to im-
pose in such cases. The strata can, however, be added to
one large network flow problem after stratification to at-
tend to such concerns. This is essentially what the authors
do in their application when they match exactly on the
463 surgical procedures. These more straightforward ap-
proaches are not perfect, but they do attend to most of the
covariate imbalances while retaining the simplicity that
often prompts practitioners to choose matching in the first
place.

Finally, readers may find interest in some recent work
on matching in large samples not cited by the authors.
Bennett, Vielma and Zubizarreta (2018) show that the
integer programming problem underlying the matching
problem can be relaxed to a more tractable linear pro-
gram. They also construct a reference group, or template,
to which the units are matched. The reference group can
be made considerably smaller than the overall sample,
thereby reducing runtime. When using the two techniques
in conjunction, Bennett et al. demonstrate that samples
with more than 700,000 units can be matched using fine
balancing objectives within minutes.

My own work together with Michael Higgins and Jas-
jeet Sekhon (2017) may also be of interest. We explore the
idea that much of the information needed to solve fairly
complex matching problems can be encoded in sparse, un-
weighted graphs. In particular, such graphs can be con-
structed to encode both information about the similarity

between units and various matching constraints. Finding
matchings in a sparse graph is considerably simpler than
the original problem. We leverage this insight to con-
struct an approximation algorithm for a generalized ver-
sion of full matching which terminates in O(N logN)

time whenever the underlying metric space allows for
nearest neighbor search in O(logN) time. A simulation
study demonstrates that an implementation of the algo-
rithm in R can match 100 million observations within 15
minutes.
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