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A Nonparametric Super-Efficient Estimator of
the Average Treatment Effect1

David Benkeser, Weixin Cai and Mark J. van der Laan

Abstract. Doubly robust estimators are a popular means of estimating
causal effects. Such estimators combine an estimate of the conditional mean
of the outcome given treatment and confounders (the so-called outcome re-
gression) with an estimate of the conditional probability of treatment given
confounders (the propensity score) to generate an estimate of the effect of
interest. In addition to enjoying the double-robustness property, these estima-
tors have additional benefits. First, flexible regression tools, such as those de-
veloped in the field of machine learning, can be utilized to estimate the rele-
vant regressions, while the estimators of the treatment effects retain desirable
statistical properties. Furthermore, these estimators are often statistically ef-
ficient, achieving the lower bound on the variance of regular, asymptotically
linear estimators. However, in spite of their asymptotic optimality, in prob-
lems where causal estimands are weakly identifiable, these estimators may
behave erratically. We propose new estimation techniques for use in these
challenging settings. Our estimators build on two existing frameworks for ef-
ficient estimation: targeted minimum loss estimation and one-step estimation.
However, rather than using an estimate of the propensity score in their con-
struction, we instead opt for an alternative regression quantity when building
our estimators: the conditional probability of treatment given the conditional
mean outcome. We discuss the theoretical implications and demonstrate the
estimators’ performance in simulated and real data.

Key words and phrases: Causal inference, average treatment effect, asymp-
totic linearity, efficient influence function, collaborative targeted minimum
loss estimation, super efficiency.

1. INTRODUCTION

In many areas of research, the scientific question of in-
terest can often be answered by drawing statistical infer-
ence about the average effect of a treatment on an out-
come. Depending on the setting, this “treatment” might
correspond to an actual therapeutic treatment, a harmful
exposure, or a policy intervention. We use Y(1) to denote
the potential outcome of a typical data unit sampled from
the population of interest when the unit receives the treat-
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ment of interest, and Y(0) to denote the potential outcome
if that unit instead receives control. In this work, we focus
on estimation of the average treatment effect (ATE), the
average difference between Y(1) and Y(0) in the popula-
tion of interest.

Often, due to ethical or logistical constraints, units can-
not be randomly assigned to receive/not receive the treat-
ment. Thus, to draw valid conclusions about the ATE, we
require methodology that adjusts for confounding of the
treatment/outcome relationship. Although epidemiologi-
cal and other applied literatures are still considering the
relative merits of various methodologies, the statistical
literature has provided direction through consideration of
semiparametric efficient methods. The literature provides
many examples of such estimators. In some situations,
regularized or sieve maximum likelihood estimators can
be used (e.g., van der Vaart, 1998); however, this gener-
ally requires careful selection of tuning parameters. Ex-
isting literature lacks general guidelines for how such pa-
rameters can be chosen in practice, which limits the util-
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ity of these strategies. On the other hand, methods that
are built around a causal effect parameter’s efficient in-
fluence function offer a more straightforward approach
to estimation. Foremost amongst these approaches are
one-step estimation (Ibragimov and Has’minskiı̆, 1981,
Pfanzagl, 1982, Bickel et al., 1998) and targeted minimum
loss estimation (TMLE) (van der Laan and Rubin, 2006,
van der Laan and Rose, 2011).

The efficient influence function often depends on the
observed data distribution through certain key nuisance
parameters. In the context of the ATE, these nuisance pa-
rameters are the conditional mean of the outcome given
treatment and confounders (the so-called outcome regres-
sion, OR), the conditional probability of treatment given
confounders (the so-called propensity score, PS), and the
distribution function of confounders in the population of
interest. Once estimators of these key quantities are avail-
able, each methodology provides its own recipe for com-
bining the relevant nuisance estimators into an estimate of
the causal effect of interest. Assuming nuisance estima-
tors satisfy regularity conditions, the resulting estimators
of the ATE, when appropriately centered and scaled, con-
verge in distribution to a mean-zero Gaussian variate with
variance equal to the semiparametric efficiency bound for
regular estimators. In addition to efficiency, the estima-
tors are doubly-robust, meaning that they are consistent
for the causal effect of interest even if one of the OR or
PS is inconsistently estimated.

One of the key assumptions underlying any methodol-
ogy for estimating the ATE using observational data is
the strong positivity assumption, which stipulates that the
PS must be bounded between zero and one almost ev-
erywhere. That is, if we define strata of data units based
on their observed confounders, any stratum with posi-
tive support must have some probability of receiving and
not receiving the treatment. If this condition fails, then
the ATE is not identifiable from observed data. More-
over, even if the condition holds theoretically, in prac-
tice there may be small estimated propensity scores –
so-called practical violations of the positivity assumption
(Petersen et al., 2012). In such cases, the one-step estima-
tor and TMLE can suffer from erratic, nonrobust behavior.

To combat this behavior, various extensions have been
proposed including collaborative TMLE (CTMLE) (van
der Laan and Gruber, 2010, Gruber and van der Laan,
2010, Stitelman and van der Laan, 2010, Wang, Rose and
van der Laan, 2011, also see Luo, Zhu and Ghosh, 2017
for a related approach based on balancing subspaces). In
the CTMLE approach, the OR and PS are estimated col-
laboratively, by selecting an estimate of the PS based on
how well it tunes an estimate of the OR. From a theoret-
ical point of view, the goal of the collaborative estima-
tion of the PS is to generate a TMLE that is more robust
in finite samples than a typical TMLE (which relies on a

direct, noncollaborative estimate of the PS), but that nev-
ertheless maintains the asymptotic efficiency of a typical
TMLE. Many proposed methods for constructing CTM-
LEs are designed specifically for settings with practical
positivity violations, for example by: choosing a trunca-
tion level for estimated propensities, selecting variables to
be included in the PS, or tuning particular machine learn-
ing algorithms (Ju et al., 2019a, 2019b, Ju, Schwab and
van der Laan, 2019). These works show that CTMLE can
provide greater robustness than TMLE in challenging sit-
uations.

In spite of the putative benefits of CTMLE, these esti-
mators are not widely used. There may be several reasons
why. First, the approach involves many decision points
for the analyst, who must select an increasingly complex
sequence of estimators for the PS and implement each
of these estimators. Second, the approach often involves
extended computation time relative to traditional doubly-
robust methods. In particular, cross-validation is needed
to validate which PS method should be selected from
amongst the user-chosen sequence. Third, from a theo-
retical perspective, performing robust inference based on
existing CTMLE approaches is also challenging, involv-
ing either strong assumptions on nuisance estimators (see
Appendix 17 of van der Laan and Rose, 2011) or addi-
tional iterative computational steps (van der Laan, 2014).

In this work, we seek to overcome these limitations via
a new approach to CTMLE. The twist in the present pro-
posal relative to existing CTMLE approaches is that we
assume the OR estimator is consistent at a fast rate. As-
suming this consistency, we provide an alternative target
for a PS estimator that is explicitly adaptive to the OR. In
particular, rather than estimating the true PS, we recom-
mend estimating the propensity for receiving treatment as
a function of the estimated OR. This low-dimensional re-
gression can be substituted in place of an estimator of the
true PS in a standard TMLE or one-step procedure. We
show that, when appropriately scaled, the resultant esti-
mator is asymptotically Normal with variance that is gen-
erally smaller than that of an efficient estimator. Thus, our
proposal provides a new approach to CTMLE that is tai-
lored both for small- and large-sample and performance.

2. BACKGROUND

2.1 Identification of ATE

Suppose we observe n independent copies of O :=
(W,A,Y ), where W ∈ W is a vector of putative con-
founders, A ∈ {0,1} is a binary treatment, and Y ∈ [0,1]
is the outcome of interest. Our assumption that Y ∈ [0,1]
does not sacrifice any generality of our proposed method-
ology. We denote by P0 the probability distribution of O

and assume that P0 is an element of a model M, which
we take to be a nonparametric model.
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As above, we use Y(1) and Y(0) to denote the coun-
terfactual outcomes under treatment and no treatment, re-
spectively. For a = 0,1, we denote by P a

0 the probability
distribution of Y(a). The ATE is defined as EP 1

0
[Y(1)] −

EP 0
0
[Y(0)], the difference in average outcome if the en-

tire population were assigned to receive A = 1 versus
A = 0. The ATE is identifiable from the observed data
under the following assumptions: consistency, Y = Y(a) |
A = a; no interference: Yi(a) does not depend on Aj for
j �= i; ignorability: A ⊥ (Y (1), Y (0))|W ; and positivity:
prP0

{0 < prP0
(A = 1 | W) < 1} = 1. The first two as-

sumptions are needed in order to have well-defined coun-
terfactual random variables. The ignorability condition is
satisfied if there are no unmeasured confounders of A and
Y , while the positivity criterion stipulates that every unit
has a chance of receiving A = 1 and A = 0. If these as-
sumptions hold, the average treatment effect is identified
by the G-computation formula

(1)

EP 1
0

[
Y (1)] − EP 0

0

[
Y (0)]

= EP0

[
EP0(Y | A = 1,W)

− EP0(Y | A = 0,W)
]
.

2.2 Estimators of the ATE

For simplicity, we hence consider estimation of ψ1
0 :=

EP0[EP0(Y | A = 1,W)], which we refer to as the treat-
ment-specific mean. When discussing the OR, we will
write OR1 to refer to Q̄1

0(W) := EP0(Y | A = 1,W), the
true conditional mean of Y given W amongst units ob-
served to receive the treatment A = 1. Symmetric argu-
ments can be made about ψ0

0 := EP0[EP0(Y | A = 0,W)].
At the end of this subsection, we comment on how these
may be combined to estimate the ATE, ψ0 := ψ1

0 − ψ0
0 .

For each w ∈ W , we denote by Q̄1
0(w) := EP0(Y | A =

1,W = w) the true OR1 evaluated at W = w and denote
by Q̄1

n(w) an estimate of Q̄1
0(w) based on O1, . . . ,On.

We use Q̄1 to denote the model for the OR1 implied by
M; that is, Q1 is a collection of all possible OR1’s al-
lowed by M. Similarly, for each w ∈ W , we denote by
Ḡ0(w) the true PS evaluated at W = w, by Ḡn(w) an esti-
mate of Ḡ0(w), and by Ḡ the model for the PS implied by
M. Finally, for each w ∈ W , we denote by Q0,W (w) :=
prP0

(W ≤ w) the distribution function of the vector of
confounders. In the remainder, we use the empirical dis-
tribution Qn,W (w) := n−1 ∑n

i=1 1(Wi ≤ w), where 1 is
the indicator function, as estimate of Q0,W . We denote by
QW the model for Q0,W implied by M. It is useful to our
discussion to regard the parameter of interest as a map-
ping �1 from Q1 := Q̄1 × QW to [0,1]. That is, given
a Q1 := (Q̄1,QW) ∈ Q, �1(Q1) := ∫

Q̄1(u) dQW(u) is
the value of the treatment-specific mean implied by the
OR1 Q̄ and confounder distribution QW . Thus, denoting

by Q1
0 := (Q̄1

0,Q0,W ) the true values of these quantities,
we have ψ1

0 = �1(Q1
0).

We remind readers that a regular (see Appendix A in
the Supplementary Material (Benkeser, Cai and van der
Laan, 2020)) estimator ψ1

n of ψ1
0 is asymptotically lin-

ear if and only if ψ1
n − ψ1

0 behaves approximately as an
empirical mean of a mean-zero, finite-variance function
of the observed data. This function is referred to as the
estimator’s influence function. Depending on the chosen
model, there may be a large class of possible influence
functions of regular estimators. The influence function in
this class that has the smallest variance is referred to as
the efficient influence function (EIF). Any estimator with
influence function equal to the EIF is said to be efficient
amongst regular, asymptotically linear estimators. Given
Q1 ∈Q1, Ḡ ∈ Ḡ, and a typical observation o, we define

D1(
o | Q̄1,QW, Ḡ

)

:= a

Ḡ(w)

[
y − Q̄1(w)

] + Q̄1(w)

−
∫

Q̄1(u) dQW(u).

The efficient influence function of �1 relative to M for
data generated from P0 is D∗(· | Q̄1

0,Q0,W , Ḡ0).
Several frameworks exist for constructing estimators

with a user-specified influence function. By selecting the
EIF, these frameworks can be used to generate efficient
estimators. We focus on the one-step and targeted min-
imum loss estimation frameworks. For our discussion,
it is useful to introduce the idea of a plug-in estimator.
We denote by Q1

n := (Q̄1
n,Qn,W ) an estimate of Q1

0 :=
(Q̄1

0,Q0,W ). A plug-in estimate of ψ1
0 is one of the form

�1(Q1
n) = ∫

Q̄1
n(u) dQn,W (u) = n−1 ∑n

i=1 Q̄1
n(Wi). The

one-step estimator ψ1
n,+ applies an EIF-based correction

to the plug-in estimate,

ψ1
n,+ := �1(

Q1
n

) + 1

n

n∑
i=1

D1(
Oi | Q̄1

n,Qn,W , Ḡn

)
.

TMLE is a general framework for constructing plug-
in estimators that satisfy, possibly several, user-specified
equations. The framework is implemented in two steps.
First, initial estimators of relevant nuisance parameters
(e.g., OR1 and PS) are generated using a user-chosen
technique. Subsequently, the initial estimates are carefully
modified such that (i) the modified estimators inherit de-
sirable properties of the initial estimators (e.g., their rate
of convergence); and (ii) relevant, user-specified equa-
tions are satisfied. For the present problem, a TMLE can
be implemented by first generating an initial estimate Q̄1

n

of the OR1 and Ḡn of the PS. The regression estimator of
OR1 is subsequently updated to a targeted estimator Q̄1

n,∗,
such that the EIF estimating equation, n−1 ∑n

i=1 D1(Oi |
Q̄1

n,∗,Qn,W , Ḡn) = 0, is satisfied. This can be achieved,
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for example, by defining a logistic regression working
model for OR1 with logit(Q̄1

n) as an offset, no inter-
cept term, and a single covariate H 1

n . For each a ∈ {0,1}
and w ∈ W , we define this covariate as H 1

n (a,w) :=
a/Ḡn(w). The maximum likelihood estimator (MLE) εn

of the regression coefficient ε associated with the co-
variate H 1

n is estimated (e.g., via iteratively reweighted
least squares). For each w ∈ W , we define the so-called
targeted OR estimator, Q̄1

n,∗(w) = expit{logit[Q̄1
n(w)] +

εnH
1
n (1,w)}. It is straightforward to show that the score

of the coefficient ε at ε = 0 evaluated at a typical ob-
servation o, equals D1(o | Q̄1

n,∗,Qn,W , Ḡn); thus, we
may deduce that the EIF estimating equation is satis-
fied by the updated estimate of OR1 Q̄1

n,∗. The TMLE
ψ1

n,∗ of ψ1
0 is computed as the plug-in estimator based

on the modified estimate of OR1. That is, we define
Qn,∗ = (Q̄1

n,∗,Qn,W ) and compute the TMLE as ψ1
n,∗ =

�1(Qn,∗) = ∫
Q̄1

n,∗(u) dQn,W (u) = 1/n
∑n

i=1 Q̄1
n,∗(Wi).

A symmetric argument can be used to generate one-step
and TMLE estimates, respectively ψ0

n,+ and ψ0
n,∗ of ψ0

0 .
In this case, we replace D1 above by

D0(
o | Q̄0,QW, Ḡ

)

:= 1 − a

1 − Ḡ(w)

[
y − Q̄0(w)

] + Q̄0(w)

−
∫

Q̄0(u) dQW(u),

where Q̄0 is a regression function in the model Q̄0 for
the conditional mean of Y given W and A = 0. We
again regard the parameter of interest as a mapping �0

from Q0 := Q̄0 × QW to [0,1], where for a given Q0 =
(Q̄0,QW), �0(Q0) = ∫

Q̄0(u) dQW(w). The one-step
estimator of ψ0

0 is

ψ0
n,+ := �0(

Q̄0
n

) + 1

n

n∑
i=1

D0(
Oi | Q̄0

n,Qn,W , Ḡn

)
,

where Q̄0
n is a user-selected estimate of Q̄0

0. The TMLE
proceeds exactly as above but replaces Q̄1

n with Q̄0
n and

replaces H 1
n by H 0

n := (1−a)/{1−Ḡn(w)}. The one-step
estimator and TMLE of the ATE can then be computed as
ψ1

n,+ − ψ0
n,+ and ψ1

n,∗ − ψ0
n,∗, respectively.

We remark that both the one-step and TMLE frame-
works can be seen as first generating an initial estimate
based on the OR and subsequently applying a correction
procedure that involves an estimate of the PS. This view
of the estimators is useful to our discussion below.

2.3 Large-Sample Theory

We hence focus discussion on the TMLE of ψ1
0 , with

the understanding that similar arguments apply to the one-
step estimator, and to estimators of ψ0

0 and the ATE. To

study large-sample behavior of the TMLE of ψ1
0 , we note

that under assumptions �1(Q1
n,∗) − �1(Q1

0) equals

(2)

1

n

n∑
i=1

D
(
Oi | Q̄1∗,Q0,W , Ḡ

)

+ R2
(
Q̄1

n, Q̄
1
0, Ḡn, Ḡ0,Q0,W

) + op
(
n−1/2)

,

where (Q̄1∗, Ḡ) is the in-probability limit of (Q̄1
n,∗, Ḡn).

A discussion of the involved assumptions and derivation
of this equation is included in the supplemental materials.
The term R2 is a second-order remainder that involves a
difference between (Q̄1

n,∗, Ḡn) and (Q̄1
0, Ḡ0),

(3)

R2
(
Q̄1

n,∗, Q̄1
0, Ḡn, Ḡ0,Q0,W

)

:=
∫ [

Ḡn(u) − Ḡ0(u)

Ḡn(u)

]

· [
Q̄1

n,∗(u) − Q̄1
0(u)

]
dQ0,W (u).

A key step in establishing asymptotic linearity of a TMLE
is showing that R2 is asymptotically negligible, that is,
R2(Q̄

1
n,∗, Q̄1

0, Ḡn, Ḡ0,Q0,W ) = op(n
−1/2). The typical

approach to ensuring the negligibility of R2 is to generate
estimates Q̄1

n,∗ and Ḡn of Q̄1
0 and Ḡ0 that satisfy that both

Q̄1
n,∗ − Q̄0 and Ḡn − Ḡ0 are op(n

−1/4) with respect to the
L2(P0) norm. A crucial difference between our proposed
methodology and typical one-step or TMLE estimation is
in the strategy for controlling R2. We return to this point
later.

Assuming that we are able to establish the negligibil-
ity of R2, then (2) implies that the TMLE is asymp-
totically linear with influence function equal to D1(· |
Q̄1∗,Q0,W , Ḡ). If indeed Q̄1

n,∗ and Ḡn are L2(P0)-con-
sistent estimates of Q̄1

0 and Ḡ0, respectively, then the in-
fluence function of the TMLE equals the EIF and thus,
by definition, the TMLE is efficient. Moreover, the cen-
tral limit theorem implies that n1/2(ψ∗

n − ψ0) converges
in distribution to a mean-zero Gaussian variate with vari-
ance σ 2

0 := EP0[D(O | Q̄1
0,Q0,W , Ḡ0)

2].
We note an additional interesting feature of efficient es-

timators of the treatment-specific mean: they are doubly-
robust. That is, the estimated treatment-specific mean is
consistent for the true treatment-specific mean if either the
estimated OR1 consistently estimates the true OR1, the es-
timated PS consistently estimates the true PS, or both esti-
mators are consistent. The double robustness stems from
two features of the present problem. First, the influence
function of a locally efficient estimator has mean zero un-
der consistent estimation of either OR1 or the PS. Second,
if at least one of OR1 and PS consistently estimated, the
cross-product structure of (3) implies that the remainder is
converging to zero in probability. This latter point is espe-
cially important to our subsequent developments. We will
see that our method for controlling R2 ensures asymptotic
linearity, but sacrifices the doubly robust behavior of the
remainder term.
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2.4 Small-Sample Considerations

As with any asymptotic analysis, the results of Sec-
tion 2.3 provide conditions under which estimators are
well-behaved in large samples, but provide no guaran-
tees of small-sample performance. In particular, in set-
tings where the target estimand is weakly identifiable, the
TMLE and one-step may be unstable in spite of the their
asymptotic optimality. For example, when the PS may as-
sume very small values, the variance of the EIF may be
large, which can cause erratic behavior of estimators. In
the context of TMLE for the treatment-specific mean, this
instability may manifest in the estimation the working
model parameter ε. The covariate H 1

n in the parametric
working model may have extremely large values, leading
to a targeted estimate of OR1, Q̄1

n,∗, whose performance
is considerably deteriorated relative to the initial estimate
of OR1 Q̄1

n,∗.
Often, the analyst has little prior information that would

suggest whether or not such issues are present in a given
analysis. Thus, we are motivated to consider automated
procedures for constructing OR and PS estimators that are
adaptive to near positivity violations. One such proposal is
CTMLE. A CTMLE can be constructed using a sequence
of PS estimators that increase in complexity. For example,
in the context of estimating the treatment-specific mean,
we may start our sequence with an intercept-only logis-
tic regression model and build a sequence ranging from
that simple estimator to a flexible semiparametric estima-
tor such as kernel regression. The sequence of candidate
PS estimators of is used to generate a sequence of tar-
geted ORs. The best of the targeted ORs is selected via
cross-validation and is used to create a plug-in estima-
tor. The principle underlying CTMLE is that the estimator
searches for a reduced-dimension alternative to the true
PS that is adaptive to how well the estimated OR fits the
true OR. If the initial OR estimate provides a good fit,
then there may be little benefit (or even detriment) to per-
forming a TMLE correction based on a PS with extremely
small values. On the other hand if the initial OR is a poor
fit, then we may in fact benefit from such a correction.
CTMLE can adapt to each of these situations. Because
CTMLE is based on a sequence of increasingly nonpara-
metric PS estimators, the procedure will, with probabil-
ity tending to 1, select the last consistent estimator of the
true PS in the sequence. Thus, in large samples, CTMLE
is expected behave similar to a standard TMLE. In this
respect, CTMLE may be generally viewed as a proce-
dure that offers finite-sample improvements over standard
TMLE, while maintaining its asymptotic efficiency.

The above discussion of efficiency and finite-sample
considerations can be viewed in a more general lens than
the context of nonparametric estimation of the ATE. In
particular, these issues apply to a more broad set of prob-
lems that involve observed data structures that can be rep-
resented as a coarsened at random (CAR) version of a

full data structure, while many models and parameters
relevant to causal inference are special cases of this set-
ting. The general CAR setting is discussed further in Ap-
pendix C.

3. METHODS

We now propose a particular CTMLE for the treatment-
specific mean that is robust to near positivity violations,
but avoids the sequential PS estimator selection that is
typical of other CTMLE proposals. The distinct aspect of
the current proposal relative to previous CTMLE-based
proposals is that we rely fully on Q̄1

n converging to Q̄1
0

faster than n−1/4 with respect to L2(P0)-norm. Because
the OR estimator is consistent, any PS estimator will lead
to a consistent estimate of the treatment-specific mean,
due to the double-robustness of the EIF. However, our
procedure asks for a more stringent property on the adap-
tive PS estimator. We require that the resulting CTMLE
be asymptotically linear, and thereby maintain a Normal
limiting distribution. The challenge in so-doing is that our
selected PS estimator is generally inconsistent for the true
PS. Previous work has shown that, even when a nonpara-
metric estimate of the OR is consistent, inconsistent esti-
mation of the PS can have serious implications for the be-
havior of one-step estimators and TMLEs (van der Laan,
2014, Benkeser et al., 2017). The issue stems from the fact
that the second-order remainder is generally not asymp-
totically negligible. Thus, the key in achieving our goal is
to choose an adaptive PS estimator such that the second-
order remainder remains asymptotically negligible under
reasonable conditions. In Theorem 1, we establish that
this goal can be achieved by using an estimate of

Ḡ0
(
w | Q̄1

0
) := prP0

[
A = 1 | Q̄1

0(W) = Q̄1
0(w)

]
rather than an estimate of the true PS. In words, Ḡ0(· |
Q̄1

0) describes the probability of receiving treatment as
a function of the conditional mean outcome amongst the
treated. This adaptive PS estimate is substituted into the
usual TMLE (or one-step) procedures for estimation and
inference.

Our proposed CTMLE is implemented in the following
steps:

1. estimate OR: regress Y on W amongst units ob-
served to receive treatment A = 1 to obtain Q̄1

n;
2. predict outcome: use estimated OR to obtain a pre-

diction Q̄1
n(Wi) for i = 1, . . . , n;

3. estimate adaptive PS: regress A on predictions
Q̄1

n(Wi) to obtain adaptive PS estimate Ḡn(· | Q̄1
n);

4. predict PS: use estimated PS to obtain prediction
Ḡn(Wi | Q̄1

n) for i = 1, . . . , n;
5. fit OR working model: fit logistic regression of out-

come Y on covariate H 1
n (A,W) := A/Ḡn(W | Q̄1

n) with
offset logit[Q̄1

n(W)]; denote by ε1
n,# the estimated coeffi-

cient;
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6. target OR estimate: use OR working model to
obtain a prediction Q̄1

n,#(Wi) = expit{logit[Q̄1
n(Wi)] +

ε1
n,#H

1
n (1,Wi)} for i = 1, . . . , n;

7. compute plug-in estimate: the CTMLE is ψ1
n,# :=

n−1 ∑n
i=1 Q̄1

n,#(Wi).

A description of the collaborative one-step (COS) estima-
tor is included in Appendix E. Sample R code to compute
the estimators is included in Appendix F.

The following theorem establishes the weak conver-
gence of the proposed estimator. We explicitly discuss
regularity conditions in Appendix G and strategies for
weakening these conditions in Appendix F.

THEOREM 1. Under the regularity conditions in Ap-
pendix G,

ψ1
n,# − ψ1

0 = 1

n

n∑
i=1

D1(
Oi | Q̄1

0,Q0,W , Ḡ0
(· | Q̄1

0
))

+ op
(
n−1/2)

,

and n1/2(ψ1
n,# − ψ1

0 ) converges in distribution to a mean-
zero Normal variate with variance τ 2

0 := EP0[D1(O |
Q̄1

0,Q0,W , Ḡ0(· | Q̄1
0))

2].
The asymptotic variance τ 2

0 is generally smaller than
that of the standard TMLE σ 2

0 , so that the proposed esti-
mator is super efficient. That is, at any fixed data distri-
bution in M, this CTMLE will be asymptotically more
efficient than the standard TMLE.

3.1 Variance Estimation

We propose to estimate the standard error of ψ1
n,#,

based on a cross-validated estimate of the variance of
the influence function. Specifically, consider a V -fold
cross-validation scheme, wherein data are randomly parti-
tioned into V blocks of approximately equal size. For v =
1, . . . , V , denote by Vv ⊂ {1, . . . , n} the indices of units in
each block. For i = 1, . . . , n, we denote by Q̄1

n,v(Wi) the
predicted outcome for observation i based on an OR es-
timate fit when observation i was in the hold-out block.
That is, to obtain Q̄1

n,v , we regress Yi on Wi in units
with Ai = 1 and i ∈ {1, . . . , n} \ Vv . Then we use this fit-
ted regression to obtain predictions based on Wj, j ∈ Vv .
Similarly, we denote by Ḡn,v(· | Q̄1

n,v) the vth estimated
adaptive PS, v = 1, . . . , V . This quantity is computed by
regressing Ai on Q̄1

n,v(Wi) for i ∈ {1, . . . , n} \ Vv . This
regression is then used to obtain predictions based on
Q̄1

n,v(Wj ), j ∈ Vv , which we denote by Ḡn,v(Wj | Q̄1
n,v).

Finally, let Qn,W,v denote the empirical distribution of W

based on {Oi : i ∈ Vv}, v = 1, . . . , V .
The cross-validated variance estimator is

τ 2
n := 1

V

V∑
v=1

[
1

|Vv|
∑
i∈Vv

(D1
n,v,i − D̄1

n,v)
2
]
,

where for v = 1, . . . , V and i = 1, . . . , n,

D1
n,v,i := D1(

Oi | Q̄1
n,v,Qn,W,v, Ḡn,v

(· | Q̄1
n,v

))
,

D̄1
n,v := 1

|Vv|
∑
j∈Vv

D1
n,v,j .

REMARK. For notational simplicity, we have fo-
cused on presenting an estimate of the treatment-specific
mean. An estimate of ψ0

0 can similarly be obtained.
In steps 1-5, we replace A = 1 with A = 0, Q̄1

n with
Q̄0

n, H 1
n with H 0

n (A,W) := (1 − A)/{Ḡn(W | Q̄0
n)},

and ε1
n,# with ε0

n,#. In step 6, we compute Q̄0
n,#(Wi) :=

expit{logit[Q̄0
n(Wi)] + ε0

n,#H
0
n (0,Wi)} for each observed

data unit, i = 1, . . . , n. In step 7, the final estimate is
ψ0

n,# := 1/n
∑n

i=1 Q̄0
n,#(Wi). Thus, the final estimate of

the ATE is ψ1
n,# − ψ0

n,#. The formula for an estimate of
the variance of this estimator is provided in Appendix D.

Alternatively, we also propose a CTMLE that directly
targets the ATE in Appendix D. The major difference is
that the adaptive PS now involves a two-dimensional re-
gression of A on both OR1 and OR0.

4. SIMULATIONS

We evaluated the performance of the proposed collab-
orative estimators relative to their standard counterparts
in two simulation studies. We focus our presentation on
comparing CTMLE and TMLE results, while a compari-
son of the one-step estimators is included in Appendix G.
The first simulation evaluated the relative performance
of CTMLE vs. TMLE as a function of sample size and
strength of positivity violations. In this setting the esti-
mators of the OR and PS are based on correctly-specified
parametric models. The results demonstrate the behavior
the proposed estimators as a function both of sample size
and strength of positivity violations. The second simula-
tion offers a competitive setting for comparing the various
estimators. In this setting, both the OR and PS are highly
nonlinear functions of the covariates and involve complex
covariate interactions. To consistently estimate these com-
plex functions, we utilize the highly adaptive loss min-
imum loss estimator (HAL-MLE) (van der Laan, 2017,
Benkeser and van der Laan, 2016). This estimator has
been shown to the requisite regularity conditions of Theo-
rem 1 under extremely mild assumptions on the true nui-
sance parameters.

In both simulation settings, we generated and analyzed
1000 Monte Carlo replicate data sets in each setting at
each sample size. We evaluated the estimators on their
bias, variance, and mean-squared error. To better illustrate
differences across sample sizes, we plot bias and variance
on a log-scale. We also present visualizations of the es-
timated sampling distributions of the scaled and centered
sampling distributions. Further, we present the coverage



490 D. BENKESER, W. CAI AND M. J. VAN DER LAAN

probability of nominal 95% Wald-style confidence inter-
vals based on the Monte Carlo standard deviation of the
estimators (i.e., an oracle confidence interval) and based
on influence function-based standard error estimates.

All code used to produce these simulations is included
in web supplement B (Benkeser, Cai and van der Laan,
2020).

4.1 Simulation 1

For each sample size n ∈ {100,500,1000} we gener-
ated data as follows. W was an eight-variate vector. We
drew the first seven components (W1, . . . ,W7) of W from
a from an Uniform distribution on [−1.5,1.5]7. The final
component W8 of W was drawn from a Bernoulli(0.5) dis-
tribution. Given W = w, the treatment A was drawn from
a Bernoulli distribution with success probability Ḡ0(w) =
expit(0.5γ − γw8 + ∑7

j=1 21−jwj ). Given W = w and
A = a, the outcome Y was drawn from a Normal dis-
tribution with unit variance and mean Q̄0(a,w) = a −∑7

j=1 21−jwj . The true ATE in this setting is one. We in-
duced positivity violations by choosing increasingly large
values of γ . We evaluated three choices, γ ∈ {0,3,6},
which bounded the PS in (0.05, 0.95), (0.01, 0.99), and
(0.003, 0.997), respectively. The standard TMLE and one-
step estimators used correctly-specified logistic regres-

sion for the PS and correctly-specified linear regression
for the OR. The CTMLE and collaborative one-step used
correctly-specified linear regression for the OR and HAL-
MLE for the adaptive PS.

In settings with no positivity issues (γ = 0), we found
that CTMLE and TMLE performed approximately equiv-
alently, though CTMLE offered modest benefits at the
smallest sample size (Figure 1). As γ increased, propen-
sity scores were pushed towards zero and one, and we
saw increased performance of CTMLE relative to TMLE.
CTMLE offered significant improvements both in terms
of bias and variance, and was more than four times as ef-
ficient in the γ = 6, n = 100 scenario. The sampling dis-
tribution of both estimators was well approximated by the
reference asymptotic distribution as indicated by nominal
coverage of oracle confidence intervals (Figure 2, Panel
A). However, while the estimated standard errors of the
TMLE estimator performed well in larger samples, the es-
timated standard errors of CTMLE had poor performance,
often underestimating the true variability of the estimator
(Figure 2, Panel B).

Results for the collaborative one-step vs. standard one-
step estimator were essentially the same as for TMLE
(Appendix G).

FIG. 1. Results for simulation 1 comparing CTMLE and TMLE. Each panel displays a different performance metric and each sub-panel displays
results for γ ∈ {0,3,6}, representing, respectively, settings with no positivity, moderate positivity, and extreme positivity violations. Panel A: Bias
(log-scale) of the estimators. Panel B: Variance (log-scale) of the estimators. Panel C: Relative efficiency (defined as ratio of mean squared-error)
of CTMLE to TMLE. Numbers below one indicate greater efficiency of CTMLE. Panel D: Kernel density estimates of sampling distributions using
a Gaussian kernel and Silverman’s rule of thumb bandwidth (Silverman, 1986).
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FIG. 2. Results for simulation 1 comparing confidence intervals for
CTMLE and TMLE. Each panel displays the coverage as a function of
sample size and each sub-panel displays results for γ ∈ {0,3,6}. Panel
A: Coverage probability of nominal 95% oracle confidence intervals.
Panel B: Coverage probability of nominal 95% confidence intervals
based on estimated standard errors.

4.2 Simulation 2

We based this simulation setting on the oft-cited Kang
and Schafer (2007) simulation design. This design is no-
toriously challenging for causal effect estimators due to
extremely nonlinear covariate relationships in the OR and
PS and highly complex interactions between covariates.
In our simulation, we drew Z1 from a Uniform(0.5, 2)
distribution and drew Z2, . . . ,Z5 from a Uniform distri-
bution on [−2,2]4. Given Z = z, the treatment A was
drawn from a Bernoulli distribution with success proba-
bility Ḡ0(z) = expit(−Z1 + 0.5Z2 − Z3 − 0.1Z4 + Z5 +
0.75Z2

5). Given Z = z and A = a, the outcome Y was
drawn from a Normal distribution with unit variance and
mean Q̄0(a, z) = 210 + 27.4Z1 + 13.7Z2 + 13.7Z3 +
13.7Z4. The true ATE is zero and the true PS is bounded
between (0.004, 0.999). A challenge of this simulation
setting is that the covariates Z are not available and we
must instead base our estimation on W = W1, . . . ,W5,
where

W1 = exp(Z1/2), W2 = Z2/
[
1 + exp(Z1)

] + 10,

W3 = [
(Z1Z3)/25 + 0.6

]3
,

W4 = (Z2 + Z4 + 20)2, W5 = Z5.

As such, the true PS and OR, when expressed as func-
tions of W are nonlinear and involve interactions between
the various components of Z. To estimate these functions
well, we require extremely flexible regression tools. Thus,
we use HAL-MLE for the PS and OR used by the TMLE

and one-step estimators. Similarly, we used HAL-MLE
for the OR and adaptive PS.

As expected, both the the TMLE and CTMLE strug-
gled in this very challenging simulation study (Figure 3).
While CTMLE offered modest benefits in terms of vari-
ance, the bias of the two estimators was comparable. Nev-
ertheless, we do see evidence of asymptotic linearity of
both estimators in that the sampling distributions of both
of the scaled and centered estimators appear to be mov-
ing towards an appropriate center at zero. Both estimators
had relatively large bias, even in the largest sample size
n = 1000, as shown by the less-than-nominal coverage of
the oracle confidence intervals (Figure 4, Panel A). The
cross-validated influence function-based variance estima-
tors overestimated the variability of the TMLE, which re-
sulted in near nominal coverage for those intervals (Panel
B). However, as in simulation 1, we found that the pro-
posed variance estimators for the CTMLE significantly
underestimated the variability of the estimator, which re-
sulted in poor coverage.

5. DATA ANALYSIS

The broadly neutralizing antibody VRC01 is currently
being evaluated for its efficacy to prevent HIV-1 infec-
tion (Gilbert et al., 2017). A secondary objective of these
to trials is to determine whether and how VRC01 pre-
vention efficacy varies with HIV-1 envelope amino acid
(AA) sequence features. Given the number of AAs in the
envelope protein, an exhaustive analysis that tests how
efficacy depends on every AA residue would have low
statistical power. It is therefore of interest to prioritize
amino acid positions using existing data ahead of the
trial’s analysis (Magaret et al., 2019). Toward that end,
we developed an analysis based on the Compile, Analyze
and Tally NAb Panels (CATNAP) database (Yoon et al.,
2015), which contains measurements of VRC01 neutral-
ization of n = 611 HIV-1 pseudoviruses. These data con-
sist of a binary measure of viral sensitivity to VRC01 (de-
fined as a non-right-censored value of the half maximal
inhibitory concentration), geographic origin of the virus,
and genetic features of the virus, including viral subtype,
amino acids present at specific residues, and viral geome-
try.

We used these data to estimate the importance of each
AA residue in a region of the viral genome putatively re-
lated to VRC01 antibody binding. Specifically, for each
residue r in the VRC01 binding footprint (there are 28
such residues), we set Ar,i = 1 if the ith virus contained
the majority variant at that position, and set Ar,i = 0 oth-
erwise. The outcome was the binary viral sensitivity mea-
sure and we define the importance of residue r as the ATE
of Ar on the outcome. The set of potential confounders
W included all AA residues outside of the VRC01 bind-
ing footprint, geographic origin, subtype, and geometry.
In all W contained 677 elements.
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FIG. 3. Results for simulation 2 comparing CTMLE and TMLE. Panel A: Bias (log-scale) of the estimators. Panel B: Variance (log-scale) of
the estimators. Panel C: Relative efficiency (defined as ratio of mean squared-error) of CTMLE to TMLE. Numbers below one indicate greater
efficiency of CTMLE. Panel D: Kernel density estimates of sampling distributions using a Gaussian kernel and Silverman’s rule of thumb bandwidth
(Silverman, 1986).

There are several reasons to expect positivity issues in
these data. Foremost is the high dimension of W . Be-
yond that, there may be fitness restrictions on viruses such
that variation in AA outside the VRC01 binding footprint

FIG. 4. Results for simulation 1 comparing confidence intervals for
CTMLE and TMLE. Panel A: Coverage probability of nominal 95%
oracle confidence intervals. Panel B: Coverage probability of nominal
95% confidence intervals based on estimated standard errors.

may functionally restrict variation within these residues.
As such, these data may present an opportunity to benefit
from our proposed methodology compared to TMLE or
one-step. We analyzed these data using our collaborative
TMLE and one-step and compared to the results based on
a standard implementations of TMLE and one-step, where
one uses an estimate of the true propensity score. For the
latter, it is common to bound the PS estimates away from
zero and one; we used bounds of 0.01 (shown here) and
0.0001 (shown in the supplement). There was little dif-
ference in the results. All estimators based the initial es-
timate of the OR and PS on a LASSO regression with
�1-penalty selected via 10-fold cross validation.

Because the true relationship between these AA res-
idues and viral sensitivity is unknown, we used two
resampling-based simulations to provide a comparison of
estimators. First, we examined performance in a “null sce-
nario.” For each of the 28 residues, we randomly per-
muted the outcome, so that the true ATE equaled 0. We
then computed each of the four estimates for 100 per-
muted data sets and the estimators in terms of bias, vari-
ance, MSE, and confidence interval coverage. Second, we
specifically examined the variability of the proposed esti-
mators, since this is where we may expect benefits from
super efficiency. To that end, we drew bootstrap samples
from the observed data and computed each of the four es-
timates. We repeated this process 100 times for each of
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FIG. 5. Results for null scenario comparing CTMLE, TMLE, COS, and OS estimators. Box plots show results for each of 28 AA residues in the
VRC01 binding footprint. TMLE and OS estimators used PS estimates bounded between 0.01 and 0.99.

the 28 residues, and studied the variability of each of the
four estimators.

In the null simulation, we found that the adaptive
propensity score lead to smaller bias and variance of the
CTMLE versus the TMLE (Figure 5). The collaborative
one-step estimator (COS) avoided some extreme behav-
ior suffered by the one-step estimator (OS), which had
large very large bias for several AA residues. The COS
also had lower variance than the standard OS. In terms
of MSE and coverage, the CTMLE performed best by an
order of magnitude.

For the bootstrap simulation, we computed the variance
of the estimates across bootstrap samples. The variance of
the TMLE and CTMLE was considerably lower than that
of both one-step estimators (Figure 6, Panel A). Across

residues, the median variability of the CTMLE was about
the same as the TMLE, while the 0.25-quantile of vari-
ability was considerably lower. To better understand these
results, we plotted the relative efficiency (the ratio of MSE
of collaborative variant over regular variant) as a function
of the proportion of the sample that had estimated propen-
sity scores between 0.05 and 0.95 (Figure 6, Panel B).
When this proportion is close to 0, it indicates near com-
plete separation in the propensity score estimate. On the
other hand, when the proportion is close to 1, it indicates a
lack of practical positivity violations. We find that in these
two extreme scenarios, the collaborative estimators tend
to provide little benefit over the standard approaches with
relative efficiencies close to 1. However, for scenarios in
between, the collaborative estimators tended to be more

FIG. 6. Results for the bootstrap simulation comparing the efficiency of CTMLE versus TMLE and COS versus OS. Each point is one of the 28 AA
residues and a Loess smoother with pointwise 95% confidence bounds has been added over the points. TMLE and OS estimators used PS estimates
bounded between 0.01 and 0.99.
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efficient. These results support our theory that in settings
with moderately strong positivity violations, our proposed
estimators will tend to have greater efficiency than locally
efficient procedures.

All code used for this analysis is included in web sup-
plement B (Benkeser, Cai and van der Laan, 2020).

6. DISCUSSION

There are important trade-offs to consider when choos-
ing between our estimator and existing, locally efficient
approaches. Our approach sacrifices robustness for stabil-
ity and possibly greater efficiency. It has been recognized
in the literature that efficient estimators such as TMLE
and one-step can show erratic behavior if the target es-
timand is weakly identifiable. In these settings, we ex-
pect that the proposed CTMLE will exhibit more robust
finite-sample performance relative to standard locally ef-
ficient approaches. The results of our first simulation sup-
port this conclusion. On the other hand, existing locally
efficient approaches are doubly robust, while our esti-
mator is not: we cannot compensate for an inconsistent
OR estimator by using a consistent PS estimator. Dou-
ble robustness is often considered an extremely desirable
property, especially in cases where low-dimensional para-
metric regressions are used to estimate nuisance parame-
ters. In contrast, if one utilizes more flexible regression
methodologies, concerns of inconsistent estimation may
be mitigated to some degree. Indeed, recent developments
such as HAL-MLE theoretically ensure that our n−1/4-
consistency requirement is satisfied under weak condi-
tions. While some have argued in favor of using flexible
regression techniques as a matter of course in locally ef-
ficient estimation (e.g., van der Laan and Rose, 2011),
these techniques appear to be particularly important for
our proposed estimator due to its lack of double robust-
ness. Overall, we conclude that the finite-sample perfor-
mance of a locally efficient estimator and our proposed
super-efficient CTMLE will depend on the particular data
generating distribution. Clearly, if one has a-priori knowl-
edge of the propensity score, in particular that it does not
suffer from positivity issues, then a standard locally ef-
ficient approach may be preferred. If instead, the PS is
poorly understood and/or the parameter is weakly iden-
tifiable, then the super-efficient CTMLE may be a better
option.

Our data analysis highlights the potential pitfalls of
naïve application of doubly robust estimators in situ-
ations with many instrumental variables. Others have
proposed alternative collaborative strategies for estima-
tion of propensity scores using LASSO in these settings
(Shortreed and Ertefaie, 2017, Ju et al., 2019b). In future
work, we will provide a more general comparison of these
methods with our proposed methodology.

Another important direction for future research will be
into methods that are adaptive to situations with and with-
out positivity violations. For example, one such strategy is
as follows. First, obtain an estimate of the OR. Next, ob-
tain an initial estimate of the propensity score, but subject
to the constraint that it is bounded between (δ,1 − δ), for
a user-selected δ. Then augment the initial PS estimate
to additionally adjust for the estimate of the OR (e.g.,
fit a univariate logistic regression with logit of the initial
PS estimate treated as offset and basis functions of esti-
mated OR as covariates). Target this augmented PS esti-
mate to ensure asymptotic linearity of the remainder, as in
Benkeser et al., 2017. Under typical regularity conditions
this estimator is locally efficient if the target parameter is
not weakly identifiable (i.e., the true PS is bounded in (δ,
1 − δ)). Moreover, we conjecture that this estimator will
be asymptotically linear if either the initial PS estimator
is consistent at a fast rate (even when the OR is inconsis-
tent) or the initial OR estimator is consistent at a fast rate,
but the initial PS estimator is inconsistent. Thus, the esti-
mator retains some of the desirable properties of doubly
robust estimators, while adapting to weak identifiability.
We leave the implementation and theoretical study of this
estimator to future work.

In future work, we will additionally generalize our
asymptotic linearity results to the more general CAR set-
ting described in Appendix B. Such extensions would al-
low us to tackle other challenging problems in causal in-
ference, such as estimation of the counterfactual mean of
a treatment administered at several timepoints subject to
time-varying confounding.
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