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Abstract. Mobile health is a rapidly developing field in which behavioral
treatments are delivered to individuals via wearables or smartphones to fa-
cilitate health-related behavior change. Micro-randomized trials (MRT) are
an experimental design for developing mobile health interventions. In an
MRT, the treatments are randomized numerous times for each individual over
course of the trial. Along with assessing treatment effects, behavioral scien-
tists aim to understand between-person heterogeneity in the treatment effect.
A natural approach is the familiar linear mixed model. However, directly ap-
plying linear mixed models is problematic because potential moderators of
the treatment effect are frequently endogenous—that is, may depend on prior
treatment. We discuss model interpretation and biases that arise in the ab-
sence of additional assumptions when endogenous covariates are included in
a linear mixed model. In particular, when there are endogenous covariates,
the coefficients no longer have the customary marginal interpretation. How-
ever, these coefficients still have a conditional-on-the-random-effect interpre-
tation. We provide an additional assumption that, if true, allows scientists to
use standard software to fit linear mixed model with endogenous covariates,
and person-specific predictions of effects can be provided. As an illustration,
we assess the effect of activity suggestion in the HeartSteps MRT and analyze

the between-person treatment effect heterogeneity.
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1. INTRODUCTION

Mobile health (mHealth) refers to the use of mobile
phones and other wireless devices to improve health
outcomes, often by providing individuals with support
for health-related behavior change. One major category
of time-varying treatments delivered through mobile de-
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vices, which is the focus of this paper, are “push inter-
ventions”; in this setting, the mobile device determines
when a treatment will be provided, rather than the indi-
vidual seeking the intervention of her own accord (e.g.,
by opening the app). Push interventions are usually pro-
vided via some kind of a notification, such as an audible
ping, vibration, or the lock screen of a phone lightening
up. For example, to encourage physical activity in seden-
tary individuals, the HeartSteps intervention sends users
push notifications that contain contextually-tailored activ-
ity suggestions (Klasnja et al., 2018).

Micro-randomized trials (MRTs) provide an exper-
imental design for developing mHealth interventions.
These trials provide longitudinal data to assess whether
there is an effect of a time-varying treatment, how this
effect changes over time, and whether aspects of the
current context impact the effect (Liao et al., 2016,
Dempsey et al., 2015). In an MRT, each individual is
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randomized repeatedly to different versions of a treat-
ment (or no treatment) with a known probability over
the course of the trial (often hundreds or even thousands
of times). Between randomizations, the trial collects co-
variate data on the individual’s current/recent context via
sensors and self-report, and after each randomization it
assesses a proximal outcome. The large number of ran-
domization points likely covers a wide range of contexts,
and methods that exploit this for assessing effect mod-
eration of a time-varying treatment have been developed
(Boruvka et al., 2018).

Random effects models (Laird and Ware, 1982, Rau-
denbush and Bryk, 2002), sometimes also known as
mixed effect models, hierarchical models, or multilevel
models, have been used with great success in the anal-
ysis of longitudinal studies. Behavioral scientists, and
researchers from many other scientific fields, have long
used random effects model in research involving longi-
tudinal data (Agresti et al., 2000, Berger and Tan, 2004,
Cheung, 2008, Luger, Suls and Vander Weg, 2014). A
particularly appealing feature of random effects models
is the ability to predict person-specific random effects,
which enables quantitative characterization of between-
person heterogeneity due to unobserved factors (Schwartz
and Stone, 2007, Bolger and Laurenceau, 2013). Under-
standing such heterogeneity can bring forth new scientific
hypotheses for further studies. In addition, the random ef-
fects provide a model for the within-person dependence
in the time-varying outcome, which improves efficiency
in parameter estimation. Because data from an MRT is
longitudinal, it is natural to consider a random effects
model when making inference about treatment effects us-
ing MRT data.

However, random effects models were designed for set-
tings where the covariates are considered fixed, and in-
ferential challenges arise when one tries to apply the
standard random effects model if there are endogenous
time-varying covariates. A time-varying covariate is en-
dogenous if this covariate is not independent of previous
treatment or outcomes; we give a more precise definition
in Section 1.2. As written above, MRTs are conducted to
make inference about the effect of a time-varying treat-
ment, how this effect changes over time, and whether cer-
tain aspects of the current context impact the effect. Co-
variates, often endogenous, describe the individual’s con-
text, and it is often of scientific interest to assess if the
time-varying treatment is moderated by certain endoge-
nous covariates. Furthermore, to reduce variance in as-
sessing treatment effects, it is very useful to control for
an endogenous covariate in the analysis (Boruvka et al.,
2018). For example, consider HeartSteps, an MRT of an
intervention that aims to increase physical activity among
sedentary adults (Klasnja et al., 2018). In this study the
treatments are contextually-tailored activity suggestions.

The steps taken by the individual during the 30 minutes
prior to randomization is likely highly correlated with the
primary proximal outcome, the step count in the subse-
quent 30 minutes. Thus it is useful to control for this co-
variate in the analysis as well as to assess whether this
covariate moderates the effect of the activity suggestion
on the subsequent 30-minute step count. However, be-
cause the activity suggestions are randomized roughly
every 2 hours, it is likely that the 30-minute step count
prior to randomization is related to past step counts (i.e.,
past outcomes) as well as past treatment, which makes
it an endogenous covariate. As we discuss below, in-
cluding endogenous covariates in random effects models
can result in biased estimates. Another interesting time-
varying covariate in HeartSteps is the location of an in-
dividual (whether the individual is at home/work or at
other places). An activity suggestion can be more effec-
tive when the individual is at home or work compared to
when the individual is at other places, and the analyst may
choose to model the treatment effect moderation of this
time-varying covariate. This time-varying effect modera-
tor, location, is likely endogenous as it can be related to
past step counts.

A related but different concept to an endogenous
covariate is a time-varying confounder. Recall that a
time-varying confounder, sometimes also called a time-
dependent confounder, is a covariate that is affected
by previous treatment (hence is endogenous) and af-
fects future treatment assignment (Daniel et al., 2013,
Hernan and Robins, 2019). To our surprise, even without
time-varying confounding (e.g., when the randomization
probability is constant in an MRT), the inclusion of en-
dogenous covariates in random effects models can cause
bias in assessment of the treatment effects.

Pepe and Anderson (1994) pointed out that when using
generalized estimating equations (GEE) with endogenous
covariates, one should use working independence corre-
lation structure to avoid biased estimates. Diggle et al.
(2002), in their classic monograph on longitudinal data
analysis, noted that:

“Although Pepe and Anderson (1994) focused
on the use of GEE, the issue that they raise
is important for all longitudinal data analy-
sis methods including likelihood-based meth-
ods such as linear and generalized linear mixed
models.”

In this paper, we focus on linear mixed models (LMM), a
simple form of random effects models where the outcome
is continuous and the link function is identity. We review
how problems arise when endogenous covariates are in-
cluded in LMM. Coefficients, and specifically treatment
effects, in a standard LMM with fixed covariates have
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both marginal and conditional-on-the-random-effect in-
terpretations. But the marginal interpretation is no longer
valid with endogenous covariates.

Fortunately, despite losing the marginal interpretation,
the conditional interpretation of the parameters is consis-
tent with scientific interest in the prediction of person-
specific effects in MRTs. Here we propose to interpret
treatment effects as conditional on the random effect in
LMM with possibly endogenous covariates. We provide
an additional assumption under which valid estimates of
the effect (conditional on the random effect) of the time-
varying treatment, estimates of the variance components,
and person-specific predictions of these treatment effects
can be obtained through standard LMM software, even if
some covariates are endogenous. Simulation studies are
conducted to support the main result.

Lastly, we discuss whether and when the aforemen-
tioned assumption makes sense in HeartSteps, and ana-
lyze the data using the proposed method.

The paper is organized as follows. We provide an
overview of the HeartSteps MRT in Section 1.1. We intro-
duce notation and definition in Section 1.2. In Section 2,
we give a detailed account of the issue regarding endoge-
nous covariates in a standard LMM, and review related
literature in causal inference (Section 2.3) and economet-
rics (Section 2.4). Next, we provide an assumption under
which treatment effects can be estimated based on LMM
with endogenous covariates in Section 3. In Section 4,
we present results from a simulation study. We apply the
proposed model to analyzing the HeartSteps data in Sec-
tion 5. Section 6 concludes with discussion.

1.1 Motivating Example: HeartSteps

Our motivating example is from HeartSteps, a six-week
MRT of an mHealth intervention to encourage regular
walking among sedentary adults (Klasnja et al., 2018).
The intervention package in HeartSteps includes multiple
components; in this paper we focus on one push inter-
vention component as the treatment, which is the activity
suggestions. Each individual is in the study for 42 days,
and is randomized 5 times a day, each time with prob-
ability 0.6 to receive an activity suggestion. The 5 ran-
domization times are prespecified and individual-specific,
corresponding to each individual’s morning commute,
lunchtime, mid-afternoon, evening commute, and after-
dinner. The content of the suggestion was tailored to the
current time of day, weekend vs. weekday, weather, and
the individual’s current location. The activity suggestions
were designed to help individuals get activity throughout
the day. Due to the tailoring of the suggestions to the in-
dividual’s current context, the research team expected to
see the greatest impact of the activity suggestions on near
time, proximal activity, so the proximal outcome is de-
fined as the individual’s step count during the 30 min-
utes following each randomization. In addition to the step

counts, at each randomization the individual’s context is
also recorded, including current location, weather and 30-
minute step count prior to randomization. Note that the
30-minute step count prior to the time of randomization is
likely impacted by prior treatment and thus is an endoge-
nous covariate. In addition to the measured information,
there are other unobserved variables that may impact the
treatment effect, such as each individual’s commitment to
becoming more active, conscientiousness, degree of so-
cial support and so on. Therefore, it is of interest to pro-
vide person-specific predictions of treatment effect. We
will apply methods developed in this paper to the Heart-
Steps data in Section 5.

1.2 Notation and Definition

We will consider two settings in the paper. In the first
setting, we consider a longitudinal study without treat-
ment, and in the second one with a sequentially random-
ized treatment. The first setting will be used to explain
bias incurred by the inclusion of endogenous covariates in
random effects models, as this issue also occurs without
treatment and is easier to explain there. The second setting
involves time-varying treatment that is sequentially ran-
domized; thus it’s relevant to data from MRTs. We will
see that randomized treatment assignment in MRT does
not necessarily alleviate the biases resulting from the in-
clusion of endogenous time-varying covariates in LMMs.
We will consider assumptions that allow valid estimation
under this second setting. The setting under consideration
will be clear from the context.

For the first setting without treatment, we denote data
for individual i by X;i, Yo, X2, Yi3, ..., Xity, YiT 41,
where T; denotes the total number of observations for in-
dividual i. X;; is a vector of covariates prior to the ¢-th
time point and Yj;4 is the outcome subsequent to the ¢-
th time point. Note that the time index for the outcome
Y is augmented by 1 to make it consistent with the sec-
ond setting. We use overbar to denote history; for ex-
ample, Xi = (Xi1, X2, ..., Xit). The individual’s his-
tory information up to the ¢-th time is denoted by H;; =
(Xi1, Yizy ooy Xig—1, Yir, Xit) = (Yir, Xip).

For the second setting with treatment, the data for
individual i is X;i, A;1, Yo, X2, A2, Yiz, ..., Xi7;,
Ai1;, Yit. 41, where X;; is the covariate vector prior to
the ¢-th time, A;; is the randomized treatment at the
t-th time, and Yj;y1 is the proximal outcome subse-
quent to the z-th time. To maintain expositional clarity,
throughout we assume there are only two types of treat-
ment and A;; € {0, 1}. The history is defined as H;; =
(Xi1, Air, Yiz, ooy Xie—1, Air—1, Yie, Xie) = (Yie, Xirs
Aj;—1). We define X;0 =9, Ajo=J,and ¥;| = 2.

In both settings, we use b; to denote the random effect
of individual .
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We use L to denote statistical independence; for exam-
ple, A L B | C means that A is independent of B condi-
tional on C. In the first setting, a covariate process X;;
is called exogenous (with respect to the outcome pro-
cess Yi;) if Xi; L Yi; | Xj;—1; otherwise, Xj; is endoge-
nous. In the second setting, X;; is called exogenous if
Xis L (Y, Ais—1) | Xiz—1; otherwise, X, is endogenous.
In a longitudinal study, examples of exogenous covariates
include baseline variables (age, gender, etc.), functions of
time, and time-varying variables that are not impacted by
prior treatment or prior outcome, such as weather.

2. ISSUE OF LINEAR MIXED MODELS WITH
ENDOGENOUS COVARIATES

In this section, we start by considering the situation
where no treatment is involved, as endogenous covariates
give rise to issues even without considering causal infer-
ence. We give a brief review of standard LMM in Sec-
tion 2.1, and explain the issue of endogenous covariates
in Section 2.2. In Section 2.3, we briefly review causal
inference literature on a related topic, time-varying con-
founding, which is a more restrictive definition than en-
dogeneity. In Section 2.4, we discuss connections to the
econometric literature. We comment on why the methods
reviewed in Sections 2.3 and 2.4 do not directly solve the
issue of LMM with endogenous covariates in MRTs.

2.1 Brief Overview of Standard LMM with Exogenous
Covariates

A standard linear mixed model (LMM) (Laird and
Ware, 1982) assumes a relationship between the covari-
ate X;; and the outcome Y;;41 such as the following:

(1) Yirr1 = XL B4 Zbi 4 €141

Here, b; ~ N (0, G) denotes the vector of person-specific
random effects, Z;; C X;; and €;;41 ~ N(O, 03) is a ran-
dom noise. It is typically assumed that €;,41’s are inde-
pendent of each other and of b;, and we will adopt this as-
sumption throughout this paper. This model specifies the
conditional distribution of Y;;1 given X;; and b;; in par-
ticular, this is a Gaussian distribution with mean

2) EYirs1 | Xir b)) = XEB 4+ 21 b;.

Furthermore, use of the standard LMM assumes, though
not always explicitly, that all covariates are fixed, or at
least exogenous and independent of b;. Thus, the marginal
mean of Y;; is

A3) E(Yi1 | Xi) = XL,

because E(b; | Xij;) = 0. Thus, when the covariates are
exogenous and independent of b;, 8 has both a condi-
tional interpretation and a marginal interpretation.! This

n this paper, we use the term “conditional (model/interpretation)”
to denote a model that is conditional on the random effect, and we use

dual interpretation provides the opportunity to estimate
with alternative approaches such as with generalized es-
timating equations (GEE) (Zeger and Liang, 1986), de-
pending on the desired robustness of the estimator of § to
deviations from the LMM assumptions.

Assuming the covariates are indeed exogenous and in-
dependent of b;, the maximum likelihood score equation
for B is

1 & _
) -2 XVl (Yi— X[ ) =0,
i=l
where Xi = (X,'], ey XiT,'), Zl' = (Zila ey ZiT;) and
Y=, ....Yiee), Vi=2Z]GZ; + Riisa T, x T;
covariance matrix, and R; is a 7; x T; diagonal matrix
with all diagonal entries equal to o2

2.2 Issue with Endogenous Covariates: Marginal
Interpretation Is No Longer Valid

Any LMM solves the same estimating equation as
a GEE with a corresponding nonindependence working
correlation structure (e.g., an LMM with a random inter-
cept solves the same estimating equation as a GEE with
compound symmetric working correlation structure). In
fact, (4) is the estimating equation for GEE with marginal
mean model (3) and working correlation matrix V;. In the
GEE literature, estimation bias due to the inclusion of en-
dogenous covariates has been discussed repeatedly. We
first review this briefly.

Pepe and Anderson (1994) first pointed out that when
using GEE to estimate parameters in E (Y41 | X;¢), a suf-
ficient condition for estimation consistency is either

(5) E(Yiip1 | Xit) =EYir41 | Xiv, ..., XiT)

or the use of a working independence correlation struc-
ture. When (5) is violated and a correlation structure other
than working independence is used, they provided simu-
lation results to show that bias could occur. Diggle et al.
(2002), Chapter 12, reiterated this point, and referred
to (5) as “full covariate conditional mean (FCCM)” as-
sumption. Schildcrout and Heagerty (2005) analyzed the
bias-efficiency trade-off associated with working correla-
tion choices of GEE for longitudinal binary data, when
FCCM is violated due to exogenous covariates being
time-varying, through simulation studies. This potential
bias from the violation of FCCM have also been warned
about by Pan, Louis and Connett (2000) in the context of
linear regression via analytic calculations. Tchetgen et al.
(2012) showed, in the context of marginal structural mod-
els (Robins, 1998), that when GEE is combined with in-
verse probability weighting for handling dropout, param-
eter estimation is generally biased in the presence of en-
dogenous covariates unless either a condition similar to

“marginal (model/interpretation)” to denote a model where the random
effect is marginalized over. This is consistent with the terminology in
Zeger and Liang (1992) and Heagerty and Zeger (2000).
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(5) holds or a working independence correlation structure
is used.

When there are endogenous covariates, the FCCM as-
sumption (5) is unlikely to hold because Y;;+; may im-
pact future X;; for s > ¢ 4 1. In this case, Pepe and An-
derson (1994) suggested the use of working independence
GEE to guarantee consistent estimation of parameters in
E(Yj;+1 | Xit). Because of the close tie between the es-
timating equations of LMM and GEE, Pepe and Ander-
son’s point about GEE implies that estimators fitted us-
ing the standard LMM could be inconsistent when there
are endogenous covariates. Indeed, if one intends to es-
timate parameters in the marginal mean E(Yj;+1 | Xiz),
then using LMM as an estimation procedure can result in
inconsistent estimators because of the biased estimating
equations. However, in our opinion, this is not the fun-
damental issue of LMM under endogeneity, but rather a
technical consequence.

More fundamentally, when there are endogenous co-
variates, LMM (1) as a model can imply a marginal
mean relationship different from (3). X;; being endoge-
nous means it may depend on previous outcomes, which
in turn implies dependence on the random effect b;. Thus,
E(b; | Xi;) is usually nonzero and the conditional model
(2) may no longer imply the marginal model (3). The
marginal model implied by (2) becomes, instead,

6)  EWit1 | Xi) =XLB+ZLE®D; | Xir).

As a concrete example, consider the case where each
individual is observed for 2 time points (7; = 2), and
the covariate at the second time point is the lag-1 out-
come: X;» = Y;». Suppose the variables are generated
from the following LMM with a random intercept: b; ~
N (O, ouz), Xi1 ~ N(O, 0)2(1) independently of b;, Yo |
Xi1,bi ~ N(Bo + BiXi1 + bi,02), Xi2 = Y2, and Y;3 |
Xi1, Yo, Xio, by ~ N(Bo + B1Xi2 + bi,02). This im-
plies a parsimonious conditional relationship: E(Yis+1 |
Xit, bi) = Bo + B1Xir + b;, but the induced marginal re-
lationship is rather complex:

E(Yi2 | Xi1) = Bo + Bi1Xi1,
E(Yi3| Xi2)=(—p¢—p)Bo
+{(1 = p2)B1 + p}Xiz,

with p = auz/(cru2 + 03) and ¢ = ,810)2(1/(,81(7)2(1 + cruz +
02).

Therefore, when building LMM with endogenous co-
variates, one needs to be aware that the modeling assump-
tion is on the conditional relationship E(Yi;+1|Xi;, bi),
not the marginal relationship E(Y;j;41]|X;;). Although it
is attractive to treat 8 in (1) with not only a conditional
interpretation but also a marginal interpretation, which

is true with exogenous covariates, the latter interpreta-
tion can be invalid with endogenous covariates. In addi-
tion to this model interpretation issue, endogenous covari-
ates also give rise to additional concerns in model fitting,
which will be discussed in Section 3.

As a side note, for generalized linear mixed models, it is
well known that even when all covariates are exogenous,
the conditional parameter and the marginal parameter are
different due to the nonlinear link function, and there has
been work in the literature on connecting the two interpre-
tations (Zeger, Liang and Albert, 1988, Heagerty, 1999,
Wang and Louis, 2004). For LMMs, the discrepancy in
the two interpretations only occurs when there are en-
dogenous covariates.

2.3 Connection to Time-Varying Confounding in
Causal Inference Literature

In the setting with treatment, a related issue, often
called “time-varying confounding” or “time-dependent
confounding,” has been well studied in the causal infer-
ence literature. A time-varying covariate is a time-varying
confounder if it is affected by previous treatment (hence
is endogenous) and it affects future treatment assignment
(Daniel et al., 2013, Hernan and Robins, 2019). Time-
varying confounders are usually intermediate variables
(that lie in the causal pathway between the treatment and
the outcome), and this gives rise to inferential challenges
for conventional regression-based methods due to the fol-
lowing dilemma: confounders should be adjusted for in
the analysis, but intermediate variables should not (Diggle
et al., 2002).

Causal inference methods have been developed to es-
timate treatment effects in the presence of time-varying
confounding. These methods include g-computation
(Robins, 1986), structural nested models (Robins, 1994,
1997), inverse probability weighting in marginal struc-
tural models (Robins, 1998, 2000), history-restricted
marginal structural models (Neugebauer et al., 2007), se-
quential conditional mean models (Vansteelandt, 2007,
Keogh et al., 2017), and weighted and centered least-
squares for MRTs (Boruvka et al., 2018). These methods
cover a variety of estimands that characterize the effect of
a time-varying treatment from various aspects, but all the
treatment effects are marginal in the sense that no random
effect is considered.

Estimators of conditional-on-the-random-effect ver-
sions of the above estimands will be potentially biased as
discussed in Section 2.2. Furthermore, the issue with bias
persists even when A;; is not confounded by observed or
unobserved variables (e.g., when the randomization prob-
ability is constant). Take, for example, the sequential con-
ditional mean models in Vansteelandt (2007), which con-
siders the marginal expected mean E(Yj;y1 | Ai, )_(it).
When random effect is incorporated, the model becomes
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the conditional expected mean E(Yj;y1 | Air, Xir, bi).
When X;; is endogenous, even if X;; does not confound
Ajs, the same argument in Section 2.2 applies, and the
parameter in the conditional model E(Yj;1 | Air, Xit, b;)
generally does not have the marginal interpretation. This
means the methods for estimating marginal treatment ef-
fect cannot be used to estimate parameters in the condi-
tional model, let alone used to predict the random effects
in the conditional model.

2.4 Connection to Level-2 Endogeneity in
Econometric Literature

Violation of the assumption that the random effect be-
ing independent of the covariates, b; 1 X;;, is sometimes
called “level-2 endogeneity” in the econometric literature
(Wooldridge, 2010, Grilli and Rampichini, 2011). It is
well known that level-2 endogeneity can lead to biased pa-
rameter estimates (Ebbes, Bockenholt and Wedel, 2004);
in particular, Kim and Frees (2007) gave a display similar
to (6), and warned about the bias that could occur when
one uses an estimator intended for the marginal parameter
(such as the ordinary least-squares) to estimate the condi-
tional parameter—this is the counterpart of our discussion
in Section 2.2, that using LMM to estimate the marginal
parameter will incur bias with endogenous covariates.

Various estimators have been proposed in the econo-
metric literature for the conditional parameter under level-
2 endogeneity, many of which are based on explicitly
modeling the conditional distribution of the random ef-
fects given the endogenous covariates (Mundlak, 1978),
centering the time-varying covariate and the time-varying
outcome by their average over time (Hausman and Tay-
lor, 1981, Arellano and Bover, 1995, Neuhaus and Mc-
Culloch, 2006, Kim and Frees, 2006, Hanchane and
Mostafa, 2012), constructing internal instrumental vari-
ables (Amemiya and MaCurdy, 1986, Arellano and Bond,
1991, Semykina and Wooldridge, 2010), or using semi-
parametric efficiency theory by not specifying the dis-
tribution of the random effects (Liu and Xiang, 2014,
Garcia and Ma, 2016).

In those works, it is usually assumed that the error term
€;¢ is independent of the history of the time-varying co-
variate, X;7;; thus these methods are not directly appli-
cable to the MRT setting where future covariates can de-
pend on previous outcomes (hence previous error terms).
In addition, many of these methods focus on estimating
the conditional parameter while treating the random effect
as a nuisance parameter. We argue that in MRTs, predic-
tion of the random effects are of equal importance to esti-
mation of the conditional parameter; otherwise, one could
have used the causal inference methods mentioned in Sec-
tion 2.3 to estimate the marginal treatment effect. It is an
open question whether the ideas behind the above meth-
ods can be adapted for LMM-based inference in MRTs.

3. A CONDITIONAL INDEPENDENCE ASSUMPTION

In an MRT, the observed history up to time ¢ is de-
fined as Hit = (Xil s Aila Yi29 R ) Xil—]v Ait—]v Yit’ Xit)'
We consider the following LMM:

Yie1 = fo(Hi)" Bo+ Au f1 (Hin)T B
() + go(Hir) " boi + Airg1 (Hir) " by;
+ €irt1

for t = L,...,T, where fO(Hit), f](Hit)’ gO(Hil‘)’
g1(H;;) are known functions of H;;. For example, if we
believe that the outcome depends linearly on time, current
covariate and previous outcome, that the treatment also
interacts with these three variables, and that the outcome
has no residual association with other information in Hj,,
we may set each of fo(Hjr), f1(Hir), go(Hir), §1(Hi;) to
be (1,t, Xjt, Yi;). Recall that for simplicity we consider
only binary treatment. In this section, we provide an addi-
tional assumption that, if true, ensures valid treatment in-
ference and person-specific predictions via standard soft-
ware even when there are endogenous covariates.

We make the standard LMM assumptions. The ran-
dom effects (bgl., blTl.) are assumed to marginally follow
a multivariate Gaussian distribution with mean 0 and
variance-covariance matrix G. A;; is assumed to be ran-
domized with randomization probability depending only
on Hj;, not b;g or b;y; this is ensured by the MRT de-
sign. The random noise €;;4 is assumed to be indepen-
dent of (H;;, Aj¢, boi, b1;) and follows N (0, 03). Jo(Hip),
f1(Hit), go(H;;) and g1(Hj;) can include possibly en-
dogenous covariates X;; and lagged outcomes such as Y.

Equation (7) along with the above assumptions com-
pletely specifies the conditional distribution of the out-
come Yj;y1 conditional on by;, by;, His, Ajs. It implies
the following treatment effect that is conditional on the
random effects

E(Yit+1 1 boi, b1i, His, Air = 1)
(8) — E(Yj141 | boi, b1i, Hir, Air =0)

= fiHi)" B + g1 (Hi) " by;.
Furthermore, due to endogeneity, it is likely that
E(Yit41 | Hit, Air = 1)
9) — E(Yjr41 | Hit, Ajy =0)

# fi(Hi)" B1.

In other words, the treatment effect (8) implied by model
(7) is interpreted as conditional-on-the-random-effect;
B = (,BOT , ,BlT)T does not have a marginal interpretation.
A similar point for when there is no treatment has been
extensively discussed in Section 2.

The above model provides the distribution of Y;; 1 con-
ditional on (bog;, by;, His, Ai;) as opposed to conditional
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on (bo;, b1i, Xit, Ajr). Thus, B; in (8) has a causal in-
terpretation even when the randomization probability for
A;js depends on H;; in an MRT. Likelihood-based infer-
ence and model fitting through standard LMM software
can be conducted as described below. Note that since
fo(H;t), f1(H;r), go(H;;) and g1 (H;;) can include lagged
outcomes, the dependence between outcomes is explic-
itly modeled in (7). The purpose of introducing random
effects here is mainly to model the between-person het-
erogeneity.

To estimate the conditional-on-the-random-effect S us-
ing standard LMM software, we make an additional con-
ditional independence assumption. The conditional inde-
pendence assumption is

(10) Xit L (boi, b1i) | Hit—1, Air—1, Yis.

This does allow X;; to be endogenous, but the endoge-
nous covariate X;; can only depend on the random effects
through the variables observed prior to X;;: Hir—1, Air—1,
and Y;;. If the only endogenous covariates are functions of
prior treatments and prior outcomes, then assumption (10)
automatically holds. In general, assumption (10) needs to
be verified from the domain science perspective. We dis-
cuss this assumption in the context of HeartSteps in Sec-
tion 5.

Assumption (10) allows us to decompose the likeli-
hood. This likelihood decomposition will provide a jus-
tification for the use of estimators from standard LMM
software. Denote by X;, A; and Y; the vectors of obser-
vations for individual i, and X, A and Y the collection of
observations for all individuals. Denote by b; = (bo;, b1;).-
Suppose G, the covariance matrix of the random effects,
is parametrized by 6. The joint likelihood of the observed
data, L(a, B,0,0¢ | X, A, Y), can be written as

np(leAl’Yl |a,ﬂ79706)

=TT/ pxi. 4 ;15
i
Ol, ﬁvevOG)dF(bi)

= l_[{/l_[p(xn | Hit—1, Ait—1, Yis, bi)
i t

-p(Air | Hit, b)) p(Yisy1 | Hig, Air, by

(11)

a,,B,G,Ge)dF(bi)}.

By the conditional independence assumption (10) and
given that A;; is randomized conditional on H;;, the joint

likelihood in (11) becomes
L(a,B,0,0.| X,A,Y)

= {HHP(XU | Hir—1, Air—1. Yir)
(12) Pt

(A | Hi,)}

'El(aaﬂseaaé | X7A9Y)’
where
Li(a, B,0,0¢| X,A,Y)

(13) =H{/UP(Y1[+1 | Hil‘vAil’bi;

o, B,6, oe)dF(bi)}.

Because the first factor on the right hand side of
(12) does not involve («, 8,6, 0c), any inference for
(a, B, 0, o) that is based on the joint likelihood L(«, 8, 6,
oe | X,A,Y) can be equivalently based on the par-
tial likelihood Li(w, B,6,0 | X, A,Y). Observe that
Li(a, B,0,0¢ | X, A,Y) is actually the likelihood func-
tion for a standard LMM where X;; and A;; are treated as
fixed covariates. Thus, the maximum likelihood estima-
tors that are obtained through standard LMM software are
valid maximum likelihood estimators for the joint likeli-
hood L(a, B8,60,0¢ | X, A, Y) under the conditional inde-
pendence assumption, and (4) with X redefined to include
the treatment indicator is a likelihood score equation for 8
in the conditional-on-the-random-effect model. Note that
even though the form of (4) appears to indicate estimation
of a regression coefficient in a marginal model, this is
a false impression in the case of endogenous covariates.
Furthermore, recall that restricted maximum likelihood
(REML) estimation can be viewed as maximum a poste-
riori in a Bayesian hierarchical model (Laird and Ware,
1982). This latter interpretation continues to hold for the
REML estimators obtained through standard LMM soft-
ware when there are endogenous covariates. In addition,
it can be shown that the empirical Bayes predictor of the
random effects b; obtained through standard LMM soft-
ware is valid empirical Bayes predictor for model (7) with
endogenous covariates. We include proofs of these claims
in the Appendix.

The conditional independence assumption (10) is simi-
lar to an assumption used by Sitlani et al. (2012). Sitlani
et al. (2012) aimed to use an LMM to assess causal effects
in the context of noncompliance in surgical trials. They
assumed conditional independence between the treatment
assignment and the random effect given the observed his-
tory. This assumption allowed them to decompose the
likelihood as is done above and thus use standard LMM
estimators.
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It is worth noting, as pointed out by a reviewer, that
if the analyst poses a model as (7) but without the
Airgl (H;;)Tby; term (i.e., the random effect in the model
does not interact with A;;), then (9) becomes an equal-
ity. In other words, in this case 8 recovers its marginal
interpretation

E(Yii41 | Hit, Air =1) = EQis41 | Hig, Aiy =0)
= fi(Hi)" p1,

and furthermore it can be interpreted marginally over
Hit \ f1(Hir):

E{E(YiH—l | Hi, Aiy = 1)
(14) — E(Yit41 | Hir, Air =0) | fl(Hit)}

= fi(Hi)" B1.

Note that Sy still has only the conditional-on-the-random-
effect interpretation. In absence of by;, the conditional in-
dependence assumption (10) becomes

Xir L boi | Hir—1, Ajr—1, Yir;

this assumption justifies the use of over-the-counter LMM
softwares via the likelihood factorization (12).

4. SIMULATION

In the simulation, we considered three generative mod-
els (GMs), in all of which the covariate is endogenous. In
the first two GMs, the endogenous covariate X;; equals
the previous outcome Y;; plus some random noise, so the
conditional independence assumption (10) is valid. In GM
3, the endogenous covariate depends directly on b;, so
the assumption (10) is violated. Details of the generative
models are described in the following.

In GM 1, we considered a simple case with only a
random intercept and a random slope for A;;, so that
go(H;;) = g1(H;;) = 1 in model (7). The outcome is gen-
erated as Yjr41 = ap + a1 Xir + bjo + Air(Bo + B1Xir +
bi2) + €j;+1. The random effects b;g ~ N(O, 050) and
bi» ~ N(0, 052) are independent of each other. We gen-
erated the covariate to be X;; ~ N(0, 1), X;; = Yi; +
N (0, 1) for t > 2. The randomization probability P(A;; =
1| Hj;) is constant 1/2. The exogenous noise €;;41 ~
N(0,02).

In GM 2, we considered the case where go(Hi;) =
g1(Hj;) = (1, X;;), and the randomization probability is
time-varying. The outcome is generated as Yi;+1 = oo +
a1 Xir +bio + bi1 Xir + Air (Bo + B1 Xir + bio + biz Xip) +
€ir+1. The random effects b;; ~ N (0, asz), 0<j<3,
are independent of each other. We generated the covari-
ate to be X;1 ~ N0, 1), X;; =Yy + N, 1) for t > 2.
The randomization probability depends on X;;: P(A;; =
1| Hi;) =07 -1(X;; >—127)4+ 0.3 - 1(X;; < —1.27).

Here 1(-) represents the indicator function, and the cutoff

—1.27 was chosen so that P(A;; = 1| Hj;) equals 0.7 or
0.3 each for about half of the time. The exogenous noise
€irp1~ N(0,02).

GM 3 is the same as GM 1, except that the covariate
X;; depends directly on b;: X;1 ~ N(bjo, 1), Xir = Yi; +
N (bjo, 1) fort > 2.

We chose the parameter values as follows: ag = —2,
ar=-03,B0=1,B1=03, 0} =4, 0} =1/4, 0%, =
Lo =1/4,02=1.

For each of the three GMs, we simulated for sample size
n = 30, 100, 200 and the number of observations per indi-
vidual 7; = T = 10, 30. Each setting was replicated 1000
times. The estimation was done using the R package Imer
(Bates et al., 2015) for standard LMM, and 95% confi-
dence interval was computed based on the ¢ distribution
with degrees of freedom obtained by Satterthwaite ap-
proximation (Satterthwaite, 1941), which is implemented
in the R package ImerTest (Kuznetsova, Brockhoff and
Christensen, 2017). Bias, standard deviation (sd) and cov-
erage probability (cp) of 95% nominal confidence interval
for the estimated By and B are presented in Table 1. As
expected, the estimators are consistent for GM 1 and GM
2, and they are inconsistent for GM 3 because of the vi-
olation of the conditional independence assumption (10).
For GM 1 and GM 2, the confidence interval coverage
probability can be slightly lower than the nominal level
for some of the parameters for small n or small T, but it
gets back to the nominal level as the sample size or total
number of time points gets larger. Additional simulation
results for more choices of n and T, the performance of
estimated o, &1, and variance components obz/-, 0<j<3

and o2 are in the Appendix, and the conclusion is similar
to the results for the 8’s as shown here.

5. ILLUSTRATIVE DATA ANALYSIS OF HEARTSTEPS
5.1 Data and Model Assumptions

As described in Section 1.1, HeartSteps (Klasnja et al.,
2018) is a six-week micro-randomized trial of an mHealth
intervention to encourage activity among sedentary adults.
The following analysis focuses on the time-varying treat-
ment consisting of contextually-tailored activity sugges-
tions.

Prior to the randomization at each time point, software
on the smartphone determined whether an individual is
available for treatment at the time. If the activity recogni-
tion on the phone determined that an individual was oper-
ating a vehicle, the individual was considered unavailable
for safety reasons. If an individual had just finished an
activity bout in the prior 90 seconds, they were consid-
ered unavailable for treatment in order to minimize user
burden and aggravation. Lastly, because the software on
the server and smartphone required an internet connec-
tion to send a suggestion, if the smartphone did not have



TABLE 1
Bias, standard deviation (sd) and coverage probability (cp) of 95% nominal confidence interval for estimated By and B in the simulation study. n
denotes sample size; T denotes total number of observations for each individual, GM denotes generative model. The result is based on 1000

replicates for each setting
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Bo Bi
GM T n bias sd cp bias sd cp
1 10 30 —0.001 0.249 0.943 0.002 0.091 0.897
100 —0.003 0.135 0.941 —0.001 0.049 0.898
200 —0.001 0.096 0.926 —0.001 0.034 0.899
1 30 30 —0.002 0.206 0.946 0.001 0.053 0.913
100 —0.005 0.112 0.949 —0.001 0.028 0.935
200 0.000 0.081 0.944 —0.001 0.022 0.902
2 10 30 —0.010 0.269 0.939 —0.004 0.105 0.903
100 0.009 0.145 0.933 —0.001 0.056 0.915
200 —0.008 0.105 0.931 —0.002 0.038 0.934
2 30 30 —0.006 0.216 0.943 —0.001 0.070 0.939
100 0.006 0.115 0.947 —0.001 0.039 0.948
200 —0.004 0.084 0.935 —0.000 0.027 0.940
3 10 30 —0.048 0.245 0.949 —0.043 0.075 0.725
100 —0.060 0.134 0.927 —0.047 0.041 0.548
200 —0.052 0.095 0.907 —0.046 0.029 0.355
3 30 30 —0.023 0.207 0.946 —0.017 0.041 0.847
100 —0.028 0.112 0.942 —-0.019 0.022 0.762
200 —0.024 0.079 0.941 —0.019 0.015 0.628

wireless connectivity the individual was deemed unavail-
able. At each of the five points each day for each individ-
ual, availability was assessed, the context was recorded,
and if the individual was available then HeartSteps ran-
domized to deliver an activity suggestion to the individ-
ual with probability 3/5. The sample for this analysis con-
sisted of 7540 time points from 37 individuals. The in-
dividuals were available for 6061 (80.4%) time points,
unavailable due to no internet connection for 602 (8.0%)
time points, unavailable due to being detected as in transit
for 841 (11.1%) time points, and unavailable due to being
detected to have just finished an activity bout in the prior
90 seconds for 36 (0.5%) time points.

Let A;; = 1 if an activity suggestion is delivered at time
t for individual i and equal to O otherwise. The proximal
outcome Yj;41 is the (log-transformed) 30-minute step
count following time point ¢. We used three covariates in
the model:

e X;; 1: day in the study for the time point ¢, coded as
0,1,...,41.

e X;; »: whether the individual was at home or work at
time point ¢; X;; » = 1 if at home or work, O if at some
other location.

e X;:3: (log-transformed) 30-minute step count preced-
ing time point 7.

We specify model (7) in the HeartSteps context as fol-
lows: fo(Hit) = (Xir,1, Xir2, Xir3); f1(Hir) = (Xir 1,

Xt 2); the model contains a random intercept, go(H;;) =
1, and a random slope for A;;, g1 (H;;) = 1. We denote the
availability status of individual i at time ¢ by [;; (I;; =1
if available; O otherwise). In the model, we multiply A;;
with [;; to operationalize the notion that the treatment
may only be delivered when the individual is available.
Because the relationship between Y;;11 and the fo(H;;)
can depend on the availability status, we included an inter-
action between I;; and fy(H;;). Thus, the LMM is given
by

Yirri=a0+ a1 Xir1 +@2Xir2
+a3Xir 3+ i (qo
(15) +a1Xir1 +a2Xi 2+ @3Xir3) + boi
+ Airlit(Bo + B1Xir,1 + P2 Xir2
+ b1i) + €irt1,

where €;;4+1 ~ N(0O, 062), and the random effects (bo;,
b1i) ~ N (0, G) with G being a 2 x 2 variance-covariance
matrix. bg; accounts for the between-individual variation
in the 30-minute step count under no treatment, and by;
accounts for the between-individual variation in the treat-
ment effect on the 30-minute step count.

In model (15), X;; 2, Xi,3 and I;; are possibly endoge-
nous. Location, X;; 2, is most likely exogenous but might
be endogenous because the number of steps an individ-
ual took following a prior time point, combined with the
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location s/he was at then, might be predictive of whether
s/he would be at home/work or other places at the subse-
quent time point. Prior time ¢ 30-minute step count, X;; 3,
might be correlated with 30-minute step count after time
t — 1, Y;j;, because an individual might walk less if s/he
had already walked earlier in the day. For the availability
status I;;, unavailability due to being in transit is likely
exogenous but may be endogenous for a reason similar to
that of location, X;;>. Unavailability due to having just
finished an activity bout may be endogenous for a reason
similar to that of prior time ¢ 30-minute step count, X;; 3.
We argue that the conditional independence assumption
(10) is plausible for all three variables. For location, X;; 2,
because the enrollment criterion required each individual
to either have a full-time daytime job or be a student,
the time-varying location of such individuals with regu-
lar schedule is unlikely to depend on some unmeasured
baseline factors (i.e., the random effects) that impact step
count. For prior time ¢ 30-minute step count, X;; 3, the
impact of random effects should be largely explainable
through earlier outcomes and covariates, as those are also
step counts but just for other time windows. For I;;, most
of the unavailability (1443 out of 1479) instances are due
to being in transit or loss of internet connection; the con-
ditional independence is likely to approximately hold for
I;; for a similar reason to that of X, 5.

5.2 Results

We fitted model (15) using the R package Imer (Bates
et al., 2015) for standard LMM, because standard LMM
yields valid estimators under the conditional indepen-
dence assumption (10).

The first three columns in Table 2 show the estimated
fixed effects with 95% confidence interval and the esti-
mated variance components. The estimated variance for
by; is extremely small and the estimated correlation be-
tween bg; and by; is 1.000, suggesting that we might not
have enough data to fit two separate random effects so
the fitting collapsed onto a linear combination of the two.
We conducted the likelihood ratio test for nonzero vari-
ance of by;, and the p-value was 0.72. Note that likelihood
ratio tests for nonzero variance components can be con-
servative because the null value (Var(by;) = 0) is on the
boundary of the parameter space (Self and Liang, 1987,
Stram and Lee, 1994, Crainiceanu and Ruppert, 2004),
and we are just using this test and the critical value as
a guideline. The result suggests that the potential hetero-
geneity in the treatment effect may not be large enough
to be detected from the data. Model fit of (15) with by;
removed is presented in the last two columns in Table 2.

The estimated treatment effects, which are conditional
on the observed history and the unobserved random ef-
fects, are similar from both model fits in the point esti-
mates as well as the confidence intervals. The data indi-
cates that, for an individual, the treatment has a positive
effect at the beginning of the study (,30 > 0), and the ef-
fect decreased over time ( ,3 1 < 0). This is likely due to the
individual’s habituation to the activity suggestions, which
is consistent with the exit interviews reported by Klasnja
et al. (2018) in which individuals reported that “the sug-
gestions became boring after 2—4 weeks.” On the other
hand, the data indicates no moderating influence of loca-
tion (whether an individual was at home/work or some
other place) on the treatment effect for an individual.

TABLE 2
Estimated coefficients and 95% confidence interval for model (15) of HeartSteps data. Estimators are obtained using R package Imer, and the 95%
confidence interval are based on t distribution with Satterthwaite approximation implemented in R package ImerTest

Model with by; Model without by;
Coefficient Estimate 95% CI Estimate 95% CI
o 1.990 (1.643, 2.338) 1.997 (1.646, 2.348)
o —0.009 (—0.021, 0.002) —0.009 (—0.021, 0.002)
o) 0.851 (0.238, 1.465) 0.840 (0.226, 1.453)
o3 0.539 (0.495, 0.583) 0.537 (0.493, 0.582)
& —0.177 (—0.586, 0.232) —0.182 (—0.591, 0.228)
ag 0.008 (—0.006, 0.023) 0.008 (—0.007, 0.023)
ap —0.871 (—1.522, -0.221) —0.863 (—1.514, —-0.212)
a3 —0.156 (—=0.206, —0.107) —0.154 (—0.204, —0.104)
Bo 0.415 (0.105, 0.724) 0.410 (0.100, 0.719)
Bi —0.017 (—0.028, —0.005) —0.017 (—0.028, —0.005)
B 0.122 (—0.156, 0.400) 0.130 (—0.148, 0.408)
Var(bg;) 0.160 0.182
Var(by;) 0.003 -
COI‘r(bol‘, bli) 1.000 -
Var(€j;4-1) 7.138 7.139
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TABLE 3
Estimated coefficients and 95% confidence interval for model (16)
using WCLS estimator in Boruvka et al. (2018)

Coefficient Estimate 95% CI

Yo 0.454 (0.156, 0.753)
¥ —0.018 (—0.029, —0.006)
1) 0.096 (—=0.219, 0.410)

As a point of contrast, we also analyzed the data us-
ing the weighted and centered least-squares (WCLS) es-
timator in Boruvka et al. (2018) for a related but different
model. We used WCLS to estimate ¢ = (Yo, ¥1, ¥2) in
the following model:

E{E(YiH—I | Hii, Aip =1)
- E(Yit—H | Hi;, Ait =O) |
Xirns Xie o, Lin = 1}

=vo+ V1 Xir,1 +¥2Xir 2.

Boruvka et al. (2018) called (16) the causal excursion
effect; v is marginal over both the random effects and
Hi: \ {Xis1, Xiz,2}, which is different from B in (15).
We used yp + y1Xir.1 + v2Xir2 + y3Xi:3 as the work-
ing model for E(Yj;+1 | Hit, Air =0, I;; = 0) in WCLS;
this working model does not need to be correctly specified
to guarantee the consistent of the estimator for . The es-
timated ¥ and the 95% confidence interval are listed in
Table 3. Although 8 and ¢ are different estimands with
different interpretation, their estimated value and confi-
dence interval are qualitatively similar. These results are
consistent with the comments made in the last paragraph
regarding the direction of how different variables moder-
ate the treatment effect.

(16)

6. DISCUSSION

Linear mixed models (LMM) were originally devel-
oped for settings with fixed covariates, and it has been nat-
ural for researchers to think about the induced marginal
model when building and interpreting the fixed effects
in LMM. In this paper, we review related literature on
the potential bias that would arise when including en-
dogenous covariates into LMM. We argued that the fun-
damental issue in LMM with endogenous covariates is
that the fixed effects, including the treatment effect, will
only have a conditional-on-the-random-effect interpreta-
tion, and the marginal interpretation is no longer valid.
In terms of estimation for LMM with endogenous co-
variates, we introduced a conditional independence as-
sumption, and showed that under this assumption stan-
dard LMM software can still be used to obtain valid esti-
mator of the fixed effects and the variance components, as
well as valid prediction of the random effects. We used an

LMM to model the effect of sequentially assigned treat-
ment in HeartSteps MRT in which the covariates are likely
endogenous, and we discussed the plausibility of the con-
ditional independence assumption for these covariates.

The potential bias resulting from endogenous covari-
ates in the without-treatment longitudinal setting has been
known for decades since Pepe and Anderson (1994).
However, it was quite surprising to us that in the MRT
setting, this issue occurs even with randomized treatment
with constant randomization probability (no confound-
ing). The method in this paper utilizes the randomization
to the extent that the treatment indicator A;; automatically
satisfies a conditional independence assumption similar to
(10). Furthermore, (7) is a mechanistic model for the out-
come, which implies that how well the estimated 8 ap-
proximates the true treatment effect is contingent on how
well the mechanistic model approximates the true data
generating distribution. When the marginal treatment ef-
fect is of interest, there are many tools in causal inference
that consistently estimate the effect with a possibly mis-
specified nuisance model (Robins, 1994, 2000, Hernan,
Brumback and Robins, 2001, Brumback et al., 2003,
Goetgeluk and Vansteelandt, 2008, Boruvka et al., 2018).
It is an open question whether the randomization can be
further leveraged in LMM to increase robustness to mis-
specified nuisance models.

The inclusion of endogenous covariates to an LMM
implies that the fixed effects should only be interpreted
as conditional on an individual. Thus, a future research
question is to develop estimation methods for the pa-
rameters in the marginal mean model that are coherent
with fixed effect parameters in an LMM where there are
endogenous covariates. Related work in generalized lin-
ear mixed models but with exogenous covariates includes
Heagerty (1999), Heagerty and Zeger (2000), and Larsen
et al. (2000).

In a standard LMM with exogenous covariates, the em-
pirical best linear unbiased predictor (eBLUP) equals the
empirical Bayes estimator where a noninformative prior is
imposed on the fixed effect and the variance components
are estimated through REML (Lindley and Smith, 1972,
Dempfle, 1977). In Section 3, we showed through partial
likelihood argument that the empirical Bayes estimator of
random effects from standard LMM is still a valid empiri-
cal Bayes estimator in the case of endogenous covariates.
However, it is unknown whether it is still e BLUP absent
further assumptions.

Along the same lines, in a standard LMM the restricted
maximum likelihood (REML) estimator of the variance
components can be viewed as the maximum a posteri-
ori estimator in a Bayesian hierarchical model (Laird and
Ware, 1982), and in Section 3 we showed that this latter
interpretation is valid for the REML estimators obtained
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through standard LMM software when there are endoge-
nous covariates. Another interpretation of the REML es-
timator in a standard LMM is the maximizer for the
likelihood of linear combinations of the outcome that is
orthogonal to the fixed effects. It is unknown whether this
interpretation continues to hold for the endogenous co-
variate case.

In the literature, there has been work on handling en-
dogenous covariates in longitudinal data via jointly mod-
eling the covariate process and the outcome process,
which could be alternative approaches to the method pro-
posed in this paper for situations where the conditional in-
dependence assumption is questionable. Note that each of
these alternative approaches require certain assumptions
on the covariate process, and these assumptions them-
selves need to be verified in the context of each applica-
tion. For example, Miglioretti and Heagerty (2004) mod-
eled the covariate process, and assumed that X;; L b; |
Xit, Xi2, ..., Xir—1. Roy et al. (2006) proposed to model
the distribution of covariates given the history to infer the
dependence of a Poisson process outcome on the endoge-
nous covariates. Sitlani et al. (2012) proposed to use joint
modeling for analyzing the effect of a surgical trial (where
the time-varying treatment is a jump process) under non-
compliance. Shardell and Ferrucci (2018) proposed to use
a joint model approach, by assuming either that the distri-
bution of X;; can be correctly modeled, or that the en-
dogenous covariate is a lagged outcome.

APPENDIX A: ESTIMATION AND PREDICTION
THROUGH STANDARD LMM SOFTWARE

In this Appendix, we provide a proof for the claims in
Section 3 that maximum likelihood estimators, maximum
a posterior estimators, and the empirical Bayes prediction
of the random effects can be obtained through standard
LMM software.

A.1 Estimation of Fixed Effects and Variance
Components

This subsection focuses on estimation of the fixed ef-
fects o and B and the variance components € and 03 in
model (7).

That the maximum likelihood estimator for the fixed ef-
fects and the variance component can be obtained through
standard LMM software is immediate from the likelihood
factorization (12).

The restricted maximum likelihood (REML) estimator
of the variance components 6 and o, in a standard LMM
can be obtained through Bayesian maximum a posteri-
ori (MAP) estimation with a noninformative prior on the
fixed effects o, B (Laird and Ware, 1982, Searle, Casella
and McCulloch, 1992). For our case, the marginal likeli-
hood for 6, o, where « and g are integrated over with

respect to noninformative priors p(«) and p(f), is

L(Qaaé | XivAia Yi’ 1 il Sn)
= [ prp(p)

JlpXi, Ai.Yila,B.6,00)dadB,
i
which by (12) equals

H{n pXit | Hir—1, Air—1, Yir)

i t

p(Ai| Hm} [ repr®
‘n{/np(YiH—l | Hiz, Air, bi;
i t

(17) a,ﬂ,e,ae)dF(bi)}dadﬂ
x [ p@p)
‘H{/HP(YZ'H—I | His, Ajsr, bi;
i t

oe,ﬂ,@,ae)dF(bi)}dozdﬂ.

Expression (17) is the marginal likelihood for 8, o in a
standard LMM; hence, the MAP estimator of the variance
components can be obtained through standard LMM fit-
ting procedure with the REML option.

A.2 Prediction of Random Effects

Prediction of random effects in a standard LMM is
through best linear unbiased predictors (BLUPs, Hender-
son, 1975), which can be alternatively derived as empiri-
cal Bayes estimates using REML estimator of the variance
components and fixed effects (Lindley and Smith, 1972,
Dempfle, 1977).

Denote by b = (by,...,by), X = (X1,...,Xn), A=
(Ay,...,Ay), and Y = (Y1,...,Y,). In our proposed
model, the posterior distribution of b is

p(b9X9A7Y|0766)
p(XaAaY|0v0€) ‘

(18) p®|X,A,Y;0,00) =
We omit the notational dependence on 6, o, hereafter. Let

p(a) and p(B) denote the prior distribution of o and 8.
The numerator of the right-hand side of (18) equals

/P(b, X, A Y, o, B)dadp

- f p@ p®) ] pb:)
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TABLE 4
Bias, standard deviation (sd) and coverage probability (cp) of 95% nominal confidence interval for the fixed effect parameters in the simulation
study. n denotes sample size; T denotes total number of observations for each individual, GM denotes generative model. The result is based on
1000 replicates for each setting

Bo B1 g o
GM T n bias sd cp bias sd cp bias sd cp bias sd cp
1 10 30 —0.001 0.249 0.943 0.002 0.091 0.897 —0.021 0.377 0951 —0.002 0.065 0.915
50 —0.002 0.187 0953  —0.001 0.068 0.897 —0.019 0.295 0947 —0.001 0.048 0.930
100 —0.003 0.135 0941 —0.001 0.049 0.898  —0.011 0.210 0949 —0.001 0.033 0.920
200 —0.001 0.096 0926 —0.001 0.034 0.899  —0.009 0.150 0.941 0.000 0.025 0.909
1 20 30 —0.001 0.217 0.943 0.001 0.063 0919 —-0.020 0.372 0.950  —0.002 0.046 0.928
50 0.001 0.168 0.947  —0.000 0.048 0916 —-0.018 0.288 0945 —0.002 0.034 0.935
100 —0.002 0.117 0.950 —0.000 0.035 0.906 —0.010 0.207 0.946  —0.000 0.025 0.930
200 —0.001 0.085 0943 —0.001 0.026 0.892  —0.008 0.147 0.944 0.000 0.018 0.921
1 30 30 —0.002 0.206 0.946 0.001 0.053 0913  —0.020 0.367 0.952 —0.001 0.038 0.924
50 —0.000 0.160 0.949 0.001 0.040 0930 —0.017 0.288 0945 —0.001 0.028 0.940
100 —0.005 0.112 0.949  —0.001 0.028 0.935 —0.009 0.205 0.944 0.000 0.020 0.938
200 0.000 0.081 0944  —0.001 0.022 0.902  —0.009 0.146 0.946 0.000 0.015 0.923
2 10 30 —0.010 0.269 0.939  —0.004 0.105 0903 —0.015 0.391 0.950  —0.003 0.079 0.933
50 —0.011 0.209 0.932  —0.000 0.078 0909 —-0.010 0.302 0.941 0.001 0.062 0.931
100 0.009 0.145 0.933  —0.001 0.056 0915 -0.012 0.222 0934  —0.002 0.045 0.929
200 —0.008 0.105 0931 —0.002 0.038 0.934  —0.007 0.150 0.960 0.001 0.031 0.935
2 20 30 —0.005 0.229 0943  —0.001 0.079 0930 —0.014 0.377 0.951 —0.002 0.067 0.940
50 —0.008 0.180 0.944 0.001 0.061 0929 —-0.014 0.292 0951 —0.001 0.053 0.931
100 0.007 0.123 0.942 0.001 0.044 0931 —-0.012 0.213 0945 —0.003 0.038 0.940
200 —0.007 0.090 0.933  —0.001 0.030 0.939  —0.006 0.147 0.957 0.001 0.026 0.945
2 30 30 —0.006 0.216 0.943  —0.001 0.070 0.939 —-0.014 0.374 0.951 —0.002 0.062 0.946
50 —0.008 0.168 0.957 0.001 0.055 0945 -0.016 0.289 0951 —0.002 0.049 0.942
100 0.006 0.115 0.947  —0.001 0.039 0948 —0.010 0.210 0943  —0.002 0.035 0.934
200 —0.004 0.084 0.935  —0.000 0.027 0.940 —0.008 0.145 0.950 0.000 0.025 0.942
3 10 30 —0.048 0.245 0949  —0.043 0.075 0.725 0.048 0.341 0.951 0.057 0.060 0.629
50 —0.049 0.189 0.940 —0.045 0.055 0.674 0.053 0.265 0.949 0.059 0.044 0.519
100 —0.060 0.134 0.927  —0.047 0.041 0.548 0.063 0.190 0.931 0.061 0.031 0.283
200 —0.052 0.095 0907 —0.046 0.029 0.355 0.064 0.135 0.924 0.061 0.022 0.079
3 20 30 —0.029 0.216 0945 —0.024 0.051 0.798 0.016 0.351 0.955 0.028 0.038 0.766
50 —0.035 0.168 0950 —0.027 0.039 0.762 0.022 0.273 0.949 0.030 0.028 0.714
100 —0.038 0.119 0931 —0.027 0.028 0.666 0.029 0.194 0.948 0.030 0.021 0.548
200 —0.034 0.083 0935 —0.027 0.019 0.514 0.031 0.137 0.953 0.031 0.014 0.272
3 30 30 —0.023 0.207 0946  —-0.017 0.041 0.847 0.005 0.354 0.954 0.018 0.031 0.832
50 —0.026 0.159 0946  —0.018 0.031 0.822 0.010 0.275 0.948 0.019 0.022 0.794
100 —0.028 0.112 0942 -0.019 0.022 0.762 0.016 0.197 0.950 0.020 0.016 0.658
200 —0.024 0.079 0941 -0.019 0.015 0.628 0.018 0.139 0.950 0.021 0.011 0.438
[ 1pXie | Hig—1, Air—1, Yir, bis e, ) [T pies1 | Hir, Air, bis o, B) d dB,
t t
- p(Ait | Hit, bi, o, B) where the last equality follows from the conditional inde-
pendence assumption and the randomization of A;;. The
(19) - pYirt1 | Hig, A, bis o, B) da dp

= {an(xit | Hit—1, Air—1, Yir)
i t

p(Au | Hm}

: f p@ pB) [ pbr)

denominator of the right-hand side of (18) is [ p(b, X, A,
Y, o, B)dadB db. Thus, the posterior distribution (18)
equals

([ r@p®ITpe0

Q0 TTpWiast | Hirs Ao ) drdp
t
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TABLE 5
Bias and standard deviation (sd) for the estimated variance components 05-, 0<j<3and 052 in the simulation study. n denotes sample size; T
denotes total number of observations for each individual; GM denotes generative model. For GM 1 and GM 3, the model doesn’t include b;1 and
b;3, so the corresponding entries in the table are left blank. The result is based on 1000 replicates for each setting

‘7132 ‘7133 ‘730 ‘7131 ol

n T GM bias sd bias sd bias sd bias sd bias sd
1 10 30 0.024 0.400 - - —0.008 1.137 - - —0.003 0.049
50 0.013 0.300 - - —0.020 0.868 - - —0.002 0.035
100 0.017 0.210 - - —0.031 0.614 - - —0.001 0.024
200 0.004 0.151 - - —0.021 0.431 - - —0.000 0.017
1 20 30 0.012 0.319 - - —0.025 1.067 - - —0.003 0.032
50 0.010 0.246 - - —0.026 0.822 - - —0.001 0.023
100 0.008 0.174 - - —0.041 0.579 - - —0.001 0.016
200 0.004 0.126 - - —0.021 0.403 - - —0.000 0.011
1 30 30 0.003 0.293 - - —0.036 1.036 - - —0.002 0.025
50 0.001 0.232 - - —0.037 0.809 - - —0.001 0.018
100 0.008 0.163 - - —0.040 0.569 - - —0.001 0.013
200 0.000 0.116 - - —0.023 0.399 - - —0.000 0.009
2 10 30 0.047 0.498 —0.001 0.058 —0.003 1.238 —0.003 0.040 —0.003 0.048
50 0.048 0.392 —0.005 0.046 —0.057 0.935 —0.004 0.033 —0.001 0.038
100 0.000 0.260 —0.003 0.033 —0.019 0.646 —0.001 0.022 0.000 0.027
200 0.005 0.184 —0.003 0.021 —0.043 0.451 —0.001 0.015 —0.001 0.019
2 20 30 0.009 0.367 —0.003 0.043 —0.029 1.094 —0.003 0.032 —0.000 0.031
50 0.022 0.302 —0.003 0.033 —0.045 0.854 —0.002 0.025 0.000 0.025
100 0.002 0.200 —0.002 0.021 —0.016 0.597 —0.000 0.017 0.001 0.017
200 —0.001 0.142 —0.001 0.015 —0.029 0.418 —0.001 0.012 —0.001 0.012
2 30 30 0.001 0.334 —0.002 0.036 —0.045 1.065 —0.003 0.029 0.000 0.025
50 0.012 0.268 —0.003 0.027 —0.049 0.826 —0.002 0.022 0.000 0.019
100 0.002 0.183 —0.001 0.019 —0.028 0.584 0.000 0.016 0.000 0.013
200 —0.003 0.127 —0.001 0.013 —0.029 0.409 —0.001 0.011 —0.000 0.009
3 10 30 0.126 0.434 - - —0.710 1.159 - - 0.004 0.046
50 0.105 0.329 - - —-0.771 0.860 - - 0.005 0.034
100 0.094 0.228 - - —0.810 0.604 - - 0.005 0.025
200 0.080 0.159 - - —0.796 0.429 - - 0.006 0.018
3 20 30 0.059 0.329 - - —0.380 1.056 - - 0.000 0.029
50 0.053 0.262 - - —0.428 0.800 - - 0.001 0.023
100 0.040 0.174 - - —0.429 0.575 - - 0.001 0.017
200 0.038 0.125 - - —0.430 0.406 - - 0.002 0.011
3 30 30 0.040 0.304 - - —0.268 1.029 - - —0.000 0.024
50 0.030 0.237 - - —0.296 0.782 - - —0.001 0.018
100 0.027 0.162 - - —0.306 0.569 - - 0.000 0.013
200 0.023 0.115 - - —0.299 0.395 - - 0.001 0.009

/([ rr® Treo

T pivsr | Hi Aig. by: 0. ) derdp db),
1t

which is the posterior distribution of b in a standard LMM
when X and A are treated as fixed or exogenous.

Therefore, the Bayesian MAP estimator of b can be ob-
tained through standard LMM fitting procedure. Along
the same line, the empirical Bayes estimator of b with
plug-in variance component estimates can also be ob-
tained through standard LMM.

APPENDIX B: ADDITIONAL SIMULATION RESULTS

In the additional simulation results, we included simu-
lations for sample size n = 30, 50, 100, 200 and the num-
ber of observations per individual 7; = T = 10, 20, 30.
Each setting was replicated 1000 times. Bias, standard de-
viation (sd) and coverage probability (cp) of 95% nominal
confidence interval for the estimated fixed effects (8’s and
a’s) are presented in Table 4. Table 5 presents the bias and
standard deviation for the estimated variance components
04,0 < j <3 and 0. For GM 1 and GM 3, the model
doesn’t include b; and b;3, so the variance components
only include 07, o, and o2. Conclusion similar to Sec-
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tion 4 can be made: for GM 1 and GM 2, the variance
components are consistently estimated, whereas for GM
3 the estimators are inconsistent. Again, this is due to vi-
olation of the conditional independence assumption (10)
in GM 3.
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