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Abstract. We propose new optimal matching techniques for large admin-
istrative data sets. In current practice, very large matched samples are con-
structed by subdividing the population and solving a series of smaller prob-
lems, for instance, matching men to men and separately matching women
to women. Without simplification of some kind, the time required to opti-
mally match T treated individuals to T controls selected from C ≥ T poten-
tial controls grows much faster than linearly with the number of people to be
matched—the required time is of order O{(T + C)3}—so splitting one large
problem into many small problems greatly accelerates the computations. This
common practice has several disadvantages that we describe. In its place, we
propose a single match, using everyone, that accelerates the computations in
a different way. In particular, we use an iterative form of Glover’s algorithm
for a doubly convex bipartite graph to determine an optimal caliper for the
propensity score, radically reducing the number of candidate matches; then
we optimally match in a large but much sparser graph. In this graph, a mod-
ified form of near-fine balance can be used on a much larger scale, improv-
ing its effectiveness. We illustrate the method using data from US Medicaid,
matching children receiving surgery at a children’s hospital to similar chil-
dren receiving surgery at a hospital that mostly treats adults. In the example,
we form 38,841 matched pairs from 159,527 potential controls, controlling
for 29 covariates plus 463 Principal Surgical Procedures, plus 973 Principal
Diagnoses. The method is implemented in an R package bigmatch avail-
able from CRAN.
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1. INTRODUCTION: THE PROBLEM; AN EXAMPLE;
OUTLINE

1.1 Matching for Observational Studies Derived from
Administrative Data Sets

As administrative records have moved from file cab-
inets to computers, administrative data sets have grown
in size while also becoming more accessible for analysis.
For instance, using US Medicare data, Silber et al. (2016)
formed 25,076 matched pairs of two patients comparing
surgical outcomes at hospitals with superior and inferior
nursing, finding lower morality and reduced use of the in-
tensive care unit at hospitals with superior nursing. Us-
ing data from the Pediatric Health Information System
(PHIS), Silber et al. (2018) formed 23,582 matched pairs
of two children, comparing the surgical outcomes of chil-
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dren on Medicaid to the outcomes of similar children with
other forms of health insurance.

Matched observational studies are commonly con-
structed using propensity scores (Rosenbaum and Ru-
bin, 1985), externally estimated prognostic or risk scores
(Hansen, 2008), covariate distances (Rubin, 1980), fine
balance constraints (Rosenbaum, Ross and Silber, 2007,
Yang et al., 2012, Zubizarreta, 2012, Pimentel et al.,
2015), and minimum cost flow algorithms that minimize
the total distance within matched pairs or matched sets
(Rosenbaum, 1989, Hansen and Klopfer, 2006, Lu et al.,
2011). These techniques are straightforward and work
well with a few thousand people, but they encounter com-
putational difficulties with administrative data sets con-
taining tens or hundreds of thousands of people. For re-
views of matching methods, see Rosenbaum (2010) and
Stuart (2010).

In current practice, 100,000 people are not matched in
a single optimization; rather, people are subdivided into,
say, fifty bins by matching exactly for a few discrete
or rounded covariates; then, within each bin, thousands
of people are matched optimally. This approach is nei-
ther unreasonable nor impractical, but it has aspects that
are not attractive. Exact matching in bins gives overrid-
ing importance to the covariates that define the bins, and
there may be no scientific basis for this. Other covari-
ates of equal importance may be inadequately matched
because close matches between bins are forbidden. Cat-
egorizing continuous covariates, such as the propensity
score, to make exact-match bins forbids close matches
on the propensity score that cross category boundaries,
while tolerating larger gaps inside categories. If you di-
vide Medicare surgeries into bins by matching exactly
for ICD-9 or ICD-10 principal surgical procedures, then
you find that some surgeries, such as knee replacement
surgery, are so common that its bin is still too large to
match, whereas other surgeries are so rare that their bins
need to be merged before the matching bin is large enough
to match. Creating bins of practical size then has subjec-
tive aspects that may be left to a statistical programmer,
with the consequence that some of the decisions that led
to the match are not automatic, hence not reproducible by
someone else.

More importantly, there are substantial statistical ad-
vantages to matching everyone at once. A matching
technique called “fine balance” tries to balance covari-
ates without pairing individuals who have the same
values of these covariates (Rosenbaum, Ross and Sil-
ber, 2007). Fine balance makes groups comparable by
counter-balancing—an imbalance in one pair is counter-
balanced in another—as in a Latin square design, rather
than seeking to pair identical individuals, as in a blocked
design. There are many more opportunities for fine bal-
ance when more people are matched at the same time.
Splitting 100,000 people into 50 bins unnecessarily limits
what fine balance can do.

1.2 Surgery for Children: Are Outcomes Better in
Children’s Hospitals?

A child may have surgery at a conventional hospital that
mostly treats adults, or at a hospital dedicated to the treat-
ment of children, such as Boston Children’s Hospital or
the Children’s Hospital of Philadelphia. Does this choice
matter? Do outcomes differ? We are interested in those
surgical procedures that offer a genuine choice. A hand-
ful of specialized or especially risky surgical procedures
for children are almost invariably performed at children’s
hospitals, and we will exclude these, focusing instead on
the vast majority of procedures commonly performed on
children at adult hospitals.

We look at data from Medicaid for 2009–2012. We
have 203,163 children admitted for surgical procedures
in which both the Principal (Surgical) Procedure and
the Principal Diagnosis were not missing, and of these,
41,319 procedures were performed in a children’s hospi-
tal, or about 20%. So 4 in 5 surgeries on children are per-
formed at adult hospitals. There were 504 distinct surgical
procedures, 3 of which were never performed at children’s
hospitals. We excluded 38 of the 504 surgical procedures
where the majority of children were treated at children’s
hospitals, consistent with our goal of focusing on those
procedures that typically done at adult hospitals, leaving
504 − 3 − 38 = 463 procedures.

After this exclusion, there were 198,368 surgical admis-
sions, of which 38,841 were at children’s hospitals, and
there remained 463 distinct surgical procedures and 973
distinct principal diagnoses. Additionally, Table 1 lists
other covariates, including demographic variables such as
age, sex and race, comorbid conditions such as cancer and
congenital anomalies, and the intensity of health care ser-
vices in the past six months, such as operations, emer-
gency department (ED) visits, and office visits. In Table 1,
operations in the past six months distinguish two lists of
operations, a narrow list of clearly relevant procedures,
and a broad list including additional procedures. Notably,
before matching, the children treated at children’s hos-
pitals rather than adult hospitals are younger, have more
congenital anomalies (18.9% versus 7.9%) and other co-
morbid conditions, and have more visits a hospital’s emer-
gency room in the past six months.

The standardized differences in Table 1 are the absolute
treated-minus-control difference in means for a covariate
divided by a pooled standard deviation before matching.
The pooled standard deviation gives equal weight to the
treated and control groups, and it always refers to the dis-
tribution before matching. In contrast, the numerator of
the standardized difference is different before and after
matching, so it is a standardized measure of improvement
in balance in a covariate afforded by matching. This mea-
sure is traditional, and was used in Cochran and Rubin
(1973) and Rosenbaum and Rubin (1985).
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TABLE 1
In addition to matching for 463 principal surgical procedures and 973 principal diagnoses, the match controls the demographic covariate and

comorbid conditions below. The table shows the covariate mean for children in children’s hospitals (treated) and children in adult hospitals
(control), for 38,841 matched controls and 159,527 controls before matching. The standardized difference is the absolute difference in means

divided by an equally weighted pooled standardard deviation before matching. Standardized differences above 0.2 standard deviations are in bold

Covariate mean

Controls Standardized difference

Covariate Treated Matched All Matched All

Sample size 38,841 38,841 159,527 38,841 159,527

Year admitted 2010.753 2010.725 2010.492 0.025 0.238
Age 8.338 8.489 10.310 0.027 0.350
Male 0.551 0.559 0.563 0.018 0.024
Black 0.159 0.157 0.184 0.004 0.067
Hispanic 0.301 0.291 0.290 0.021 0.024
Race, other 0.177 0.156 0.134 0.060 0.121
Autoimmune disorder 0.003 0.002 0.002 0.019 0.025
Blood disorder 0.046 0.034 0.046 0.055 0.003
Cancer 0.063 0.054 0.035 0.043 0.128
Cerebral palsy 0.072 0.057 0.028 0.070 0.203
Chromosomal anomaly 0.027 0.017 0.011 0.074 0.120
Congenital heart disease 0.091 0.078 0.039 0.053 0.215
Congenital anomaly 0.189 0.161 0.079 0.085 0.328
Diabetes 0.010 0.007 0.011 0.029 0.011
Enteritis/digestive disorder 0.019 0.016 0.010 0.030 0.077
Epilepsy/seizure 0.086 0.071 0.056 0.059 0.118
HIV 0.001 0.001 0.001 0.003 0.004
Immunocompromised 0.014 0.006 0.004 0.078 0.098
Major Organ Dysfunction 0.036 0.030 0.019 0.039 0.108
Mental retardation 0.131 0.107 0.076 0.079 0.182
Metabolic disorder 0.025 0.019 0.020 0.044 0.036
Muscular dystrophy 0.002 0.001 0.001 0.023 0.039
Neurodegenerative Disease 0.052 0.043 0.024 0.043 0.142
Other respiratory 0.011 0.007 0.004 0.046 0.081

Mean count of health services in the past 6 months

Hospitalizations 0.184 0.148 0.128 0.058 0.089
Operations, broadly defined 0.084 0.067 0.057 0.051 0.080
Operations, narrowly defined 0.041 0.035 0.024 0.027 0.078
Emergency Department visits 2.681 2.366 2.075 0.068 0.131
Office visits 4.706 4.695 4.095 0.001 0.073

We will form 38,841 matched pairs of two children,
one in a children’s hospital, one in an adult hospital. The
match will balance the 463 procedures, the 973 diagnoses,
their 463 × 973 = 450,499 interactions, plus the covari-
ates listed in Table 1. As the ratio of interaction categories
to children in the study is 2.3, there is no realistic hope of
modelling all of the interactions, but they can be balanced.

In current practice, a matching problem as large as this
would be divided into 20 to 50 smaller problems. In sharp
contrast, using new methods proposed in this paper, we
will match the 198,368 children in a single optimization.

1.3 Outline of the Paper: Concepts in Pictures,
Formal Results, Application

Section 2 uses a toy example with 30 individuals and
a few drawings to indicate the changes we suggest for

matching in large administrative data bases. A toy exam-
ple is useful because a person can inspect a graph with
30 nodes and see what is happening, but real matching
problems are vastly larger. This discussion is divided in
half, with Section 2.1 removing edges from a graph, and
with Section 2.2 bringing in the key concept of fine bal-
ance. The practical aspects of creating a match are briefly
sketched in Section 3. Then, Section 4 develops the topic
formally and in greater generality. A goal in Section 4
is to quantify the reduction in computational effort pro-
duced by the ideas informally introduced in Section 2.
We illustrate the technique in Section 5 using the Med-
icaid data mentioned in Section 1.2. Proofs are given in
the Appendix.
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2. AN INFORMAL DISCUSSION OF OPTIMAL
MATCHING FOR LARGE DATA BASES

2.1 A Motivating Picture Illustrating Some Issues and
Methods

2.1.1 Dense graphs offer too much choice, including
obviously bad choices. To fix ideas, Figure 1 is a pic-
ture of a toy version of the problem, omitting for the
moment the important issue of fine balance. The ex-
ample uses public data from the 2005–2006 National
Heath and Nutrition Examination Survey (NHANES),
with 7 daily smokers and 23 nonsmokers as poten-
tial controls. This example is a random sample of size
30 from the nh0506 data in the R package big-
match, obtained by “set.seed(20)” followed by
“nhs<-nh0506[sample(1:(dim(nh0506)[1])
,30),].” The reader may find it helpful to try the meth-
ods we describe using the small data set nh0506; it de-
scribes 2475 people.

In Figure 1, 30 people are represented by dots or nodes,
7 treated and 23 controls, two of which are controls with
virtually identical propensity scores 0.2186 and 0.2183
so their nodes are not visibly different in Figure 1. Each
panel of Figure 1 is a so-called bipartite graph, mean-
ing two parts, treated and control. In a bipartite graph,
the edges connect nodes in different parts. Figure 1(i)
has every possible edge, or 161 = 7 × 23 edges, so it is
said to be a complete and dense bipartite graph. Candi-
date matches are represented by line segments or edges.

In optimal bipartite matching, each edge is a binary de-
cision variable: Should this treated node be matched to
this connected control node, or to someone else? In the
simplest case, a pair matching, we pair every treated node
to a different control node, so we pick 7 edges that do
not share a node in Figure 1(i). Each edge has a cost or
distance attached to it, where the distance measures how
close a treated subject is to a control in terms of mea-
sured covariates. The cost or distance may involve the
propensity score, a Mahalanobis distance of some kind,
and other considerations. In Section 2.1, we seek a pair
matching that minimizes the total cost over the 7 cho-
sen edges, a standard combinatorial optimization prob-
lem; however, in Section 2.2 we impose additional bal-
ance constraints on the match. The problem is not triv-
ial because two treated nodes may both want the same
potential control, so you cannot pair each treated node
to the closest control. Matching with multiple controls is
discussed in Section 4.6. For pair matching, Figure 1(i)
would entail optimizing a function of 161 = 7 × 23 bi-
nary decision variables subject to various constraints that
require 7 nonoverlapping treatment/control pairs. If we
matched 1000 treated people to 2000 potential controls,
Figure 1(i) would have 2 × 106 = 1000 × 2000 edges, a
practical size for optimal matching. If we matched 30,000
treated people to 60,000 potential controls in a small ad-
ministrative data base, Figure 1(i) would have 1.8×109 =
30,000 × 60,000 edges, and optimal matching using Fig-
ure 1(i) would not be practical in 2019. The difficulty of
optimal matching grows much faster than linearly with

FIG. 1. Five bipartite graphs, where the vertical axis is the propensity score. There is a decision variable for each potential pairing of a treated
subject and a potential control, that is, a decision variable for each edge. Graph (i) has all possible pairings. Graph (ii) has reduced the number of
edges by cutting the graph into four parts at the quartiles, where these parts will be matched separately. Graph (iii) has a caliper that is just a little
too small, so pair matching is not feasible. Graph (iv) has the smallest feasible caliper. Graph (v) has both the smallest caliper and the smallest
upper bound on the number of edges for treated units.
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the number of edges, so a problem with 1.8 × 109 edges
is much more than 1000 times harder than a problem with
2 × 106 edges; see, for example, Section 4.4 for specifics.
Expressing the same thought in other words, it would be
much easier to solve 1000 problems of size 2 × 106 than
to solve one problem of size 1.8 × 109.

2.1.2 Cutting up a large graph into many smaller
graphs works but has unattractive limitations. It might
take only a glance to realize that many of the 161 = 7×23
possible pairings are terrible, perhaps differing greatly on
the propensity score; therefore, many candidate pairings
really do not deserve serious consideration. We do not
want to match the upper left treated node to the lower right
control node because their propensity scores are far apart.
So we might be willing to change the optimal matching
problem in Figure 1(i) into a different problem that can be
solved more quickly in large data sets. To emphasize, we
will not solve the optimization problem in Figure 1(i), but
replace that problem by another reasonable problem that
can be solved.

Figure 1(ii) is a toy version of current practice in large
data sets. Figure 1(ii) splits the treated and control popu-
lation into 4 subpopulations or bins, here using the quar-
tiles of the propensity score, which appear in Figure 1(ii)
as horizontal dashed lines. Notice that Figure 1(ii) re-
moves all edges from Figure 1(i) that would have crossed
a dashed horizontal line. Figure 1(ii) has four connected
components: a treated subject is only connected to—can
only be matched to—controls in the same stratum defined
by quartiles of the propensity score. Figure 1(ii) is a graph
with four connected components, each of which is a com-
plete bipartite graph, with a total of 35 edges or decision
variables, rather than 161 in Figure 1(i). Figure 1(ii) has
fewer edges or decision variables in total, but addition-
ally there are four unrelated small problems that can be
solved one-by-one, rather than one large problem. For in-
stance, the problem in the lowest bin of Figure 1(ii) is
trivial: pick the one control with the smallest covariate
distance to the one treated unit. In the lowest bin, there
is no competition among treated units that want the same
control. The problem in the top quartile of Figure 1(ii) is
a little harder: there are 4! = 24 possible pairings of the
4 treated subjects and 4 controls, and one of these min-
imizes the total distance within the four pairs. If 30,000
treated people and 60,000 potential controls were divided
into 30 bins of sizes 1000 and 2000, then a graph like that
in Figure 1(b) might consist of 30 separate subproblems
each with 2 × 106 = 1000 × 2000 edges or decision vari-
ables, and each subproblem would be of practical size for
optimal matching. True, one would need to solve 30 prob-
lems, rather than one problem, but each problem could
be solved in reasonable time, unlike a graph analogous to
Figure 1(i) with 1.8 × 109 = 30,000 × 60,000 edges.

Forming bins based on observed covariates is practi-
cal and not unreasonable, but it can restrict the possible
matches in undesirable ways. This is already visible in the
toy illustration in Figure 1(ii). The top bin in Figure 1(ii)
has 4 treated units and 4 potential controls, thereby forc-
ing all four controls to be used, leaving open only who is
matched to whom. Matching does not reduce bias in the
top bin of Figure 1(ii) because all four controls are used.

Moreover, the one control in Figure 1(ii) with the high-
est propensity score is not close to any treated unit, but
as only four controls are available in the top bin, that one
control must be included in the match anyway. This is de-
spite the fact that the bottom treated unit in the top bin is
very close to a control just barely on the opposite side of
the bin boundary, and the second bin has an abundance
of potential controls. It would be better to cross the bin
boundary and not use the one control with the highest
propensity score, but the quartile dividers do not permit
this.

The situation can be even worse. If the one control with
the highest propensity score had not been in Figure 1(ii),
then the top bin would have 4 treated units and 3 con-
trols, so matching all 7 treated units to 7 distinct con-
trols would be impossible with the bin boundaries in Fig-
ure 1(ii). Pair matching of all treated units might be fea-
sible in Figure 1(i), but cutting to produce Figure 1(ii)
might make pair matching infeasible. Here, the word in-
feasible is being used in its technical sense: we are op-
timizing an objective function subject to constraints, but
the set of matchings that satisfy the constraints is empty.

2.1.3 Calipers can help, but they must be defined care-
fully to avoid infeasibility. If we required a
matched control to have an age that differs by at most
two years from the age x of its matched control, then we
would have imposed a caliper of x ± 2. Cochran and Ru-
bin (1973) discussed caliper matching. Rosenbaum and
Rubin (1985) advocated matching using the Mahalanobis
distance within calipers defined by the propensity score.
This strategy ensures a close match on the propensity
score, but if several such matches are available, it seeks a
close match also on other covariates in the Mahalanobis
distance.

In general, a caliper is a function κ : R �−→ R2 sending
x to κ1(x) ≤ κ2(x) where a treated subject with covari-
ate value x may be matched to any control with covariate
values in the interval [κ1(x), κ2(x)]. The common choice
is x �−→ [x − w,x + w] for some fixed w ≥ 0, such as
[x − 2, x + 2] for a two-year caliper on age. We could
have other choices of κ(·), perhaps a very short caliper
for very young children, and a longer caliper for people
in middle age: perhaps we regard a 1-year old as very dif-
ferent from a 3 year old, but regard a 32 year old as close
enough to a 34 year old. If treated subjects are, on aver-
age, older than potential controls, then we might prefer
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an asymmetric caliper, say x �−→ [x − 1, x + 3], to offset
a tendency of controls to be younger even inside a short
caliper.

A caliper would eliminate some edges in Figure 1(i),
but unlike Figure 1(ii), a caliper need not produce discon-
nected components. As the caliper becomes tighter—as
we redefine κ2(x) to be closer to κ1(x)—more edges or
decision variables are removed, but if we continue too far
in this direction, then no pair matching may exist. Nar-
rower calipers accelerate computation but risk infeasibil-
ity.

Figures 1(iii) and 1(iv) are obtained from Figure 1(i)
by imposing calipers on the propensity score of, respec-
tively, 0.08288 and 0.08293. Although these two calipers
both round to 0.0829, Figures 1(iii) and 1(iv) differ in an
important way. The caliper 0.08288 is too small: the two
treated units with the largest propensity scores in Fig-
ure 1(iii) can only be matched to the same single con-
trol, so there is no pair matching of distinct individuals.
In contrast, the caliper is only a tad larger in Figure 1(iv),
but matching is feasible. Define the optimal caliper of the
form ±w as the smallest caliper w ≥ 0 such that pair
matching is feasible. Then the optimal caliper w in Fig-
ure 1(i) is in the short interval [0.08288,0.08293], and the
caliper of 0.08293 is feasible.

One new technique in the current paper is a very
fast algorithm that finds a short interval, like [0.08288,

0.08293], containing the optimal caliper in a large dense
bipartite graph, thereby removing the maximum number
of edges that can be removed by a caliper of the form ±w

without generating infeasibility. With many fewer deci-
sion variables, this new, sparser graph is then optimized
to minimize the total distance within matched pairs, con-
strained by the optimal caliper and by additional fine bal-
ance constraints. The new approach entails an iterative use
of a variant of Glover’s (1967) algorithm for matching in
a convex bipartite graph. In a doubly convex graph, it is
possible to implement Glover’s algorithm so that it runs
in time proportional to the number of nodes, and this is
much faster than the second step of minimum distance
matching in either a dense or sparse graph. Although Fig-
ure 1 depicts this technique in terms of a caliper on the
propensity score of the form ±w, the same technique has
more general applications that we describe.

Figure 1(iv) is attractive compared to Figure 1(ii). The
one control whose propensity score is far higher than ev-
eryone else is no longer a candidate for matching in Fig-
ure 1(iv), whereas its use was mandated in Figure 1(ii).
There are no boundaries in Figure 1(iv) that prevent
matching individuals who are close, as there were in Fig-
ure 1(ii).

2.1.4 Optimal restriction on the number of nearest
neighbors inside a caliper. A limitation of Figure 1(iv)

is that some treated units still have many edges or deci-
sion variables. This limitation occurs where matching is
easy, that is, where the treated and control distributions
of the propensity score overlap extensively, and this lim-
itation becomes more of a problem in larger graphs. Any
subgraph of Figure 1(iv) maintains the optimal caliper of
0.08293, but not every subgraph would permit a feasible
pair match; for instance, Figure 1(iii) is an infeasible sub-
graph of Figure 1(iv). How could we find a subgraph of
Figure 1(iv) so that it discards edges, maintains feasibility,
and retains nearest neighbors?

Suppose that we retain at most the ν nearest neighbors
of each treated unit in Figure 1(iv). In a minimum caliper
graph, like Figure 1(iv), how small can ν be while pair
matching remains feasible? It is clear from Figure 1(iii)
that ν = 1 is too small, because the two treated units with
the highest propensity scores have the same potential con-
trol as their ν = 1 nearest neighbor. Figure 1(v) shows that
ν = 2 is feasible: a pair match is possible in Figure 1(v).

A second iterative application of Glover’s algorithm
can determine the minimum feasible ν. That is, the first
application of Glover’s algorithm determines the opti-
mal caliper, and then the second application determines
the smallest feasible ν among subgraphs of the optimal-
caliper graph. As seen in Figure 1(v), the treated sub-
ject with the largest propensity score has only one neigh-
bor, not ν = 2 neighbors, because the caliper has sensibly
eliminated distant controls as neighbors.

Knowing the minimum feasible ν does not require use
of this minimal ν. Rather, it informs the investigator that
matching in an optimal caliper graph will remain feasible
if attention is restricted to at most ν nearest neighbors.
For instance, between Figure 1(iv) and Figure 1(v) is a
feasible graph satisfying the optimal caliper and with at
most ν = 3 nearest neighbors, and this intermediate graph
would offer more choice among matched controls, per-
haps resulting in a smaller Mahalanobis distance on co-
variates other than the propensity score, or perhaps with
other desired properties such as covariate balance.

With 30,000 treated units and 60,000 potential controls,
the dense graph would have 1.8 × 109 = 30,000 × 60,000
edges or decision variables. With ν = 100, there would
be 3 × 106 = 30,000 × 100 edges or decision variables,
comparable to a complete bipartite graph that has one
twentieth as many nodes or people. With ν = 100, each
treated subject would be offered 100 potential controls
from which to choose one, so considerations besides the
caliper on the propensity score would have substantial in-
fluence on the final match.

2.2 A Second Motivating Figure Incorporating Other
Matching Techniques

2.2.1 Best calipers and ν with exact matching for a
nominal covariate. Figure 2 adds two features to the bi-
partite graphs in Figure 1 that aid in matching. The first
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FIG. 2. A bipartite graph matching exactly for gender, expanded for near fine balance of race, υ , black or other. The optimal caliper is now
0.1925, and with this caliper the minimum number of neighbors is ν = 3. The duplicate edges connect γ to γ ′, with capacity 1, so they insist that a
control may be matched at most once. The solid grey edges retain feasibility through a penalized bypass, β , of the fine balance constraints.

feature, exact matching for a nominal covariate, is dis-
cussed in Section 2.2.1, while the second feature, near-
fine balance, is discussed in Section 2.2.2.

Figure 2 removes edges in Figure 1(i) that connect a
treated man to a control woman, or a treated woman to a
control man, forcing an exact match for gender. An exact
match for gender is possible because there are two treated
men and eight control men, and five treated women and
fifteen control women.

With fewer edges in the initial graph, the optimal
caliper on the propensity score is now larger, 0.1925
rather than 0.08293 in Figure 1(iv). Also, the smallest fea-
sible ν within the optimal caliper has risen from ν = 2 in
Figure 1(v) to ν = 3 in Figure 2. In Figure 2, no treated
individual is connected to a control of the opposite gen-
der, nor to a control differing on the propensity score by
more than 0.1925, nor does any control have more than
ν = 3 controls as neighbors. Moreover, the caliper and ν

are the best possible: a smaller caliper or ν would make
pair matching infeasible.

2.2.2 Near-fine balance for a nominal covariate im-
plemented as a soft constraint. The structure to the right
in Figure 2 will impose near-fine balance for race, black
or other, as a soft constraint. The treated group in Fig-
ures 1 and 2 contains 2 blacks and 5 others. Fine bal-
ance means that the control group will be forced to con-
tain 2 blacks and 5 others, ignoring whether blacks are
matched to blacks or to others (Rosenbaum, Ross and Sil-
ber, 2007). In other words, fine balance is a constraint
on the marginal distribution of race, not a constraint on
who is matched to whom. Fine balance is not always fea-
sible. If there were fewer than 2 blacks among the con-
trols or fewer than 5 others among the controls, then fine
balance would be infeasible. Figure 2 imposes additional
constraints, the exact matching for gender, the caliper on
the propensity score, and the limit ν = 3 on the number
of neighbors. Even if the potential controls did include 2
blacks and 5 others, fine balance might be infeasible when
conjoined to these other constraints.

Near-fine balance means coming as close as possible
to fine balance (Yang et al., 2012). Near-fine balance be-
comes fine balance whenever fine balance is feasible; oth-
erwise, the fine-balance constraint is minimally relaxed.
A simple definition of near-fine balance requires that the
total of the absolute differences in frequencies, |treated −
control|, over the categories, black or other, is minimized.
For instance, if fine balance is infeasible, the next best fre-
quencies in matched controls would be either 1 black and
6 others or 3 blacks and 4 others, both with the minimal
difference of 2 = |2 − 1| + |5 − 6| = |2 − 3| + |5 − 4|.

Pimentel et al. (2015) generalized the concept of near-
fine balance, introducing a tree-structured hierarchy of
near-fine balance constraints, allowing the user to express
a preference for certain kinds of deviations from fine bal-
ance over other deviations. The refined balance method of
Pimentel et al. (2015) can be applied in conjunction with
the new methods described informally in Section 2.1 and
formally in Section 4.2; however, the detailed description
of refined balance requires a considerable amount of oth-
erwise unneeded notation, so we formulate the problem
in terms of the simpler notion of near-fine balance. For
refined balance, the auxiliary structure on the right in Fig-
ure 2 has multiple layers of near-fine balance nodes and
some additional structure.

With an optimal caliper on the propensity score, the bi-
partite graph in, say, Figure 1(iv), is feasible but barely
so, as seen by comparison with Figure 1(iii), so adding a
fine balance constraint may make pair matching infeasible
when fine balance would have been feasible in Figure 1(i)
without the caliper. Let ϒ be the number of possible val-
ues of the fine balance covariate; so ϒ = 2 in Figure 2.
We can determine whether fine balance is feasible on its
own in Figure 1(i) by constructing a 2×ϒ contingency ta-
ble recording treatment or control by the fine balance co-
variate; however, no simple tabulation shows whether fine
balance is feasible with a caliper, as in Figure 1(iv). As a
consequence, we implement near-fine balance as a soft
constraint in Figure 2. A soft constraint is implemented
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by altering the objective function—here, the total covari-
ate distance within matched pairs—so that it penalizes vi-
olations of fine balance. This is discussed in greater detail
in Section 4, where the grey edges in Figure 2 will per-
mit penalized violations of fine balance. The minimum
cost flow algorithm tries to avoid penalized violations of
fine balance, but tolerates the minimum number of viola-
tions needed to produce feasibility. The implementation
of near-fine balance as a soft constraint departs from the
hard constraint used by Yang et al. (2012) and is a variant
of the soft constraint used by Pimentel et al. (2015). A soft
constraint is necessary here because the bipartite graph is
thinned by calipers and near neighbors.

2.2.3 Implementation details with substantial conse-
quences for performance. When thinking about the com-
putational effort required for optimal matching, attention
usually focuses on the well-studied speed of the optimiza-
tion itself. We did some timing exercises for large op-
timal matching problems, discovering that a substantial
fraction of the time was spent setting up the optimiza-
tion problem, rather than solving it. Specifically, much of
the time was spent computing the robust Mahalanobis dis-
tances that label edges with the cost of pairing individu-
als. We reduced this time in two ways. First, by remov-
ing most edges as in Figure 1(v), we greatly reduced the
number of Mahalanobis distances that need to be com-
puted. Second, the Mahalanobis distance is a quadratic
form, so the most straightforward form of computation
involves O(P 2) arithmetic operations for P covariates.
This can be reduced to O(P ) computations per distance
through a Cholesky decomposition. Although these are
simple changes, they have a big effect on the speed of
computations, an effect that falls outside of formal calcu-
lation of the time required to solve a minimum cost flow
problem.

If we seek a single optimal caliper in the presence of
� ≥ 2 exact match categories, such as the � = 2 genders
in Figure 2, then the caliper must be feasible within ev-
ery category, so the optimal caliper is the maximum of
� optimal calipers for the categories one at a time. In
Figure 2, we may find the optimal caliper separately for
women and for men. Each caliper is found using a binary
search, so it starts with an interval of feasible calipers and
cuts the interval in half repeatedly. Suppose that we find
the caliper for women first. If the caliper we found for
women is feasible for men, then we can stop, because the
best caliper overall must be greater than or equal to the
caliper for women alone. Because the ratio of potential
controls to treated is 15/5 = 3 for women in Figure 2, but
it is 8/2 = 4 for men, it makes sense to find the caliper for
women first, guessing that the caliper will be larger for
women, hoping therefore to avoid a search for the opti-
mal caliper for men. The same considerations apply when
optimizing the number ν of near-neighbors, rather than

the caliper. This shortcut matters more in the example in
Section 5 where � = 463 principal procedures are exactly
matched.

3. PRACTICAL ASPECTS OF MATCHING IN LARGE
DATABASES

Section 4 discusses a network structure and a few re-
sults that permit matching in large databases, and these
ideas are implemented in the R package bigmatch. One
can make effective use of the bigmatch package with-
out reading Section 4, albeit with incomplete knowledge
of precisely what the package is doing. The current sec-
tion is intended to assist a reader who wants to get started
immediately. In the bigmatch package, the examples
for the nfmatch function go through all the needed steps
in the small data set nh0506with 2475 people mentioned
at the beginning of Section 2.

Essentially, the bigmatch package does two
things. First, it creates a sparser but nonetheless feasi-
ble graph for matching. Returning to the tiny illustration
in Figure 1, bigmatch starts by producing a graph like
Figure 1(v) rather than like Figure 1(i); however, the ac-
tual graph is vastly larger in every sense than Figure 1(v).
Although bigmatch “removes” most of the edges, it is
careful to ensure that matching is still possible; it avoids
removing too many edges. Call this the first step.

Second, in a graph like Figure 1(v), the bigmatch
package offers a suite of standard techniques for opti-
mal matching in observational studies, such as propen-
sity score calipers, near-fine balance, minimizing a robust
covariate distance, exact matching, near-exact (or almost-
exact) matching. For discussion of these standard meth-
ods, see Rosenbaum (2010), Part II. From the user’s point
of view, these standard methods work in their standard
way. Inside bigmatch, there are various nonstandard
implementations, essentially to avoid computing or stor-
ing information in Figure 1(i) that plays no role in Fig-
ure 1(v). Call this the second step. If aspects of the second
step are unfamiliar, then try them out using the nh0506
data in the bigmatch package.

The first step has two tasks: (i) pick a caliper on
the propensity score (or some other score) yielding Fig-
ure 1(iv); then (ii) pick a limit ν on the number of near
neighbors, moving from Figure 1(iv) to Figure 1(v). The
optcal function in the bigmatch package does task
(i): it uses Glover’s algorithm iteratively to find the small-
est feasible caliper on the propensity score while also re-
specting any requirements you have set for exact match-
ing. It returns this caliper to you as a number. Also re-
turned is an interval showing the precision with which the
caliper was determined. You need not use this caliper—
you may use a larger one—but if you use a smaller caliper,
then no pair matching exists that will satisfy the smaller
caliper. The optconstant function takes a caliper you
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specify—perhaps the optimal caliper just determined or
perhaps a larger one—and determines the minimum fea-
sible value of ν, the upper limit on the number of near
neighbors. You need not use this minimum feasible ν—
you may use a larger one—but if you use a smaller ν,
then no pair matching exists that will satisfy it. You now
know the lower limits on the caliper and ν, and you are
ready for step two.

In step two, you give to nfmatch a caliper and ν that
are at least as large as the minimums determined in step
one, and you specify your other matching requirements,
and it computes the optimal match subject to your speci-
fications.

The minimum feasible caliper and ν yield a sparse
graph, and perhaps the fastest computation in step two.
However, speed is one consideration among others. Set-
ting the caliper and ν to be higher than their minimum
feasible values gives nfmatch more latitude in search-
ing for a close, balanced match, perhaps producing a bet-
ter match in terms of covariate balance. It is reasonable
to construct and compare a few matched samples, picking
the most satisfactory one providing, of course, that you do
not look at outcomes until after that decision is made and
the study’s design is finalized and fixed.

4. NETWORK STRUCTURE: A SPARSE BIPARTITE
GRAPH EXPANDED FOR NEAR-FINE BALANCE

4.1 The Matching Problem in a Bipartite Graph B
There are T treated units, T = {τ1, . . . , τT }, and C po-

tential controls, C = {γ1, . . . , γC}, where T ∩ C = ∅, and
T ≤ C. Write |S| for the number of elements of a fi-
nite set S , so that, for instance, |T | = T . We would like
to match every treated unit τ ∈ T to a different con-
trol γ ∈ C; that is, each potential control is used at most
once. A match is a 1-to-1 function, μ : T → C, so that
γ = μ(τ) ∈ C is matched to τ ∈ T , and μ(τ) 	= μ(τ ′)
whenever τ 	= τ ′. Write M for the set of matched con-
trols, M = {μ(τ) : τ ∈ T } ⊆ C with |M| = T . The small
changes required for matching with multiple controls are
discussed separately in Section 4.6. In Figures 1 and 2,
T = 7 and C = 23, so μ(·) will pair the seven treated
units to seven different controls.

An edge e = (τ, γ ) with τ ∈ T and γ ∈ C is a possi-
ble pairing of treated subject τ with control γ , and we
must decide whether we want this pairing in the matched
sample, or a different one. The dense bipartite graph anal-
ogous to Figure 1(i) has nodes T ∪ C and every possi-
ble pairing: the edges B of this dense graph consist of all
T × C ordered pairs (τ, γ ) with τ ∈ T and γ ∈ C; that
is, B is the direct product, B = T × C so |B| = T × C.
In Figure 1(i), there are |B| = T × C = 7 × 23 = 161 po-
tential pairs, from which we will select seven edges with
different controls, so |M| = T = 7. The sparse bipartite

in Figure 1(v) has the same nodes, T ∪ C, but the set of
edges, B ⊂ T × C, is much smaller.

There is a real valued score, ρ : T ∪ C → R, and we
would like |ρ(τ) − ρ(γ )| to be small if τ ∈ T is matched
to γ ∈ C. Commonly, ρ(·) is either the propensity score
computed from observed covariates, as in Figure 1, or a
transformation of the propensity score such as its logit
or its rank. Additionally, there is a nonnegative distance
δ : T ×C → [0,∞), and we would like δ(τ, γ ) to be small
if τ ∈ T is matched to γ ∈ C. Commonly, δ(τ, γ ) is a ro-
bust Mahalanobis distance computed from observed co-
variates, perhaps with penalties to enforce additional con-
straints (Rosenbaum, 2010, Chapters 8 and 9). Usually,
we give some priority to ρ(·), because a close match on
the true propensity score can, by itself, balance all ob-
served covariates, but if many controls γ ∈ C are close to
τ ∈ T in terms of ρ(·), then it makes sense to seek a con-
trol who is also close on key covariates as measured by
δ(τ, γ ); see Rosenbaum and Rubin (1985).

There are two nominal covariates, ξ with � ≥ 1 nom-
inal levels, 1, . . . ,�, and υ with ϒ ≥ 1 nominal levels,
1, . . . ,ϒ . Nominal covariate ξ will be matched exactly,
while nominal covariate υ will be nearly finely balanced.
In Figure 2, ξ was gender, female or male, and υ was race,
black or other. To avoid silly cases, we assume � ≤ C

and ϒ ≤ C, but typically � and ϒ are much smaller than
C. In Figure 2, the values are � = ϒ = 2, but in Sec-
tion 5 they are � = 463 and ϒ = 973. Each individual
in T ∪ C has a value of ξ(·) and a value of υ(·); that
is, ξ : T ∪ C →{1, . . . ,�} and υ : T ∪ C →{1, . . . ,ϒ}.
In practice, either ξ(·) or υ(·) might not be present, but
it is notationally and algorithmically convenient to view
this as a special case, not a new case. Specifically, if ξ(·)
has only one level, � = 1, then for all practical purposes
there is no exact-match covariate. If υ(·) has only one
level, ϒ = 1, then for all practical purposes there is no
near-fine-balance covariate.

How does the exact match variable enter the struc-
ture of the bipartite graph? We only consider pairs that
are exactly matched for ξ(·) but we may not consider
all such pairs. Saying the same thing precisely, every
edge e = (τ, γ ) ∈ B in the graph will have ξ(τ ) = ξ(γ ),
but ξ(τ ) = ξ(γ ) does not ensure that e = (τ, γ ) ∈ B. If
� = 1, then the exact match covariate does not restrict the
graph. In Figure 2, there is no edge connecting a man to a
woman.

DEFINITION 1. Pair matching is feasible in B if there
exists a 1-1 function μ : T → C with {τ,μ(τ)} ∈ B for
τ ∈ T .

What is fine balance? Fine balance means that υ(τ) = k

occurs in the treated group with the same frequency that
υ(γ ) = k occurs in the matched control group M,

(4.1)

∣∣{τ ∈ T : υ(τ) = k
}∣∣ = ∣∣{γ ∈ M : υ(γ ) = k

}∣∣

for k = 1, . . . ,ϒ.
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Notice that (4.1) is a property of the match M as a whole,
not a property of individual pairs; that is, a property of M
but not μ(·). Condition (4.1) could hold, yet many or all
matched pairs {τ,μ(τ)} ∈ B may have υ(τ) 	= υ{μ(τ)}.
In Figure 2, blacks need not be paired with blacks, but
we would like the number of blacks to be the same in the
treated and control groups. Sometimes, condition (4.1) is
not feasible; it cannot be done. Write

(4.2)
dk = ∣∣{τ ∈ T : υ(τ) = k

}∣∣

− ∣∣{γ ∈ M : υ(γ ) = k
}∣∣,

so dk = 0 for k = 1, . . . ,ϒ when (4.1) holds. Near-fine
balance means that we minimize

∑K
k=1 |dk| when fine bal-

ance (4.1) is infeasible.

PROPOSITION 2. If μ : T → C is a feasible pair
match in B with matched controls M = {μ(τ) : τ ∈ T } ⊆
C, then the deviations dk from fine balance satisfy

0 =
ϒ∑

k=1

dk and
ϒ∑

k=1

|dk| = 2
ϒ∑

k=1

max(0, dk).

All proofs are in the Appendix.

4.2 Glover’s Algorithm Used Iteratively to Determine
an Optimal Caliper and Near Neighbors

For a bipartite graph (T ∪ C,B) with nodes T ∪ C and
edges B ⊆ T × C, the neighborhood φ(τ) ⊆ C of τ ∈ T
is φ(τ) = {γ ∈ C : (τ, γ ) ∈ B}. The bipartite graph (T ∪
C,B) is said to be convex if it is possible to number or
order the elements γ1, . . . , γC of C so that γi ∈ φ(τ) and
γj ∈ φ(τ) with i < j implies γi+1 ∈ φ(τ), . . . , γj−1 ∈
φ(τ). A convex bipartite graph (T ∪ C,B) is said to be
doubly convex if it is also convex with the roles of T and
C reversed.

In Section 4.1, sort the nodes of T first by the nominal
variable ξ(τ ) and, within levels of ξ(·), by the score ρ(τ).
Use the parallel procedure to sort the nodes of C. If we
form B by including (τ, γ ) in B if and only if ξ(τ ) = ξ(γ )

and |ρ(τ)−ρ(γ )| ≤ κ for a fixed number κ > 0, then the
graph is doubly convex. We will determine the smallest κ
such that pair matching is feasible in B.

Given a convex or doubly convex bipartite graph (T ∪
C,B), Glover (1967) proposed an algorithm that deter-
mines whether pair matching is feasible in B in the sense
of Definition 1. Actually, Glover’s algorithm does this and
more, but this is all we need. For our purposes, Glover’s
algorithm takes as input (T ∪ C,B) and returns a 1 if pair
matching is feasible or a 0 if it is not.

Lipski and Preparata (1981) used a doubly-ended queue
to obtain a fast implementation of Glover’s algorithm in a
doubly convex bipartite graph, with running time O(T +
C), so it is linear in the number of nodes. It takes longer to
sort the nodes by ξ(·) and ρ(·) than it does to execute this
version of Glover’s algorithm. In the current problem, the

sort needs to be done once, but Glover’s algorithm will
be used repeatedly. Of greater importance, both sorting
and Glover’s algorithm are much faster than solving the
minimum cost flow problem to produce an optimal match
with near-fine balance, so the time spent determining the
optimal caliper is negligible by comparison.

We determine the optimal caliper κ by binary search.
Set κmin = 0 and κmax = maxι∈T ∪C ρ(ι)−minι∈T ∪C ρ(ι),
and pick an ε > 0. Let glover(κ) = 1 if pair matching is
feasible in the bipartite graph (T ∪ C,B) with exact vari-
able ξ(·) and caliper κ on the score ρ(·); otherwise, let
glover(κ) = 0. If glover(0) = 1, stop; pair matching is
feasible with caliper κ = 0. If glover(κmax) = 0, stop;
pair matching is infeasible for every value of κ. Other-
wise:

1. If κmax −κmin < ε, stop and use caliper κmax, which
is feasible and within ε of the optimal caliper.

2. Otherwise, define κ = (κmax + κmin)/2. If
glover(κ) = 1, set κmax ← κ and go to step 1, but if
glover(κ) = 0, set κmin ← κ and go to step 1.

In Figure 1, with [κmin,κmax] = [0.08288,0.08293],
pair matching was infeasible with caliper 0.08288 in Fig-
ure 1(iii), but it was feasible with caliper 0.08293. If
ρ(ι) is a probability, such as the propensity score, then
κmax ≤ 1, and the interval [κmin,κmax] has length at most
2−I after I iterations of step 2. For instance, after I = 7
iterations, the the interval [κmin,κmax] has length at most
2−7 = 0.0078125 < 0.01.

Now, with κ in hand, consider restricting the number ν

of neighbors, as in Figure 1(v). For each fixed τ ∈ T , sort
|ρ(τ)−ρ(γ )| into increasing order, and define ov(τ ) to be
the νth of the C sorted values of |ρ(τ)−ρ(γ )|. Define the
bipartite graph (T ∪C,B) where (τ, γ ) is in B if and only
if ξ(τ ) = ξ(γ ), |ρ(τ) − ρ(γ )| ≤ min{κ, ov(τ )}. Having
found and fixed the optimal caliper, κ, as above, we may
determine the minimum feasible value of ν by a second
iterative application of Glover’s algorithm.

In Figure 1, with optimal caliper κ = 0.08293, the min-
imum feasible number of near neighbors is ν = 2 in Fig-
ure 1(v). Exact matching for gender in Figure 2 increased
this to κ = 0.1925 and ν = 3.

There are many minor but useful variations on this
theme. A single outlier among the scores, ρ(τ), τ ∈ T ,
may result in a large optimal caliper, κ; however, this pos-
sibility is avoided if the scores are replaced by their ranks.
In Figure 2, we computed a single optimal caliper for use
with both women, ξ(·) = 1, and men, ξ(·) = 2; however,
one could determine a different optimal caliper for each
exact group, thereby reducing either the caliper for men
or the caliper for women. It is useful to know, and easy to
determine, the minimum feasible number of near neigh-
bors, ν; however, once this is known, one might decide
to include in B a larger number of near neighbors, say



348 R. YU, J. H. SILBER AND P. R. ROSENBAUM

2ν, in the hope of obtaining a smaller deviation from fine
balance,

∑ϒ
k=1 |dk|, or a smaller total covariate distance,∑

τ∈T δ{τ,μ(τ)}, when the final match is constructed in
Section 4.4.

4.3 Added Structure Imposing Near-Fine Balance as
a Soft Constraint

How does the near-fine balance variable υ(·) change
the structure of the graph? We make a distinct copy γ ′ of
each control γ , collecting these in a set C′ = {γ ′

1, . . . , γ
′
C},

adding the γ ′ to the set of nodes and adding C edges
(γj , γ

′
j ) from each control to its copy, placing these C

duplicate edges in a set O. Writing γ ′ signifies the one
duplicate corresponding with a specific γ ∈ C; it does not
signify a generic member of C′. Of course, the duplicate
belongs to the same category of the fine balance variable,
υ(γ ) = υ(γ ′). We add new nodes 1, . . . ,ϒ , one for each
category of υ(·) and an edge connecting each copy γ ′ ∈ C′
to the one category υ(γ ′) that contains it, that is, the edge
{γ ′, υ(γ ′)}. To implement near-fine balance as a soft con-
straint, we allow some controls γ ′ ∈ C′ to bypass their cat-
egory υ(γ ′) by introducing a new bypass node β and an
edge (γ ′, β) from each control γ ′ ∈ C′ to β . Finally, we
introduce another node, σ , called a sink, an edge (β, σ )

from the bypass node to the sink, and an edge (υ, σ ) from
each fine-balance category υ ∈ {1, . . . ,ϒ} to the sink σ .
In Figure 2, there are ϒ = 2 near-fine balance categories,
black and other, whereas the grey edges bypass these two
categories and reach the sink by a different route.

In the end, there is a network similar to Figure 2 with
nodes N and directed edges E given by

(4.3)

N = T ∪ C ∪ C′ ∪ {1, . . . ,ϒ} ∪ {β,σ },
E = B ∪O ∪ {(

γ ′, υ
(
γ ′)) : γ ′ ∈ C′}

∪ {
(υ, σ ) : υ ∈ {1, . . . ,ϒ}}

∪ {(
γ ′, β

) : γ ′ ∈ C′} ∪ {
(β, σ )

}
.

We refer to (T ∪ C,B) as the bipartite graph, and to
(N ,E) as the matching graph. Both are directed graphs.
In Section 4.4, capacities, costs and divergences are added
to (N ,E), and with these added structures we speak of the
matching network. A key element is that we will construct
B so that it is fairly sparse, yet pair-matching will be feasi-
ble in (T ∪ C,B). Then we impose near-fine balance with
a soft constraint in (N ,E) so that whenever pair matching
is feasible in (T ∪C,B), it remains feasible with near-fine
balance in the network (N ,E). In this way, as we make B
sparse, we do not lose feasibility.

4.4 Optimal Matching by Minimum Cost Flow in a
Network

In the minimum cost flow problem, each edge e ∈ E
has a finite nonnegative integer capacity, cap(e) ≥ 0, and
a nonnegative real valued cost, cost(e) ≥ 0. Edge e can

transport cap(e) units at a cost per unit of cost(e). Each
node n ∈ N has an integer divergence, div(n). A feasible
flow f (·) is an nonnegative integer-valued function of the
edges, f : E → {0,1,2, . . .}, that respects the capacities
for each e ∈ E ,

(4.4)
0 ≤ f (e) ≤ cap(e)

with f (e) ∈ {0,1,2, . . .} for each e ∈ E
and the divergences for each node n ∈ N ,

(4.5)

div(n) = ∑

n′′:(n,n′′)∈E
f

{(
n,n′′)}

− ∑

n′:(n′,n)∈E
f

{(
n′, n

)}

for each n ∈N .

A positive divergence, div(n) > 0, means that node n sup-
plies div(n) units of flow, while a negative divergence,
div(n) < 0, means that node n absorbs −div(n) units
of flow. If div(n) = 0, then node n passes along all the
flow it receives from other units. A feasible flow may or
may not exist. The cost of a feasible flow is the total cost
of the flow over the edges, cost(f ) = ∑

e∈E f (e) cost(e).
The minimum cost flow problem is to find a feasible flow
of minimum cost or determine that no feasible flow ex-
ists. Attractive textbook discussion of minimum cost flow
problems is given by Bertsekas (1998) and Korte and Vy-
gen (2012).

In the network (4.3) or in Figure 2, set

(4.6)

div(τ ) = 1 for τ ∈ T ,

div(σ ) = −T ,

div(n) = 0 for n /∈ T ∪ {σ }
so one unit of flow emanates from each of the T treated
units τ ∈ T , all T units of flow are absorbed by the sink,
σ , and all other nodes pass along the all of the flow that
they receive. Also, set

(4.7)

cap
{
(τ, γ )

} = 1 for (τ, γ ) ∈ B,

cap
{(

γ, γ ′)} = 1 for
(
γ, γ ′) ∈ O,

cap
{(

γ ′, υ
(
γ ′))} = 1 for γ ′ ∈ C′,

cap
{(

γ ′, β
)} = 1 for γ ′ ∈ C′,

cap
{
(k, σ )

} = ∣∣{τ ∈ T : υ(τ) = k
}∣∣

for k ∈ {1, . . . ,ϒ},
cap

{
(β, σ )

} = T .

Combining (4.4), (4.5), (4.6), and (4.7) says the following
about a feasible flow, f (·). No control γ ∈ C can receive
more than one unit of flow, because it must transfer all
its flow to γ ′, and cap{(γ, γ ′)} = 1. Because f (·) takes
on nonnegative integer values, f {(τ, γ )} = 1 for at most
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T nonoverlapping pairs, (τ, γ ). The pair match will be
defined by μ(τ) = γ if and only if f {(τ, γ )} = 1.

Select a large positive number, � > 0, as a penalty, and
define the costs as follows:

(4.8)

cost(e) = δ(τ, γ ) ≥ 0 for e = (τ, γ ) ∈ B,

cost(e) = � > 0 for e = (β, σ ),

cost(e) = 0 for e /∈ B ∪ {
(β, σ )

}
.

DEFINITION 3. The matching network refers to nodes
N and directed edges E given by (4.3), divergences given
by (4.6), capacities given by (4.7) and costs given by (4.8).
A flow in the matching network is feasible if it satisfies
(4.4), (4.5), (4.6), and (4.7). A minimum cost flow is a
feasible flow that minimizes cost(f ) = ∑

e∈E f (e) cost(e)
among feasible flows.

PROPOSITION 4. If pair matching is feasible in B,
then there exists at least one feasible flow in the match-
ing network (N ,E). Conversely, every feasible flow f (·)
in the matching network (N ,E) defines a feasible pair
matching in B as follows: μ(τ) = γ if and only if
f {(τ, γ )} = 1.

Recall the definition of the deviation dk from fine bal-
ance in (4.2). Proposition 5 says that we obtain from a
minimum cost flow the closest match in terms of co-
variate distance

∑
τ∈T δ{τ,μ(τ)} among all matches that

minimally deviate from fine balance, as measured by∑K
k=1 |dk|. That is, the soft constraint imposed using �

in the costs (4.8) has prioritized the considerations rep-
resented by B and it has avoided infeasibility. Proposi-
tion 5 provides a needed extension of related existing re-
sults. Specifically, Yang et al. (2012) imposed near-fine
balance with a hard constraint that can create infeasibility
if the bipartite graph (T ∪ C,B) is not complete, that is,
not like Figure 1(i). As here, Pimentel et al. (2015) used a
soft constraint, but the structure of the network (N ,E) is
somewhat different.

PROPOSITION 5. If � >
∑

(τ,γ )∈B δ(τ, γ ), then ev-
ery minimum cost feasible flow f (·) in the network
(N ,E) yields a pair match μ(τ) = γ in B that mini-
mizes the deviation from fine balance; that is, it minimizes∑K

k=1 |dk|. Moreover, among pair matches in B that min-
imize

∑K
k=1 |dk|, a match obtained from a minimum cost

feasible flow minimizes
∑

τ∈T δ{τ,μ(τ)}.
4.5 Computational Effort

Consider a growing sequence of ever larger feasible
matching networks (N ,E) each of the form given by
Definition 3. Each of these networks uses some feasible
caliper κ and some feasible number ν of near neighbors
inside that specific caliper, κ. It is not assumed that mini-
mal feasible values of κ and ν are used. Our sequence of

networks (N ,E) has a corresponding sequence of feasi-
ble κ’s and ν’s. The second sentence of Proposition 6 en-
tertains the possibility that our growing sequence of net-
works has a single uniform bound ν on ν, ν ≤ ν. Recall
that C ≥ T is the number of potential controls.

PROPOSITION 6. The time required to find the mini-
mum cost flow in Proposition 5 is bounded by O{νC2 +
C2 log(C)}. In particular, if ν is uniformly bounded, ν ≤
ν, then the time required is bounded by O{C2 log(C)}.

In contrast, if (T ∪ C,B) were complete with B =
T × C, as in Figure 1(i), Korte and Vygen (2012),
Theorem 9.13, gives a bound of O{|N | · |E | + |N |2 ·
log(|N |)} = O(C3), a much larger bound than
O{C2 log(C)}. Proposition 6 indicates that even with
growing values of ν we have a time bound of
O{C2 log(C)} providing ν = O{log(C)}.

In R, minimum cost flow problems may be solved using
the Fortran code Relax IV of Bertsekas and Tseng (1988),
which implements the auction algorithm of Bertsekas
(1981). The Fortran code is included in Hansen’s opt-
match package, and an R function, callrelax, for
calling the Fortran code, is included in Pimentel’s (2016)
rcbalance package. The bigmatch package associ-
ated with the current paper uses Relax IV. Strictly speak-
ing, the time bound in Proposition 6 is not applicable
with the auction algorithm, but the work of Bertsekas and
Tseng suggests its performance is competitive. The time
bound is attained using the algorithm in Korte and Vygen
(2012), Theorem 9.13.

4.6 Extension to Multiple Controls

A conceptually simple way to match with two controls
is to duplicate each treated subject, so T = {τ1, . . . , τT } is
replaced by T ∗ = {τ1, τ

′
1, . . . , τT , τ ′

T }, so |T ∗| = 2T , and
then apply the method for pair matching described ear-
lier. Because Glover’s algorithm in Section 4.2 is so fast
when applied to a doubly convex bipartite graph, there
seems to be little harm in using it in this way to deter-
mine the optimal κ and ν. To match with ω ≥ 2 controls,
T can be duplicated ω times. Duplication is unwise when
solving the minimum cost flow problem because it en-
tails storing the same edge several times, and instead one
should set div(τt ) = ω for t = 1, . . . , T in (4.6) to match
with ω ≥ 2 controls. This is implemented in the R package
bigmatch.

5. CONSTRUCTING THE MATCHED SAMPLE IN THE
MEDICAID EXAMPLE

5.1 Finding the Minimal Caliper κ and Number of
Neighbors ν

In the Medicaid example in Section 1.2, the first step
is to construct the bipartite graph (T ∪ C,B) analogous
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FIG. 3. Creating the bipartite graph by exact matching for 463 Principal Procedures with an optimal caliper on the rank of the propensity
score. There are 38,841 treated nodes and 159,527 control nodes. (i) The propensity score before matching. (ii) Ranks of the propensity score before
matching. (iii) Distribution of the number of edges for each treated unit with an optimal caliper on the propensity score, before and after determining
the minimal number, ν = 105, of near neighbors. (iv) The “after” boxplot from panel (iii) scaled so that detail is visible.

to Figure 1(v), but with |T | = T = 38,841 treated chil-
dren and |C| = C = 159,527 potential controls. Here,
there are roughly C/T = 4.1 potential controls for each
treated child. The complete bipartite graph analogous to
Figure 1(i) is far too large: each treated child has C =
159,527 potential controls, making T × C = 38,841 ×
159,527 = 6.20 × 109 edges in B. However, in the graph
analogous to Figure 1(v), each treated child has at most
ν = 105 potential controls, with 3.84×106 ≤ νT = 105×
38,841 = 4.078 × 106 edges in B. It took 6.1 minutes to
determine the optimal caliper on the rank of the propen-
sity score, then an additional 1.4 minutes to determine
the minimum feasible number of neighbors, ν = 105. The
best match in the network analogous to Figure 2 was
found by solving a single minimum cost flow problem in
an additional 32.5 minutes.

In the graph analogous to Figure 1(v), B contained
fewer than νT = 4.078 × 106 edges. How does that com-
pare to a divided graph analogous to Figure 1(ii)? A com-
plete bipartite graph with T = 1000 and C = 4000 would
have 4 × 106 edges, so if the problem with T = 38,841
and C = 159,527 were split into 40 subproblems of size
roughly T = 1000 and C = 4000, then each of the 40 sub-
problems would have about the same number of edges,
about 4 million, as the one problem using the B that we
construct. Most importantly, each of the 40 subproblems
would separately use fine balance, so fine balance would
be more constrained and would accomplish much less.

For instance, fine balance can do nothing in the top stra-
tum of Figure 1(ii), because all four controls must be used.

Figure 3 depicts aspects of the construction of (T ∪
C,B). Figure 3(i) shows the distribution of the estimated
propensity score before matching, based on a logit regres-
sion of the binary indicator of childrens-versus-adult hos-
pital on the covariates in Table 1 and the 463 categories
of Principal Procedures. For the reason mentioned in Sec-
tion 4.2, the caliper is defined in terms of the rank of the
propensity score in Figure 3(ii); however, the propensity
score itself could have been used.

We wanted to match exactly for the 463 surgical pro-
cedures, so we sorted the data first by procedure, then
by the propensity score (or equivalently by its rank). We
then used Glover’s method to find a single optimal caliper
on the rank of the propensity score of κ = 170,925.1
for uniform use with all 463 procedures; that is, this
is the smallest feasible caliper in the sense that distin-
guished Figure 1(iii) and Figure 1(iv). Note that κ/(T +
C) = 170,925.1/198,368 = 0.86, so this tightest feasible
caliper is only eliminating the most extreme differences
between ranks of propensity scores. The “Before” box-
plot of Figure 3(iii) shows the distribution of the num-
ber of remaining edges for the T = 38,841 treated chil-
dren, so many treated children have thousands of poten-
tial controls having the same surgical procedure inside the
propensity caliper, but many other treated children have
nowhere near thousands of potential controls.
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FIG. 4. Change in covariate imbalance from before matching to after matching for the 29 covariates in Table 1. The point of the arrow is after
matching. A vertical line is at 0.1. After matching, all standardized differences are less than 0.1, and all large imbalances before matching have
been greatly reduced.

We then asked: If we restrict each treated child to
have at most ν nearest neighbors, then how small can
ν be while pair matching remains feasible? The answer
turns out to be ν = 105 nearest neighbors. For the ac-
tual problem, this corresponds with the step from Fig-
ure 1(iv) to Figure 1(v) in the toy problem, where ν = 2.
These ν = 105 nearest neighbors have the same surgical
procedure as the treated child, and the ν = 105 closest
ranks of the propensity score among control children with
the same surgical procedure. The “After” boxplot of Fig-
ure 3(iii) retains at most ν = 105 nearest neighbors, and
Figure 4(iv) rescales this boxplot so its details are visible.
In Figure 3(iv), almost all treated children now have ex-
actly ν = 105 nearest neighbors, but because of the caliper
κ and exact matching for 463 procedures, a small number
of treated children have fewer than ν = 105 nearest neigh-
bors. Here, if we reduced κ or ν, pair matching would be
infeasible. We now turn to picking the best control child
for each treated child, where each treated child has at most
ν = 105 potential controls to pick from.

5.2 Minimum Distance Matching with Near-Fine
Balance and Near-Exact Pairing

Having determined the bipartite graph (T ∪ C,B) anal-
ogous to Figure 1(v), we define the network (N ,E) anal-
ogous to Figure 2. By construction, pair matching is feasi-
ble in (T ∪C,B), and every pair match in (T ∪C,B) pairs
children undergoing the same surgical procedure, where
there are � = 463 procedures.

For e = (τ, γ ) ∈ B, define δ∗(τ, γ ) ≥ 0 to be a robust
Mahalanobis distance based on the covariates in Table 1;
see Rosenbaum (2010), Section 8.3, for a precise defini-
tion. Because B contains only about 4 million potential
pairings, rather than about 6 billion potential pairings in
the complete bipartite graph for T ∪C, we compute 4 mil-
lion rather than 6 billion Mahalanobis distances. Had we

split the original problem into 40 parts of about the same
size and used a complete bipartite graph for each part, in
parallel with Figure 1(ii), then each part would require the
computation of about 4 million Mahalanobis distances,
making a total of about 160 million distances. As noted
previously, we also accelerate the computation of Maha-
lanobis distances by orthogonalization.

The additional structure in (N ,E) for near-fine balance
attempts to balance 973 Principal Diagnoses. Where Fig-
ure 2 had two fine balance categories, black and white, in
Section 1.2 the categories are υ = 1, . . . ,ϒ = 973, with
973 additional nodes.

Near-fine balance ignores who is matched to whom. It
is happy to counterbalance imbalances, to offset a mis-
match in one pair by an opposite mismatch in the other.
However, we prefer to pair two children with the same
surgical procedure and also the same diagnosis, but this is
not possible because there are far more interaction cat-
egories than there are children in the study, � × ϒ =
463 × 973 = 450,499 > 198,368 = T + C. So, we apply
an idea from Zubizarreta et al. (2011): we require both
near-fine balance for diagnosis and also “near-exact” pair-
ing for diagnosis. Near-exact pairing means that we max-
imize the number of exactly matched pairs, recognizing
that we cannot match everyone exactly. Exact pairing for
diagnosis would imply exact balance for diagnosis, but
when exactness is absent, near-exact balance and near-
exact pairing separate into two different goals.

Near-exact pairing is obtained by imposing a penalty
� > 0 on pairs mismatched for the level of the fine-
balance variable, υ(·). That is, the robust Mahalanobis
distances are penalized: for e = (τ, γ ) ∈ B, define
δ(τ, γ ) = δ∗(τ, γ ) + � if υ(τ) 	= υ(γ ) or δ(τ, γ ) =
δ∗(τ, γ ) if υ(τ) = υ(γ ). Subject to other constraints, if
� is large enough then a minimum cost flow will avoid
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as many mismatches for υ(·) as it possibly can, then turn
its attention to minimizing the total of Mahalanobis dis-
tances within pairs. In our formulation and application,
the penalty, � , for imbalance in Proposition 5 is much
larger than the penalty, �, for inexactness, so balanc-
ing takes precedence in the hierarchy of constraints. The
bigmatch package in R lets the user set both � and
�, for instance, reversing this precedence. A midsized
penalty, � = |B|−1 ∑

(τ,γ )∈B δ∗(τ, γ ), would not maxi-
mize the number of pairs matched for υ(·), but instead
would give about equal emphasis to υ(·) and to the Ma-
halanobis distances.

The matching network is now complete. This initial
match was not quite close enough in terms of ED-visits
in Table 1, so we gave this covariate a little more empha-
sis in the covariate distance, and the resulting match is the
one we describe.

5.3 Quality of the Match

Consider, now, the quality of the match in terms of the
29 covariates in Table 1, the � = 463 surgical procedures,
the ϒ = 973 principal diagnoses, and the �×ϒ = 463 ×
973 = 450,499 interaction categories.

Table 1 shows the covariate means and standardized
differences in means for 29 covariates, before and after
matching. Figure 4 depicts the changes in 29 standardized
differences in means from Table 1. After matching, all 29
standardized differences were less than 0.1, and all large
standardized differences before matching were greatly re-
duced. Rubin’s (1979) results suggest that covariate im-
balances of less than 0.1 after matching can safely be
removed by covariance adjustment of matched pair dif-
ferences, whereas model-based adjustments alone cannot
safely be relied upon to adjust for observed covariates that
have large initial imbalances.

Table 2 examines imbalances in the � = 463 proce-
dures, the ϒ = 973 diagnoses, and their interactions.

For a nominal variable θ(·) with � levels, θ : T ∪ C →
{1,2, . . . ,�}, we may form a 2 × � contingency table
from the matched sample, treated-versus-control by level
of the nominal variable. In a completely randomized ex-
periment, there is independence of row and column vari-
ables in this 2 × � contingency table, and this provides
one benchmark against which the balance in the matched
sample can be measured. In our matched sample this ta-
ble has a total count of 2 × 38,841, with 38,841 treated
children in the first row and 38,841 control children in the
second row.

One measure of imbalance in this 2 × � table is the
sum of the � absolute differences in the counts in the first
and second row, essentially the so-called total variation
distance. Indeed, for υ(·) with ϒ levels, the total varia-
tion distance is

∑ϒ
υ=1 |dk| from (4.2) that has been the

focus of attention all along. This measure can range from
0 if there is exact balance to 2 × 38,841 if the treated and
control distributions have nonoverlapping support. A sec-
ond measure of imbalance is the usual chi-square statis-
tic for testing independence of row and column variables,
although for large � we cannot compare it to its usual
asymptotic chi-square distribution with � − 1 degrees of
freedom.

As in Pimentel et al. (2015), we compare our matched
sample to 10,000 randomized experiments each formed
from the same data by randomly dividing the 2 × 38,841
individuals into two groups of size 38,841. These 10,000
randomized experiments exhibit the degree of imbalance
in observed covariates that a completely randomized ex-
periment would produce. In these 10,000 randomized ex-
periments, there is no systematic bias in the covariates,
and all imbalances are due to chance. As seen in Table 1
and Figure 3(i), there were substantial biases in observed
covariates before matching, but matching attempted to re-
duce this systematic imbalance. How does the imbalance

TABLE 2
Balance in 463 Principal Procedures, 973 Principal Diagnoses, and their 463 × 973

interactions. The imbalance in the actual matched sample is compared to the minimum
imbalance and the mean imbalance in 10,000 randomized experiments. For each

covariate, by each measure, the matched sample is closer to balance than the most
balanced of 10,000 randomized experiments formed from the same data

Procedure Diagnosis Procedure × Diagnosis

Categories 463 973 463 × 973

Imbalance 0 846 11,704
Minimum imbalance 2880 3354 13,122
Mean imbalance 3479 3930 13,802

Chi-squared statistic 0 307 8092
Miniumum chi-squared statistic 366 646 8446
Mean chi-squared statistic 462 776 8734
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in 10,000 randomized experiments compare to the imbal-
ance in observed covariates in our matched sample? Ob-
viously, randomization also tends to balance unobserved
covariates, but matching for observed covariates cannot
be expected to do this.

Table 2 makes this comparison for three nominal vari-
ables, surgical procedure with � = 463 levels, principal
diagnosis with ϒ = 973 levels, and their interaction with
�×ϒ = 463×973 = 450,499 levels. The surgical proce-
dure has imbalance zero because it was exactly matched.
For all three nominal variables, both in terms of total vari-
ation and in terms of chi-square, the imbalance in the
matched sample is smaller than the smallest imbalance
found in 10,000 randomized experiments.

5.4 Some Remarks on Alternative Matched Samples

We used the minimal feasible number of neighbors, ν =
105. Feasibility requires ν ≥ 105, not ν = 105, so we tried
a match with the same caliper κ but with at most ν =
200 near-neighbors. The balance in a table analogous to
Table 2 was very slightly improved, but a table analogous
Table 1 looked about the same. By definition, the match
with ν = 105 is closer in terms of the propensity score
than the match with ν = 200.

Our match used the idea from Zubizarreta et al. (2011)
of requiring both near-fine balance for the 973 diagnoses
and also near-exact pairing for these same diagnoses. In
another variation of the match, if one required just near-
fine balance for the 973 diagnoses, then the balance for
973 diagnoses alone was quite good, but the balance for
the �×ϒ = 463×973 = 450,499 interactions was worse
than in the average of 10,000 randomized experiments.
Requiring both near-fine balance and near-exact pairing
is helpful when trying to balance the interaction of an ex-
actly matched covariate, like procedure, and a finely bal-
anced covariate, like diagnosis.

5.5 Mortality Within 30 Days of Surgery

Table 3 shows mortality within 30 days of surgery in
38,841 matched pairs, in the format associated with Mc-
Nemar’s test for paired binary data. The mortality rates
are extremely low in both groups and differ negligibly.

TABLE 3
Mortality within 30 days of surgery in 38,841 matched pairs of two
children, one receiving surgery in a children’s hospital, the other in

an adult hospital. The table counts pairs, not children

Child in an adult hospital

Dead Alive Total

Child in a Dead 16 94 110
children’s hospital Alive 95 38,636 38,731

Total 111 38,730 38,841

How large an effect is compatible with the data? How
many deaths could be prevented or caused by having
surgery in a children’s hospital?

Goeman, Solari and Stijnen (2010) proposed a general
method of combining a test of the null hypothesis of no
effect and an equivalence test. Their clever observation is
that there is no multiple testing problem here, because the
three underlying null hypotheses are mutually inconsis-
tent, so at most one true null hypothesis is tested. As there
is no sign of an effect in Table 3, the main question con-
cerns equivalence: To what extent does Table 3 rule out
large effects? We follow Pimentel et al. (2015), Section 5,
using the particular test in Rosenbaum (2002), Section 6,
combined with the general method of Goeman, Solari and
Stijnen (2010).

Were Table 3 from a paired randomized experiment, we
would be 95% confident that surgery in an adult hospi-
tal caused a net increase of at most 25 deaths, or pre-
vented at most 23 deaths, where 25/38,841 = 0.00064
and 23/38,841 = 0.00059. If we acknowledge that Ta-
ble 3 is not from a randomized experiment, and al-
low for an unobserved covariate that doubles the odds
of death and doubles the odds of treatment in a chil-
dren’s or adult hospital, then we are 95% confident that
surgery in an adult hospital caused a net increase of at
most 43 deaths, or prevented at most 41 deaths, where
43/38,841 = 0.00111 and 41/38,841 = 0.000106. (This
is � = 1.25 in Rosenbaum, 2002 using the interpretation
of � in Rosenbaum and Silber, 2009.)

We also looked at “mortality-or-readmission within 30
days of surgery.” Again, the rates differed negligibly in
the two types of hospitals.

6. SUMMARY

We proposed and illustrated a method for optimal
matching in large administrative data sets describing hun-
dreds of thousands of people. Within � = 463 exact
match categories, the method used Glover’s algorithm
to find the minimal feasible caliper on the propensity
score, together with the minimal feasible number of near-
est neighbors, ν = 105; then, it minimizes a covariate
distance while finely balancing ϒ = 973 additional cate-
gories. After matching, the �×ϒ = 463×973 = 450,499
interaction categories were better balanced than the most
balanced of 10,000 randomized experiments built from
the same data.

APPENDIX: PROOFS

PROOF OF PROPOSITION 2. Recall that υ : T ∪ C →
{1, . . . ,ϒ} and T = |T | = |M|. So T = ∑ϒ

k=1 |{τ ∈ T :
υ(τ) = k}| and T = ∑ϒ

k=1 |{γ ∈ M : υ(γ ) = k}|; hence
0 = ∑ϒ

k=1 dk . Trivially, dk = max(0, dk)+ min(0, dk); so,
0 = ∑ϒ

k=1 dk implies
∑ϒ

k=1 max(0, dk) = −∑ϒ
k=1 min(0,
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dk). Trivially, |dk| = max(0, dk) − min(0, dk), so that∑ϒ
k=1 |dk| = ∑ϒ

k=1 max(0, dk) − ∑ϒ
k=1 min(0, dk) =

2
∑ϒ

k=1 max(0, dk). �
PROOF OF PROPOSITION 4. Let μ : T → C be a

match in B, so μ is a 1-1 function, and let M ⊂ C be the
image of μ, so M is the subset of T = |T | = |M| con-
trols who are matched. We construct a feasible flow f (·)
from μ(·). For (τ, γ ) ∈ B, set f {(τ, γ )} = 1 if μ(τ) = γ ,
and set f {(τ, γ )} = 0 otherwise. Set f {(γ, γ ′)} = 1 if γ ∈
M and set f {(γ, γ ′)} = 0 if γ ∈ C−M. Set f {(γ ′, β)} =
1 if γ ∈ M and set f {(γ ′, β)} = 0 if γ ∈ C − M. Set
f {(β, σ )} = T . Set f {(γ ′, υ)} = 0 for υ = 1, . . . ,ϒ . This
flow satisfies (4.4), (4.5), (4.6), and (4.7), so it is a feasi-
ble flow in (N ,E). Conversely, let f (·) be a feasible flow
in the matching network (N ,E). Because f (·) is feasible
with cap{(τ, γ )} = 1 for each (τ, γ ) ∈ B and div(τ ) = 1
for each τ ∈ T , it follows that for each τ ∈ T there ex-
ists a γ ∈ C such that f {(τ, γ )} = 1. Define μ(τ) = γ if
f {(τ, γ )} = 1; so, we have just shown that μ : T → C
is a function. To complete the proof, we need to show
that μ(·) is a 1-1 function. Fix γ ∈ C; then, because
cap{(γ, γ ′)} = 1, it follows that f {(γ, γ ′)} ≤ 1, so that∑

τ :(τ,γ )∈B f {(τ, γ )} ≤ 1; so, there is at most one τ ∈ T
such f {(τ, γ )} = 1. �

PROOF OF PROPOSITION 5. Let f (·) be a minimum
cost feasible flow in (N ,E), and let g(·) be any feasi-
ble flow in (N ,E), so cost(f ) ≤ cost(g). First, we show
that the bypass flow is smaller for f (·), or more precisely,
we show f {(β, σ )} ≤ g{(β, σ )}. Let h(·) be any feasible
flow. Using (4.8) and

∑
(τ,γ )∈B δ(τ, γ ) < � , it is seen that

cost(h) = ∑
e∈E cost(e)h(e) is bounded above and below

by

(A.1)

h
{
(β, σ )

} · �
≤ cost(h)

≤ h
{
(β, σ )

} · � + ∑

(τ,γ )∈B
δ(τ, γ )

<
[
h
{
(β, σ )

} + 1
] · �,

and in particular this is true of feasible flows f (·) and
g(·). Because they are feasible flows, f (·) and g(·) take
nonnegative integer values (4.4). If g{(β, σ )} < f {(β, σ )}
then f {(β, σ )} ≥ g{(β, σ )} + 1, and using (A.1),

cost(g) <
[
g
{
(β, σ )

} + 1
] · �

≤ f
{
(β, σ )

} · �
≤ cost(f ),

which is impossible because f (·) is a minimum cost fea-
sible flow; so, we conclude f {(β, σ )} ≤ g{(β, σ )}. In
brief, a minimum cost feasible flow minimizes the bypass
flow, f {(β, σ )}. Because T = h{(β, σ )}+∑ϒ

k=1 h{(k, σ )}
for every feasible flow h(·), a minimum cost feasible

flow f (·) has maximized
∑ϒ

k=1 f {(k, σ )} and minimized∑ϒ
k=1[cap{(k, σ )} − f {(k, σ )}]. Recall from (4.2) and

(4.7), that dk = |{τ ∈ T : υ(τ) = k}| − |{γ ∈ M : υ(γ ) =
k}| may be written

(A.2) dk = cap
{
(k, σ )

} − ∣∣{γ ∈M : υ(γ ) = k
}∣∣.

If cap{(k, σ )} = f {(k, σ )} for k = 1, . . .ϒ , then 0 =∑ϒ
k=1 |dk|, so

∑ϒ
k=1 |dk| is minimized, as required. Other-

wise, consider a fine balance category k with f {(k, σ )} <

cap{(k, σ )}. If there were at least one γ ∈ C such that
υ(γ ) = k and f {(γ ′, β)} = 1, then we could reduce the
cost of f (·) by � > 0 by redefining f {(γ ′, β)} = 0,
f {(γ ′, k)} = 1 and increasing f {(k, σ )} by 1, thereby
contradicting the fact that f (·) is a minimum cost flow;
so, there is no γ ∈ C such that υ(γ ) = k and f {(γ ′, β)} =
1, and therefore |{γ ∈ M : υ(γ ) = k}| = f {(k, σ )}.
Hence, using (A.2), if f {(k, σ )} < cap{(k, σ )}, then
dk > 0. If f {(k, σ )} = cap{(k, σ )}, then dk ≤ 0. Since
we have minimized

∑ϒ
k=1[cap{(k, σ )} − f {(k, σ )}] =∑ϒ

k=1 max(0, dk), we have minimized
∑K

k=1 |dk| by
Proposition 2. In brief, we have shown that minimiz-
ing f {(β, σ )} is equivalent to minimizing

∑K
k=1 |dk|,

and every minimum cost feasible flow f (·) minimizes
f {(β, σ )}. The cost of any feasible flow h(·) is∑

(τ,γ )∈B δ(τ, γ )h{(τ, γ )} + h{(β, σ )} · �; so, if
f {(β, σ )} = g{(β, σ )} with cost(f ) ≤ cost(g), then it
follows that

∑
(τ,γ )∈Bδ(τ, γ )f {(τ, γ )} ≤ ∑

(τ,γ )∈Bδ(τ,

γ )g{(τ, γ )}, and the match μ(·) obtained from f (·) has
minimized

∑
τ∈T δ{τ,μ(τ)}, as required among matches

that minimize
∑ϒ

k=1 |dk|. �
PROOF OF PROPOSITION 6. A minimum cost flow

problem of the type in Proposition 5 has a worst case
time bound of O{|N | · |E | + |N |2 · log(|N |)}; see Korte
and Vygen (2012), Theorem 9.13, with the simplifica-
tion that their B equals T in Proposition 5. The bipartite
graph (T ∪ C,B) contains T + C = O(C) nodes because
T ≤ C, and at most νT edges in B. The part of the net-
work (N ,E) excluding (T ∪ C,B) contains C duplicate
nodes γ ′, and ϒ + 2 auxiliary nodes, namely 1,. . . ,ϒ ,
β , σ , or O(C) nodes in total. It also contains C edges
(γ, γ ′), C edges (γ ′, β), C edges {γ ′, υ(γ ′)}, ϒ ≤ C

edges (k, σ ), and one edge (β, σ ), or O(C) edges in to-
tal. So, putting the two parts together, |N | = O(C) and
|E | = O(νT + C) = O(νC) again using T ≤ C, so the
result follows. �
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