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1. Introduction

In sequential selection problems a decision maker examines a sequence of obser-
vations which appear in random order over some horizon. Each observation can
be either accepted or rejected, and these decisions are irrevocable. The objective
is to select an element in this sequence to optimize a given criterion. A classical
example is the so-called secretary problem in which the objective is to maximize
the probability of selecting the element of the sequence that ranks highest. The
existing literature contains numerous settings and formulations of such prob-
lems, see, e.g., Gilbert and Mosteller (1966), Freeman (1983), Berezovsky &
Gnedin (1984), Ferguson (1989), Samuels (1991) and Ferguson (2008); to make
more concrete connections we defer further references to the subsequent section
where we formulate the class of problems more precisely.
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Sequential selection problems are typically solved using the principles of
dynamic programming, relying heavily on structure that is problem-specific,
and focusing on theoretical properties of the optimal solution; cf. Gilbert and
Mosteller (1966), Berezovsky & Gnedin (1984) and Ferguson (2008). Conse-
quently, it has become increasingly difficult to discern commonalities among
the multitude of problem variants and their solutions. Moreover, the resulting
optimal policies are often viewed as difficult to implement, and focus is placed
on deriving sub–optimal policies and various asymptotic approximations; see,
e.g., Mucci (1973), Frank & Samuels (1980), Krieger & Samuel-Cahn (2009),
and Arlotto & Gurvich (2019), among many others.

In this paper we demonstrate that a wide class of such problems can be
solved optimally and in a unified manner. This class includes, but is not limited
to, sequential selection problems with no–information, rank–dependent rewards
and allows for fixed or random horizons. The proposed solution methodology
covers both problems that have been worked out in the literature, albeit in
an instance-specific manner, as well as several problems whose solution to the
best of our knowledge is not known to date. We refer to Section 2 for details.
The unified framework we develop is based on the fact that various sequential
selection problems can be reduced, via a conditioning argument, to a problem
of optimal stopping for a sequence of independent random variables that are
constructed in a special way. The latter is an instance of a more general class
of problems, referred to as sequential stochastic assignments, first formulated
and solved by Derman, Lieberman & Ross (1972) (some extensions are given in
Albright (1972)). The main idea of the proposed framework was briefly sketched
in (Goldenshluger and Zeevi, 2018, Section 4); in this paper it is fully fleshed
and adapted to the range of problems alluded to above.

The approach we take is operational, insofar as it supports exact and effi-
cient computation of the optimal policies and corresponding optimal values, as
well as various other performance metrics. In the words of Robbins (1970), we
“put the problem on a computer.” Optimal stopping rules that result from our
approach belong to the class of memoryless threshold policies and hence have
a relatively simple structure. In particular, the proposed reduction constructs a
new sequence of independent random variables, and the optimal rule is to stop
the first time instant when the current “observation” exceeds a given threshold.
The threshold computation is predicated on the structure of the policy in se-
quential stochastic assignment problems à la Derman, Lieberman & Ross (1972)
and Albright (1972) (as part of the so pursued unification, these problems are
also extended in the present paper to the case of a random time horizon). The
structure of the optimal stopping rule we derive allows us to explicitly compute
probabilistic characteristics and various performance metrics of the stopping
time, which, outside of special cases, are completely absent from the literature.

The rest of the paper is structured as follows. Section 2 discusses sequen-
tial selection problems. In this section we formulate two general no–information
problems with rank–dependent reward corresponding to fixed and random hori-
zon [Problems (A1) and (A2) respectively]. We also present various specific
problem instances, Problems (P1)–(P12), that are covered by the proposed uni-
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fied framework. Section 3 describes the class of stochastic sequential selection
problems: we consider the standard formulation, Problem (AP1), first intro-
duced and solved by Derman, Lieberman & Ross (1972), and a formulation
with random horizon, Problem (AP2). These problems are central to our solu-
tion approach. Section 4 presents the auxiliary stopping problem, Problem (B),
and explains its solution via the mapping to a stochastic assignment problem.
It then explains the details of the reduction and the structure of the algorithm
that implements our proposed stopping rule. Section 5 presents the implemen-
tation of said algorithm to Problems (P1)–(P12) surveyed in Secton 2. We close
with a few concluding remarks in Section 6.

2. Sequential selection problems

Let us introduce some notation and terminology. Let X1, X2, . . . be an infinite
sequence of independent identically distributed continuous random variables
defined on a probability space (Ω,F ,P). Let Rt be the relative rank of Xt and
At,n be the absolute rank of Xt among the first n observations (which we also
refer to as the problem horizon):

Rt :=

t∑
j=1

1(Xt ≤ Xj), At,n :=

n∑
j=1

1(Xt ≤ Xj), t = 1, . . . , n. (2.1)

Note that with this notation the largest observation has the absolute rank one,
and Rt = At,t for any t. Let Rt := σ(R1, . . . , Rt) and Xt := σ(X1, . . . , Xt)
denote the σ–fields generated by R1, . . . , Rt and X1, . . . , Xt, respectively; R =
(Rt, 1 ≤ t ≤ n) and X = (Xt, 1 ≤ t ≤ n) are the corresponding filtrations. In
general, the class of all stopping times of a filtration Y = (Yt, 1 ≤ t ≤ n) will
be denoted T (Y ); i.e., τ ∈ T (Y ) if {τ = t} ∈ Yt for all 1 ≤ t ≤ n.

Sequential selection problems are classified according to the information avail-
able to the decision maker and the structure of the reward function. The set-
tings in which only relative ranks {Rt} are observed are usually referred to
as no–information problems, whereas full information refers to the case when
random variables {Xt} can be observed, and their distribution is known. In
addition, the total number of available observations n can be either fixed or
random with given distribution. These cases are referred to as problems with
fixed and random horizon, respectively.

2.1. Problems with fixed horizon

In this paper we mainly consider selection problems with no–information and
rank–dependent reward. The prototypical sequential selection problem with fixed
horizon, no–information and rank–dependent reward is formulated as follows;
see, e.g., Gnedin & Krengel (1996).
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Problem (A1). Let n be a fixed positive integer, and let q : {1, 2, . . . , n} → R

be a reward function. The average reward of a stopping rule τ ∈ T (R) is

Vn(q; τ) := Eq
(
Aτ,n

)
.

The objective is to find the rule τ∗ ∈ T (R) satisfying

V ∗
n (q) := max

τ∈T (R)
Vn(q; τ) = Eq

(
Aτ∗,n

)

and to compute the optimal value V ∗
n (q).

Depending on the reward function q we distinguish among the following types
of sequential selection problems with fixed horizon.

Best–choice problems The settings in which the reward function is an in-
dicator are usually referred to as best–choice stopping problems. Of special note
are the following.

(P1). Classical secretary problem. This problem setting corresponds to the
case q(a) = qcsp(a) := 1{a = 1}. Here we want to maximize the probability
P{Aτ,n = 1} of selecting the best alternative over all stopping times τ from
T (R). It is well known that the optimal policy will pass on approximately the
first n/e observations and select the first subsequent to that which is superior
than all previous ones, if such an observation exists; otherwise the last element
in the sequence is selected. The limiting optimal value is limn→∞ V ∗

n (qcsp) =
1/e [cf. Lindley (1961); Dynkin (1963); Gilbert and Mosteller (1966)]. Ferguson
(1989) reviews the problem history and discusses how different assumptions
about this problem evolved over time.

(P2). Selecting one of the k best values. The problem is usually referred to
as the Gusein–Zade stopping problem Gusein–Zade (1966); Frank & Samuels

(1980). Here q(a) = q
(k)
gz (a) := 1{a ≤ k}, and the problem is to maximize

P{Aτ,n ≤ k} with respect to τ ∈ T (R). The optimal policy was characterized
in Gusein–Zade (1966). It is determined by k natural numbers 1 ≤ π1 ≤ · · · ≤ πk

and proceeds as follows: pass the first π1 − 1 observations and among the sub-
sequent π1, π1 + 1, . . . , π2 − 1 observations choose the first observation with
relative rank one; if it does not exists then among the set of observations
π2, π2 + 1, . . . , π3 − 1 choose the one of relative rank two or one, etc. Gusein–
Zade (1966) presented dynamic programming algorithm to determine the num-

bers π1, . . . , πk and value of V ∗
n (q

(k)
gz ). He also studied the limiting behavior of

the numbers π1, . . . , πk as the problem horizon grows large, and showed that

limn→∞ V ∗
n (q

(2)
gz ) ≈ 0.574. Exact results for the case k = 3 are given in Quine

& Law (1996) and for general k in Woryna (2017). Based on general asymp-
totic results of Mucci (1973), Frank & Samuels (1980) computed numerically

limn→∞ V ∗
n

(
q
(k)
gz

)
for a range of different values of k. The recent paper Dietz et

al. (2011) studies some approximate policies.
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(P3). Selecting the kth best alternative. In this problem q(a) = q
(k)
pd (a) :=

1{a = k}, i.e. we want to maximize the probability of selecting the kth best
candidate. The problem was explicitly solved for k = 2 by Szajowski (1982),
Rose (1982a) and Vanderbei (2012); the last paper coined the name the post-
doc problem for this setting. An optimal policy for k = 2 is to reject first
�n/2� observations and then select the one which is the second best relative
to this previous observation set, if it exits; otherwise the last element in the

sequence is selected. The optimal value is V ∗
n (q

(2)
pd ) = (n+ 1)/4n if n is odd and

V ∗
n (q

(2)
pd ) = n/4(n− 1) if n is even. An optimal stopping rule for the case k = 3

and some results on the optimal value were reported recently in Lin et al. (2019).
We are not aware of results on the optimal policy and exact computation of the
optimal values for general n and k. Recently approximate policies were devel-
oped in Bruss & Louchard (2016). The problem of selecting the median value
k = (n+1)/2, where n is odd, was considered in Rose (1982b). It is shown there

that limn→∞ V ∗
n (q

((n+1)/2)
pd ) = 0.

Expected rank type problems To this category we attribute problems with
reward q which is not an indicator function.

(P4). Minimization of the expected rank. In this problem the goal is to mini-
mize EAτ,n with respect to τ ∈ T (R). If we put q(a) = qer(a) := −a then

min
τ∈T (R)

EAτ,n = − max
τ∈T (R)

E qer(Aτ,n). (2.2)

This problem was discussed heuristically by Lindley (1961) and solved by Chow
et al. (1964). It was shown there that limn→∞ minτ∈T (R) EAτ,n =

∏∞
j=1(1 +

2
j )

1/(j+1) ≈ 3.8695. The corresponding optimal stopping rule is given by back-
ward induction relations. A simple suboptimal stopping rule which is close to
the optimal one was proposed in Krieger & Samuel-Cahn (2009).

(P5).Minimization of the expected squared rank. Based on Chow et al. (1964),
Robbins (1991) developed the optimal policy and computed the asymptotic
optimal value in the problem of minimization of E[Aτ,n(Aτ,n+1) · · · (Aτ,n+k−1)]
with respect to τ ∈ T (R). In particular, he showed that for the optimal stopping
rule τ∗

lim
n→∞

E[Aτ∗,n(Aτ∗,n + 1) · · · (Aτ∗,n + k − 1)] = k!

{ ∞∏
j=1

(
1 +

k + 1

j

)1/(k+j)}k

.

Robbins (1991) also discussed the problem of minimization of EA2
τ,n over τ ∈

T (R) and mentioned that the optimal stopping rule and optimal value are un-
known. As we will demonstrate below, optimal policies for any problem of this
type can be easily derived, and the corresponding optimal values are straight-
forwardly calculated for any fixed n.
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2.2. Problems with random horizon

In Problem (A1) and specific problem instances of Section 2.1 the horizon n
is fixed beforehand, and optimal policies depend critically on this assumption.
However, in practical situations n may be unknown. This fact motivates settings
in which the horizon is assumed to be a random variable.

If the horizon is random then the selection may not have been made by the
time the observation process terminates. In order to take this possibility into
account, we introduce minor modifications in the definitions of the absolute
and relative ranks in (2.1). By convention we put At,k = 0 for t > k, and if
N is a positive random variable representing the problem horizon and taking
values in {1, . . . , Nmax} (Nmax can be infinite) then on the event {N = k},
k = 1, . . . , Nmax, we set

R̄t :=

{
Rt, t = 1, . . . , k,
0 t = k + 1, . . . , Nmax.

(2.3)

Furthermore, R̄t := σ(R̄1, . . . , R̄t) denotes the σ–field induced by (R̄1, . . . , R̄t),
and R̄ := {R̄t, 1 ≤ t ≤ Nmax} is the corresponding filtration. We refer to the
sequence {R̄t, 1 ≤ t ≤ Nmax} as the sequence of observed relative ranks.

The general selection problem with random horizon, no–information and
rank–dependent reward is formulated as follows [see Presman and Sonin (1972)
and Irle (1980)].

Problem (A2). Let N be a positive integer random variable with distribu-
tion γ = {γk}, γk = P(N = k), k = 1, 2, . . . , Nmax, where Nmax may be
infinite. Assume that N is independent of the sequence {Xt, t ≥ 1}. Let q :
{1, . . . , Nmax}∪{0} → [0,∞) be a reward function, and by convention q(0) = 0.
Let Qt := q(At,k), t ∈ {1, . . . , Nmax} on the event {N = k}. The performance
of a stopping rule τ ∈ T (R̄) is measured by Vγ(q; τ) := EQτ . The objective is
to find the stopping rule τ∗ ∈ T (R̄) such that

V ∗
γ (q) := max

τ∈T (R̄)
EQτ = max

τ∈T (R̄)
Vγ(q; τ) = Vγ(q; τ∗)

and to compute the optimal value V ∗
γ (q).

The introduced model assigns fictitious zero value to the observed relative
rank R̄t if the selection has not been made by the end of the problem horizon,
i.e., if t > N . By assumption q(0) = 0 the reward for not selecting an observation
by time N is also set to zero, though other possibilities can be considered for
this value.

In principle, all problems (P1)–(P5) discussed above can be formulated and
solved under the assumption that the observation horizon is random. Below we
discuss the following three problem instances.

(P6). Classical secretary problem with random horizon. The classical secretary
problem with random horizon N corresponds to Problem (A2) with q(a) =
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1{a = 1}; it was studied in Presman and Sonin (1972). In Problem (P1) where
n is fixed, the stopping region is an interval of the form {kn, . . . , n} for some
integer kn. In contrast to (P1), Presman and Sonin (1972) show that for general
distributions of N the optimal policy can involve “islands,” i.e., the stopping
region can be a union of several disjoint intervals (“islands”). The paper derives
some sufficient conditions under which the stopping region is a single interval and
presents specific examples satisfying these conditions. In particular, it is shown
that in the case of the uniform distribution on {1, . . . , Nmax}, i.e., γk = 1/Nmax,
k = 1, . . . , Nmax, the stopping region is of the form {kNmax , . . . , Nmax} with
kNmax/Nmax → 2e−2, V ∗

γ (qcsp) → 2e−2 as Nmax → ∞. The characterization of
optimal policies for general distributions of N is not available in the existing
literature.

(P7). Selecting one of the k best values over a random horizon. This is a ver-
sion of the Gusein–Zade stopping problem, Problem (P2), with random horizon.

Recall that here the reward function is q
(k)
gz (a) = 1{a ≤ k}. To the best of our

knowledge, this setting has been studied only for k = 2 and uniform distribution
of N , i.e., γk = 1/Nmax, k ∈ {1, . . . , Nmax}; see Kawai & Tamaki (2003). The
cited paper derives the optimal policy and demonstrates that it is qualitatively
the same as in the setting with fixed horizon. Kawai & Tamaki (2003) study
asymptotics of thresholds π1 and π2, and compute numerically the problem op-

timal value for a range of Nmax’s; in particular, limNmax→∞ V ∗
γ (q

(2)
gz ) ≈ 0.4038.

Below we show how this problem can be stated and solved for general k and
arbitrary distribution of N within our proposed unified framework.

(P8). Minimization of the expected rank over a random horizon. Consider a
variant of Problem (P4) under the assumption that the horizon is a random vari-
able N with known distribution. In this setting the loss (the negative reward)
for stopping at time t is the absolute rank At,N on the event {N ≥ t}; otherwise,
the absolute rank of the last available observation AN,N = RN is received. We
want to minimize the expected loss over all stopping rules τ ∈ T (R̄). This prob-
lem has been considered in Gianini-Pettitt (1979). In particular, it was shown
there that if N is uniformly distributed over {1, . . . , Nmax} then the expected
loss tends to infinity as Nmax → ∞. On the other hand, for distributions which
are more “concentrated” around Nmax, the optimal value coincides asymptoti-
cally with the one for Problem (P4). Below we demonstrate that this problem
can be naturally formulated and solved for general distributions of N using our
proposed unified framework; the details are given in Section 5.2.3.

2.3. Multiple choice problems

The proposed framework is also applicable for some multiple choice problems
both with fixed and random horizons. Below we review two settings with fixed
horizon.
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(P9). Maximizing the probability of selecting the best observation with k
choices. Assume that one can make k selections, and the reward function equals
one if the best observation belongs to the selected subset and zero otherwise.
Formally, the problem is to maximize the probability P(∪k

j=1{Aτj ,n = 1}) over
stopping times τ1 < · · · < τk from T (R). This problem has been considered in
Gilbert and Mosteller (1966) who gave numerical results for up to k = 8; see
also Haggstrom (1967) for theoretical results for k = 2.

(P10). Minimization of the expected average rank. Assume that k choices are
possible, and the goal is to minimize the expected average rank of the selected
subset. Formally, the problem is to minimize 1

kE
∑k

j=1 Aτj ,n over stopping times
τ1 < · · · < τk of T (R). For related results we refer to Ajtai et al. (2001), Krieger
et al. (2008), Krieger et al. (2007) and Nikolaev & Sofronov (2007).

2.4. Miscellaneous problems

The proposed framework extends beyond problems with rank–dependent re-
wards and no–information. The next two problem instances demonstrate such
extensions.

(P11). Moser’s problem with random horizon. Let {Xt, t ≥ 1} be a sequence
of independent identically distributed random variables with distribution G and
expectation μ. Let N be a positive integer–valued random variable representing
the problem horizon. We observe sequentially X1, X2, . . . and the reward for
stopping at time t is the value of the observed random variableXt; if the stopping
does not occur by problem horizon N , then the reward is the last observed
observation XN . Formally, we want to maximize

E
[
Xτ1{τ ≤ N}+XN1{τ > N}

]
,

with respect to all stopping times τ of the filtration associated with the observed
values. The formulation with fixed N = n and uniformly distributed Xt’s on
[0, 1] corresponds to the classical problem of Moser (1956).

(P12). Bruss’ Odds–Theorem. Bruss (2000) considered the following optimal
stopping problem. Let Z1, . . . , Zn be independent Benoulli random variables
with success probabilities p1, . . . , pn respectively. We observe Z1, Z2, . . . sequen-
tially and want to stop at the time of the last success, i.e., the problem is to
find a stopping time τ ∈ T (Z ) so as the probability P(Zτ = 1, Zτ+1 = Zτ+2 =
· · · = Zn = 0) is maximized. Odds–Theorem (Bruss, 2000, Theorem 1) states
that it is optimal to stop at the first time instance t such that

Zt = 1 and t ≥ t∗ := sup

{
1, sup

{
k = 1, . . . , n :

n∑
j=k

pj
qj

≥ 1
}}

,
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with qj := 1 − pj and sup{∅} = −∞. This statement has been used in various
settings for finding optimal stopping policies. For example, it provides short-
est self–contained solution to the classical secretary problem Bruss (2000). For
some extensions to multiple stopping problems see Matsui & Ano (2016) and
references therein. We also refer to the recent work Bruss (2019) where fur-
ther relevant references can be found. In what follows we will demonstrate that
Bruss’ Odds–Theorem can be derived using the proposed framework.

3. Sequential stochastic assignment problems

The unified framework we propose leverages the sequential assignment model to-
ward the solution of the problems presented in Section 2. In this section we con-
sider two formulations of the stochastic sequential assignment problem: the first
is the classical formulation introduced by Derman, Lieberman & Ross (1972),
while the second one is an extension for random horizon.

3.1. Sequential assignment problem with fixed horizon

The formulation below follows the terminology used by Derman, Lieberman &
Ross (1972). Suppose that n jobs arrive sequentially in time, referring henceforth
to the latter as the problem horizon. The tth job, 1 ≤ t ≤ n, is identified with a
random variable Yt which is observed. The jobs must be assigned to n persons
which have known “values” p1, . . . , pn. Exactly one job should be assigned to
each person, and after the assignment the person becomes unavailable for the
next jobs. If the tth job is assigned to the jth person then a reward of pjYt is
obtained. The goal is to maximize the expected total reward.

Formally, assume that Y1, . . . , Yn are integrable independent random vari-
ables defined on probability space (Ω,F ,P), and let Ft be the distribution
function of Yt for each t. Let Yt denote the σ–field generated by (Y1, . . . , Yt):
Yt = σ(Y1, . . . , Yt), 1 ≤ t ≤ n. Suppose that π = (π1, . . . , πn) is a permutation
of {1, . . . , n} defined on (Ω,F ). We say that π is an assignment policy (or sim-
ply policy) if {πt = j} ∈ Yt for every 1 ≤ j ≤ n and 1 ≤ t ≤ n. That is, π is a
policy if it is non–anticipating relative to the filtration Y = {Yt, 1 ≤ t ≤ n} so
that tth job is assigned on the basis of information in Yt. Denote by Π(Y ) the
set of all policies associated with the filtration Y = {Yt, 1 ≤ t ≤ n}.

Now consider the following sequential assignment problem.

Problem (AP1). Given a vector p = (p1, . . . , pn), with p1 ≤ p2 ≤ · · · ≤ pn, we
want to maximize the total expected reward Sn(π) := E

∑n
t=1 pπtYt with respect

to π ∈ Π(Y ). The policy π∗ is called optimal if Sn(π
∗) = supπ∈Π(Y ) Sn(π).

In the sequel the following representation will be useful

n∑
t=1

pπtYt =

n∑
t=1

n∑
j=1

pjYt1{πt = j} =

n∑
j=1

pjYνj ;
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here the random variables νj ∈ {1, . . . , n}, j = 1, . . . , n are given by the one-to-
one correspondence {νj = t} = {πt = j}, 1 ≤ t ≤ n, 1 ≤ j ≤ n. In words, νj
denotes the index of the job to which the jth person is assigned.

The structure of the optimal policy is given by the following statement.

Theorem 3.1 (Derman, Lieberman & Ross (1972); Albright (1972)). Consider
Problem (AP1) with horizon n. There exist real numbers {aj,n}nj=0,

−∞ ≡ a0,n ≤ a1,n ≤ · · · ≤ an−1,n ≤ an,n ≡ ∞

such that on the first step, when random variable Y1 distributed F1 is observed,
the optimal policy is π∗

1 =
∑n

j=1 j1{Y1 ∈ (aj−1,n, aj,n]}. The numbers {aj,n}nj=1

do not depend on p1, . . . , pn and are determined by the following recursive rela-
tionship

aj,n+1 =

∫ aj,n

aj−1,n

z dF1(z) + aj−1,nF1(aj−1,n) + aj,n[1− F1(aj,n)], j = 1, . . . , n,

where −∞ · 0 and ∞ · 0 are defined to be 0. At the end of the first stage the
assigned p is removed from the feasible set and the process repeats with the
next observation, where the above calculation is then performed relative to the
distribution F2 and real numbers −∞ ≡ a0,n−1 ≤ a1,n−1 ≤ · · · ≤ an−2,n−1 ≤
an−1,n−1 ≡ ∞ are determined and so on. Moreover, aj,n+1 = EYνj , ∀1 ≤ j ≤ n,
i.e., aj,n+1 is the expected value of the job which is assigned to the jth person,
and

∑n
j=1 pjaj,n+1 is the optimal value of the problem.

Remark 3.1. In order to determine an optimal policy we calculate inductively
a triangular array {aj,t}t−1

j=1 for t = 2, . . . , n + 1, where Fn−t+2 is used in

order to compute {aj,t}t−1
j=1. In implementation the optimal policy uses num-

bers a1,n, a2,n, an−1,n in order to identify one value from p1, . . . , pn which will
multiply Y1. Then, this value of p is excluded from n values, and numbers
a1,n−1, a2,n−1, an−2,n−1 are used for determination of the next value of p from
n−1 remaining values; this value will multiply Y2, and so on. At the last step the
number a1,2 is to assign one of the two remaining values of p to Yn−1. Finally,
the last remaining value of p will be assigned to Yn.

3.2. Stochastic sequential assignment problems with random horizon

In practical situations the horizon, or number of available jobs, n is often un-
known. Under these circumstances the optimal policy of Derman, Lieberman
& Ross (1972) is not applicable. This fact provides motivation for the setting
with random number of jobs. The sequential assignment problem with random
horizon was formulated and solved by Sakaguchi (1984) who derived the opti-
mal policy using dynamic programming principles. More recently, Nikolaev &
Jacobson (2010) also considered the sequential assignment problem with a ran-
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dom horizon. They show that the optimal solution to the problem with random
horizon can be derived from the solution to an auxiliary assignment problem
with dependent job sizes. Below we demonstrate that the problem with random
horizon is in fact equivalent to a certain version of the sequential assignment
problem with fixed horizon and independent job sizes.

The stochastic sequential assignment problem with random horizon is stated
as follows.

Problem (AP2). Let N be a positive integer-valued random variable with dis-
tribution γ = {γk}, γk = P(N = k), k = 1, . . . , Nmax, where Nmax can be
infinite. Let Y1, Y2, . . . be an infinite sequence of integrable independent random
variables with distributions F1, F2, . . . such that P(Yt = 0) = 0 for all t. Assume
that N is independent of {Yt, t ≥ 1}. Let Ȳ1, Ȳ2, . . . be the sequence of random
variable defined as follows: if N = k, k ∈ {1, . . . , Nmax} then

Ȳt =

{
Yt, t ≤ k,
0, t > k,

t = 1, 2, . . . , Nmax. (3.1)

Let Ȳt := σ(Ȳ1, . . . , Ȳt) be the σ–field induced by (Ȳ1, . . . , Ȳt), and Ȳ = {Ȳt, 1 ≤
t ≤ Nmax} be the corresponding filtration. Given real numbers p1 ≤ . . . ≤ pNmax

the objective is to maximize the expected total reward Sγ(π) = E
∑N

t=1 pπtYt

over all policies π ∈ Π(Ȳ ).

Remark 3.2.

(i) The probability model of Problem (AP2) postulates that the decision maker
observes vector (Ȳ1, . . . , ȲNmax) that is generated as follows. Given random
variable N and a sequence {Yt, t ≥ 1}, independent of N , the decision
maker is presented with the Nmax–vector (Y1, . . . , Yk, 0, . . . , 0) on the event
{N = k}, k ∈ {1, . . . , Nmax}. Thus, the distribution of (Ȳ1, . . . , ȲNmax) is
the mixture of distributions of vectors

(Y1, 0, . . . , 0), (Y1, Y2, 0, . . . , 0), · · · , (Y1, Y2, . . . , YNmax)

with respective weights γ1, γ2, . . . , γNmax .
(ii) The definition of the sequence {Ȳt, t ≥ 1} and condition P(Yt = 0) = 0 for

all t imply that the first observed zero value of Ȳt designates termination
of the assignment process. In particular, Ȳt = 0 implies that Ȳs = 0 for all
s ≥ t.

In the following statement we show that Problem (AP2) is equivalent to a
version of Problem (AP1), the standard sequential assignment problem with
fixed horizon and independent job sizes.

Theorem 3.2. The optimal value in Problem (AP2) coincides with the optimal
value in Problem (AP1) associated with fixed horizon n = Nmax and indepen-

dent job sizes Yt

∑Nmax

k=t γk. The optimal policy in Problem (AP2) follows the
one in Problem (AP1) with fixed horizon n = Nmax and independent job sizes
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Yt

∑Nmax

k=t γk until the first zero value of Ȳt is observed; this indicates termination
of the assignment process.

Proof. With the introduced notation for any π ∈ Π(Ȳ )

Sγ(π) = E

N∑
t=1

pπtYt = E

Nmax∑
t=1

pπt Ȳt =

Nmax∑
t=1

E
[
pπtYt1{N ≥ t}

]
. (3.2)

It follows from (3.2) that the expected total reward Sγ(π) is fully determined
by the values of pπt on events {N ≥ t}, t = 1, . . . , Nmax only; the value of pπt

on {N < t} is irrelevant as the ensuing reward is equal to zero. Note that πt

is Ȳt–measurable, i.e., πt = πt(Ȳ1, . . . , Ȳt) for any t = 1, . . . , Nmax. However, by
definition, Ȳ1 = Y1, . . . , Ȳt = Yt on the event {N ≥ t}; hence Ȳt ∩ {N ≥ t} =
Yt ∩ {N ≥ t}, and πt = πt(Y1, . . . , Yt) on {N ≥ t}. This implies that in (3.2)
the decision variable πt can be taken to be Yt–measurable. It follows that

E
[
pπtYt1{N ≥ t}

]
= E

{
E
[
pπtYt 1{N ≥ t}|Yt

]}
= E

{
pπtYt

Nmax∑
k=t

γk

}
,

where the last equality follows from independence of N and Yt. Thus,

Sγ(π) = E

Nmax∑
t=1

pπt

{
Yt

Nmax∑
k=t

γk

}
,

which shows that the optimal value coincides with the one in the assignment
problem with fixed horizon n = Nmax and independent job sizes Yt

∑Nmax

k=t γk.
As long as the assignment process proceeds, the optimal policy follows the
one in said problem with fixed horizon n = Nmax and independent job sizes
Yt

∑Nmax

k=t γk. The first observed zero value of Ȳt indicates termination of the
assignment process due to horizon randomness.

Remark 3.3. To the best of our knowledge, the relation between Problems (AP2)
and (AP1) established in Theorem 3.2 is new. In fact, this relationship is im-
plicit in the optimal policy derived in Sakaguchi (1984); however, Sakaguchi
(1984) does not mention this. In contrast, Nikolaev & Jacobson (2010) develop
optimal policy by reduction of the problem to an auxiliary one with dependent
job sizes. As Theorem 3.2 shows, this is not necessary: the problem with random
number of jobs is equivalent to the standard sequential assignment problem with
independent job sizes, and it is solved by the standard procedure of Derman,
Lieberman & Ross (1972).

Remark 3.4. In Theorem 3.2 we assume that Nmax is finite. Under suitable
assumptions on the weights {pj} and jobs sizes {Yt} one can construct ε–optimal
policies for the problem with infinite Nmax. However, we do not pursue this
direction here.
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4. A unified approach for solving sequential selection problems

4.1. An auxiliary optimal stopping problem

Consider the following auxiliary problem of optimal stopping.

Problem (B). Let Y1, . . . , Yn be a sequence of integrable independent real-valued
random variables with corresponding distributions F1, . . . , Fn. For a stopping
rule τ ∈ T (Y ) define Wn(τ) := EYτ . The objective is to find the stopping rule
τ∗ ∈ T (Y ) such that

W ∗
n := max

τ∈T (Y )
EYτ = Wn(τ∗) = EYτ∗ .

Problem (B) is a specific case of the stochastic sequential assignment problem
of Derman, Lieberman & Ross (1972), and Theorem 3.1 has immediate implica-
tions for Problem (B). The following statement is a straightforward consequence
of Theorem 3.1.

Corollary 4.1. Consider Problem (B). Let {bt, t ≥ 1} be the sequence of real
numbers defined recursively by

b1 = −∞, b2 = EYn,

bt+1 =

∫ ∞

bt

zdFn−t+1(z) + btFn−t+1(bt), t = 2, . . . , n. (4.1)

Let
τ∗ = min{1 ≤ t ≤ n : Yt > bn−t+1}; (4.2)

then
W ∗

n = EYτ∗ = max
τ∈T (Y )

EYτ = bn+1.

Proof. The integral in (4.1) is finite because the random variables Y1, . . . , Yn are
integrable. Consider Problem (AP1) with p = (0, . . . , 0, 1). By Theorem 3.1, at
step t the optimal policy assigns value pn to the job Yt only if Yt > an−t,n−t+1,
t = 1, . . . , n, and

an−t,n−t+1 =

∫ ∞

an−t−1,n−t

zdFt+1(z) + an−t−1,n−tFt+1(an−t−1,n−t).

Setting bt := at−1,t, and noting that b1 = −∞, b2 =
∫∞
−∞ zdFn(z), we come to

the required statement.

4.2. Reduction to the auxiliary stopping problem

Problems (A1) and (A2) of Section 2 can be reduced to the optimal stopping of
a sequence of independent random variables [Problem (B)]. In order to demon-
strate this relationship we use well known properties of the relative and ab-
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solute ranks defined in (2.1). These properties are briefly recalled in the next
paragraph; for details see, e.g., Gnedin & Krengel (1996).

Let An := (A1,n, . . . , An,n), and let An denote the set of all permutations
of {1, . . . , n}; then P(An = A) = 1/n! for all A ∈ An and all n. The random
variables {Rt, t ≥ 1} are independent, and P(Rt = r) = 1/t for all r = 1, . . . , t.
For any n and t = 1, . . . , n

P(At,n = a|R1 = r1, . . . , Rt = rt) = P(At,n = a|Rt = rt), (4.3)

and

P(At,n = a|Rt = r) =

(
a−1
r−1

)(
n−a
t−r

)
(
n
t

) , r ≤ a ≤ n− t+ r. (4.4)

Now we are in a position to establish a relationship between Problems (A1)
and (B).

Fixed horizon Let

It,n(r) :=

n−t+r∑
a=r

q(a)

(
a−1
r−1

)(
n−a
t−r

)
(
n
t

) , r = 1, . . . , t. (4.5)

It follows from (4.4) that It,n(Rt) = E{q(At,n) |Rt}. Define

Yt := It,n(Rt), t = 1, . . . , n. (4.6)

By independence of the relative ranks, {Yt} is a sequence of independent random
variables.

The relationship between stopping problems (A1) and (B) is given in the
next theorem.

Theorem 4.1. The optimal stopping rule τ∗ solving Problem (B) with random
variables {Yt} given in (4.5)–(4.6) also solves Problem (A1):

Vn(q; τ∗) = max
τ∈T (R)

Eq(Aτ,n) = max
τ∈T (Y )

EYτ = Wn(τ∗).

Proof. First we note that for any stopping rule τ ∈ T (R) one has Eq(Aτ,n) =
EYτ , where Yt := E[q(At,n)|Rt]. Indeed,

Eq(Aτ ) =

n∑
k=1

Eq(Aτ )1{τ = k} =

n∑
k=1

Eq(Ak)1{τ = k}

=

n∑
k=1

E
[
1{τ = k}E{q(Ak)|Rk}

]
=

n∑
k=1

E[1{τ = k}Yk] = EYτ ,

where we have used the fact that {τ = k} ∈ Rk. This implies that

max
τ∈T (R)

Eq(Aτ,n) = max
τ∈T (R)

EYτ .
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To prove the theorem it suffices to show only that

max
τ∈T (R)

EYτ = max
τ∈T (Y )

EYτ . (4.7)

Clearly,
Yt ⊂ Rt, ∀1 ≤ t ≤ n. (4.8)

Because R1, . . . , Rn are independent random variables, and Yt = It,n(Rt), ∀t we
have that for any s, t ∈ {1, . . . , n} with s < t

P{Gt |Ys} = P{Gt |Rs}, ∀Gt ∈ Yt. (4.9)

The statement (4.7) follows from (4.8), (4.9) and Theorem 5.3 of Chow et al.
(1971). In fact, (4.7) is a consequence of the well known fact that randomization
does not increase rewards in stopping problems (Chow et al., 1971, Chapter 5).
This concludes the proof.

It follows from Theorem 4.1 that the optimal stopping rule in Problem (A1)
is given by Corollary 4.1 with random variables {Yt} defined by (4.6). To imple-
ment the rule we need to compute the distributions {Ft} of the random variables
{Yt} and to apply formulas (4.1) and (4.2).

Random horizon Next, we establish a correspondence between Problems (A2)
and (B). Let

Jt(r) :=

Nmax∑
k=t

γkIt,k(r), r = 1, . . . , t, (4.10)

where It,k(·) is given in (4.5), and γk = P(N = k). Below in the proof of
Theorem 4.2 we show that

Jt(r) = E
{
q(At,N )1{N ≥ t}|R1 = r1, . . . , Rt−1 = rt−1, Rt = r

}
.

Define also

Yt := Jt(Rt) =

Nmax∑
k=t

γkIt,k(Rt), t = 1, . . . , Nmax. (4.11)

Theorem 4.2.

(i) Let Nmax < ∞; then the optimal stopping rule τ∗ solving Problem (B)
with fixed horizon Nmax and random variables {Yt} given in (4.10)–(4.11)
provides the optimal solution to Problem (A2):

V ∗
γ (q) = max

τ∈T (R̄)
Vγ(q; τ) = max

τ∈T (Y )
EYτ = WNmax(τ

∗).

(ii) Let Nmax = ∞ and assume that

sup
t

max
1≤r≤t

∞∑
k=t

γk|It,k(r)| < ∞. (4.12)
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Let ε > 0 be arbitrary; then there exists Ñmax = Ñmax(ε) such that for any
stopping rule τ ∈ T (R̄) one has

WÑmax
(τ)− ε ≤ Vγ(q; τ) ≤ WÑmax

(τ) + ε. (4.13)

In particular, the optimal stopping rule τ∗ solving Problem (B) with fixed
horizon Ñmax = Ñmax(ε) and {Yt} given (4.10)–(4.11) is an ε–optimal
stopping rule for Problem (A2):

WÑmax
(τ∗)− ε ≤ V ∗

γ (q) ≤ WÑmax
(τ∗) + ε (4.14)

Proof. (i). In Problem (A2) the reward for stopping at time t is

Qt = q(At,N )1{N ≥ t},

and the objective is to maximize EQτ with respect to stopping times τ of filtra-
tion R̄ [see (2.3)]. First, we argue that as long as the decision process does not
terminate before time t, we can restrict ourselves to stopping times τ adapted to
filtration R. This is a consequence of the fact that performance Vγ(q; τ) = EQτ

of any stopping rule τ ∈ T (R̄) is fully determined by its probabilistic properties
on the event {τ ≤ N} only. Indeed, write

Qτ = q(Aτ,N )1{N ≥ τ} =

Nmax∑
t=1

q(At,N )1{τ = t}1{N ≥ t}.

The event {τ = t} belongs to R̄t, i.e., 1{τ = t} =: ϕt = ϕt(R̄1, . . . , R̄t) is a
measurable function of R̄1, . . . , R̄t. However, on the event {N ≥ t}, when the
decision process is at time t, we have R̄1 = R1, . . . , R̄t = Rt so that in fact
ϕt = ϕt(R1, . . . , Rt). Thus, in view of the structure of the reward function, at
any time instance t at which the decision is made we should consider stopping
rules adapted to R only, i.e., τ ∈ T (R). This implies by conditioning

EQτ = E

Nmax∑
t=1

E
[
q(At,N )1{N ≥ t}1{τ = t} |Rt

]

= E

Nmax∑
t=1

1{τ = t}E
[
q(At,N )1{N ≥ t} |Rt

]

= E

Nmax∑
t=1

1(τ = t)

Nmax∑
k=t

γkE
[
q(At,k) |Rt

]
= EYτ , (4.15)

where Yt =
∑Nmax

k=t γkIt,k(Rt), t = 1, . . . , Nmax [cf. (4.11)]. Here the second
equality follows from {τ = t} ∈ Rt on {N ≥ t}, while the third equality holds
by independence of N and {Rt, t ≥ 1}. The remainder of the proof proceeds
along the lines of the proof of Theorem 4.1.
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(ii). In view of the proof of (i) we can restrict ourselves with with the stopping
rules τ ∈ T (R). Let Ñmax = Ñmax(ε) be the minimal integer number such that

sup
t

max
1≤r≤t

∞∑
k=Ñmax+1

γk|It,k(r)| ≤ ε. (4.16)

The existence of Ñmax(ε) follows from (4.12). By (4.15) and (4.16), for any
stopping rule τ ∈ T (R) we have Vγ(q; τ) = E

∑∞
k=τ γkIτ,k(Rτ ), and

E

Ñmax∑
k=τ

γkIτ,k(Rτ )− ε ≤ Vγ(q; τ) ≤ E

Ñmax∑
k=τ

γkIτ,k(Rτ ) + ε.

This implies (4.13). In order to prove (4.14) we note that if τ̃ is the optimal
stopping rule in Problem (A2) then by (4.13) and definition of τ∗

Vγ(q; τ̃) = V ∗
γ (q) ≤ WÑmax

(τ̃) + ε ≤ WÑmax
(τ∗) + ε,

which proves the upper bound in (4.14). On the other hand, in view of (4.13)

V ∗
γ (q) = Vγ(q; τ̃) ≥ Vγ(q; τ∗) ≥ WÑmax

(τ∗)− ε.

This concludes the proof.

Remark 4.1. Condition (4.12) imposes restrictions on the tail of the distri-
bution of N . It can be easily verified in any concrete setting; for details see
Section 5.

Remark 4.2. Theorems 4.1 and 4.2 imply that solution of Problems (A1)
and (A2) can be obtained by solving Problem (B) with a suitably defined horizon
and random variables {Yt} given by (4.5)–(4.6) and (4.10)–(4.11) respectively.
The latter problem is solved by the recursive procedure given in Corollary 4.1.

4.3. Specification of the optimal stopping rule for Problems (A1)
and (A2)

Now, using Theorems 4.1 and 4.2, we specialize the result of Corollary 4.1 for
solution of Problems (A1) and (A2). For this purpose we require the following
notation:

ν :=

{
n, Problem (A1),

Nmax or Ñmax, Problem (A2),
Ut(r) :=

{
It,n(r), Problem (A1),
Jt(r), Problem (A2).

Note that in Problem (A2) we put ν = Nmax for distributions with the
finite right endpoint Nmax < ∞; otherwise ν = Ñmax, where Ñmax is defined in
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the proof of Theorem 4.2. With this notation Problem (B) is associated with
independent random variables Yt = Ut(Rt) for t = 1, . . . , ν.

Let yt(1), . . . , yt(	t) denote distinct points of the set {Ut(1), . . . , Ut(t)}, t =
1, . . . , ν. The distribution of the random variable Yt is supported on the set
{yt(1), . . . , yt(	t)} and given by

ft(j) := P{Yt = yt(j)} =
1

t

t∑
r=1

1
{
Ut(r) = yt(j)

}
, j = 1, . . . , 	t, (4.17)

Ft(z) =

�t∑
j=1

ft(j)1{yt(j) ≤ z}, z ∈ R. (4.18)

The following statement is an immediate consequence of Corollary 4.1 and for-
mulas (4.17)–(4.18).

Corollary 4.2. Let τ∗ = min{1 ≤ t ≤ ν : Yt > bν−t+1}, where the sequence
{bt} is given by

b1 = −∞, b2 =

�ν∑
j=1

yν(j)fν(j), (4.19)

bt+1 =

�ν−t+1∑
j=1

[
bt ∨ yν−t+1(j)

]
fν−t+1(j), t = 2, . . . , ν. (4.20)

Then

EYτ∗ = sup
τ∈T (R)

EYτ = bν+1.

Proof. In view of (4.6) and (4.11), Y1, . . . , Yν are independent random variables;
therefore Corollary 4.1 is applicable. We have

∫ ∞

bt

zdFν−t+1(z) =

�ν−t+1∑
j=1

yν−t+1(j)1{yν−t+1(j) > bt}fν−t+1(j),

btFν−t+1(bt) = bt

�ν−t+1∑
j=1

fν−t+1(j)1{yν−t+1(j) ≤ bt}.

Summing up these expressions we come to (4.20).

Expectation of stopping times As we have already mentioned, in the con-
sidered problems the optimal stopping rule belongs to the class of memoryless
threshold policies. This facilitates derivation of the distributions of the corre-
sponding stopping times, and calculation of their probabilistic characteristics.
One of the important characteristics is the expected time elapsed before stop-
ping. In problems with fixed horizon ν = n it is given by the following for-
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mula

E (τ∗) =
n−1∑
i=0

P(τ∗ > i) = 1 +

n−1∑
i=1

P(τ∗ > i)

= 1 +

n−1∑
i=1

i∏
t=1

P (Yt ≤ bn−t+1) = 1 +

n−1∑
i=1

i∏
t=1

Ft (bn−t+1) , (4.21)

where {Ft} and {bt} are defined in (4.18) and (4.19)–(4.20).
In the problems where the horizon N is random, the time until stopping is

τ∗ ∧N . In this case

E(τ∗ ∧N) = Eτ∗1{τ∗ ≤ N}+ EN1{τ∗ > N}, (4.22)

where

E[τ∗1{τ∗ ≤ N}] = E
(
τ∗

Nmax∑
k=τ∗

γk

)
=

Nmax∑
j=1

j

Nmax∑
k=j

γkP(τ∗ = j)

=

Nmax∑
k=2

γk(1− F1(bNmax)) +

Nmax∑
k=2

γk

k∑
j=2

j(1− Fj(bNmax−j+1))

j−1∏
t=1

Ft(bNmax−t+1)

(4.23)

and

E[N1(N < τ∗)] =
Nmax∑
k=1

kγk

k∏
t=1

Ft(bNmax−t+1). (4.24)

4.4. Implementation

In this section we present an efficient algorithm implementing the optimal stop-
ping rule described earlier. In order to implement (4.19)–(4.20) we need to find
the sets {yt(j), j = 1, . . . , 	t} in which random variables Yt, t = 1, . . . , ν take
values, and to compute the corresponding probabilities {ft(j), j = 1, . . . , 	t}.

The following algorithm implements the optimal policy.

Algorithm 1

1. Compute

It,k(r) =

k−t+r∑
a=r

q(a)

(
a−1
r−1

)(
k−a
t−r

)
(
k
t

) , r = 1, . . . , t; t = 1, . . . , k,

where

k =

{
n, Problem (A1),

t, t+ 1, · · · , Nmax( or Ñmax), Problem (A2).
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We note that the computations can be efficiently performed using the
following recursive formula: for any reward function q

It,k(r) =
r

t+ 1
It+1,k(r + 1) +

(
1− r

t+ 1

)
It+1,k(r), r = 1, . . . , t; (4.25)

see Gusein–Zade (1966) and (Mucci, 1973, Proposition 2.1).
Then compute

Ut(r) =

{
It,n(r), Problem (A1),∑ν

k=t γkIt,k(r), Problem (A2).
(4.26)

2. Find the distinct values (yt(1), . . . , yt(	t)) of the vector (Ut(1), . . . , Ut(t)),
t = 1, . . . , ν; here 	t is a number of the distinct points.

3. Compute

ft(j) =
1

t

t∑
r=1

1
{
Ut(r) = yt(j)

}
, j = 1, . . . , 	t; t = 1, . . . , ν.

4. Let b1 = −∞, b2 =
∑�ν

j=1 yν(j)fν(j).
For t = 2, . . . , ν compute

bt+1 =

�ν−t+1∑
j=1

[
bt ∨ yν−t+1(j)

]
fν−t+1(j). (4.27)

5. Output bν+1 and τ∗ = min{t ∈ {1, . . . , ν} : Ut(Rt) > bν−t+1}. In prob-
lems with random horizon, τ∗ is the optimal stopping rule provided that
stopping occurred prior to termination of the observation process due to
horizon randomness.

5. Solution of the sequential selection problems

In this section we revisit problems (P1)–(P12) discussed earlier from the view-
point of the proposed framework. We refer to Section 2 for detailed description
of these problems and related literature.

5.1. Problems with fixed horizon

First we consider problems (P1)–(P5) with fixed horizon; in all these problems
ν = n.

5.1.1. Classical secretary problem

For description of this problem and related references see Problem (P1) in Sec-
tion 2. Here q(a) = 1{a = 1}, and

Ut(r) = It,n(r) =
t

n
1{r = 1}, r = 1, . . . , t; 	t = 2, t = 1, . . . , n.
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The random variable Yt = (t/n)1{Rt = 1} = P(At,n = 1|Rt) takes two different
values yt(1) = t/n, yt(2) = 0 with probabilities ft(1) = 1/t and ft(2) = 1−(1/t).
Then Step 4 of the Algorithm 1 takes the form: b1 = −∞, b2 = 1/n,

bt+1 = bt +
( 1

n
− bt

n− t+ 1

)
1
{
bt <

n− t+ 1

n

}
, t = 2, . . . , n.

The optimal policy is to stop the first time instance t such that Yt > bn−t+1,
i.e.,

τ∗ = min
{
1 ≤ t ≤ n :

t

n
1{Rt = 1} > bn−t+1

}
,

which coincides with well known results.

5.1.2. Selecting one of k best alternatives

This setting is stated as Problem (P2) in Section 2. In this problem q(a) =
1{a ≤ k} with some k ≤ n. We will assume here that k ≥ 2; the case k = 1 was
treated above.

We have

Ut(r) =

⎧⎪⎨
⎪⎩

0, k + 1 ≤ r ≤ t,

∑(n−t+r)∧k
a=r

(a−1
r−1)(

n−a
t−r)

(nt)
, 1 ≤ r ≤ k,

t = 1, . . . , n. (5.1)

It is easily checked that for q(a) = 1{a ≤ k} one has

Un(r) =

{
1, r = 1, . . . , k
0, r = k + 1, . . . , n.

(5.2)

Using this formula together with the recursive relationship (4.25) we can deter-
mine the structure of vector Ut := (Ut(1), . . . , Ut(t)) for each t = 1, . . . , n, and
compute {yt(j)} and {ft(j)}. Specifically, the following facts are easily verified.

(a) Let n−k+2 ≤ t ≤ n. Here vector Ut has the following structure: the first
t + k − n components are ones, the next n − t components are distinct
numbers in (0, 1) which are given in (5.1), and the last t− k components
are zeros. Formally, if n− k + 2 ≤ t ≤ n− 1 and k > 2 then we have

Ut(j) =

⎧⎨
⎩

1, j = 1, . . . , k − n+ t,
∈ (0, 1), j = k − n+ t+ 1, . . . , k,
0, j = k + 1, . . . , t,

Note that if k = 2 the regime reduces to t = n; therefore if k = 2 or t = n
then Un is given by (5.2). These facts imply the following expressions for
{yt(j)} and {ft(j)}:

	t = n−t+2; yt(j) =

⎧⎨
⎩

1, j = 1,
Ut(k − n+ t+ j), j = 2, . . . , n− t+ 1,
0, j = n− t+ 2,

(5.3)
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and

ft(j) =

⎧⎨
⎩

1− (n− k)/t, j = 1,
1/t, j = 2, . . . , n− t+ 1,
1− k/t, j = n− t+ 2.

(5.4)

If t = n then

	t = 2, yn(1) = 1, yn(2) = 0, fn(1) = k/n, fn(2) = 1− k/n.

(b) If k + 1 ≤ t ≤ n − k + 1 then the set {Ut(1), . . . , Ut(t)} contains k + 1
distinct values: Ut(1), . . . , Ut(k) are positive distinct, and Ut(k+1) = · · · =
Ut(t) = 0. Therefore

	t = k + 1; yt(j) =

{
Ut(j), j = 1, . . . , k
0, j = k + 1;

ft(j) =

{
1/t, j = 1, . . . , k,
1− k/t, j = k + 1.

(5.5)

(c) If 1 ≤ t ≤ k then all the values Ut(1), . . . , Ut(t) are positive and distinct.
Thus

	t = t; yt(j) = Ut(j), j = 1, . . . , t; ft(j) =
1

t
, j = 1, . . . , t. (5.6)

In our implementation we compute Ut(j) for t = 1, . . . , n and j = 1, . . . , t
using (5.2) and (4.25). Then {yt(j)}, {ft(j)} and the sequence {bt} are easily
calculated from (5.3)–(5.6) and (4.27) respectively.

Table 1 presents exact values of the optimal probability P (n, k) = bn+1 and
the expected time until stopping E(n, k) = E(τ∗) normalized by n for different
values of k and n. We are not aware of works that report exact results for
general k and n as presented in Table 1. These results should be compared
to the asymptotic values of 1 − P (n, k) as n → ∞ computed in (Frank &
Samuels, 1980, Table 1) for a range of values of k. The comparison shows that
the approximate values in Frank & Samuels (1980) are in a good agreement with
the exact values of Table 1. For instance, for n = 100 the approximate values
coincide with the exact ones up to the third digit after the decimal point.

It is worth noting that the optimal policy developed by Gusein–Zade (1966)
is expressed in terms of of relative ranks. In contrast, our policy is expressed via
the random variables Yt = Ut(Rt), and it is memoryless threshold in terms of
{Yt}. This allows to efficiently compute the distribution of the optimal stopping
time, and, in particular, the expected time until stopping. The value of E(n, k)
is computed using formula (4.21) combined with (4.17) and (5.1)–(5.6). The
presented numbers agree with asymptotic results of Yeo (1997) proved for k =
2, 3 and 5.

5.1.3. Selecting the k-th best alternative

This setting is discussed in Section 2 as problem (P3). In this problem q(a) =
1{a = k}, k ≥ 2. Similarly to the Gusein–Zade stopping problem, here we have
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Table 1

Optimal probabilities P (n, k) and the normalized expected time elapsed until stopping
E(n, k)/n for selecting one of the k best values.

n k P (n, k) E(n, k)/n n k P (n, k) E(n, k)/n

100 2 0.57956 0.68645 500 2 0.57477 0.68886
5 0.86917 0.60871 5 0.86211 0.60921
10 0.98140 0.54236 10 0.97754 0.54454
15 0.99755 0.50428 15 0.99627 0.50845

1,000 2 0.57417 0.68966 5,000 2 0.57369 0.68931
5 0.86123 0.60988 5 0.86052 0.61015
10 0.97703 0.54434 10 0.97663 0.54499
15 0.99609 0.50893 15 0.99594 0.50943

10,000 2 0.57363 0.68927 50,000 2 0.57358 0.68923
5 0.86043 0.61014 5 0.86036 0.61018
10 0.97658 0.54496 10 0.97654 0.54500
15 0.99592 0.50947 15 0.99591 0.50950

three different regimes that define explicit relations for {Ut(r)}, {yt(j)} and
{ft(j)}.
(a) Let 1 ≤ t ≤ k; then

Ut(r) =

(
k−1
r−1

)(
n−k
t−r

)
(
n
t

) , r = 1, . . . , t.

All values of Ut(1), . . . , Ut(t) are positive and distinct. Thus

	t = t, yt(j) = Ut(j), ft(j) =
1

t
, 1 ≤ j ≤ t. (5.7)

(b) If k + 1 ≤ t ≤ n− k + 1 then

Ut(r) =

⎧⎨
⎩

(
k−1
r−1

)(
n−k
t−r

)
(
n
t

) , 1 ≤ r ≤ k,

0, k + 1 ≤ r ≤ t.

The set {Ut(1), . . . , Ut(t)} contains k + 1 distinct values: Ut(1), . . . , Ut(k)
are positive distinct, and Ut(k + 1) = · · · = Ut(t) = 0. Therefore,

	t = k + 1; yt(j) =

{
Ut(j), j = 1, . . . , k
0, j = k + 1;

ft(j) =

{
1/t, j = 1, . . . , k,
1− k/t, j = k + 1.

(5.8)

(c) Let n−k+2 ≤ t ≤ n; then the sequence {Ut(r)} takes the following values

Ut(r) =

⎧⎪⎪⎨
⎪⎪⎩

0, r = 1, . . . , t− n+ k − 1,(
k−1
r−1

)(
n−k
t−r

)
(
n
t

) , r = t− n+ k, . . . , k,

0, r = k + 1, . . . , t.
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Table 2

Optimal probabilities P (n, k) and the normalized expected time elapsed until stopping
E(n, k)/n for selecting the k-th best alternative computed using (5.7)–(5.10).

n k P (n, k) E(n, k)/n n k P (n, k) E(n, k)/n

101 2 0.25247 0.82995 501 2 0.25050 0.75466
5 0.19602 0.78968 5 0.19281 0.78890
10 0.15962 0.84827 10 0.15506 0.84508
50 0.11467 0.86699 250 0.06876 0.91156

1,001 2 0.25025 0.74984 5,001 2 0.25005 0.84527
5 0.19241 0.78896 5 0.19210 0.78896
10 0.15451 0.84517 10 0.15450 0.84478
500 0.05504 0.92688 2,500 0.03265 0.95443

10,001 2 0.25002 0.75453 50,001 2 0.25000 0.83830
5 0.19206 0.78891 5 0.19203 0.78891
10 0.15402 0.84477 10 0.15397 0.84477

5,000 0.02603 0.96320 25,000 0.01533 0.97787

Therefore, 	t = n− t+ 2;

yt(j) =

{
0, j = 1
Ut(t− (n− k)− 2 + j), j = 2, . . . , n− t+ 2,

(5.9)

and, correspondingly,

ft(j) =

{
(2t− n− 1)/t, j = 1,
1/t, j = 2, . . . , n− t+ 2.

(5.10)

Table 2 presents optimal probabilities of selecting kth best alternative for a
range of k and n. In the specific case of k = 2 Rose (1982a) showed that the
optimal stopping rule is

τ∗ = min
{
{t ≥ �n/2� : Rt = 2} ∪ {n}

}
,

and the optimal probability is P (n, 2) = n+1
4n if n is odd. The results for k = 2 in

Table 2 are in full agreement with this formula. The table also presents numerical
computation of optimal values in the problem of selecting the median value; see

Rose (1982b) who proved that limn→∞ V ∗
n (q

((n+1)/2)
pd ) = 0.

5.1.4. Expected rank type problems

In this section we consider problems (P4) and (P5) discussed in Section 2.

Expected rank minimization Following (2.2) we consider the problem of
minimization of Eq(Aτ,n), where q(a) = −a. It is well known that

E
[
At,n|Rt = r

]
= (n+ 1)r/(t+ 1);



Sequential selection problems 239

therefore for t = 1, . . . , n

Ut(r) = It,n(r) = E[q(At,n)|Rt = r]

= −E[At,n|Rt = r] = − (n+ 1)r

t+ 1
, r = 1, . . . , t.

In this setting 	t = t for all t;

yt(j) = Ut(j) = −n+ 1

t+ 1
j, j = 1, . . . t; ft(j) =

1

t
, ∀j = 1, . . . , t.

Substitution to (4.20) yields b1 = −∞, b2 = −1
2 (n+ 1),

bt+1 =
1

n− t+ 1

n−t+1∑
j=1

[
bt ∨

(
− n+ 1

n− t+ 2
j
)]

, t = 2, . . . , n. (5.11)

Straightforward calculation shows that (5.11) takes form

bt+1 = bt −
1

n− t+ 1

[
n+ 1

n− t+ 2

jt(jt + 1)

2
+ jtbt

]
, t = 2, . . . , n.

where jt := �−bt
n−t+2
n+1 �. The optimal policy is to stop the first time instance t

such that Yt > bn−t+1, i.e.,

τ∗ = min
{
1 ≤ t ≤ n : −n+ 1

t+ 1
Rt > bn−t+1

}
= min

{
1 ≤ t ≤ n : Rt ≤ jn−t+1

}
.

Then according to (2.2) the optimal value of the problem equals to −bn+1. We
note that the derived recursive procedure coincides with the one of Chow et al.
(1964), and the calculation for n = 106 yields the optimal value 3.86945 . . .

Expected squared rank minimization This problem was posed in Robbins
(1991), and to the best of our knowledge, it was not solved to date. We show
that the proposed unified framework can be used in order to compute efficiently
the optimal policy and its value.

In this setting Ut(r) = It,n(r), and the reward is given by q(a) = −a2. It is
well known that

E
[
At,n(At,n+1) · · · (At,n+k− 1) |Rt = r

]
=

(n+ 1) · · · (n+ k)

(t+ 1) · · · (t+ k)
r · · · (r+k− 1);

see, e.g., Robbins (1991). Therefore we put

Ut(r) = −E(A2
t,n|Rt = r) = − (n+ 1)(n+ 2)

(t+ 1)(t+ 2)
r
(
r +

n− t

n+ 2

)
.

In this case

	t = t, yt(j) = Ut(j) = − (n+ 1)(n+ 2)

(t+ 1)(t+ 2)
j
(
j +

n− t

n+ 2

)
, ft(j) =

1

t
, j = 1, . . . , t.
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Table 3

Optimal values of V∗(n) := EA2
τ∗,n computed using (5.12).

n 100 250 500 750 1,000 2,500
V∗(n) 23.70663 26.49268 27.66697 28.10937 28.34466 28.80553

n 5,000 10,000 20,000 105 106 108

V∗(n) 28.97697 29.06969 29.11944 29.16302 29.17431 29.17579

Substituting this to (4.20) we obtain the following recursive relationship: b1 =
−∞, b2 = −1

6 (n+ 1)(2n+ 1),

bt+1 =
1

n− t+ 1

n−t+1∑
j=1

{
bt ∨

[
− (n+ 1)(n+ 2)

(n− t+ 2)(n− t+ 3)
j
(
j +

t− 1

n+ 2

)]}
.

Denote jt := max{1 ≤ j ≤ n− t+ 1 : bt ≤ −j2Cn,t − jDn,t}, where

Cn,t =
(n+ 1)(n+ 2)

(n− t+ 2)(n− t+ 3)
, Dn,t =

(t− 1)(n+ 1)

(n− t+ 2)(n− t+ 3)
.

Then

jt = max

{
1 ≤ j ≤ n− t+ 1 : j ≤ 1

2Cn,t

(
−Dn,t +

√
D2

n,t − 4Cn,tbt

)}

=
⌊ 1

2Cn,t

(
−Dn,t +

√
D2

n,t − 4Cn,tbt

)⌋
.

With this notation we have b1 = −∞, b2 = −1
6 (n+1)(2n+1), and for t = 2, . . . , n

bt+1 =
1

n− t+ 1

[
− 1

6
jt(jt + 1)(2jt + 1)Cn,t

− 1

2
jt(jt + 1)Dn,t + (n− t+ 1− jt)bt

]
. (5.12)

The optimal policy is to stop the first time instance t such that Yt > bn−t+1

which is equivalent to

τ∗ = min
{
1 ≤ t ≤ n : Rt ≤ jn−t+1

}
.

Table 3 presents optimal values V∗(n) := EA2
τ∗,n computed with recursive rela-

tion (5.12) for different n.

5.2. Problems with random horizon

This section demonstrates how to apply the proposed framework for solution
of selection problems with a random horizon. In these problems we apply Al-
gorithm 1 with ν being the maximal horizon length Nmax, provided that Nmax
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is finite, or with sufficiently large horizon Ñmax if Nmax is infinite. Moreover,
Ut(r) = Jt(r), where {Jt(r)} is given by (4.10).

Recall that in all problems with random horizon the selection may not be
made by the time the observation process terminates. However, Theorems 3.2
and 4.2 show that as long as the observation process proceeds, the optimal
stopping rule is identical to the one in the setting with fixed horizon Nmax and
random variables Yt := Ut(Rt), t = 1, . . . , Nmax, where Ut(·) is defined in (4.26).
In the subsequent discussion of specific problem instances with random horizon
we use this fact without further mention.

5.2.1. Classical secretary problem with random horizon

This is Problem (P5) of Section 2 where q(a) = 1{a = 1}; therefore

It,k(r) = P(At,k = 1 |Rt = r) =
t

k
1{r = 1}, k ≥ t,

Ut(r) = Jt(r) =

Nmax∑
k=t

γkIt,k(r) = t1{r = 1}
Nmax∑
k=t

γk
k

.

Note that if Nmax = ∞ then condition (4.12) is trivially fulfilled since

t

∞∑
k=t

γk
k

≤
∞∑
k=t

γk ≤ 1.

The random variables Yt = Ut(Rt) = 1(Rt = 1) t
∑ν

k=t γk/k take two differ-
ent values yt(1) = t

∑ν
k=t γk/k and yt(2) = 0 with corresponding probabilities

ft(1) = 1/t and ft(2) = 1 − 1/t. Substituting these values in (4.27) we obtain
b1 = −∞, b2 = γν/ν, and for t = 2, . . . , ν

bt+1 = bt

+

( ν∑
k=ν−t+1

γk
k

− bt
ν − t+ 1

)
1

{
bt < (ν − t+ 1)

ν∑
k=ν−t+1

γk
k

}
. (5.13)

The optimal policy is to stop at time t if Yt > bν−t+1, i.e.,

τ∗ = min
{
t = 1, . . . , ν : 1{Rt = 1} t

ν∑
k=t

γk
k

> bν−t+1

}
. (5.14)

Presman and Sonin (1972) investigated the structure of optimal stopping
rules and showed that, depending on the distribution of N , the stopping re-
gion can involve several “islands,” i.e., it can be a union of disjoint subsets of
{1, . . . , Nmax}. Note that (5.14) determines the stopping region automatically.
Indeed, it is optimal to stop only at those t’s that satisfy t

∑ν
k=t γk/k > bν−t+1.

We apply the stopping rule (5.13)–(5.14) for two examples of distributions
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Table 4

Optimal values V∗(Nmax) := P{Aτ∗,N = 1, τ∗ ≤ N} for a uniformly distributed horizon
length N , normalized expected times until stopping E∗(Nmax) and E∗(n) for random and

fixed horizons.

Nmax |n 10 20 40 60 80 102 103 105

V∗(Nmax) 0.35145 0.30760 0.28889 0.28260 0.27949 0.27779 0.27137 0.27068
E∗(Nmax) 0.29290 0.26227 0.280651 0.28605 0.27410 0.27410 0.27995 0.27983
E∗(n) 0.61701 0.73421 0.75074 0.73988 0.73436 0.74104 0.73620 0.73576

of N . In the first example N is assumed to be uniformly distributed on the
set {1, . . . , Nmax}. As it is known, in this case the optimal stopping region has
only one “island.” The second example illustrates a setting in which the stopping
region has more than one “island.”

1. Uniform distribution. In this case ν = Nmax, γk = 1/Nmax, k=1, . . . , Nmax.
It was shown in Presman and Sonin (1972) that the optimal stopping region in
this problem has one “island,” i.e., the optimal policy selects the first best mem-
ber appearing in the range {kn, . . . , n}. The recursive relation (5.13) with γk =
1/Nmax, k = 1, . . . , Nmax yields the optimal values V∗(Nmax) := P{Aτ∗,N =
1, τ∗ ≤ N} given in Table 4. The second line of Table 4 presents the normalized
expected time until stopping E∗(Nmax) := E(τ∗ ∧Nmax)/Nmax computed using
(4.22), (4.23) and (4.24). For comparison, we also give the normalized expected
time elapsed until stopping E∗(n) := Eτ∗/n for the optimal stopping rule in
the classical secretary problem (see the third line of the table). These numbers
are calculated using (4.21). As expected, E∗(Nmax) is significantly smaller than
E∗(n); the optimal rule is more cautious when the horizon is random.

It was also shown in Presman and Sonin (1972) that limNmax→∞ V∗(Nmax) =
2e−2 = 0.27067 . . .. Note that the numbers in Table 4 are in full agreement with
these results. Figure 1(a) displays the sequences {bNmax−t+1} and

{
t
∑Nmax

k=t γk/k
}

for the uniform distribution for Nmax = 100. Note the stopping region is the
set of t’s where the blue curve is above the red curve. Thus, there is only one
“island” in this case.

2. Mixture of two zero–inflated binomial distributions. Here we assume that
the distribution GN of N is the mixture: GN (x) = 1

2H1(x) +
1
2H2(x), where

Hi(x) = P(Xi ≤ x|Xi ≥ 1), i = 1, 2, and X1 ∼ Bin(50, 0.2), X2 ∼ Bin(100, 0.8).
In other words, for k = 1, . . . , 100

γk = P(N = k) =
1

2

(
50

k

)(1
4

)k (0.8)50

1− (0.8)50
+

1

2

(
100

k

)
4k

(0.2)100

1− (0.2)100
.

The optimal stopping rule is given by (5.13)–(5.14) with {γk} indicated
above. Figure 1(b) displays the graphs of the sequences {bNmax−t+1} and{
t
∑Nmax

k=t γk/k
}
. It is clearly seen that in this setting the stopping region is

a union of two disjoint sets of subsequent integer numbers. These sets corre-
spond to the indices where the graph of

{
t
∑Nmax

k=t γk/k
}

is above the graph
of {bNmax−t+1}. The stopping region can be easily identified from given formu-
las.
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Fig 1. The graphs of sequences {bNmax−t+1} and {t
∑Nmax

k=t γk/k} for different distributions
of N : (a) the uniform distribution; (b) the mixture of two zero–inflated binomial distributions.

5.2.2. Selecting one of k best alternatives with random horizon

This is Problem (P6) of Section 2; here q(a) = 1{a ≤ k}. Algorithm 1 is im-
plemented similarly to Problem (P2). First, values It,k(r), k = 1, . . . , Nmax, t =
1, . . . , k, r = 1, . . . , t are calculated using the recursive formula (4.25) along with
the boundary condition (5.2). Then, using (4.26), we compute Ut(1), . . . , Ut(t)
for t = 1, . . . , Nmax, and find the distinct values yt(1), . . . , yt(	t) of the vec-
tor (Ut(1), . . . , Ut(t)) for all t = 1, . . . , Nmax. Finally, the sequence {bt} is found
from (4.27). The optimal policy is to stop the first time instance t such that Yt =
Ut(Rt) > bn−t+1 provided that the observed relative rank is different from zero;
otherwise, the selection process terminates by the problem horizon N . The op-
timal value of the problem is P (Nmax, k) := P{Aτ∗,N ≤ k, τ∗ ≤ N} = bNmax+1.
We apply this algorithm for two different examples: a uniform horizon distribu-
tion, and a U–shaped distribution. The second example demonstrates that the
optimal stopping region can have “islands” in the terminology of Presman and
Sonin (1972).

1. Uniform distribution. In this case γk = 1/Nmax, k = 1, . . . , Nmax. Ta-
ble 5 presents exact values of the optimal probability P (Nmax, k). For k = 1
the values of P (Nmax, 1) are in agreement with the values of Table 4 and
also with the asymptotic value obtained by Presman and Sonin (1972),
limNmax→∞ P (Nmax, 1) = 2e−2 = 0.27067 . . .. For k = 2 the values of P (Nmax, 2)
are in the agreement with the values of Table 1 in Kawai & Tamaki (2003) and
also with the asymptotic value obtained there, limNmax→∞ P (Nmax, 2) ≈ 0.4038.

2. U-shaped distribution. In this example we let Nmax = 100,

γk =

{
0.0249985, k ∈ {1, . . . , 20} ∪ {81, 100},
0.000001, k ∈ {21, 22, . . . , 80}, (5.15)
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Table 5

Optimal values P (Nmax, k) := P (Aτ∗ ≤ k, τ∗ ≤ N) for a uniformly distributed horizon
length N .

Nmax k P (Nmax, k) Nmax k P (Nmax, k) Nmax k P (Nmax, k)

100 1 0.27779 500 1 0.27208 1,000 1 0.27137
2 0.41506 2 0.40606 2 0.40494
5 0.61788 5 0.60351 5 0.60174
10 0.75150 10 0.73303 10 0.73078
15 0.81474 15 0.79415 15 0.79161

5,000 1 0.27081 10,000 1 0.27074 50,000 1 0.27068
2 0.40405 2 0.40394 2 0.40385
5 0.60033 5 0.60015 5 0.60001
10 0.72899 10 0.72877 10 0.72859
15 0.78961 15 0.78936 15 0.78916

and consider the problem of selecting one of three best alternatives, i.e., k = 3.
The optimal value in this problem is P (100, 3) = 0.39711. Figure 2 displays the
graphs of sequences {bNmax−t−1} and {Ut(r)}, r = 1, 2, 3 from which the form
of the stopping region is easily inferred.

Recall that the optimal policy stops when Yt = Ut(Rt) > bNmax−t−1 provided
that the decision process arrives at time t. Therefore the stopping region corre-
sponds to the set of time instances for which the graphs of {Ut(r)}, r = 1, 2, 3
are above the graph of {bNmax−t+1}. In particular, Figure 2 shows that the opti-
mal stopping policy is the following. If the decision process does not terminate
due to horizon randomness then: pass the first four observations t = 1, . . . , 4; at
time instances t = 5, . . . , 15 stop at the observation with the relative rank one, if
it exists; if not, pass observations t = 16, . . . , 30; at time instances t = 31, . . . , 52
stop at the observation with the relative rank one, if it exists; if not, at time
instances t = 53, . . . , 69 stop at the observation with the relative rank one or
two, if it exists; if not, at time instances t = 70, . . . , 99 stop at the observation
with the relative rank one, two, or three, if it exists; if not, stop at the last
observation.

5.2.3. Expected rank minimization over random horizon

In this setting [Problem (P8) of Section 2] we would like to minimize the ex-
pected absolute rank on the event that the stopping occurs before N ; otherwise
we receive the absolute rank of the last available observation, AN,N = RN .
Formally, the corresponding stopping problem is

V∗(Nmax) := min
τ∈T (R)

E
[
Aτ,N1{N ≥ τ}+RN1{N < τ}

]

= − max
τ∈T (R)

E
[
(RN −Aτ,N )1{N ≥ τ} −RN ]

= − max
τ∈T (R)

E
[
(RN −Aτ,N )1{N ≥ τ}] + 1

2
(1 + EN).
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Fig 2. The graphs of sequences {bNmax−t+1}, {Ut(r)}, t = 1, 2, 3 for the U-shape distribution
distribution of N defined in (5.15).

Thus, letting q(At,k) = Rk −At,k for t ≤ k we note that

It,k(r) = E
[
q(At,k) |R1 = r1, . . . , Rt−1 = rt−1, Rt = r

]
=

1

2
(k + 1)− k + 1

t+ 1
r

and therefore

Ut(r) = Jt(r) =

Nmax∑
k=t

γkIt,k(r) =
(1
2
− r

t+ 1

)Nmax∑
k=t

(k + 1)γk.

If Nmax = ∞ then we require that EN < ∞; this ensures condition (4.12).
In this setting ν = Nmax or ν = Ñmax depending on support of the distribu-

tion of N , and

yt(j) =
(1
2
− j

t+ 1

) ν∑
k=t

(k + 1)γk, ft(j) =
1

t
, j = 1, . . . , t, t = 1, . . . , ν.

The recursion for computation of the optimal value is obtained by substitution
of these formulas in (4.27): b1 = −∞, b2 = 0, and for t = 2, . . . , ν

bt+1 =
1

ν − t+ 1

ν−t+1∑
j=1

[
bt ∨

(1
2
− j

ν − t+ 2

) ν∑
k=ν−t+1

(k + 1)γk

]
.

= bt +
1

ν − t+ 1

ν−t+1∑
j=1

[(1
2
− j

ν − t+ 2

) ν∑
k=ν−t+1

(k + 1)γk − bt

]
+

. (5.16)

The optimal policy is to stop at time t if Yt = Ut(Rt) > bν−t+1, i.e.,

τ∗ = min

{
t = 1, . . . , ν :

(1
2
− Rt

t+ 1

) ν∑
k=ν−t+1

(k + 1)γk > bν−t+1

}
.

Note that V∗(Nmax) = bNmax+1 +
1
2 (1 + EN).
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Table 6

Optimal values V∗(Nmax) computed using (5.16).

Nmax 100 500 103 104 105 106

α = 1 4.74437 8.42697 10.70615 23.34298 50.43062 108.71663
α = 2 3.83593 4.14133 4.18918 4.23792 4.24381 4.24444
α = 3 3.61069 3.80588 3.83549 3.86542 3.86909 3.86947

Gianini-Pettitt (1979) considered distributions of N with finite right end-
point Nmax and studied asymptotic behavior of the optimal value V∗(Nmax)
as Nmax → ∞. In particular, for distributions satisfying P(N = k|N ≥ k) =
(Nmax−k+1)−α, k = 1, . . . , Nmax,Nmax = 1, 2, . . . with α > 0 one has: (a) if α <
2 then V∗(Nmax) → ∞ as Nmax → ∞; (b) if α > 2 then limNmax→∞ V∗(Nmax) =
3.86945 . . .; (c) if α = 2 then lim supNmax→∞ V∗(Nmax) is finite and greater than
3.86945 . . .. Thus, if α > 2 then the optimal value V∗(Nmax) coincides asymp-
totically with the one in the classical problem of minimizing the expected rank
studied in Chow et al. (1964); see Problem (P4) in Section 2. On the other hand,
if N is uniformly distributed on {1, . . . , Nmax}, i.e. α = 1, then V∗(Nmax) → ∞
as Nmax → ∞.

We illustrate these results in Table 6. The first row of the table, α = 1,
corresponds to the uniform distribution where γk = 1/Nmax, k = 1, . . . , Nmax,
while for general α > 0

γk =
1

(Nmax − k + 1)α

k−1∏
j=1

[
1− 1

(Nmax − j + 1)α

]
, k = 1, . . . , Nmax;

see Gianini-Pettitt (1979). It is seen from the table that in the case α = 3 the
optimal value approaches the universal limit of Chow et al. (1964) as Nmax goes
to infinity. For α = 2 the formula (5.16) yields the optimal value 4.2444 . . .; this
complements the result of Gianini-Pettitt (1979) on boundedness of the optimal
value.

5.3. Multiple choice problems

The existing literature treats sequential multiple choice problems as problems
of multiple stopping. However, if the reward function has an additive structure,
and the involved random variables are independent then these problems can
be reformulated in terms of the sequential assignment problem of Section 3.
Under these circumstances the results of Derman, Lieberman & Ross (1972) are
directly applicable and can be used in order to construct optimal selection rules.
We illustrate this approach in the next two examples.

5.3.1. Maximizing the probability of selecting the best observation with k
choices

This setting was first considered by Gilbert and Mosteller (1966), and it is
discussed in Section 2 as Problem (P9). The goal is to maximize the probability
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for selecting the best observation with k choices, i.e., to maximize

P
{
∪k
j=1 (Aτj ,n = 1)

}
=

k∑
j=1

P(Aτj ,n = 1)

with respect to the stopping times τ (k) = (τ1, . . . , τk), τ1 < · · · < τk of the
filtration R. This problem is equivalent to the following version of the sequential
assignment problem (AP1) [see Section 3].

Let 0 = p1 = · · · = pn−k < pn−k+1 = · · · = pn = 1, and let

Yt =
t

n
1{Rt = 1}, t = 1, . . . , n.

The goal is to maximize S(π) = E
∑n

t=1 pπtYt with respect to π ∈ Π(Y ), where
Π(Y ) is the set of all non–anticipating policies of filtration Y , i.e., {πt = j} ∈ Yt

for all j = 1, . . . , n and t = 1, . . . , n.

The relationship between sequential assignment and multiple choice problems
is evident: if a policy π assigns pπt = 1 to the observation Yt then the corre-
sponding tth observation is selected, i.e., events {pπt = 1} and ∪k

j=1{τj = t} are
equivalent.

The optimal policy for the above assignment problem is characterized by
Theorem 3.1. Specifically, for t = 1, . . . , n let pt1 ≤ pt2 ≤ · · · ≤ ptn−t+1 be the
subset of the coefficients {p1, . . . , pn} that are left unassigned at time t. Let

st =
∑n−t+1

i=1 pti denote the number of observations to be selected (unassigned
coefficients p’s equal to 1). The optimal policy π∗ at time t partitions the real
line by numbers

−∞ = a0,n−t+1 ≤ a1,n−t+1 ≤ · · · ≤ an−t,n−t+1 ≤ an−t+1,n−t+1 = ∞,

and prescribes to select the tth observation if Yt > an−t+1−st,n−t+1. In words,
the last inequality means that the observation is selected if Yt is greater than
the st-th largest number among the numbers a1,n−t+1, a2,n−t+1, . . . , an−t,n−t+1.
These numbers are given by the following formulas: a0,n−t+1 = −∞,
an−t+1,n−t+1 = ∞, and for j = 1, . . . , n− t

aj,n−t+1 =

∫ aj,n−t

aj−1,n−t

zdFt+1(z)+aj−1,n−tFt+1(aj−1,n−t)+aj,n−t(1−Ft+1(aj,n−t)),

where Ft is the distribution function of Yt. The optimal value of the problem is

S∗(k) = S(π∗; k) =
k∑

j=1

an−j+1,n+1 . (5.17)
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Table 7

Optimal values S∗(k) in the problem of maximizing the probability of selecting the best
option with k choices. The table is computed using (5.18) and (5.17) for n = 104.

k 1 2 3 4 5 6 7 8 25
S∗(k) 0.36791 0.59106 0.73217 0.82319 0.88263 0.92175 0.94767 0.96491 0.999997

In our case Ft(z) = (1− 1
t )1(z ≥ 0) + 1

t1(z ≥ t
n ), t = 1, . . . , n which yields

aj,n−t+1 = 1
n1

(
aj−1,n−t <

t+1
n ≤ aj,n−t

)
+ aj−1,n−t

[(
1− 1

t+1

)
1(aj−1,n−t ≥ 0) + 1

t+11
(
aj−1,n−t ≥ t+1

n

)]
(5.18)

+ aj,n−t

[(
1− 1

t+1

)
1(aj,n−t < 0) + 1

t+11
(
aj,n−t <

t+1
n

)]
for j = 1, . . . , n− t, a0,n−t+1 = −∞, an−t+1,n−t+1 = ∞, and by convention we
set −∞ · 0 = ∞ · 0 = 0.

Table 7 gives optimal values S∗(k) for n = 104 and different k. Note that the
case k = 1 corresponds to the classical secretary problem. It is clearly seen that
the optimal probability of selecting the best observtation grows fast with the
number of possible choices k. The numbers presented in the table agree with
those given in Table 4 of Gilbert and Mosteller (1966).

The structure of the optimal policy allows to compute distribution of the time
required for the subset selection. As an illustration, we consider computation of
the expected time required for selecting two options (k = 2). According to the
optimal policy the first choice is made at time τ1 := min{t = 1, . . . , n : Yt >
an−t−1,n−t+1}, while the second choice occurs at time τ2 := min{t > τ1 : Yt >
an−t,n−t+1}. Then the expected time to the subset selection is

Eτ2 = Eτ1 + E(τ2 − τ1), (5.19)

where

Eτ1 = 1 +

n−1∑
j=1

j∏
t=1

Ft(an−t−1,n−1+1) (5.20)

E(τ2 − τ1) = 1 +

n−2∑
i=1

P(τ2 − τ1 > i), (5.21)

and

n−2∑
i=1

P(τ2 − τ1 > i) =
n−1∑
j=1

n−j−1∑
i=1

P(τ2 − τ1 > i | τ1 = j)P(τ1 = j)

=

n−1∑
j=1

n−j−1∑
i=1

j+i∏
t=1

Ft(an−t,n−1+1)P(τ1 = j)

=

n−1∑
j=1

n−j−1∑
i=1

j+i∏
t=j+1

Ft(an−t,n−1+1)
[
1− Fj(an−j−1,n−j+1)

] j−1∏
t=1

Ft(an−t−1,n−t+1).
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These formulas are clearly computationally amenable and easy to code on a
computer.

5.3.2. Minimization of the expected average rank with k choices

In this problem that it is discussed in Section 2 as Problem (P10) we want to
minimize the expected average rank of the k selected observations:

min
τ (k)

E

(
1

k

k∑
j=1

Aτj ,n

)
,

where τ (k) = (τ1, . . . , τk), τ1 < · · · < τk are stopping times of filtration R.
This setting is equivalent to the following sequential assignment problem.

Let 0 = p1 = · · · = pn−k < pn−k+1 = · · · = pn = 1, and let

Yt = −n+ 1

t+ 1
Rt, t = 1, . . . , n.

The goal is to maximize S(π) = E
∑n

t=1 pπtYt with respect to π ∈ Π(Y ).

Note that here Ft is a discrete distribution with atoms at yt(	) = −n+1
t+1 	,

	 = 1, . . . , t and corresponding probabilities ft(	) := P{Yt = yt(	)} = 1
t . The

structure of the optimal policy is exactly as in the previous section: at time t
the real line is partitioned by real numbers aj,n−t+1, j = 0, . . . , n− t+1 and tth
option if Yt > an−t+1−st,n−t+1, where st stands for the number of coefficients pi
equal to 1 at time t. The constants {aj,n−t+1} are determined by the following
formulas: a0,n−t+1 = −∞, an−t+1,n−t+1 = ∞, and for j = 2, . . . , n− t

aj,n−t+1 =
1

t+ 1

t+1∑
�=1

yt+1(	)1
{
yt+1(	) ∈ (aj−1,n−t, aj,n−t]

}

+
aj−1,n−t

t+ 1

t+1∑
�=1

1
{
yt+1(	) ≤ aj−1,n−t

}
+

aj,n−t

t+ 1

t+1∑
�=1

1
{
yt+1(	) > aj,n−t

}
.

The optimal value S∗(k) of the problem is again given by (5.17). Table 8
presents S∗(k) for n = 105 and different values of k. It worth noting that k = 1
corresponds to the standard problem of expected rank minimization [Prob-
lem (P4)] with well known asymptotics S∗(k) ≈ 3.8695 . . . as n goes to infinity.
Using formulas (5.19), (5.20) and (5.21) we also computed expected time re-
quired for k = 2 selections when n = 103: Eτ1 ≈ 396.25983 and Eτ2 ≈ 610.54822.
Such performance metrics were not established so far and our approach illus-
trates the simplicity with which this can be done.

5.4. Miscellaneous problems

The next two examples illustrate applicability of the proposed framework to
some other problems of optimal stopping.



250 A. Goldenshluger et al.

Table 8

The optimal value S∗(k) in the problem of minimization of the expected average rank with k
choices for n = 105.

k 1 2 3 4 5 6 7 8 25
S∗(k) 3.86488 4.50590 5.12243 5.72330 6.31262 6.89285 7.46574 8.03255 17.22753

5.4.1. Moser’s problem with random horizon

This is Problem (P11) of Section 2. The stopping problem is

V∗(Nmax) := max
τ∈T (X )

E[(Xτ −XN )1{τ ≤ N}] + μ.

Define Yt = E
[
(Xt −XN )1{t ≤ N}|Xt]; then

Yt =

Nmax∑
k=t

E
[
(Xt −XN )1{N = k}|Xt

]
= (Xt − μ)

Nmax∑
k=t

γk,

and for any stopping time τ ∈ T (X )

E
[
(Xτ −XN )1{τ ≤ N}

]
=

∞∑
t=1

E
[
1{τ = t}E

{
(Xt−XN )1{t ≤ N}|Xt

}]
= EYτ .

Thus, the original stopping problem is equivalent to the problem of stopping
the sequence of independent random variables Yt = (Xt − μ)

∑Nmax

k=t γk, t =
1, . . . , Nmax, and the optimal value is

V∗(Nmax) = μ+ max
τ∈T (Y )

EYτ .

The distribution of Yt is Ft(z) = G(μ + z
σt
), t = 1, . . . , Nmax, where σt :=∑Nmax

k=t γk. Then applying Corollary 4.1 we obtain that the optimal stopping
rule is given by

b1 = −∞, b2 = EYNmax ,

bt+1 =

∫ ∞

bt

zdFNmax−t+1(z) + btFNmax−t+1(bt), t = 2, . . . , Nmax,

τ∗ = min{1 ≤ t ≤ Nmax : Yt > bNmax−t+1}.

In particular, if G is the uniform [0, 1] distribution then straightforward cal-
culation yields: b2 = 0 and

bt+1 =
1

2σNmax−t+1

(
bt +

1

2
σNmax−t+1

)2

, t = 2, . . . , Nmax.

The optimal value of the problem is V∗(Nmax) = bNmax+1 +
1
2 .

It is worth noting that the case of γk = 0 for all k = 1, . . . , Nmax − 1 and
γNmax = 1 corresponds to the original Moser’s problem with fixed horizon Nmax.
In this case σt = 1 for all t, and the above recursive relationship coincides with
the one in Moser (1956) which is Et+1 = 1

2 (1 + E2
t ) where Et = bt +

1
2 .
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5.4.2. Bruss’ Odds–Theorem

This is the stopping problem (P12) of Section 2. In this setting we have

Yt := P{Zt = 1, Zt+1 = · · · = Zn = 0|Zt}

=

{
Zt

∏n
k=t+1 qk, t = 1, . . . , n− 1,

Zt, t = n,
(5.22)

and then

V∗ := max
τ∈T (Z )

P(Zτ = 1, Zτ+1 = · · · = Zn = 0} = max
τ∈T (Y )

EYτ .

Thus, the original stopping problem is equivalent to stopping the sequence
{Yt} which is given in (5.22). Note that Yt’s are independent, and Yt takes two
values

∏n
k=t+1 qk and 0 for t = 1, . . . , n−1, and 1 and 0 for t = n with respective

probabilities pt and qt = 1−pt. Therefore applying Corollary 4.1 we obtain that
the optimal stopping rule is given by

τ∗ = min

{
t = 1, . . . , n : Yt > bn−t+1

}
, (5.23)

where b1 = −∞, b2 = EYn = pn, and for t = 2, 3, . . . , n

bt+1 =

∫ ∞

bt

zdFn−t+1(z)+btFn−t+1(bt)

= bt + pn−t+1

[ n∏
k=n−t+2

qk − bt

]
+

, (5.24)

where [·]+ = max{0, ·}. The problem optimal value is V∗ = bn+1.
Now we demonstrate the stopping rule (5.23)–(5.24) is equivalent to the sum–

odds–and–stop algorithm of Bruss (2000). According to (5.23), it is optimal
to stop at the first time instance t ∈ {1, . . . , n − 1} such that Zt = 1 and
bn−t+1(

∏n
k=t+1 qk)

−1 < 1; if such t does not exist then the stopping time is n.
Note that

bn−t+1∏n
k=t+1 qk

=
bn−t∏n
k=t+1 qk

+
pt+1

qt+1

[
1− bn−t∏n

k=t+2 qk

]
+

, t = 0, 1, . . . , n− 2. (5.25)

Define us := bs(
∏n

k=n−s+2 qk)
−1, s = 2, . . . , n + 1. It is evident that {us} is a

monotone increasing sequence, and with this notation (5.25) takes the form

un−t+1 =
1

qt+1
un−t +

pt+1

qt+1
(1− un−t)+, t = 0, 1, . . . , n− 2, (5.26)

u2 =
pn
qn

. (5.27)

In terms of the sequence {us} the optimal stopping rule (5.23) is the following:
it is optimal to stop at first time t ∈ {1, . . . , n−1} such that Zt = 1 and un−t+1 <
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1; if such t does not exist then stop at time n. Formally, define t∗ := min{t =
1, . . . , n− 1 : un−t+1 < 1} if it exists. Then for any t ∈ {t∗, t∗ +1. . . . , n− 1} we
have un−t+1 < 1 and iterating (5.26)-(5.27) we obtain

un−t+1 = un−t +
pt+1

qt+1
=

n∑
k=t+1

pk
qk

, t = t∗, t∗ + 1, . . . , n− 1. (5.28)

Therefore (5.23) can be rewritten as

τ∗ = inf

{
t = 1, . . . , n− 1 : Zt = 1 and

n∑
k=t+1

pk
qk

< 1

}
∧ n,

where by convention inf{∅} = ∞. In order to compute the optimal value V∗ =
bn+1 we need to determine un+1. For this purpose we note that the definition
of t∗ and (5.26) imply

un−t+1 =
un−t

qt+1
, t = t∗ − 1, t∗ − 2, . . . , 1, 0, (5.29)

and, in view of (5.28), un−t∗+1 =
∑n

k=t∗+1(pk/qk). Therefore iterating (5.29)
we have

un+1 =

( t∗∏
j=1

1

qj

)
un−t∗+1 =

( t∗∏
j=1

1

qj

) n∑
k=t∗+1

pk
qk

.

Taking into account that un+1 = bn+1(
∏n

j=1 qj)
−1 we finally obtain the optimal

value of the problem:

V∗ = bn+1 =
n∏

j=t∗+1

qj

n∑
k=t∗+1

pk
qk

.

These results coincide with the statement of Theorem 1 in Bruss (2000).

6. Concluding remarks

We close this paper with several remarks.

1. In this paper we show that numerous problems of sequential selection
can be reduced to the problem of stopping a sequence of independent random
variables with carefully specified distribution functions. In terms of computa-
tional complexity, we cannot assert that in all cases our approach leads to a
more efficient algorithm than a dynamic programming recursion tailored for a
specific problem instance. However, in contrast to the latter, in many cases of
interest we are able to derive explicit recursive relationships that can be eas-
ily implemented; see, e.g., Problem (P5) that has not been solved to date, or
Problems (P6) and (P7) for which our approach provides explicit expressions
for computation of optimal policies under arbitrary distribution of the horizon
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length. The conditioning argument leads to rules expressed in terms of “suffi-
cient statistics”; such rules are very natural, simple, and easy to interpret.

2. The proposed framework is applicable to sequential selection problems
that can be reduced to settings with independent observations and additive re-
ward function. In addition, it is required that the number of selections to be
made is fixed and does not depend on the observations. As the paper demon-
strates, this class is rather broad. In particular, it includes selection problems
with no-information, rank-dependent rewards and fixed or random horizon. The
framework is also applicable to selection problems with full information when
the random variables {Xt} are observable, and the reward for stopping at time
t is a function of the current observation Xt only. It is worth noting that in
all these problems the optimal policy is of the memoryless threshold type. In
addition, we demonstrate that multiple choice problems with fixed and random
horizon and additive reward, as well as sequential assignment problems with
independent job sizes and random horizon, are also covered by the proposed
framework. In particular, variants of problems (P9), (P10) and (P12) with ran-
dom horizon can also be solved using the proposed approach.

3. Although the approach holds for a broad class of sequential selection prob-
lems, there are settings that do not belong to the indicated class. For instance,
settings with rank–dependent reward and full information as in (Gilbert and
Mosteller, 1966, Section 3) and Gnedin (2007) cannot be reduced to optimal
stopping of a sequence of independent random variables. A prominent example
of such a setting is the celebrated Robbins’ problem of minimizing the expected
rank on the basis of full information. This problem is still open, and only bounds
on the asymptotic optimal value are available in the literature. Remarkably,
Bruss & Ferguson (1996) show that no memoryless threshold rule can be opti-
mal in this setting, and the optimal stopping rule must depend on the entire
history.

4. The proposed approach is not applicable to settings where the number
of selections is not fixed and depends on the observations. This class includes
problems of maximizing the number of selections subject to some constraints; for
representative publications in this direction we refer, e.g., to Samuels & Steele
(1981), Coffman et al, (1987), Gnedin (1999), Arlotto et al. (2015) and references
therein. Another example is the multiple choice problem with zero–one reward;
see, e.g., Rose (1982a) and Vanderbei (1980) where the problem of maximizing
the probability of selecting the k best alternatives was considered. The fact that
the results of Derman, Lieberman & Ross (1972) are not applicable to the latter
problem was already observed by Rose (1982a) who mentioned this explicitly.
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