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Abstract: A new cluster analysis method, K-quantiles clustering, is in-
troduced. K-quantiles clustering can be computed by a simple greedy algo-
rithm in the style of the classical Lloyd’s algorithm for K-means. It can be
applied to large and high-dimensional datasets. It allows for within-cluster
skewness and internal variable scaling based on within-cluster variation.
Different versions allow for different levels of parsimony and computational
efficiency. Although K-quantiles clustering is conceived as nonparametric,
it can be connected to a fixed partition model of generalized asymmetric
Laplace-distributions. The consistency of K-quantiles clustering is proved,
and it is shown that K-quantiles clusters correspond to well separated mix-
ture components in a nonparametric mixture. In a simulation, K-quantiles
clustering is compared with a number of popular clustering methods with
good results. A high-dimensional microarray dataset is clustered by K-
quantiles.
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1. Introduction

In this paper we introduce a new clustering method, quantile-based or K-
quantiles clustering. The method is fast and simple and can deal with large
datasets. A special feature of the method is that it takes into account potential
skewness of the within-cluster distributions.

The popular K-means method [19] represents all clusters by their centroids
(cluster means) and assigns all points to the closest centroid. Quantile-based
clustering represents the clusters by optimally chosen quantiles. Points are as-
signed to the closest quantile (or rather, in multidimensional data, distances to
quantiles are summed up over the variables), but the distance measuring “close-
ness” treats points asymmetrically depending on which side of the quantile they
are. This idea has been explored for supervised classification by [15], and here
we present its application to clustering.

The algorithm for K-quantiles clustering works along the lines of Lloyd’s
classical K-means algorithm [25] and is in this way faster and simpler than
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many modern clustering methods, at the same time being more flexible than
K-means.

There is some ambiguity in the literature about to what extent K-means is
model-based. The K-means objective function can be motivated without refer-
ence to probability models; it formalizes optimal representation of all points in a
cluster by the cluster centroid in the sense of least squares. It is therefore some-
times presented as assumption-free method. But K-means can also be derived
as Maximum Likelihood (ML) estimator of a fixed partition model of spherical
Gaussian clusters with equal within-cluster variances, which seems to be a quite
severe assumption. Indeed K-means tends to produce spherical clusters, so it
is hardly appropriate to call it assumption-free, although it is regularly applied
to data that do not follow this model assumption. Whether this is appropriate
does not depend so much on to what extent the model assumption is really ful-
filled, but rather on whether the K-means characteristics matches the “shape”
of clusters required in the application in hand. Different applications of cluster
analysis ask for different kinds of clusters, and the user of cluster analysis needs
to understand such characteristics of methods in order to choose an appropriate
one for the application of interest [14].

In the same way, K-quantiles clustering can also be derived as ML estimator
for a fixed partition model of generalized asymmetric Laplace distributions. This
is helpful also for the construction of K-quantiles clustering, because it implies
how to penalize variables against each other when using different quantiles for
different variables. It also allows for an in-built scaling of variables that takes
skewness into account. However, the main rationale of K-quantiles clustering is
not the estimation of asymmetric Laplace distributions, but rather to define a
general clustering principle that is almost as simple asK-means but more flexible
by taking within-cluster skewness into account. Throughout the paper, the num-
ber of clusters K is treated as fixed; the estimation of K is left to future work.

We review the principle of K-means clustering in Section 2. In Section 3,
quantile-based clustering is motivated and defined. First, we motivate it in a
discrepancy-based nonparametric manner. Then we link it to a fixed partition
model of asymmetric Laplace distributions. Some attention is paid to the penalty
term introduced by ML-estimation in this model. A simple greedy algorithm is
proposed, and various constrained versions of the quantile-based clustering are
proposed, which allow for more parsimony and less computational effort. Section
4 is devoted to consistency theory. Quantile-based clustering is proved to be
consistent in a nonparametric setting for the canonical clustering functional
defined on a distribution, and another theorem shows that this functional will
yield clusters that correspond to mixture components in mixtures with strongly
separated nonparametric components. Section 5 presents a simulation study that
includes high-dimensional setups, in which K-quantiles clustering is compared
with some popular clustering methods. In Section 6, K-quantiles clustering is
applied to a real microarray dataset with more than 3000 variables. Section 7
concludes the paper.

Supplementary material with some more detailed results and information is
available on arxiv, [16].
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2. K-means and distance-based probabilistic clustering

The aim of centroid-based clustering is to seek the best partition of n data
vectors x̃n = (x1, . . . ,xn) ∈ (Rp)n into K disjoint subsets characterized by
cluster prototypes (centroids) ξ̃ = (ξ1, . . . , ξK) (the tilde denotes a collection of
vectors rather than a single one).

In classical K-means [19] the ‘best’ partition C = (C(1), . . . , C(n)) is ob-
tained by minimizing over ξ̃ and C the variance function given by

V K−means
n,K (ξ̃, C, x̃n) =

n∑
i=1

‖xi − ξC(i)‖2, (1)

where ‖ • ‖ denotes the L2 or Euclidean distance, C(i) ∈ {1, . . . ,K} for i =
1, . . . , n. A classical estimation algorithm for minimizing V K−means

n,K consists of
two steps sequentially iterated until convergence [25]. In the first step, for fixed
ξ the best partition C is found by assigning each point to the nearest cluster
center. Then in the second step, for fixed C, the centroids ξk (k = 1, . . . ,K) are
estimated. Since the sum of squared Euclidean distances in (1) is minimized by
the mean, the centroids ξk (k = 1, . . . ,K) are the within cluster means.

Although usually no probability assumption is mentioned when K-means is
introduced, K-means can be derived as Maximum Likelihood (ML) estimator of
a fixed partition model of spherical Gaussian clusters with equal within-cluster
variances. According to such a model, x1, . . . ,xn are independently drawn from
N (ξC(i), σ

2Ip), i = 1, . . . , n, where C(i) ∈ {K = 1, . . . ,K} are parameters
giving the cluster memberships of the xi; as opposed to a mixture model, in a
fixed partition model these are not modelled as random. The log-likelihood of
such a model is

−
n∑

i=1

p

2
log σ2 −

{
1

2σ2
‖xi − ξC(i)‖2

}
,

which is maximized by the ξ1, . . . , ξK , C(1), . . . , C(n) that minimize V K−means
n,K ,

in other words, by K-means.
More generally, starting from an arbitrary distance from a prototype, denoted

by d(x, ξ), it is always possible to construct a probabilistic clustering model as
proposed by [2] and [18]. The kernel of the distance-based density is the inverse
of the exponential of the distance measure weighted by a positive concentration
parameter λ:

f(x; ξ, λ) = ψ(ξ, λ)e−λd(x,ξ) (2)

where d(x, ξ) is a generic distance function from a location parameter ξ, λ > 0,
and ψ(ξ, λ) is a normalization constant such that f(x; ξ, λ) is a proper density
function.

Distance-based models have been used by several authors [see 26, 7, 6] and
adapted for classification in a mixture-based perspective by [28] for ranking data
and by [1] for textual data.
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Note that, when d(x, ξ) is the L2 (Euclidean) distance from the expected value
of X, ξ = E[X], the density (2) is the Gaussian distribution. When d(x, ξ) is
the L1 distance, the density (2) coincides with the Laplace distribution. When
d(x, ξ) is the cosine distance and data are normalized to 1 according to the L2

norm, (2) becomes the von Mises-Fisher distribution [1].

3. Quantile-based clustering

We now introduce a new clustering strategy based on the idea of assigning points
to the closest quantile. Measuring “closeness” by the squared Euclidean distance
is associated with the mean, in the sense that means optimize (1). Quantiles can
also be characterized by minimizing a sum of discrepancies, although these dis-
crepancies are not symmetric; they depend on which side of the quantile a point
is. Using these discrepancies in “K-means style” leads to a simple clustering
method that allows for within-cluster skewness.

3.1. Clustering based on the quantile discrepancy

Let X be a univariate random variable defined on R with probability cumu-
lative function FX(x). Let θ ∈ [0, 1] be a percentile and denote as q(θ) the
corresponding quantile, such as F−1

X (θ) = q(θ) = inf{x : FX(x) ≥ θ}.
The quantile q(θ) is the not necessarily unique value of ξ that minimizes the

following variability measure:

θ

∫
x>ξ

|x− ξ|dFX(x) + (1− θ)

∫
x<ξ

|x− ξ|dFX(x) =

∫
Q(x, θ, ξ)dFX(x), (3)

where, for a single point x, we define the quantile discrepancy from ξ as a
function Q : R× [0, 1] → [0,∞):

Q(x, θ, ξ) =
{
θ + (1− 2θ)1[x<ξ]

}
|x− ξ|. (4)

For θ = 0.5, this is the L1 distance, but for θ �= 0.5 it is not symmetric and
therefore not a distance. Not being based on squares, it shares with the L1

distance its better resistance against outliers compared to the L2 distance.
By definition the quantile discrepancy has a univariate nature. When X is a

multivariate random variable on Rp, the quantile discrepancy with respect to a
generic vector of centroids ξ is defined as the sum of component-wise distances:

Q∗(x,θ, ξ) =

p∑
j=1

Q(xj , θj , ξj) =

p∑
j=1

{
θj + (1− 2θj)1[xj<ξj ]

}
|xj − ξj |, (5)

where θj can be variable-wise or a single common percentile for all variables.
The basic idea of quantile-based clustering is to use the quantile discrepancy

instead of the squared L2-distance in K-means, i.e., minimizing

V K−quantiles
n,K (θ, ξ̃, C, x̃n) =

n∑
i=1

p∑
j=1

Q(xij , θj , ξC(i)j), (6)
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where again ξ̃ = (ξ1, . . . , ξK). θ is assumed here to be the same for all clusters.
ξ1, . . . , ξK define the locations of the clusters. We call them “barycenters” from
now on.

Proposition 1. Let x1, . . . ,xn ∈ Rp, θ ∈ (0, 1)p and C(1), . . . , C(n) ∈
{1, . . . ,K} so that nk = |{xi : C(i) = k}| > 0. Then the empirical quantile
vectors qnk(θ) = {qnk1(θ1), . . . , qnkp(θp)}, k = 1, . . . ,K, defined for j = 1, . . . , p
as

qnkj(θj) = inf

⎧⎨
⎩xj :

1

nk

∑
C(i)=k

1[xij≤xj ] ≥ θj

⎫⎬
⎭

satisfy

n∑
i=1

p∑
j=1

Q(xij , θj , qnkj(θj)) = min
ξ̃

n∑
i=1

p∑
j=1

Q(xij , θj , ξC(i)j). (7)

The proof of Proposition 1 is given in Appendix A.1.
(6) quantifies the discrepancy between the observations in a cluster and their

barycenter given θ, and is therefore appropriate for finding the cluster barycen-
ters and clustering the points, but it will not work well for finding θ. The
problem of finding the optimal θ will benefit from a model-based approach.

3.2. The fixed partition model and quantile-based clustering

Quantile-based clustering can be derived as ML estimator of a probabilistic
model, similarly to K-means.

Consider the quantile discrepancy at ξ = q(θ), inserting d(x, ξ)=Q(x, q(θ), θ)
in the distance-based density in (2) with p = 1 for the moment. The normal-
ization constant is dependent on θ, and on ξ only through θ, so we can write
ψ(θ, ξ, λ) = ψ(θ, λ) = λθ(1− θ). Therefore the quantile discrepancy based den-
sity is a spiky curve taking the general form:

f(x; θ, ξ, λ) = λθ(1− θ)e−λ{θ+(1−2θ)1[x<ξ]}|x−ξ|, (8)

where ξ = q(θ).
When θ = 0.5, then ξ = q(1/2) is the median, and the quantile-based den-

sity is the Laplace distribution. When θ �= 0.5 the quantile-based density is
a special case of the asymmetric Laplace distribution [22] with expectation

E[X] = ξ + 1−2θ
λθ(1−θ) , variance V ar[X] = 1−2θ(1−θ)

(λθ(1−θ))2 and skewness Skew[X] =
(2(1−2θ)(1−(1−θ)θ))

(1−2(1−θ)θ)3/2
. Figure 1 shows some examples of its shape as θ varies.

For x̃n = (x1, . . . ,xn) ∈ (Rp)n we assume that the p variables are indepen-
dent within clusters, and that the parameters θ and λ do not differ between
clusters; the clusters are distinguished only by different barycenters ξk, k =
1, . . . ,K. We aim at finding a compromise here between flexibility on one side
and parsimony and computational simplicity on the other side. In the K-means
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Fig 1. Examples of quantile-based densities for different values of θ.

model, variables are independent, all variables have the same within-cluster vari-
ances and clusters only differ regarding their centers. For quantile-based cluster-
ing, we define different levels of flexibility, see Section 3.5. For the moment we
focus on the most general case of the models considered there, which allows both
θ and λ to vary between variables, allowing for different distributional shapes
and scales. Allowing them to differ between clusters as well, and incorporating
within-cluster dependence would define a considerably more complex approach,
both regarding the number of parameters and the computational burden. This
is left for future research.

With parameter vector Θ = (θ, ξ̃,λ, C), the likelihood for a fixed partition
asymmetric Laplace distribution model with independent variables is

f(x̃n; Θ) =

n∏
i=1

p∏
j=1

f(xij ; θj , ξC(i)j , λj).

Plugging in (8) and taking logs, the ML estimator is

Tn,K(x̃n) = argmin
Θ

Vn,K(Θ, x̃n),

Vn,K(Θ, x̃n) =

n∑
i=1

p∑
j=1

λjQ(xij , θj , ξC(i)j)− n

p∑
j=1

log λjθj(1− θj), (9)

which for given θ and λ = 1 leads to the same clustering as (6). Proposition
1 enforces that ξ11, . . . , ξKp are the variable-wise within-cluster θ-quantiles, be-

cause the minimization with respect to ξ̃ is independent of λ. For given (θ, ξ̃,λ),
the ML estimator of the clustering C is, for i = 1, . . . , n:

C(i) = argmin
k∈{1,...,K}

p∑
j=1

λjQ(xij , θj , ξkj)− n

p∑
j=1

log λjθj(1− θj). (10)

We will therefore omit C in the parameter vector in the following. Here is the
resulting definition.
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Fig 2. Unpenalized (dashed red line) and penalized (black line) quantile dispersion for data
generated from a Gaussian distribution.

Definition 1. Quantile-based (K-quantiles) clustering (with variable-wise θ and
λ) is defined by

Tn,K(x̃n) =

argmin
θ,ξ̃,λ

⎛
⎝ n∑

i=1

min
k∈{1,...,K}

p∑
j=1

λjQ(xij , θj , ξkj)− n

p∑
j=1

log λjθj(1− θj)

⎞
⎠ ; (11)

observations are clustered by (10) based on (θ, ξ̃,λ) = Tn,K(x̃n).

3.3. Notes on penalization and scaling

Comparing (6) and (11) shows that the logarithmized normalization constant
−n

∑p
j=1 log λjθj(1− θj) acts as a penalty term, penalizing θj too close to 0 or

1 and too small λj .
In order to illustrate why this is required (focusing on θ first), consider K = 1

and univariate data generated by a Gaussian distribution with some parameters
μ and σ2 and take ξ = qn(θ), where qn(θ) is the quantile computed on the sample
of size n. The dashed red line of Figure 2 shows the shape of the dispersion
Dn(θ) =

∑n
i=1 Q(xi, θ, qn(θ)) (w.l.o.g. λ = 1) on a large sample with n = 10, 000

for a dense grid of values of the percentile between 0 and 1.
Since data have been generated by a symmetric distribution, the optimal

value of θ should actually be 1
2 corresponding to the median, and Figure 2

shows that the penalty is required to achieve this.
Figure 3 shows the penalized dispersion function for data generated by a

symmetric distribution, by a positive skew distribution and by a negative skew
distribution.

The parameters λj allow for implicit rescaling of the variables and scale
equivariance. They need to be “penalized” because without the penalty term,
λ → 0 would just enforce Vn,K → 0.
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Fig 3. In the second row of the panel the penalized dispersion function is plotted against θ
for data generated according to the density functions depicted in the first row of the panel:
a symmetric distribution, a positive skew distribution and a negative skew distribution.

K-quantiles clustering is scale equivariant, which means that the clustering
remains the same, and parameters change appropriately, if the variables in the
data are multiplied by different constants.

Proposition 2. For constants c = (c1, . . . , cp)
t, c1, . . . , cp �= 0, let x̃∗

N =
(x∗

1, . . . ,x
∗
n) be defined by x∗

i = ctxi, i = 1, . . . , n. Let

Tn,K(x̃n) =
(
θn,K , ξ̃n,K ,λn,K

)
, d =

(
1

c1
, . . . ,

1

cp

)t

,

ξ̃
∗
n,K =

(
ctξn,K,1, . . . , c

tξn,K,K

)
. Then,

Tn,K(x̃∗
n) =

(
θn,K , ξ̃

∗
n,K ,dtλn,K

)
,

and the corresponding clustering C is the same as for Tn,K(x̃n).

The proof of Proposition 2 can be found in Appendix A.2.
Note that the parameters λj rescale the variables based on variation within

clusters (only the discrepancy between xij and the cluster barycenter to which
xi is assigned are taken into account, see also Proposition 4 below). This is
more appropriate than achieving scale equivariance by standardizing the vari-
ables beforehand based on the variance or some other dispersion measure, as
is sometimes done for K-means, see [10]. Such methods will estimate a large
dispersion if along a variable the separation between clusters is large, which
may lead to downweighting of variables that are in fact very informative for
clustering.

3.4. A greedy search algorithm

Lloyd’s classical K-means algorithm [25] is a greedy algorithm, and K-quantiles
clustering can also be computed using a fast greedy algorithm. This is based on
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the following two propositions, which show that θ and λ minimizing Vn,K can
easily be found with all other parameters given. The propositions treat the case
p = 1 w.l.o.g., because the variables can be treated separately for minimizing
Vn,K with respect to these parameters.

Proposition 3. For one-dimensional x1, . . . , xn, given ξ1, . . . , ξK , C(1), . . . ,
C(n) and λ > 0, the solution to the problem

θ = argmin
θ∗∈(0,1)

(
n∑

i=1

λQ(xi, θ
∗, ξC(i))− n log(λθ∗(1− θ∗))

)

is given by one or both of the roots of the quadratic equation

θ2λ

n∑
i=1

(xi − ξC(i))− θ

(
2n+ λ

n∑
i=1

(xi − ξC(i))

)
+ n = 0.

Proposition 4. For one-dimensional x1, . . . , xn, given ξ1, . . . , ξK , C(1), . . . ,
C(n) and θ ∈ (0, 1), the solution to the problem

λ = argmin
λ∗

(
n∑

i=1

λ∗Q(xi, θ, ξC(i))− n log(λ∗θ(1− θ));λ > 0

)

is given by

λ =
n∑n

i=1 Q(xi, θj , ξC(i))
.

Proofs of Propositions 3 and 4 are given in Appendix A.3 and A.4, respec-
tively.

The greedy algorithm consists of an initialization step and a clustering step,
which makes Vn,k smaller in each step and is repeated until convergence. Be-
cause there are only finitely many possible clusterings, the algorithm will reach
convergence after a finite number of steps (as does Lloyd’s algorithm). For big
datasets, if convergence takes too long, one could fix a maximum number of iter-
ations. However, often convergence is reached very quickly; also the constrained
methods proposed in Section 3.5 are faster. The scheme of the algorithm is the
following:

1. Initialization: For each variable j = 1, . . . , p, choose randomly a value
θj and K quantiles of equispaced probabilities as barycenters defined as
qnkj(θ

∗
kj), with θ∗kj = (k − 1)/2(K − 1) + θj/2. Set λj = 1.

2. Clustering step: Repeat the following until Vn,K(θ; ξ) stops changing:

(a) Compute the clustering C(1), . . . , C(n) using (10).

(b) For j = 1, . . . , p compute θj using Proposition 3.

(c) For j = 1, . . . , p compute λj using Proposition 4.

(d) for k = 1, . . . ,K, j = 1, . . . , p compute the new barycenters ξkj =
qnkkj(θj), where nk =

∑n
i=1 1[C(i)=k], and qnkkj(θj) denotes the

quantile among the xij with C(i) = k.
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Because of (10) and Propositions 3 and 4, Vn,K is made smaller in every step,
so the algorithm is guaranteed to converge. As usual, the algorithm only finds
a local optimum of Vn,k. Therefore it is recommended to repeat the algorithms
with a number of h different initializations (we use 30 as default), and the best
solution is chosen according to the minimum value of V (θ, ξ). The algorithm is
implemented in the R package QuClu available on the CRAN Web page. Note
that the proposed initialization of λ could be made scale equivariant by for
example setting λj = 1/sj with s2j being the sample variance of variable j, but
this may come with the same issues as prior scaling of K-means, see Section
3.3.

3.5. Constrained versions

More parsimony and faster computation can be achieved by constraining the θ
and λ-parameters. The algorithm described in Section 3.4 can easily be modified
to accommodate these.

• Algorithm CU: Common θ and Unscaled variables.
A common value of θ for all the variables is assumed, and variables are not
implicitly scaled (the latter can make sense in applications in which the
variables have comparable meanings and measurement units, if subject
matter knowledge suggests that variable importance is proportional to
variation). In this case we minimize the empirical loss function:

Vn,K(θ, ξ, x̃n) =

n∑
i=1

min
k∈{1,...,K}

p∑
j=1

Q(xi, θ, ξkj)− np log(θ(1− θ)) (12)

• Algorithm CS: Common θ and Scaled variables through λj .
A common value of θ is taken but variables are scaled through λj . Then
the empirical loss function to be minimized is:

Vn,K(θ, ξ,λ, x̃n)=

n∑
i=1

min
k∈{1,...,K}

p∑
j=1

λjQ(xij , θ, ξkj)−n

p∑
j=1

log(λjθ(1− θ))

• Algorithm VU: Variable-wise θj and Unscaled variables.
In this case we minimize

Vn,K(θ, ξ, x̃n) =

n∑
i=1

min
k∈{1,...,K}

p∑
j=1

Q(xij , θj , ξkj)− n

p∑
j=1

log(θj(1− θj))

• Algorithm VS: Variable-wise θj and Scaled variables through λj . This is
the most flexible method, with Vn,K defined in (9).

Minimisation problems CS and VS are scale equivariant (Proposition 2 holds
with the same proof for CS as well), whereas CU and VU are not.
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4. Consistency theory

In this section we show that the parameters estimated by K-quantiles clustering
from data are consistent estimators of the K-quantiles clustering functional, i.e.,
the version computed on an underlying distribution rather than on data. The
first result of this kind for clustering seems to be the work of [31] on K-means
clustering, and our Theorem 1 for K-quantiles clustering uses some of Pollard’s
ideas. Such consistency results have been shown for a number of clustering
approaches, see, e.g., [33, 4, 5], but are still lacking for many methods.

It is well known in the case of K-means that consistency for the K-means
functional does not imply that the estimated parameters (i.e., the K mean vec-
tors) are consistent for the parameters of the Gaussian fixed partition model
for which K-means is the ML estimator (see [3]), and in the same way the
result presented here does not imply that K-quantiles clustering is consistent
for estimating the parameters of a fixed partition model of asymmetric Laplace
distributions as introduced in Section 3.2. Anyway, the consistency result given
here is essentially nonparametric, for very general distributions, and it ensures
the asymptotic stability ofK-quantiles clustering, and the estimated parameters
can be analyzed by considering the K-quantiles clustering functional. There is
some literature on convergence rates and “performance guarantees” forK-means
clustering (e.g., [24, 30]), but this relies on strong assumptions, and generaliz-
ing such results to K-quantiles clustering is beyond the scope of the present
work. Instead, after the consistency result in Theorem 1, we show in Theorem 2
that the K-quantiles clustering functional defines clusters that are in line with
“central sets” in a nonparametric mixture situation with sufficiently strong sep-
aration between mixture components. We are not aware of other results of this
kind in the literature.

We consider the most flexible and general model defined above, with variable-
wise θ and scaled variables, which is the most difficult one for proving consis-
tency. Corresponding results for the less flexible models can be obtained more
easily.

The proof relies heavily on showing that parameter estimators for large n
do not leave a compact set, but (considering a single variable) λ → ∞ and
θ → 0 or θ → 1 may happen together without constraints on the parameter
space (leading to the exponential distribution in the limit, which in practice
could actually be integrated in the approach), causing trouble with uniform
convergence arguments. This can be avoided by either constraining θj ∈ [r, 1−
r], r > 0, or λj ≤ λ+ < ∞ for j ∈ {1, . . . , p}. We will impose the latter
constraint here, so that results hold without further constraint for the unscaled
case, i.e., λ = 1.

The parameter space used here is

S = {(θ, ξ̃,λ) : θj ∈ (0, 1), ξk ∈ Rp, λj ∈ (0, λ+], j ∈ {1, . . . , p},
k ∈ {1, . . . ,K}}.

We use the notation defined in (9) and (11); in case that the argmin is not
unique, any solution can be taken. We modify (9) multiplying by 1

n in order to
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use stochastic convergence of means to expectations:

Vn,K(Θ, x̃n) =
1

n

n∑
i=1

p∑
j=1

λjQ(xij , θj , ξC(i)j)−
p∑

j=1

log λjθj(1− θj).

For a given distribution P on Rp define

VK(θ, ξ̃,λ, P ) =

∫
min

k∈{1,...,K}

p∑
j=1

λjQ(xj , θj , ξkj)dP (x)−
p∑

j=1

log λjθj(1− θj),

TK(P ) = (θK , ξ̃K ,λK) = argmin
(θ,ξ̃,λ)∈S

VK(θ, ξ̃,λ, P ).

Let Sn,K = Vn,K(Tn,K(x̃n), x̃n), SK = VK(TK(P ), P ). In order to avoid issues

due to label switching of the clusters, we consider consistency of lists (θ, ξ̃,λ),
where ξ̃ is the set of quantiles. Convergence and continuity are defined in terms of
a distance d between two such lists (θ1, ξ̃1,λ1), (θ2, ξ̃2,λ2) that is the maximum
of ‖θ1−θ2‖, ‖λ1−λ2‖, and the maximum over the Euclidean distances between
any element of ξ̃i and its closest element of ξ̃j , i �= j, i, j = 1, 2 (known as

Hausdorff distance between ξ̃1 and ξ̃2).
The following assumptions will be required:

A1 B =
∫
‖x‖dP (x) < ∞.

A2 Tk(P ) is uniquely defined (up to cluster labelling) for k = 1, . . . ,K.

A1 means that all involved integrals are finite; note that [31] requires∫
‖x‖2dP (x) < ∞ for K-means. A2 enforces stability; as [31] noted for K-

means, it implies that SK < SK−1 < . . . < S1 because if Sk = Sk−1 for some
k, one could add any point to ξ̃k−1 to construct ξ̃k that cannot have a worse
value than Sk together with θk−1,λk−1.

Theorem 1. If x1,x2, . . . ∼ P i.i.d., and assumptions A1 and A2 hold, then,
for n → ∞: Tn,K(x̃n) → TK(P ), Sn,K → SK a.s.

The proof of Theorem 1 is given in Appendix A.5.
The value of TK(P ) for given P implies a clustering of Rp by

γTK(P )(x) = argmin
k

p∑
j=1

λKjQ(xj , θKj , ξKkj)

for x = (x1, . . . , xp) ∈ Rp. The next result is about this implied clustering in
case that Pm, m ∈ N, is a sequence of mixture distributions with mixture com-
ponents between which the separation becomes larger and larger with increasing
m (we suspect that something like this is required to define clusters that can
consistently be found by any method in such a nonparametric setting).

Here are some definitions and assumptions. Let G1, . . . , GK be distribution
functions on Rp defining distributions Q1, . . . , QK parameterized in such a way
that 0 is their “center” in some sense; it could be the mode, the mean, the
multivariate median or quantile; important is only that Gi is defined relative to
0. Let π1, . . . , πK > 0 mixture proportions with

∑K
k=1 πk = 1. Assume
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A3 For m ∈ N, k ∈ {1, . . . ,K} let ρmk ∈ Rp sequences so that

lim
m→∞

min
k1 �=k2∈{1,...,K}

‖ρmk1
− ρmk2

‖ = ∞.

A4 ∃B0 < ∞ so that for all k ∈ {1, . . . ,K} :
∫
‖x‖dGk(x) ≤ B0.

Assumption A3 enforces the distance between central sets to become large
enough for the statement to hold. A4 makes sure the involved expectations
exist (note that a similar theorem could be proved for K-means, but this would
require a bound on the mixture component-wise E‖x‖2).

Define a sequence of distributions Pm with distribution functions Fm on
Rp by Fm(x) =

∑K
k=1 πkGk(x − ρmk). Consider, for ε > 0, the “central set”

{x : ‖x‖ < ε} about 0. Then, by choosing 0 < ε < ∞ large enough,

∃δ > 0 : ∀k ∈ {1, . . . ,K} : πkQK{‖x‖ < ε} ≥ δ. (13)

The following theorem states that in this setup, when evaluating theK-quantiles
clustering functional, eventually the different clusters include the full central sets
of the different mixture components (and central sets can be of arbitrarily large
though fixed radius), and in this sense the clustering corresponds to the mixture
structure. The mixture components are allowed to overlap, although for m → ∞
the overlap becomes arbitrarily small.

Theorem 2. With the above definitions, assuming A3 and A4, for large enough
m, the clusters of TK(Pm) = (θm, ξ̃m,λm) can be numbered in such a way that
for k ∈ {1, . . . ,K}:

{x : ‖x− ρmk‖ < ε} ⊆ {x : γTK(Pm)(x) = k}.

The proof of Theorem 2 is given in Appendix A.6.

5. Simulation study

The performance of the K-quantiles clustering algorithm is evaluated in an
extensive simulation study. We generate p vectors from K, K = 2, 3, 5, popula-
tions, X(K), according to five different scenarios:

1. In the first scenario, we consider symmetric Student t-distributed vari-
ables Wj (j = 1, . . . , p) with three degrees of freedom, and we simulate K
location-shifted populations from Wj , each shift from the closest popula-

tion being unitary [e.g. X
(1)
j ∼ Wj , X

(2)
j ∼ (Wj + 1), X

(3)
j ∼ (Wj − 1),

. . . ].
2. In the second scenario, we test the behaviour of the clustering algorithm

in highly skewed data by generating identically distributed vectors Wj

(j = 1, . . . , p) from a multivariate zero-centered Gaussian distribution,
transforming them using the exponential function and shifting contiguous

populations by 0.6 [e.g. X
(1)
j ∼ exp(Wj), X

(2)
j ∼ (exp(Wj) + 0.6), X

(3)
j ∼

(exp(Wj)− 0.6), . . . ].



4862 C. Hennig et al.

3. In the third scenario, we consider different distributions for the p vari-
ables. We first generate Wj from a multivariate zero-centered Gaussian
distribution and then split p into five balanced blocks to which we apply
different transformations:

(i) a location shift [e.g.X
(1)
j ∼ Wj ,X

(2)
j ∼ (Wj+0.7),X

(3)
j ∼ (Wj+1.4),

. . . ];

(ii) an exponential transformation on the shifted populations at (i) [e.g.

X
(1)
j ∼ exp(Wj), X

(2)
j ∼ exp(Wj + 0.7), X

(3)
j ∼ exp(Wj + 1.4), . . . ];

(iii) a logarithmic transformation on the shifted populations at (i) [e.g.

X
(1)
j ∼ log(|Wj |), X(2)

j ∼ log(|Wj+0.7|), X(3)
j ∼ log(|Wj+1.4|),. . . ];

(iv) a quadratic transformation on the shifted populations at (i) [e.g.

X
(1)
j ∼ W 2

j , X
(2)
j ∼ (Wj + 0.7)2, X

(3)
j ∼ (Wj + 1.4)2, . . . ];

(v) a square root transformation on the shifted populations at (i) [e.g.

X
(1)
j ∼

√
|Wj |, X(2)

j ∼
√
|Wj + 0.7|, X(3)

j ∼
√

|Wj + 1.4|, . . . ].
4. In the fourth scenario, we simulate different distributional shapes and

levels of skewness even for different classes within each variable. Within
each class, data are generated according to beta distributions, X

(k)
j ∼

Beta(a, b), j = 1, . . . , n and k = 1, . . . ,K, with parameters a and b in the
interval (1, 10) randomly generated for each class within each variable. The
absolute difference between the class expected values for each variable is
bounded from above by 0.2 (this is done in order to not make the clustering
task too easy; as cluster differences are aggregated over many dimensions,
simulated clusters may be so strongly separated that every method can
find them easily).

5. The fifth scenario is similar to the fourth one. Within each class, data are

generated according to beta distributions, X
(k)
j ∼ Beta(a, b), j = 1, . . . , n

and k = 1, . . . ,K, with parameters a and b randomly chosen to be in the
intervals: (0, 1) and (1, 5), or (0, 1) and (1, 10), (1, 3) and (5, 10), (1, 3) and
(1, 3) so as to guarantee a higher level of skewness for some variables, for
each class within each variable. The absolute difference between the class
expected values for each variable is bounded from above by 0.1.

For each of the five scenarios and for each set of K populations, K = 2, 3, 5,
we evaluate combinations of p = 50, 100, 500, n = 50, 100, 500, different per-
centages of relevant variables for grouping structure, i.e., 100%, 50% and 10%,
independent or dependent variables (scenario 1-3 only), for a total of 648 dif-
ferent settings. In the “dependent variables” case, a dependence structure is
introduced by generating variables W1, . . . ,Wp from either a t or a Gaussian
distribution with random correlation matrix based on the method proposed by
[20], so that the correlation matrices are uniformly distributed over the space
of positive definite correlation matrices, with each correlation marginally dis-
tributed as Beta(p/2, p/2) on the interval (−1, 1). The irrelevant noise variables
are generated independently of each other from the base distribution of each
scenario. For each setting we simulate 100 datasets and we record the Adjusted



Quantile-based clustering 4863

Rand Index (ARI) [17] of the yielded classification compared with the true clus-
ter membership. The performance of the algorithm is also examined in the case
of imbalanced clusters: for the settings with K = 3 and n = 500 the group sizes
are set to n1 = 50, n2 = 150 and n3 = 300.

We compare the K-quantiles clustering algorithms’ capability of recovering
the original cluster memberships with those of seven other clustering methods:
two model-based clustering approaches (mixture of Gaussians, mixture of factor
analyzers) [27],K-means algorithm [25], Partition Around Medoids [21], agglom-
erative hierarchical clustering with unweighted pair group method (UPGMA),
spectral clustering [29] and affinity propagation [8]. The inclusion of irrelevant
variables may prompt the idea that also clustering methods with variable selec-
tion should be tried out; however, variable selection is usually defined on top
of an existing clustering method without variable selection, see, e.g., [9]. Such
ideas can be applied to K-quantiles clustering as well as to the competing meth-
ods, which we leave for future research. Mixtures of Skew-t distributions were
also considered; however, due to computational difficulties in high dimensions,
solutions were available only 20% of times, so we do not present results.

Details about the implementation and parameter tuning of these methods
are given in the Appendix B; detailed tables of simulation results are in the
supplementary material.

More specifically, we evaluate the accuracy of each clustering method as its
ARI minus the ARI of the Common Unscaled K-quantiles clustering algorithm,
divided by the average ARI in the given setting (for computing this average, the
three percentages of relevant variables are aggregated in order to avoid blowing
up small differences between uniformly small ARI values for only 10% relevant
variables by small denominators; where methods do not deliver a solution, the
ARI has been set to zero). This is done for the sake of enabling a simpler
display of the many results, because it allows to aggregate results for different
K, n, p, dependence structure, and percentage of relevant variables by scaling
all these results so that they become comparable. Raw ARI values are given
in the supplementary material. The aggregated distributions of these rescaled
results are displayed in the boxplots of Figure 4 for the balanced cluster settings.
Results for imbalanced clusters are similar and can be found in the Appendix
B.1.

For all methods, the capability of recovering the original cluster member-
ship improves as the sample size increases. For the K-quantile clustering, this
is particularly evident in the scenarios where the percentage of relevant vari-
ables is very low; in all the other cases, in fact, results are generally very good
and no remarkable difference due a different sample size can be noticed. All
the methods, for fixed sample size and percentage of relevant variables, seem
to perform better as p increases in almost all of the settings. As could be ex-
pected, clustering performances worsen as the number of irrelevant variables
increases.

The K-quantiles methods perform very well in most situations compared to
other clustering approaches. In the scenarios with identical distributional shapes
and symmetric variables, solutions from the quantile clustering are mostly
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Fig 4. Performance of different clustering algorithms relatively to the Common Unscaled
K-quantiles clustering algorithm for balanced clusters. The labels along the horizontal axis
refer to the different methods: CS, Common Scaled k-quantile; VU, Variable-wise Unscaled
k-quantile; VS, Variable-wise Scaled K-quantile; Mixt-N, mixture of Normal distributions;
MFA, mixture of factor analyzers; KM, k-means clustering; PAM, Partition Around Medoids
algorithm; h-avg, hierarchical clustering with average linkage (UPGMA); SpeCl, spectral clus-
tering; AffPr, affinity propagation. The five panels show the distribution of the Adjusted Rand
Index for (a) identically distributed symmetric variables, (b) asymmetric variables, (c) differ-
ent distributions of variables, (d) different distributions of classes within variables in balanced
and unbalanced populations and (e) different (skew) distributions of classes within variables
in balanced and unbalanced populations.

preferable to those from any other method. Not surprisingly, common θ quantile
procedures, i.e. CU and CS, slightly outperform those with variable-wise θjs.

In the settings with identical distributional shapes and asymmetric variables,
K-quantiles clustering methods outperform all other methods clearly and more
or less uniformly; here, procedures with a variable-wise θj , i.e. VU and VS, seem
to produce a slightly better clustering.

With different distributions of variables, the K-quantiles clustering methods
again show very good global results. Only occasionally, in some situations with
just 10% relevant variables, Gaussian mixtures,K-means and spectral clustering
can improve on K-quantiles.
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In the fourth scenario with beta distributions differing between variables
and classes within variables, the K-quantiles clusterings do not always out-
perform the other methods: while they generally produce good results, they
often fall behind the accuracy of the K-means algorithm, spectral clustering,
and also Gaussian mixtures. The reason why this happens is that although
these distributions are skew, their tails vanish outside the unit interval, and
often the difference between means is the most distinct feature discriminat-
ing the clusters. Therefore a squared loss function is suitable for finding them.
This contrasts with the fact that K-quantiles beats these methods for sym-
metric but t-distributed data in the first scenario, despite the fact that K-
means and Gaussian mixtures implicitly assume symmetry, as opposed to K-
quantiles; however, the squared loss function is more affected by outliers in these
cases.

The results of the fourth scenario prompted us to set up the fifth one, with
parameters of the beta random variables chosen from different intervals so that
there is more extreme skewness, and information about clustering is rather con-
nected to distributional features other than the means. In this situation, the K-
quantiles VS algorithm is the best. K-means and spectral clustering still yield
fairly good results, although worse than the K-quantiles algorithms. Gaussian
mixtures also still do well, probably because flexible covariance matrices are still
versatile here to adapt to these setups. Their median performance is about on
a par with three of the four K-quantiles algorithms (results vary depending on
whether p is rather large compared to n or not, see the supplementary material)
but worse than the VS algorithm.

Generally, the capability of recovering the clustering memberships and the
rankings of the methods do not change much with dependence, although per-
formances are slightly better under independence. Similarly, the ranking of the
methods does not strongly depend on the number of clusters, nor on the presence
of imbalanced clusters.

The table in the Appendix C provides some information on computing times.
Currently our implementation for running the K-quantiles is coded in R; faster
implementations are certainly possible. However, our experiments show that
the growth in computation time with n is much slower than for PAM and
the mixture model-based methods, so that for the largest data format that
we tried (n = 50000, p = 100) our K-quantiles implementation is substantially
faster than all mixtures and PAM, beaten only by K-means (the hierarchical
clustering does not deliver a solution). This demonstrates that K-quantiles have
the potential to be used with very large datasets.

The number of clusters K is treated as fixed here, and estimating K is left to
future work. However, Figure 5 shows the average behaviour (over 100 replica-
tions) of the quantile discrepancy function Vn for different numbers of clusters.
Data come from K = 3 populations generated according to the second scenario,
with an overall sample size n = 500 and 50 features. The discrepancy function
decreases with increasing K; an elbow point is noticeable for K = 3, which is
an indication that such curves may be of some use to choose K.
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Fig 5. Quantile discrepancy of the K-quantiles algorithm for different values of K, averaged
over 100 replications. Error bars span ±1 standard error.

The supplementary material gives some information about the distribution of
estimated parameters in the third scenario and how this is related to skewness
and variance of the cluster-wise distributions.

6. Application to gene expression data

For illustration we apply the K-quantiles clustering algorithms to gene expres-
sion data from the leukaemia microarray study of [11]. The dataset contains
the expression levels of 3051 genes for 38 leukaemia patients, obtained from
acute leukaemia patients at the time of diagnosis. The study reports that 27
subjects have Acute Lymphoblastic Leukaemia (ALL), while 11 have Acute
Myeloid Leukaemia (AML). The objective is to group the set of 38 patients so
as to reflect the corresponding leukaemia diagnosis by employing information
coming from their gene expression levels. In general, for methods that are not
scale invariant, results depend on the scale. We consider results for unscaled
data and for data with all variables scaled to unit variance.

Data are taken from the R package plsgenomics and are analysed by the
same clustering methods described in Section 5. The number of true clusters
for all the methods is taken as known and set equal to 2. As different ver-
sions of Mclust delivered different results, we have tried out different initial-
izations and we chose the one with largest likelihood. For K-means five ran-
dom starts are run. The default settings of all the other algorithms are consid-
ered.

Results from all the other methods are shown in Table 1. As can be seen, the
K-quantiles clustering algorithm with variable-wise θj and scaled variables via
λj is able to perfectly recover the original clustering memberships. When using
the unscaled version, the performance of VU is still pretty good and superior to
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Fig 6. Leukaemia dataset: densities of five randomly selected variables (gene expression levels;
fitted by R’s density function with default settings). First row: all observations together.
Second row: by true cluster.

the other solutions. Quantile methods with common θ, whether using the scaled
or the unscaled version, are not able to detect the grouping structure identified
by the diagnosis: this is probably due to the fact that the distribution of the
expression levels is really different for different genes (see Figure 6, where the
density of a random sample of gene expression levels is plotted).

Mixture of Factor Analyzers could not return any solution, as it has ended
up with errors.

The mixture of Gaussians and K-means yield exactly the same clustering
(up to label switching); their results are still good. As the number of variables
is very large, Mclust could only estimate mixture of Gaussians with spherical
or diagonal covariance matrices, reducing to 6 out of 14 possible parsimonious
models, namely: EII (spherical, equal volume), VII (spherical, unequal volume),
EEI (diagonal, equal volume and shape), VEI (diagonal, varying volume, equal
shape), EVI (diagonal, equal volume, varying shape), VVI (diagonal, varying
volume and shape).

Spectral clustering and affinity propagation provide overall good results but
worse than the mixture of Gaussians.

The second column of Table 1 reports the ARI of the clustering methods
after having standardized the variables. Apparently feature scaling has removed
part of the cluster-separation signal from the data and the obtained clustering is
worse for most methods. This shows that in order to find an appropriate scaling,
global standardization does not always work well.

7. Conclusion

K-quantiles clustering is a new clustering method based on representing clusters
by quantiles of the within-cluster distribution. It can be interpreted as Maxi-
mum Likelihood estimator for a fixed partition model of asymmetric Laplace
distributions, but like K-means it is not in the first place meant to be as-
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Table 1

Adjusted Rand Index multiplied by 100 for the leukaemia data set, respectively obtained on
the original (unscaled) and on the scaled features. As shown earlier, CS and VS are scale

invariant; any potential changes in their results are due to random initialisation and not to
scaling.

Method ARI unscaled data ARI scaled data
CU 3.28 −4.87
VU 100.00 69.92
CS −2.61 (scale invariant)
VS 89.13 (scale invariant)
Mixture of Normals 79.27 32.00
Mixture of FA NA NA
k-means 79.27 11.45
pam 61.20 61.20
h-avg −3.06 −3.06
SpeCl 69.92 32.01
AffPr 61.20 61.20

sociated with a specific model assumption, but rather to provide an intuitive
objective function that allows for within-cluster skewness and is easy to opti-
mize locally using a Lloyd-type algorithm. In our simulations the method did
well on a wide range of within-cluster models different from the asymmetric
Laplace.

[13] encourages researchers to give potentially informal descriptions of what
specific kinds of clusters a new clustering method is meant to find. The de-
velopment of K-quantiles clustering was motivated in the first place by the
potential of the quantile-based discrepancy to add flexibility to K-means, par-
ticularly regarding within-cluster skewness. The underlying model suggests that
clusters can be distributions of which the marginals are unimodal and poten-
tially skew; Theorem 2 shows that sufficiently well separated subpopulations
will be K-quantiles clusters even if not unimodal (as long as K is fixed and
there are more than K modes, it is hardly possible to have only unimodal
clusters). Similarly to K-means, the K-quantiles objective function sums up
information over the different variables. This does not necessarily mean that
variables have to be independent within clusters, but information about de-
pendence is not used. The discrepancy is just an aggregation of variable-wise
information. Clusters will not be rotation invariant and information carried in
the original variables will be lost when considering linear combinations such as
principal components. The clusters are treated as of the same shape, although
with enough separation this does not stop the method from finding clusters with
different shapes, see Theorem 2 and the simulations. The advantage of this is
that a parsimonious parametrization allows the handling of high-dimensional
data. An obvious generalization would be to allow the parameters θ and λ to
vary between clusters, but this is likely to require considerably more compu-
tational effort. The use of unsquared distances gives outliers less influence on
the cluster barycenters than in K-means or ML estimators for Gaussian mix-
tures.
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The number of clusters K is fixed here, and estimating K is left to future
work. Many methods for estimating the number of clusters are based on com-
puting a clustering for a range of values of K and then cluster validation indexes
or stability assessments are used to pick the best K [12, 23]. Such an approach
can be used for estimating K together with K-quantiles clustering in the same
manner as with K-means or K-medoids. Similarly, principles for variable selec-
tion that exist for K-means and other clustering methods could be applied to
K-quantiles.

The penalization of the quantile defining probability θ and the scaling pa-
rameter λ as derived here from a fixed partition model of asymmetric Laplace
distributions may also be helpful for quantile-based supervised classification as
introduced in [15].

Appendix A: Proofs of propositions and theorems

A.1. Proof of Proposition 1

The sum in (7) can be minimized for each component independently, see (5),
and also separately for k = 1, . . . ,K. Therefore consider w.l.o.g. p = 1 and
K = 1.

Then the right side of (7) can be written as

∑
xi≤ξ

(1− θ)(ξ − xi) +
∑
xi>ξ

θ(xi − ξ)

and the score function is

∑
xi≤ξ

(1− θ)−
∑
xi>ξ

θ =

n∑
i=1

1[xi≤ξ] − nθ,

which is zero for θ = 1
n

∑n
i=1 1[xi≤ξ], so that ξ = qn(θ) (any of the possible

interval of quantiles).

A.2. Proof of Proposition 2

For all Θ = (θ, ξ̃,λ, C) from the parameter space:

Vn,K(Θ, x̃n) = Vn,K(θ, ξ̃
∗
,dtλ, C, x̃∗

n) + n

p∑
j=1

log cj ,

where ξ̃
∗
= (ctξ1, . . . , c

tξK). As n
∑p

j=1 log cj is a constant for a given dataset,

minimizers of Vn,K(θ, ξ̃∗,λ, C, x̃∗
n) are obtained from minimizers of

Vn,K(θ, ξ̃,λ, C, x̃n) in the required way.
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A.3. Proof of Proposition 3

The proof derives by taking the first derivative of
∑n

i=1 λQ(xi, θ
∗, ξC(i)) −

n log(λθ∗(1− θ∗)) with respect to θ∗, which gives:

∂

∂θ∗

(
λ

n∑
i=1

{
θ∗+(1− 2θ∗)1[xi<ξC(i)]

}
|xi − ξC(i)| − n log(λθ∗(1− θ∗))

)
=

λ

n∑
i=1

(xi − ξC(i))−
(1− 2θ∗)n

θ∗(1− θ∗)
.

By equating the previous expression to zero and by multiplying by −θ∗(1− θ∗)
we get the quadratic solution for θ.

A.4. Proof of Proposition 4

Similarly to proposition 2, the proof derives by computing the score with respect
to λ∗:

∂

∂λ∗

(
λ∗

n∑
i=1

Q(xi, θ, ξC(i))− n log(λ∗θ(1− θ))

)
=

n∑
i=1

Q(xi, θ, ξC(i))−
n

λ∗ = 0.

A.5. Proof of Theorem 1

The principle of the proof is to show that Tn,K(x̃n) for large enough n has
to lie in a compact set C. In this compact set, by the uniform law of large
numbers, Vn,K(θ, ξ̃,λ, x̃n) will converge uniformly to VK(θ, ξ̃,λ, P ), which in
turn, together with continuity, will also enforce the minimizer to converge. (θ,λ)
optimizing Vn,K are enforced to eventually lie in a compact set by the penalty

term − log λθ(1−θ). For ξ̃, the argument is inductive, similar to what was done
in [31]. It is first shown that at least one of the optimizing ξk must lie in a
compact set, and then, assuming that this holds for K − 1 clusters but not for
K, the Kth cluster can be shown to have an asymptotically negligible additional
contribution to SK so that SK = SK−1 with contradiction against A2.

In order to show that of Tn,K(x̃n) = (θn, ξ̃n,λn) eventually (θn,λn) and at

least one of the ξk must lie in a compact set, define (θ0, ξ̃0,λ0) as follows. For
j = 1, . . . , p, k = 1, . . . ,K, θ0j =

1
2 , λ0j = 1, ξ0kj = 0. Then,

Vn,K(θ0, ξ̃0,λ0, x̃n) =
1

n

n∑
i=1

p∑
j=1

1

2
|xij | − p log

1

4
.

The first part converges a.s. to B1

2 , where B1 =
∫ ∑p

j=1 |xj |dP (x) ≤ √
pB < ∞

as defined in A1.



Quantile-based clustering 4871

Suppose that (at least for a subsequence; apply this qualification also to
further limits below, where necessary) λnj → 0, θnj → 0, or θnj → 1. In this
case − log λnjθnj(1− θnj) → ∞, and eventually

Vn,K(θn, ξ̃n,λn, x̃n) >

√
pB

2
− p log

1

4
,

for which reason λnj → 0, θnj → 0, or θnj → 1 cannot happen when min-
imizing Vn,K . Therefore ∃θ− > 0, λ− > 0 so that for large enough n, a.s.,
min(θn1, . . . , θnp, 1− θn1, . . . , 1− θnp) ≥ θ−, min(λn1, . . . , λnp) ≥ λ−.

Consider a compact set M ⊂ Rp with 0 ∈ M, P (M) > 0, |xj | ≤ m < ∞ for
x ∈ M . Now suppose that there is no compact interval Ξ so that for large enough
n, with suitable numbering of the clusters, at least for one k ∈ {1, . . . ,K} :
ξnk1, . . . ξnkp ∈ Ξ. Therefore, ξ−n = mink∈{1,...,K} maxj∈{1,...,p} |ξnkj | → ∞ and,
for x ∈ M :

min
k∈{1,...,K}

p∑
j=1

λjQ(xj , θj , ξkj) ≥
p∑

j=1

λ−θ−(1− θ−)(ξ−n −m).

For large enough n this would make

Vn,K(θn, ξ̃n,λn, x̃n) ≥ P (M)pλ−θ−(1−θ−)(ξ−n −m)−p log
1

4
>

√
pB

2
−p log

1

4
,

a.s., so ξ−n → ∞ cannot happen.
Now assume (w.l.o.g.) that there is a compact set C so that for large enough

n, a.s., ξn1, . . . , ξn(K−1) ∈ C, but ‖ξnK‖ → ∞. Choose C large enough that it

also contains all components of ξ̃K (from the optimizer TK(P )).
Consider the first term of Vn,K(θn, ξ̃n,λn, x̃n):

W ∗
n,K(θn, ξ̃n,λn, x̃n) =

1

n

n∑
i=1

min
k∈{1,...,K}

p∑
j=1

λjQ(xij , θj , ξkj).

Define, for any x and K,

CnK(x) = argmin
k∈{1,...,K}

p∑
j=1

λnjQ(xj , θnj , ξnkj).

Then,

W ∗
n,K(θn, ξ̃n,λn, x̃n) =

1

n

n∑
i=1

p∑
j=1

λnjQ(xij , θnj , ξnCnK(xi)j)

=
1

n

∑
CnK(xn) �=K

p∑
j=1

λnjQ(xij , θnj , ξnCnK(xi)j)

+
1

n

∑
CnK(xi)=K

p∑
j=1

λnjQ(xij , θnj , ξnKj)

≤ 1

n

∑
CnK(xi) �=K

p∑
j=1

λnjQ(xij , θnj , ξnCnK(xi)j)
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+
1

n

∑
CnK(xi)=K

min
k∈{1,...,K−1}

p∑
j=1

λnjQ(xij , θnj , ξnkj).

=
1

n

n∑
i=1

p∑
j=1

λnjQ(xij , θnj , ξnCn(K−1)(xi)j)

= W ∗
n,K−1(θn, ξ̃

∗
n,λn, x̃n),

where ξ̃
∗
n = {ξn1, . . . , ξn(K−1)}.

Consider any set M = {‖x‖ ≤ m} with m < ∞. Observe that, for large
enough n, M ∩ {x : CnK(x) = K} = ∅. Furthermore,

1

n

∑
1[CnK (xi)=K]

min
k∈{1,...,K−1}

p∑
j=1

λnjQ(xij , θnj , ξnkj) ≤
1

n

∑
1[CnK (xi)=K]

λ+B1.

For large enough n this converges, a.s., to P (‖x‖ > m)λ+B1, which can be made
arbitrarily small by choosing m large enough.

Therefore, for arbitrarily small δ > 0 and n large enough,

W ∗
n,K(θn, ξ̃n,λn, x̃n) ≤ W ∗

n,K−1(θn, ξ̃
∗
n,λn, x̃n)

≤ 1

n

∑
CnK(xi) �=K

p∑
j=1

λnjQ(xij , θnj , ξnCnK(xi)j) + δ

≤ W ∗
n,K(θn, ξ̃n,λn, x̃n) + δ. (14)

In order to make use of this, a uniform convergence argument is needed. Recall

(θn, ξ̃
∗
n,λn) ∈ C. According to [32], Example 19.8 (sometimes referred to as

“uniform law of large numbers”), if F = {fθ : θ ∈ Θ} is a set of measurable
functions with θ �→ fθ(x) continuous for all x, Θ compact, and ∃F ≥ |fθ|∀θ ∈
Θ,

∫
FdP < ∞, then

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

fθ(xi)−
∫

fθ(x)dP (x)

∣∣∣∣∣ → 0 a.s.

For fixed x, Q(x, θ, ξ) =
{
θ + (1− 2θ)1[x<ξ]

}
|x − ξ| is continuous in (ξ, θ),

because ξ → x ⇒ Q(x, θ, ξ) → 0 regardless of whether ξ comes from above or
from below. Therefore, for fixed x ∈ Rp and general K∗,

U(θ, ξ̃,λ,x) = min
k∈{1,...,K∗}

p∑
j=1

λjQ(xj , θj , ξkj)−
p∑

j=1

log [λj(θj(1− θj))]

is continuous as minimum of continuous functions.
U(θ, ξ,λ,x) can be bounded by a P -integrable function: Let ξ+ an upper

bound for the components |ξkj | (assumed to be in a compact set here). Then,

U(θ, ξ,λ,x) ≤ U+(x) =

p∑
j=1

λ+(|xj |+ ξ+)−
p∑

j=1

log

[
λ−θ−

2

]
,
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U+(x)dP (x) < ∞ because of A1.

Therefore,

sup
(θ,ξ̃,λ)∈C

|Vn,K∗(θ, ξ̃,λ, x̃n)− VK∗(θ, ξ̃,λ, P )| → 0 a.s. (15)

In particular,

sup
(θ,ξ̃,λ)∈C

|Vn,K−1(θ, ξ̃,λ, x̃n)− VK−1(θ, ξ̃,λ, P )| → 0.

Going back to (14), choose m large enough that SK < SK−1 − δ. By definition
of the optimizers,

Vn,K(θn, ξ̃n,λn, x̃n) ≤ Vn,K(θK , ξ̃K ,λK , x̃n) → SK a.s.,

and, for large enough n, a.s.,

SK−1 ≤ Vn,K−1(θn, ξ̃
∗
n,λn, x̃n),

but also, eventually,

SK ≥ Vn,K(θn, ξ̃n,λn, x̃n) ≥ Vn,K−1(θn, ξ̃
∗
n,λn, x̃n)− δ ≥ SK−1 − δ,

contradicting SK < SK−1 − δ. This implies that ξnk is eventually also captured
in a convex set C.

(15) now ensures uniform convergence of Vn,K to VK over C. The existence of
an integrable envelope of U together with continuity of U imply the continuity
of VK as function of (θ, ξ̃,λ) ∈ C. This and A2 imply Tn,K(x̃n) → TK(P ) a.s.,
because otherwise with probability > 0 a subsequence of Tn,K(x̃n) can converge

against (θ∗, ξ̃
∗
,λ∗) �= TK(P ) but ∈ C and with VK(θ∗, ξ̃

∗
,λ∗, P ) = VK(TK(P )),

with contradiction to A2.

A.6. Proof of Theorem 2

The idea here is to show that if for arbitrarily large m a cluster in TK(Pm) can
be found that has a nonempty intersection with at least two of the central sets
{‖x− ρmk‖ < ε}, SK would be larger than what could be achieved by putting
all the cluster barycenters at the cluster centers, contradicting the optimality of
TK(Pm).

Write γm = γTK(Pm). Define (θ∗
m, ξ̃

∗
m,λ∗

m) as follows. For j = 1, . . . , p, k =

1, . . . ,K, θ∗mj =
1
2 , λ∗

mj = 1, ξ∗mkj = ρmkj . Then, because of A4,

VK(θ∗
m, ξ̃

∗
m,λ∗

m, Pm) ≤
∫ p∑

j=1

1

2
|xj − ρmkj |dPm(x)− p log

1

4
≤ B

2
− p log

1

4
.
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Similar to the proof of Theorem 1, ∃θ− > 0, λ− > 0 so that for large enough m:
min(θm1, . . . , θmp, 1−θm1, . . . , 1−θmp) ≥ θ−, min(λm1, . . . , λmp) ≥ λ−, because
otherwise the penalty term −

∑p
j=1 log λmjθmj(1−θmj) can be driven to infinity

and (θ∗
m, ξ̃

∗
m,λ∗

m) would achieve a smaller and therefore better VK .
For k1, k2 ∈ {1, . . . ,K} let Imk1k2 = {‖x− ρmk1

‖ < ε} ∩ {γm(x) = k2}. Now
assume that for at least a subsequence of m → ∞, eventually,

Im11 �= ∅ and Im21 �= ∅,

where the cluster numbering has been chosen so that, w.l.o.g.,

min[Pm(Im11), Pm(Im21)] = max
(k1,k2,k3)∈K

{min[Pm(Imk1k3), Pm(Imk2k3)]}. (16)

Suppose first that

lim sup
m→∞

min[Pm(Im11), Pm(Im21)] = τ > 0.

Let bm = max(‖ξm1−ρm1‖−ε, ‖ξm1−ρm2‖−ε). Because of A3, limm→∞ bm =
∞. Obviously, for at least one k ∈ {1, 2} and all x ∈ {‖x− ρmk‖ < ε}:

p∑
j=1

|xj − ξm1j | ≥ ‖x− ξm1‖ ≥ bm.

Then

VK(θm, ξ̃m,λm, Pm) ≥
∫

1[γm(x)=1]

p∑
j=1

λmjQ(xj , θj , ξm1j)dPm(x)

−
p∑

j=1

log λmjθmj(1− θmj)

≥ τλ−θ−bm − p log
λ+

4
→ ∞, (17)

so this cannot happen for the minimizer of VK .
Therefore assume w.l.o.g. lim supm Pm(Im11) = 0. If also lim supmPm(Im21)=

0, for this subsequence, {γm(x) = 1} has no nonzero probability overlap with any
mixture component’s central set (all of which have probability ≥ δ because of
(13)), and there areK−1 clusters left to coverK central sets, in contradiction to
(16). Therefore lim supm Pm(Im21) = τ > 0. This means that ‖ξm1−ρm2‖ must
be bounded, otherwise the argument leading to (17) applies again. Therefore
‖ξm1−ρm1‖ is unbounded. There must be another cluster, w.l.o.g., {γm(x) = 2},
so that Pm(Im12) = τ∗ > 0. For x ∈ Im11 �= ∅:

p∑
j=1

λmj(θmj + (1− 2θmj)1[xj<ξm1j ])|xj − ξm1j |
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≤
p∑

j=1

λmj(θmj + (1− 2θmj)1[xj<ξm2j ])|xj − ξm2j |.

This, together with ‖ξm1 − ρm1‖ → ∞ at least for a subsequence, enforces
‖ξm2 − ρm1‖ → ∞ as well. But then, as above, with b∗m = ‖ξm2 − ρm1‖ − ε,

VK(θm, ξ̃m,λm, Pm) ≥
∫

1[γm(x)=2]

p∑
j=1

λmjQ(xj , θj , ξm2j)dPm(x)

−
p∑

j=1

log λmjθmj(1− θmj)

≥ τ∗λ−θ−b∗m − p log
λ+

4
→ ∞,

and again this is impossible for the minimizer of VK .
Taken together, with any numbering of clusters,

Im11 �= ∅ and Im21 �= ∅

cannot happen together, so all the central sets {‖x−ρmk‖ < ε}, k ∈ {1, . . . ,K}
must eventually be subsets of different clusters.

Appendix B: Detailed description of the simulation study

Simulation study on the performance of the quantile-based clustering algorithm.
Five different scenarios are considered:

1. Symmetric Multivariate Student t-distributed variables W ∼ t3; data
come from K = 2, 3 and 5 populations:

• K = 2, two populations X(1) and X(2): X
(1)
j ∼ Wj and X

(2)
j ∼

(Wj + 1), j = 1, . . . , p.

• K = 3, three populations X(1), X(2) and X(3): X
(1)
j ∼ Wj , X

(2)
j ∼

(Wj + 1) and X
(3)
j ∼ (Wj − 1), j = 1, . . . , p.

• K = 5, five populations X(1), X(2), X(3), X(4) and X(5): X
(1)
j ∼ Wj ,

X
(2)
j ∼ (Wj + 1), X

(3)
j ∼ (Wj + 2), X

(4)
j ∼ (Wj − 1) and X

(5)
j ∼

(Wj − 2), j = 1, . . . , p.

2. Highly skewed data i.i.d. vectors W ∼ MVN(0p,Σ) transformed by using
the exponential function; data come from K = 2, 3 and 5 populations:

• K = 2, two populations X(1) and X(2): X
(1)
j ∼ exp(Wj) and X

(2)
j ∼

(exp(Wj) + 0.6), j = 1, . . . , p.

• K = 3, three populations X(1), X(2) and X(3): X
(1)
j ∼ exp(Wj),

X
(2)
j ∼ (exp(Wj) + 0.6) and X

(3)
j ∼ (exp(Wj)− 0.6), j = 1, . . . , p.
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• K = 5, five populations X(1), X(2), X(3), X(4) and X(5): X
(1)
j ∼

exp(Wj), X
(2)
j ∼ (exp(Wj) + 0.6), X

(3)
j ∼ (exp(Wj) + 1.2), X

(4)
j ∼

(exp(Wj)− 0.6) and X
(5)
j ∼ (exp(Wj)− 1.2), j = 1, . . . , p.

3. Different distributions for the p variables. Firstly, W ∼ MVN(0p,Σ) and
then split p into five balanced blocks to which different transformation
were applied; data come from K = 2, 3 and 5 populations (subscripts in
square brackets indicate variable block):

• K = 2, two populations X(1) and X(2):

– X
(1)
j[1] ∼ Wj and X

(2)
j[1] ∼ Wj + 0.7, j = 1, . . . , p;

– X
(1)
j[2] ∼ exp(Wj) and X

(2)
j[2] ∼ exp(Wj + 0.7), j = 1, . . . , p.;

– X
(1)
j[3] ∼ log(|Wj |) and X

(2)
j[3] ∼ log(|Wj + 0.7|), j = 1, . . . , p;

– X
(1)
j[4] ∼ W 2

j and X2
j[4] ∼ (Wj + 0.7)2, j = 1, . . . , p;

– X
(1)
j[5] ∼

√
|Wj | and X

(2)
j[5] ∼

√
|Wj + 0.7|, j = 1, . . . , p.

• K = 3, three populations X(1), X(2) and X(3):

– X
(1)
j[1] ∼ Wj ,X

(2)
j[1] ∼ Wj+0.7 andX

(3)
j[1] ∼ (Wj+1.4), j = 1, . . . , p;

– X
(1)
j[2] ∼ exp(Wj), X

(2)
j[2] ∼ exp(Wj + 0.7) and X

(3)
j[2] ∼ exp(Wj +

1.4), j = 1, . . . , p;

– X
(1)
j[3] ∼ log(|Wj |), X(2)

j[3] ∼ log(|Wj +0.7|) and X
(3)
j[3] ∼ log(|Wj +

1.4|), j = 1, . . . , p;

– X
(1)
j[4] ∼ W 2

j , X
2
j[4] ∼ (Wj + 0.7)2 and X3

j[4] ∼ (Wj + 1.4)2, j =
1, . . . , p;

– X
(1)
j[5] ∼

√
|Wj |, X(2)

j[5] ∼
√

|Wj + 0.7| and X
(3)
j[5] ∼

√
|Wj + 1.4|,

j = 1, . . . , p.

• K = 5, five populations X(1), X(2), X(3), X(4) and X(5):

– X
(1)
j[1] ∼ Wj , X

(2)
j[1] ∼ Wj + 0.7, X

(3)
j[1] ∼ (Wj + 1.4), X

(4)
j[1] ∼

(Wj + 2.1) and X
(5)
j[1] ∼ (Wj + 2.8), j = 1, . . . , p;

– X
(1)
j[2] ∼ exp(Wj), X

(2)
j[2] ∼ exp(Wj + 0.7), X

(3)
j[2] ∼ exp(Wj + 1.4),

X
(4)
j[2] ∼ exp(Wj + 2.1) and X

(5)
j[2] ∼ exp(Wj + 2.8), j = 1, . . . , p;

– X
(1)
j[3] ∼ log(|Wj |),X(2)

j[3] ∼ log(|Wj+0.7|),X(3)
j[3] ∼ log(|Wj+1.4|),

X
(4)
j[3] ∼ log(|Wj + 2.1|) and X

(5)
j[3] ∼ log(|Wj + 2.8|), j = 1, . . . , p;

– X
(1)
j[4] ∼ W 2

j , X
(2)
j[4] ∼ (Wj + 0.7)2, X

(3)
j[4] ∼ (Wj + 1.4)2, X

(4)
j[4] ∼

(Wj + 2.1)2 and X
(5)
j[4] ∼ (Wj + 2.8)2, j = 1, . . . , p;

– X
(1)
j[5] ∼

√
|Wj |, X

(2)
j[5] ∼

√
|Wj + 0.7|, X

(3)
j[5] ∼

√
|Wj + 1.4|,

X
(4)
j[5] ∼

√
|Wj + 2.1| and X

(5)
j[5] ∼

√
|Wj + 2.8|, j = 1, . . . , p.
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4. Different distributional shapes and levels of skewness even for different
classes within the same variable. Within each class, data were generated
according to beta distributions with parameters a and b in the interval
(1, 10) randomly generated for each class within each variable. The abso-
lute difference between the class expected values is bounded from above
by 0.2:

• K = 2, two populations X(1) and X(2): X
(1)
j ∼ Beta(α, β), where

α, β ∼ U(1, 10), and X
(2)
j ∼ Beta(α, β), where α, β ∼ U(1, 10), j =

1, . . . , p.

• K = 3, three populations X(1), X(2) and X(3): X
(1)
j ∼ Beta(α, β),

where α, β ∼ U(1, 10), X
(2)
j ∼ Beta(α, β), where α, β ∼ U(1, 10),

and X
(3)
j ∼ Beta(α, β), where α, β ∼ U(1, 10), j = 1, . . . , p.

• K = 5, five populations X(1), X(2), X(3), X(4) and X(5): X
(1)
j ∼

Beta(α, β), where α, β ∼ U(1, 10), X
(2)
j ∼ Beta(α, β), where α, β ∼

U(1, 10), X
(3)
j ∼Beta(α, β), where α, β ∼ U(1, 10), X

(4)
j ∼Beta(α, β),

where α, β ∼ U(1, 10), and X
(5)
j ∼ Beta(α, β), where α, β ∼ U(1, 10),

j = 1, . . . , p.

5. Different distributional shapes and levels of skewness even for different
classes within each variable. Within each class, data are generated accord-
ing to beta distributions with parameters a and b randomly chosen to be in
the intervals: (0, 1) and (1, 5), or (0, 1) and (1, 5), (1, 3) and (5, 10), (1, 3)
and (1, 3), for each class within each variable. The absolute difference be-
tween the class expected values is bounded from above by 0.1, and the so
chosen interval guarantees a higher level of skewness for some variables.

• K = 2, two populations X(1) and X(2): X
(1)
j ∼ Beta(α, β), where

either:

– α ∼ U(0.1, 1) and β ∼ U(1, 10), or

– α ∼ U(1, 10) and β ∼ U(0.1, 1);

and the same for X
(2)
j , j = 1, . . . , p.

• K = 3, three populations X(1), X(2) and X(3): X
(1)
j ∼ Beta(α, β),

where either:

– α ∼ U(0.1, 1) and β ∼ U(1, 10), or

– α ∼ U(1, 10) and β ∼ U(0.1, 1);

and the same for X
(2)
j ; X

(3)
j ∼ Beta(α, β), where α ∼ U(1, 3) and

β ∼ U(5, 10), j = 1, . . . , p.

• K = 5, five populations X(1), X(2), X(3), X(4) and X(5): X
(1)
j ∼

Beta(α, β), where either

– α ∼ U(0.1, 1) and β ∼ U(1, 5), or

– α ∼ U(1, 5) and β ∼ U(0.1, 1), or



4878 C. Hennig et al.

– α ∼ U(1, 3) and β ∼ U(5, 10), or

– α ∼ U(5, 10) and β ∼ U(1, 3), or

– α ∼ U(1, 3) and β ∼ U(1, 3);

and the same for X
(2)
j , X

(3)
j , X

(4)
j an X

(5)
j j = 1, . . . , p.

For each of the five scenarios and for each set of K populations, K = 2, 3, 5,
we evaluated combinations of p = {50, 100, 500}, n = {50, 100, 500}, different
percentages of relevant variables for grouping structure, i.e., 100%, 50% and
10%, independent or dependent variables (limited to scenarios 1-3), for a total
of 648 different settings. The dependence structure among variables was mod-
eled via the function rcorrmatrix from the R package clusterGeneration, so
that the correlation matrices are uniformly distributed over the space of posi-
tive definite correlation matrices, with each correlation marginally distributed
as Beta(p/2, p/2) on (−1, 1). The irrelevant noise variables were generated inde-
pendently of each other from the base distribution of each scenario (for scenario
3 this means that all five base distributions were used in equal frequency, and
for scenario 4 and 5 random parameters were used as within clusters for the
informative variables).

For the case of imbalanced classes, data were generated from the five scenarios
considering K = 3 and n = 500; the cluster sizes are set to n1 = 50, n2 = 150
and n3 = 300.

The number of clusters is taken as known (and equal to the number of pop-
ulations data are generated from) for every method. The clustering procedures
that have been considered are the following:

• Common θ and Unscaled variables (CU) K-quantiles clustering algorithm;
• Variable-wise θj and Unscaled variables (VU) K-quantiles clustering al-

gorithm;
• Common θ and Scaled variables (CS) K-quantiles clustering algorithm;
• Variable-wise θj and Scaled variables (VS) k-quantile clustering algorithm;
• Mixture of Gaussian distributions, estimated by the default options of

function Mclust from the R package mclust;
• Mixture of skew-t distributions, estimated by the EmSkew function from

the R package EMMIXskew, argument distr equal to mst, and initialised
by the k-means clustering algorithm;

• Mixture of Factor Analyzers, estimated by the fma function from the
FactMixtAnalysis R package, by fitting models with number of latent
factors from 1 to 20;

• k-means clustering algorithm, run by the kmeans function from the stats
R package, with five random starts;

• Partition Around Medoids, run by the default options of the pam function
from the cluster R package;

• Agglomerative hierarchical clustering with average link, run by the hclust
function, option method=’average’, of the stats R package;

• Spectral clustering, estimated by the default options of function specc

from the R package kernlab;
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• Affinity Propagation clustering, estimated by the function apclusterK,
with similarities computed as squared negative distances, from the R pack-
age apcluster.

For each setting 100 simulations were run. The average Adjusted Rand Index
values and the corresponding standard errors are reported in the following ta-
bles, multiplied by 100; for each method and scenario the number of valid cases
out of 100 runs is included as well.

B.1. Simulation results in the case of imbalanced classes

The performance of different clustering algorithms relative to the Common
Unscaled K-quantiles clustering algorithm for imbalanced clusters (results on
K = 3 and n = 500 only) is shown in Table 2. The labels along the horizon-
tal axis refer to the different methods: CS, Common Scaled k-quantile; VU,
Variable-wise Unscaled k-quantile; VS, Variable-wise Scaled K-quantile; Mixt-
N, mixture of Normal distributions; MFA, mixture of factor analyzers; KM,
k-means clustering; PAM, Partition Around Medoids algorithm; h-avg, hier-
archical clustering with average linkage (UPGMA); SpeCl, spectral clustering;
AffPr, affinity propagation. The five panels show the distribution of the Adjusted
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Table 2. Average computing times in seconds.

Method n = 50, p = 50 n = 50, p = 500 n = 500, p = 50 n = p = 500 n = 5000, p = 100 n = 50000, p = 100
CU 0.41 (0.09) 2.99 (0.08) 0.53 (0.03) 4.58 (0.16) 7.46 (1.35) 49.95 (0.00)
VU 0.95 (0.22) 6.95 (1.83) 1.96 (0.65) 28.43 (10.50) 34.96 (14.32) 60.45 (0.00)
CS 1.22 (0.22) 15.98 (2.58) 1.57 (0.15) 12.59 (0.87) 15.87 (4.73) 68.82 (0.00)
VS 3.14 (1.44) 5.78 (0.12) 4.40 (1.98) 13.82 (3.48) 56.32 (18.41) 120.38 (0.00)
Mixt-N 0.24 (0.23) 0.08 (0.01) 45.92 (24.07) 0.82 (0.02) 114.55 (64.09) 394.68 (0.00)
MFA 7.73 (2.13) 459.02 (101.37) 24.04 (3.31) 305.58 (36.11) 317.48 (34.72) 2832.56 (367.84)
k-means 0.11 (0.10) 0.05 (0.01) 0.05 (0.00) 0.55 (0.01) 1.19 (0.02) 12.05 (0.00)
PAM 0.00 (0.00) 0.00 (0.00) 0.02 (0.00) 0.10 (0.00) 2.99 (0.07) 486.63 (0.00)
h-avg 0.00 (0.00) 0.00 (0.00) 0.03 (0.00) 0.33 (0.00) 6.42 (0.15) NaN (NA)
SpeCl 0.05 (0.02) 0.24 (0.20) 3.04 (0.17) 2.90 (0.26) 2150.28 (153.00) 2248.24 (0.00)
AffPr 0.05 (0.02) 0.05 (0.01) 3.14 (0.36) 3.06 (0.37) 879.92 (98.54) 489.64 (0.00)
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Rand Index for (a) identically distributed symmetric variables, (b) asymmetric
variables, (c) different distributions of variables, (d) different distributions of
classes within variables in balanced and unbalanced populations and (e) differ-
ent (skew) distributions of classes within variables in balanced and unbalanced
populations.

Appendix C: Computing time

Table 2 contains the average times (in seconds) – and the corresponding stan-
dard errors in brackets – required by each algorithm (excluding mixtures of ts,
mixtures of skew-Normals and mixtures of skew-ts, as they could not always
reach the convergence) to cluster the a single data set from each of the five
scenarios, considering the cases with 50% of relevant variables, K = 2, both
dependent and independent variables; all the procedures run on a Lenovo PC,
Intel Core i5-6500 CPU, 3.20 GHz, 20 Gb of RAM. NaN/NA values mean that
the method did not deliver a solution for at least one dataset.
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