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Abstract: Within a nonparametric framework, we consider the problem
of testing the equality of marginal distributions for a sequence of indepen-
dent and identically distributed bivariate data, with unobservable order in
each pair. In this case, it is not possible to construct the corresponding em-
pirical distributions functions and yet this article shows that a systematic
approach to hypothesis testing is possible and provides an empirical pro-
cess on which inference can be based. Furthermore, we identify the linear
statistics that are asymptotically optimal for testing the hypothesis of equal
marginal distributions against contiguous alternatives. Finally, we exhibit
an interesting property of the proposed stochastic process: local alternatives
of dependence can also be detected.
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1. Introduction

Motivated by data that appears in genetics, biostatistics and biology, we con-
sider the problem of testing hypotheses for unordered pairs of observations. For
example, in each nucleus of a somatic human cell, there are 23 pairs of chromo-
somes. Within each pair, one chromosome is derived from the mother DNA and
the other is derived from the father DNA. In karyotype analysis, measurements
of different characteristics (such as the spiralisation coefficient – see the pioneer-
ing paper of [6]) are collected on homologous chromosomes, and the question of
interest is to determine if there exist significant differences between the chro-
mosomes derived from the mother and those derived from the father. However,
visually the chromosomes in the pair are not distinguishable; an example of a
sequence of (unordered) pairs of normalized measurements in the C-band area
of the number 9 chromosome appears in [11].

Another example arises in controlled trials, where “blinding” is often em-
ployed. This refers to the situation where some or more individuals (the analyst
and/or the participant) involved in the study are unaware of the assigned treat-
ment (see e.g. [5] for a detailed description and motivation). Blind assessment
of the treatment outcome during the course of a clinical trial comparing, for
example, the effects of two treatments on individuals, generates a sequence of
unordered pairs. The (blind) analysis of interim data is often required as, in
some cases, the availability of preliminary results, may help to avoid the risk of
further experimentation, see also [1] and [13] for additional details.

Formally, we assume that the observed data consists of a sequence of un-
ordered pairs, denoted as {Xi, Yi} 1≤i≤n, and consider the problem of testing if
measurements are independent and have the same distribution

H0 : P1 = P2 (and equal to some unspecified distribution function Q).

Here, P1 and P2 denote the distribution functions of the random variables
{Xi}1≤i≤n and {Yi}1≤i≤n, respectively, and we assume that they are contin-
uous.

In the classical two-sample problem, the class of test statistics with distribu-
tions that are independent of the common distribution Q (provided it is con-
tinuous), is well known. Namely, if P1n and P2n are the empirical distribution
functions of {Xi}1≤i≤n and {Yi}1≤i≤n, respectively, any statistic based on the
empirical processes

√
n(P1n − P2n), or

√
n

[
P1n − 1

2
(P1n + P2n)

]
,

which are invariant under Kolmogorov time transformation Q(x) = t, has the
same distribution, regardless of the form of Q. If the research interest lies only in
the change between the expected values, then the Student’s statistic

√
n(X̄n −

Ȳn) (with proper normalization) will provide a good test. If only testing the
independence of variables within each pair is of interest, then the inference can
be based on √

n(Pn − P1nP2n),
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where Pn denotes the bivariate empirical distribution function of the pairs
{(Xi, Yi)}1≤i≤n.

However, in the case of unobservable order in each pair, it is not possible
to construct the empirical distribution functions P1n and P2n, or, even the
averages X̄n and Ȳn. We refer to this situation as the color blind problem and
in this article we aim to answer the following question. Being color blind, when
observing a sequence of pairs of balls with random diameters, one red and one
green ball in each pair, is it possible to distinguish if the diameters of the red
balls were generated from the same distribution as the diameters of the green
balls?

In this article we show that a systematic approach to testing is possible
and provide an empirical process, having a distribution under the null that is
independent of the unknown common Q. This property allows the convenient
use of omnibus goodness of fit statistics. In construction of this process, no
statistical information is lost and, as in the classical theory, the statistics of the
asymptotically most powerful tests are just linear functionals from this process.
Furthermore, we explain what is the price to be paid for “colour blindness” in
terms of the power of our tests and find the statistic of the asymptotically most
powerful test for testing H0 against a sequence of local alternatives.

A heuristic justification for the form of the proposed approach is based on
a couple of simple remarks. The only data that a colour blind observer can
collect is a sequence of pairs {(Ui, Vi)}1≤i≤n, where Ui = max{Xi, Yi}, Vi =
min{Xi, Yi}, and so any statistic for testing H0 will have to be constructed
based on their empirical distributions. Regardless of whether the two marginal
distributions are equal or not, the random variables {Ui}1≤i≤n and {Vi}1≤i≤n

form two sequences of i.i.d. random variables and, assuming that the variables
in each pair are independent, their cumulative distribution functions, under H0

are, respectively,

P (2)(x) = P1(x)P2(x), P (1)(x) = P1(x) + P2(x)− P1(x)P2(x), x ∈ R.

Note that if P1 = P2, the distributions P
(2) and P (1) cannot be arbitrarily differ-

ent: they are tied by the relation P (2)(x) =
[
1−

√
1− P (1)(x)

]2
. For arbitrary

distributions P1 and P2, the following inequalities hold, for any x ∈ R,

P (2)(x) ≤
[
P (1)(x) + P (2)(x)

2

]2

≤
[
1−

√
1− P (1)(x)

]2

, (1.1)

or, equivalently,

P1(x)P2(x) ≤
[
P1(x) + P2(x)

2

]2

≤
[
1−

√
(1− P1(x))(1− P2(x))

]2
,

with equality if and only if H0 is true. However, the inequalities in (1.1) are
surprisingly tight even when the difference between P1 and P2 is considerable;
Figure 1 illustrates this property for P1(x) = x and P2(x) = x2. Therefore,
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Fig 1. The case when P1(x) = x and P2(x) = x2, with 0 ≤ x ≤ 1. The top dotted curve

shows the graph of [1−
√

1− P (1)(x)]2, the solid curve is the graph of [(P1(x) + P2(x))/2]2,

whereas the bottom dotted curve gives the plot P (2)(x).

testingH0 on the basis of the empirical distributions of {Ui}1≤i≤n and {Vi}1≤i≤n

will not be easy. We will see below that, although we use a different and broader
basis for testing H0, it remains a rather difficult statistical problem.

From a somewhat different side, observe the following fact: although it is
obvious that the maximum value within each pair will be greater than the
minimum value in the same pair, comparing cross values can be informative.
More precisely, if i �= j, under H0,

P (Uj > Vi) = P (Q(Uj) > Q(Vi)) =
5

6
, (1.2)

while this probability would be larger if, for example, P1 is stochastically dom-
inated by P2. In particular, if P1(x) = x, P2(x) = x2, then

P (Uj > Vi) =
51

60
,

which is only larger by 1/60, in spite of big difference between P1 and P2.
These arguments suggest that a nonparametric approach to hypothesis test-

ing in the colour blind problem is possible, but deviations from H0 will be
difficult to detect. They also seem to suggest that a natural approach is to base
our inference on a statistical version of the contrast

P1(x)P2(x)−
[
P1(x) + P2(x)

2

]2

, (1.3)
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leading to some sort of empirical process in one-dimensional time. However, we
prefer to first study the joint behaviour of Ui and Vi which requires the study of
the empirical process in two-dimensional time. This, in turn, opens a possibility
to test the independence of Xi and Yi in each pair. In Section 4 we consider
local alternatives of dependence, described in terms of copula functions, and
show that, in the colour blind set up, detecting these is essentially an easier
problem. Yet, difficulties due to the colour blind situation are still possible, as
it appears in Section 4, and may occur when the alternative copulas are not
symmetric.

This article is organised as follows. The empirical process, on which our infer-
ence is based, is introduced in Section 2. In Section 2.2 we show the behaviour
of the Kolmogorov–Smirnov goodness of fit statistic, whereas in Section 3.2, we
derive linear statistics from this process, which are optimal for particular se-
quences of local alternatives of different marginals. Furthermore, in Section 3.3,
we consider an empirical process based on the largest observation within each
pair: this could be thought of as an empirical analogue of (1.3) and the first and
the most direct object to consider. However, as we said, the roundabout way
through the empirical process with two-dimensional time defined in Section 2 is
actually simpler and more natural. It also has the advantage of allowing us to
consider testing the null against alternatives of dependence, which we describe
in Section 4.

1.1. Related work

When the observations are assumed to be collected from two independent nor-
mal populations, a likelihood ratio statistic for testing the equality of means of
unordered pairs of data was proposed in [8], and for several populations, in [2].

The more general case, of two marginal distributions that belong to the
same parametric family, was considered in [15] and a statistic for a locally
most powerful rank test, within this parametric family, was derived. It was
also shown there that the degree of separation, which can make the alternative
hypothesis distinguishable from the null, is of order n−1/4. As it will be seen
in Section 3.1, an analogous finding is encountered under the nonparametric
approach.

Under the assumption that the observations within pairs are independent
and their distributions belong to the family of Lehmann alternatives, a test for
verifying their equality was discussed in [4]. The authors proposed a modified
Mann-Whitney test statistic, by counting the number of times the minimum
in a pair exceeded the maximum from another pair (a closely related note is
observed in (1.2) of the present manuscript).

More recently, a semiparametric approach was taken in [12]. The authors
assume an exponential tilting model for the density ratio and, based on a remark
that, when the variables in each pair are independent, testing the equality of
marginal distributions is related to an independence testing problem, a test
based on the empirical Shannon’s mutual information was proposed.
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2. The two-sample problem. The colour blind process

In the sequel we assume that {(Xi, Yi)}1≤i≤n are i.i.d observations from an
unspecified, continuous distribution, and are located in [0, 1]2. Moreover, for
distributions functions P1 and P2, we employ the notation P1 × P2 for their
product, i.e. (P1 × P2)(x, y) = P1(x)P2(y), with x, y ∈ [0, 1]2.

For each n ≥ 1 and 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, let

Pn(x, y) =
1

n

n∑
i=1

1{0≤Xi≤x, 0≤Yi≤y}

be the empirical distribution function of the pairs, {(Xi, Yi)}1≤i≤n, where we
use the notation 1A for the indicator function of a set A. Define Qn = Qn×Qn,
with marginals given by

Qn(x) =
P1n(x) + P2n(x)

2
,

where, P1n(x) = 1/n
∑n

i=1 1{0≤Xi≤x} and P2n(x) = 1/n
∑n

i=1 1{0≤Yi≤x} are
the empirical marginal distributions of {Xi}1≤i≤n and {Yi}1≤i≤n, respectively.
Note that the distribution function Qn can be computed from the data, since

P1n +P2n = P
(2)
n +P

(1)
n , where P

(2)
n and P

(1)
n denote the empirical distribution

functions based on the maxima {Ui}1≤i≤n and the minima {Vi}1≤i≤n, respec-
tively.

Prompted by the discussion in Section 1, we consider the empirical process
defined as

Rn(x, y) =
√
n [Pn(x, y)−Qn(x, y)] , 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. (2.1)

Although the empirical distribution function Pn, can not be obtained in the
colour blind problem, it can be obtained within the class of symmetric Borel sets,
i.e., sets B for which (x, y) ∈ B implies (y, x) ∈ B. Indeed, if B is symmetric,
then

P ((Ui, Vi) ∈ B) = P ((Xi, Yi) ∈ B),

and a similar equality holds for the empirical distribution functions. Therefore,
we consider the process Rn on symmetric sets, as in the next definition. Denote
by Sx,y = [0, x]× [0, y] ∪ [0, y]× [0, x] the symmetrised version of the rectangle
[0, x]× [0, y]; clearly, if u = max{x, y} and v = min{x, y} then Su,v = Sx,y.

Definition 2.1. Let B denote the class of symmetric Borel subsets of [0, 1]2.
Then, the restriction of Rn to B is called a colour blind empirical process

Rs
n(B) = Rn(B), where B ∈ B.

For Su,v as defined above, we write

Rs
n(u, v) = Rn(Su,v) = Rn(u, v) + Rn(v, u)− Rn(v, v),

and so the process Rs
n(u, v) is defined on the simplex 0 ≤ v ≤ u ≤ 1.
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2.1. The asymptotic behaviour under the null hypothesis

In this section we will show that the limit in distribution of the colour blind
process is the restriction of a Brownian pillow to the class of symmetric sets.
We first consider the asymptotic behaviour of Rn and show how the functional
central limit theorem can be used to obtain its convergence in distribution to a
suitable Gaussian process, as n → ∞.

Let vn denote the classical empirical process, based on i.i.d. pairs (Xi, Yi),
from a specified distribution Q

vn(x, y) =
√
n(Pn −Q)(x, y),

and vQ denote the Brownian bridge in time Q. Then, the functional central limit

theorem gives vn
d−→ vQ, as n → ∞, on the space of càdlàg functions on [0, 1]2,

equipped with the Skorohod topology.
Furthermore, assuming the independence of components within each pair,

under the null hypothesis of equal marginals, we have Q(x, y) = Q(x)Q(y) and
the empirical process introduced in (2.1) can be written as

Rn(x, y) = vn(x, y)−
√
n[Qn(x)Qn(y)−Q(x)Q(y)]

=vn(x, y)−
√
n[Qn(x)−Q(x)]Q(y)−

√
n[Qn(y)−Q(y)]Q(x) + rn(x, y) (2.2)

=vn(x, y)−
Q(y)

2
[vn(x, 1) + vn(1, x)]−

Q(x)

2
[vn(1, y) + vn(y, 1)] + rn(x, y),

with
rn(x, y) =

√
n[Qn(x)−Q(x)][Qn(y)−Q(y)],

and sup(x,y)∈[0,1]2 |rn(x, y)| = oQ(1).
Since the leading term in the right hand side of (2.2) is a linear transformation

of vn, then, as n → ∞, we have Rn
d−→ R, where

R(x, y) = vQ(x, y)−
1

2
[vQ(x, 1)+vQ(1, x)]Q(y)−1

2
[vQ(1, y)+vQ(y, 1)]Q(x). (2.3)

Note that the transformation of vn in the right hand side of (2.2) (as well as
the transformation of vQ in (2.3)) is, actually, a projection.

By Definition 2.1 and the limiting behaviour of Rn we obtain

Rs
n

d−→ Rs,

where Rs is defined as the restriction of the process R (given in (2.3)) to B.
Moreover, for a better insight in the nature of the process Rs

n, let us consider a
different projection of vQ, given by the operator

Lα(x, y) = α(x, y)−Q(x)α(1, y)−Q(y)α(x, 1) +Q(x)Q(y)α(1, 1). (2.4)

It projects a function α onto the class of functions equal to zero everywhere on
the boundary of [0, 1]2 and so, the projection of vQ is given by
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zQ(x, y) =LvQ(x, y)
=vQ(x, y)−Q(x)vQ(1, y)−Q(y)vQ(x, 1) +Q(x)Q(y)vQ(1, 1). (2.5)

The process zQ is called a Brownian pillow on [0, 1]2 (or a bivariate tied-down
Brownian bridge or completely tucked Brownian sheet) and it usually appears
as the limit process for testing the independence of components of continuous
bivariate random vectors (see e.g. [3] and Section 3.8 in [16]). With the time
transformation t = Q(x), s = Q(y), it can be mapped into a standard Brownian
pillow in t and s, i.e. a Gaussian process z(s, t), with covariance function given by
E(z(s′, t′)z(s′′, t′′)) = (min{s′, s′′} − s′s′′)(min{t′, t′′} − t′t′′), 0 ≤ s′, s′′, t′, t′′ ≤
1. Its finite n version is, obviously, given by zn = Lvn.

Our interest in zQ and zn stems from the following fact.

Proposition 2.2. For symmetric sets B ∈ B we have

Rs
n(B) = zn(B) + oQ(1), as n → ∞, and Rs(B) = zQ(B).

In particular, for any n ≥ 1 and symmetrised rectangles Su,v, the following
relationship holds

Rs
n(u, v) = zn(Su,v) + rn(Su,v),

where

zn(Su,v) = zn(u, v) + zn(v, u)− zn(v, v),

rn(Su,v) = 2
√
n[Qn(u)−Q(u)][Qn(v)−Q(v)]−

√
n[Qn(v)−Q(v)]2 = oQ(1).

2.2. Goodness of fit test statistics

Proposition 2.2 shows that, asymptotically, the colour blind process Rs
n is equiv-

alent to a Brownian pillow on symmetric sets. We also noted that the Brow-
nian pillow zQ can be transformed into the standard Brownian pillow, i.e., a
Brownian pillow when Q is the Lebesgue measure on [0, 1]2. Therefore, the clas-
sical goodness of fit statistics, such as the Kolmogorov–Smirnov statistic, and
other statistics based on Rs

n and invariant with respect to time transformation
t = Q(x), s = Q(y), will a have limiting distribution, which does not depend on
the unknown Q. Intuitively, we would expect that among the two statistics

Dn = sup
(x,y)∈[0,1]2

|Rn(x, y)|, Ds
n = sup

(u,v)∈[0,1]2,v<u

|Rs
n(u, v)|,

the second one will be stochastically smaller. Figure 2 shows the graphs of
their distributions and confirms that this intuition is correct. To illustrate the
situation in terms of the power of the goodness of fit tests, we consider in Figure
3 the shift of Ds

n under the alternatives described in Figure 1. It was illustrated
in Figure 1 that, in the colour blind situation, the alternative distributions look
surprisingly difficult to distinguish from the null. Yet, according to Figure 3,
with n = 500, the Kolmogorov–Smirnov test will have some power. However, to
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Fig 2. The dotted line represents the graph of the (simulated) distribution function of Ds
n,

while the solid line represents that of Dn, with n = 1, 000.

Fig 3. The dotted line shows the simulated distribution function of Ds
n under the null hypoth-

esis, while the solid line shows its distribution under the alternative A1×A2, with A1(x) = x,
A2(x) = x2 and n = 500.

better illustrate the consequence of colour blindness, in Figure 4, we present the
simulated distribution functions ofDn, under the null and under the alternatives
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Fig 4. The graph shows the simulated distribution functions of Dn under the null hypothesis
(dotted line) and under the alternative A1(x) = x,A2(x) = x2 (solid line), with n = 500.

in Figure 1. We observe that the discrimination between the two, for n = 500,
could have been absolutely obvious.

3. Linear statistics

Unlike the goodness of fit tests, which are of omnibus nature and typically
have some power against a very wide class of alternatives, the tests based on
linear statistics may have asymptotically no power against the “majority” of
alternatives, but are asymptotically most powerful against a certain form of
alternatives. In Section 3.2 we derive the form of such statistic, which is optimal
for testing H0 against a sequence of local alternatives of different marginals,
described in Section 3.1.

Let ϕ ∈ L2(Q×Q) and consider the function-parametric version of the colour
blind process

Rs
n(ϕ) =

∫ 1

0

∫
v<u

ϕ(u, v)dRs
n(u, v).

In search for the optimal linear functional, the next result shows that we can
restrict our attention to symmetric functionals from zn.

Proposition 3.1. For every ϕ ∈ L2(Q×Q), as n → ∞,

∫ 1

0

∫
v<u

ϕ(u, v)dRs
n(u, v) =

∫ 1

0

∫ 1

0

ϕ̃(x, y)dzn(x, y) + oQ(1), (3.1)
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where

ϕ̃(x, y) =

{
ϕ(x, y), x ≥ y

ϕ(y, x), x < y
.

Proof. We apply Proposition 2.2 and first note that the planar integral from
the term zn(v, v) is null. Moreover, the integral from the residual term is indeed
small, i.e. for any ϕ ∈ L2(Q×Q)∫ 1

0

∫ 1

0

ϕ(x, y)
√
n[dQn(x)− dQ(x)][dQn(y)− dQ(y)] = oQ(1)

and hence, the left hand side of (3.1) becomes∫ 1

0

∫
v<u

ϕ(u, v)dRs
n(u, v) =

∫ 1

0

∫
v<u

ϕ(u, v)[dzn(u, v) + dzn(v, u)] + oQ(1).(3.2)

The main term in the right hand side of (3.1) is∫ 1

0

∫ 1

0

ϕ̃(x, y)dzn(x, y) =

∫ 1

0

∫
x>y

ϕ(x, y)dzn(x, y) +

∫ 1

0

∫
y>x

ϕ(y, x)dzn(x, y)

=

∫ 1

0

∫
u>v

ϕ(u, v)dzn(u, v) +

∫ 1

0

∫
u>v

ϕ(u, v)dzn(v, u),

where we used the fact that ϕ̃ is symmetric. The proof is concluded by noting
that the right hand sides of the last two displays are equal.

Denote by (Qϕ)(x) =

∫ 1

0

ϕ(x, y)dQ(y) and consider the following projection

of ϕ
(L∗ϕ)(x, y) = ϕ(x, y)− (Qϕ)(x)− (Qϕ)(y) + EQ[ϕ(x, y)].

The process zn was introduced as a projection of vn and so zn = Lvn, with
(Lvn)(x, y) = vn(x, y)−Q(x)vn(1, y)−Q(y)vn(x, 1)+Q(x)Q(y)vn(1, 1). The fol-
lowing proposition shows that operator L∗ can be viewed as the adjoint operator
(see [10]) of L, defined in (2.4).

Proposition 3.2. We have the following

zn(ϕ) = Lvn(ϕ) =
∫ 1

0

∫ 1

0

ϕ(x, y)dzn(x, y)

=

∫ 1

0

∫ 1

0

(L∗ϕ)(x, y)dvn(x, y) = vn(L∗ϕ).

Proof. By direct computation,

zn(ϕ) =

∫ 1

0

∫ 1

0

ϕ(x, y)dvn(x, y)−
∫ 1

0

∫ 1

0

ϕ(x, y)dQ(x)dvn(1, y)

−
∫ 1

0

∫ 1

0

ϕ(x, y)dQ(y)dvn(x, 1)

=

∫ 1

0

∫ 1

0

[
ϕ(x, y)−

∫ 1

0

ϕ(x, y)dQ(x)−
∫ 1

0

ϕ(x, y)dQ(y)

]
dvn(x, y).
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As a result,
Rs

n(ϕ) = vn(L∗ϕ̃) + oQ(1), (3.3)

and the well-known central limit theorem for the function-parametric empirical
process vn can be used to describe the asymptotic behaviour of Rs

n(ϕ).

3.1. Description of local alternatives

We are interested in detecting small departures from the null hypothesis and, as-
suming independence between the coordinates, such deviations will be specified
by a sequence of probability distribution functions of the form {A1n×A2n}n≥1.

For an arbitrary fixed probability distributionQ, let A1n and A2n be probabil-
ity distributions which are defined as asymptotically “small” departures from Q

dA1n

dQ
(x) = 1 + εnh1n(x),

dA2n

dQ
(x) = 1 + εnh2n(x), (3.4)

where εn → 0 as n → ∞, and the functions hkn, k = 1, 2 converge to square
integrable functions hk(x)∫ 1

0

[hkn(x)− hk(x)]
2dQ(x) → 0,

∫ 1

0

h2
k(x)dQ(x) < ∞, k = 1, 2.

From the definition of hkn, it follows that, for all n ≥ 1,
∫ 1

0
hkn(x)dQ(x) =

0, k = 1, 2, and their limits inherit this property.
We shall see that εn will not be of order n−1/2 as it is typically the case within

the theory of contiguity (see [14] and [7]), but will need to decrease slower.
Therefore, we will eventually be outside the contiguity theory, and, therefore,
we can neglect using square roots from the Radon–Nikodym derivatives in (3.4),
and consider them as they are, which is somewhat simpler. It is more interesting
to recall that, although both A1n and A2n tend to Q, in testing H0, they will
look differently.

To see this fact, specific to the two-sample problem (and not to colour blind-
ness as such), consider the expected value of the classical two-sample process√
n(P1n − P2n) under the alternative A1n × A2n. Introduce the functions H1n

and H2n as

Hkn(x) =

∫ x

0

hkn(y)dQ(y), so that Hkn(0) = Hkn(1) = 0, k = 1, 2,

and so

Ea

√
n[P1n(x)− P2n(x)] =

√
n [A1n(x)−A2n(x)] =

√
nεn[H1n(x)−H2n(x)].

It can be shown that choosing εn = n−1/2 and the linear statistic∫ 1

0

φ(x)
√
n[dP1n(x)− dP2n(x)],where φ(x) = h1n(x)− h2n(x) (3.5)
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leads to the asymptotically most powerful test, among those based on
√
n(P1n−

P2n). However, the power of this test is only less than or equal to the power of
the optimal (Neyman–Pearson) test in the problem of discriminating between
the alternative A1n ×A2n and the hypothesis Q×Q (see [7]) and to obtain an
equality, we have to change Q to Qan = (A1n+A2n)/2. Then, the test based on
the linear statistic in (3.5) becomes asymptotically equivalent to the Neyman–
Pearson test for discriminating A1n × A2n from the hypothesis Qan × Qan.
The Radon–Nikodym derivatives of A1n and A2n with respect to Qan posses a
symmetric form

dA1n

dQan
(x) = 1 + εnhn(x),

dA2n

dQan
(x) = 1− εnhn(x),

with

hn =
(h1n − h2n)/2

1 + εn(h1n + h2n)/2
.

The dependence of Qan on n, which itself converges to Q, is immaterial and we
can assume from now on that in (3.4) we have h1n = −h2n, i.e., we will restrict
our attention to the class of local alternatives of the form

Ha :
dA1n

dQ
(x) = 1 + εnhn(x),

dA2n

dQ
(x) = 1− εnhn(x), (3.6)

for some continuous distribution Q on [0, 1], assuming that there exists a func-
tion h ∈ L2(Q) such that∫ 1

0

h(x)dQ(x) = 0 and

∫ 1

0

[hn(x)− h(x)]2dQ(x) → 0.

The function h determines the direction in which the alternative distribution
A1n×A2n approaches the diagonal {Q×Q,Q−continuous}; Figure 5 illustrates
the situation.

We now consider the rate of convergence of εn in the colour blind problem.
Under Ha,

Ea[vn(x, y)] =Ea{
√
n[Qn(x, y)−Q(x, y)]}

=
√
n[−εnQ(x)Hn(y) + εnHn(x)Q(y)− ε2nHn(x)Hn(y)],

where, as above, Hn(x) =
∫ x

0
hn(y)dQ(y). Since Hn(1) = 0, it follows that

Ea[Rn(x, y)] =
√
n[−εnQ(x)Hn(y) + εnHn(x)Q(y)− ε2nHn(x)Hn(y)],

which shows that the statistics based on the process Rn(x, y) can distinguish al-
ternatives with εn = O(n−1/2). However, in the case of the symmetrised process
Rs

n(u, v), under Ha, the linear term in εn becomes zero and we have

Ea[R
s
n(u, v)] =

√
nε2n[−2Hn(u)Hn(v) +Hn(v)

2].

This shows the loss of power when using the colour blind statistic: only alter-
natives with εn ∼ n−1/4 can be detected in the colour blind problem.
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Fig 5. The sequence of alternatives A1n×A2n may be some distance away from the hypothet-
ical pair Q × Q, to which it converges, but statistics form the empirical process will “react”
on this alternative as much as it deviates from its projection Qan ×Qan.

3.2. Optimal linear statistics

In this section we describe the statistic of the asymptotically optimal test for
testing H0 against the sequence of alternatives in (3.6). Here,

〈ϕ, ψ〉Q×Q =

∫ 1

0

∫ 1

0

ϕ(x, y)ψ(x, y)dQ(x)dQ(y),

denotes the inner product in L2(Q×Q), and we recall that the variance of the
Gaussian random variable vQ(ϕ̃) is

V ar(vQ(ϕ̃)) = 〈ϕ̃, ϕ̃〉Q×Q − 〈ϕ̃, 1〉2Q×Q.

Under Ha, the expected value of vn(ϕ̃) is not zero and we have

vn(ϕ̃) =
√
n

∫ 1

0

∫ 1

0

ϕ̃(x, y) [dPn(x, y)− dA1n(x)dA2n(y)]

+
√
nεn

∫ 1

0

∫ 1

0

ϕ̃(x, y) [hn(x)− hn(y)] dQ(x)dQ(y)

−
√
nε2n

∫ 1

0

∫ 1

0

ϕ̃(x, y)hn(x)hn(y)dQ(x)dQ(y).

The first integral on the right side, which contains the centered part of vn(ϕ̃),
converges in distribution to vQ(ϕ̃), and because ϕ̃(x, y) is symmetric, the middle
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integral is null. Therefore, if εn = n−1/4, we have, as n → ∞, under H0 and
under Ha, respectively,

vn(ϕ̃)
d→ vQ(ϕ̃), and vn(ϕ̃)

d→ vQ(ϕ̃)− 〈ϕ̃, h× h〉Q×Q. (3.7)

To make a judgment about the asymptotic power of the linear statistics,
consider the distance in total variation between two Gaussian distributions with
different means and equal variances. This is given by

sup
C

|N(μ1,σ2)(C)−N(μ2,σ2)(C)|,

where the supremum is taken over all measurable sets (or critical regions of
tests) on the real line. By its definition, this measure gives the largest possible
difference between the power and the level of tests, among all those that can
discriminate between the two distributions. Its advantage is that there is no
need to specify a particular level of a test. We have

sup
C

|N(μ1,σ2)(C)−N(μ2,σ2)(C)| = 2N(0,1)

(
|μ1 − μ2|

2σ

)
− 1,

where N(0,1)(x) denotes the standard normal distribution function. The ratio

T =
|μ1 − μ2|

σ
,

(especially when μ1 = 0), is often called the signal to noise ratio; the larger this
ratio is, the greater the difference between the power and the level.

Recalling that Ui = max{Xi, Yi} and Vi = min{Xi, Yi}, 1 ≤ i ≤ n, the
following result gives the form of the optimal test statistic.

Proposition 3.3. The statistic of the asymptotically most powerful test for
testing H0 against the sequence of alternatives A1n ×A2n is of the form

Rs
n(h× h) =

1√
n

n∑
i=1

h(Ui)h(Vi) + oQ(1). (3.8)

The distance in total variation between its asymptotic distributions, under the
null and under the alternatives A1n × A2n, is equal to N(0,1)(T/2),where T
represents the limit of

√
nε2n‖h× h‖Q×Q =

√
nε2n‖h‖2Q.

Proof. Using (3.7) and the fact that 〈L∗ϕ̃, 1〉Q×Q = 0, the asymptotic power of
the test based on the linear statistic vn(L∗ϕ̃) is equal to N(0,1)(Tϕ), where, the
“signal to noise ratio” is

Tϕ =
〈L∗ϕ̃, h× h〉Q×Q

〈L∗ϕ̃,L∗ϕ̃〉1/2Q×Q

.

Now note that h × h is both symmetric and passes through L∗. Therefore, we
have

〈L∗ϕ̃, h× h〉Q×Q = 〈L∗ϕ̃,L∗(h× h)〉Q×Q,
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which implies that Tϕ is maximised at L∗ϕ̃ = L∗(h× h) = h× h. The statistic
vn(h×h) is equal to the sum in the display formula in (3.8). On the other hand,
(3.3) gives Rs

n(h× h) = vn(h× h) + oQ(1).

Example 3.4. In the case illustrated in Figure 1, with A1(x) = x,A2(x) = x2

and Q(x) = (x+ x2)/2, we have h(x) =
1− 2x

1 + 2x
and ε = 1. We can also choose

the sequence of {A1ε ×A2ε} as ε → 0, keeping the same h(x); in particular,

A1ε(x) =
1 + ε

2
x+

1− ε

2
x2 and A2ε(x) =

1− ε

2
x+

1 + ε

2
x2.

The proposed test statistic for testing H0 against the alternative A1ε × A2ε is
of the form

1√
n

n∑
i=1

(2Ui − 1)(2Vi − 1)

(1 + 2Ui)(1 + 2Vi)
, (3.9)

and its signal to noise ratio, for n = 400 and ε = 1, is given by
√
nε2‖h‖2Q = 1.98

and therefore, the power of this linear test, directed to the chosen alternatives
is essentially higher than the general (not directed) Kolmogorov–Smirnov test,
as it appears in Figure 3. However, the test may have very low or no power for
testing H0 against other alternatives.

3.3. Tests based only on maxima

In this section we consider an alternative approach to testing H0, which is based
on the empirical distribution function of the maxima Ui = max{Xi, Yi},

P (2)
n (u) =

1

n

n∑
i=1

1{Ui≤u}.

The above is naturally centered by Q2
n(u), thus leading to an empirical process

(see also (1.3))
R(2)

n (u) =
√
n[P (2)

n (u)−Q2
n(u)], (3.10)

whose construction, together with the form of the linear functionals from P
(2)
n ,∫ 1

0

α(u)dP (2)
n (u) =

1

n

n∑
i=1

α(Ui),

can prompt us to speak about “statistics”, or tests, “based only on maxima”,
even though this is not an accurate expression. Indeed, the term Q2

n(u) =

[P
(1)
n (u)+P

(2)
n (u)]2/4 certainly incorporates information about minima as well.

Yet, the process in (3.10) may look as the first choice to base test statistics
upon and has some nice properties. For example, its covariance function retains
a symmetric structure,

E0[R
(2)
n (u)R(2)

n (u′)] = Q2(u)[1−Q(u′)]2, 0 ≤ u ≤ u′ ≤ 1,
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which is the covariance function of the product of two independent Q-Brownian
bridges.

The natural way to study the process R
(2)
n and its function parametric version

is to embed it into the colour blind process, introduced in Definition 2.1. First,

we see that R
(2)
n is a restriction of Rs

n to rectangles [0, u]× [0, u]

R(2)
n (u) = Rn(u, u) =

√
n

[
Pn(u, u)−Q2

n(u)
]
,

which, in particular, implies that the expected value of R
(2)
n (u) under Ha is

Ea[R
(2)
n (u)] = −

√
nε2nH

2
n(u). (3.11)

We now choose the functional argument of Rn(·) as ϕ(x, y) = α(max(x, y)) and
note that the function ϕ = ϕα is symmetric and belongs to L2(Q × Q) if and
only if α ∈ L2(Q2). Indeed, we have

∫ 1

0

∫ 1

0

α2(max{x, y})dQ(x)dQ(y) =

∫ 1

0

α2(u)dQ2(u),

or 〈ϕα, ϕα〉Q×Q = 〈α, α〉Q2 , leading to R
(2)
n (α) = Rn(ϕα). Denoting

C = {ϕ ∈ L2(Q×Q) : ϕ(x, y) = α(max{x, y}), α ∈ L2(Q2)},

then studying R
(2)
n (α), with α ∈ L2(Q2), becomes equivalent to studying Rn(ϕ),

where ϕ ∈ C. Then, (2.2), (2.5) and Proposition 3.2 imply that

R(2)
n (α) = vn(L∗ϕα) + oQ(1),

and we can focus on the linear statistics appearing on the right side. The problem
of finding the optimal linear statistic requires the maximisation of a different
signal to noise ratio and opens up an interesting structure.

Introduce the Radon–Nikodym derivative

q(x) =
dH2(x)

dQ2(x)
= h(x)

H(x)

Q(x)
,

and denote by ϕq(x, y) = q(max(x, y)). Using (3.7), we derive that

Ea[R
(2)
n (α)] = Ea[vn(L∗ϕα)] + o(1) = 〈L∗ϕα, h× h〉Q×Q + o(1)

= 〈ϕα, h× h〉Q×Q + o(1).

Unless the trivial case (when h = 0), the functions of the form (h × h)(x, y) =
h(x)h(y) do not belong to the class C, but the expression of the expected values
above suggests that the projection of h × h on C would be useful to consider.
This projection is given by the function ϕq. Indeed, we have

〈ϕα, h× h− ϕq〉Q×Q = 0,
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so that
〈ϕα, h× h〉Q×Q = 〈ϕα, ϕq〉Q×Q = 〈α, q〉Q2 ,

and would now seem straightforward to choose α = q as an optimal test statis-
tics. However, more clarifications are needed.

Since Var(vn(L∗ϕα)) = 〈L∗ϕα,L∗ϕα〉Q×Q, to find the asymptotically most
powerful test against the sequence of alternatives A1n × A2n, we need to max-
imise the absolute value of signal to noise ratio

Tα =
〈ϕα, ϕq〉Q×Q

〈L∗ϕα,L∗ϕα〉1/2Q×Q

=
〈α, q〉Q2

〈L∗ϕα,L∗ϕα〉1/2Q×Q

.

A useful step in this direction will be to express the denominator in terms of
the inner product in L2(Q2). It can be verified that

〈L∗ϕα,L∗ϕα〉Q×Q = 〈α, α〉Q2 − 〈α, Sα〉Q2 ,

where the operator S is given by

Sα(x) = α(x)Q(x) + 4

∫ 1

x

α(t)dQ(t),

and we need to maximise the absolute value of

Tα =
〈α, q〉Q2

[〈α, α〉Q2 − 〈α, Sα〉Q2 ]1/2
.

One can go into this problem, for example – as a problem of calculation of
support function for the convex set

{α : 〈α, α〉Q2 − 〈α, Sα〉Q2 ≤ 1}.

However, it is much simpler to reverse the point of view: for a given α, find
an alternative for which Rn(ϕα) will be an optimal statistic. In the previous
section, this reversal will not produce a different result, whereas in the present
case the maximisation in q becomes simple.

Proposition 3.5. Consider a cone

M = {α :

∫ u

0

α(z)dQ2(z) ≥ 0 for all u > 0}.

If α ∈ M, then the power of the statistic Rn(ϕα) is largest for the local alter-
natives in (3.6), with the corresponding q equal α.

In this case, the functions H and h which describe the alternatives are given
by

H(x) = ±
√∫ u

0

α(z)dQ2(z) and h(x) =
Q(x)α(x)

2H(x)
.
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Proof. The choice of α = q is valid if and only if α ∈ M. Indeed,

α(x) = q(x) =
dH2(x)

dQ2(x)
or

∫ u

0

α(x)dQ2(x) = H2(u)

and, therefore, the integral has to be non-negative for all u > 0, which implies
that α has to belong to M. The forms of H and h follow directly.

We may see M as the class of admissible or effective α-s. The need to specify
such a class, i.e. to choose ϕα more narrowly than from the linear space C, is
visible when we try to connect α and q. Actually, this fact provided the proof
of the proposition.

Example 3.6. For the sake of numerical comparison, we consider the case in
Example 3.4, where A1(x) = x, A2(x) = x2 and Q(x) = (x+ x2)/2. This leads
to

h(x) =
2x− 1

1 + 2x
, H(x) = −1

2
x(1− x) and, therefore, q(x) =

(x− 1)(2x− 1)

(1 + x)(1 + 2x)
.

The form of the statistic resembles the form in (3.9), but requires centering,

1√
n

n∑
i=1

(Ui − 1)(2Ui − 1)

(1 + Ui)(1 + 2Ui)
−

√
n

∫ 1

0

q(z)dQ2
n(z).

The variance of this statistic is equal to 0.0030, while the shift under the al-

ternatives becomes
√
n

∫ 1

0
q(z)dz3 =

√
n 0.0048. As a result, the signal to noise

ratio, for n = 400, is 1.74 and hence, the power of the linear test here is less
than what it was in Example 3.4, although not by much.

4. Local alternatives of dependence

Interestingly, the assumption of independence within the pairs can also be tested
in the colour blind situation. In this section, we assume {(Xi, Yi)}1≤i≤n to be a
sample from a distribution with equal marginals that may not be independent
and for which, again, the order in each pair is unobservable. The tests can
be based on the same process introduced in Definition 2.1 and the problem is
actually easier than the problem consider in the previous sections: it is possible
to detect local alternatives converging to the null hypothesis, with a rate of
n−1/2.

We introduce a new class of alternative hypotheses

H ′
a : A′

n = Q+ εnGn, (4.1)

where

dA′
n(x, y)

dQ(x, y)
= 1 + εngn(x, y), gn ∈ L2(Q×Q), (4.2)
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and there exists g ∈ L2(Q×Q) such that

∫ 1

0

∫ 1

0

[gn(x, y)− g(x, y)]2dQ(x)dQ(y) → 0, as n → ∞.

The function g(x, y) describes the functional direction, from which the sequence
of alternatives {A′

n}n≥1 approaches Q.
However, as it is defined so far, deviations of A′

n from Q may be different for
different Q. It will bring some economy in the description and more clarity, if
we group alternatives according to how they deviate from the product of their
marginals. Moreover, it is natural to assume that the two marginals are equal
(see below).

Therefore, we restrict the choice of gn by two conditions: there exists g0 ∈
L2([0, 1]2), such that

∫ 1

0

∫ 1

0

[gn(x, y)− g0(Q(x), Q(y))]2dQ(x)dQ(y) → 0, as n → ∞, (4.3)

and ∫ 1

0

gn(x, y)dQ(x) =

∫ 1

0

gn(x, y)dQ(y) = 0. (4.4)

The last condition guarantees, that the marginal distributions ofXi and Yi under
A′

n are the same as under Q, while, in (4.3), the function g0 describes a functional
direction from which the copula function A′

n(Q
−1(t), Q−1(s)), corresponding to

A′
n, approaches the product ts. This function inherits the property (4.4):

∫ 1

0

g0(t, s)dt =

∫ 1

0

g0(t, s)ds = 0. (4.5)

The geometric interpretation of this condition shows that it can be always
made without loss of generality. Indeed, the local alternatives introduced in (3.6)
for testing the identical marginal distributions assumption, approach Q from the
functional direction h(x) − h(y). This difference, as a function in L2(Q × Q),
is orthogonal to the function g0(Q(x), Q(y)) if g0 satisfies condition (4.5). Any
alternative defined by (4.1) can be decomposed into a part, which satisfies (4.4),
and a part, which describes the changes in marginal distributions, already dis-
cussed in the previous section. Therefore, the new part in testing independence
is represented by the functions g0 satisfying (4.5). In a somewhat different sit-
uation, this was nicely expressed in Section 5 of [9]. In describing hypothesis
testing for product measures the authors suggested to regard any deviations
from the marginals as nuisance within the null hypothesis of independence.

In dependence alternatives, as we said above, εn can again have the classical
rate of n−1/2. Indeed, with Gn(x, y) =

∫ x

0

∫ y

0
gn(x

′, y′)dQ(x′)dQ(y′), we have

Ea′ [vn(x, y)] = Ea′{
√
n[Pn(x, y)−Q(x, y)]} =

√
nεnGn(x, y),
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and noting that Gn(1, y) = Gn(x, 1) = 0, we obtain

Ea′ [Rn(x, y)] =
√
nεnGn(x, y),

Ea′ [Rs
n(u, v)] =

√
nεn[Gn(u, v) +Gn(v, u)−Gn(v, v)].

Therefore the rate n−1/2 can render the shift Ea′(Rs
n) non-zero.

At the same time, the symmetrisation, again, can make an alternative unde-
tectable. To see that, let

gan(x, y) = [gn(x, y)− gn(y, x)]/2

be the anti-symmetric part of gn. This part will make zero contribution to
the shift of Ea′(Rs

n), so that if gn is itself anti-symmetric, then the shift of
Ea′(Rs

n) becomes 0, and the alternatives A′
n become undetectable. For example,

alternatives of the form

A′
n(x, y) = xy + εnxy(1− x)(1− y)(y − x), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

cannot be detected by Rs
n. Hence, in what follows, we restrict our attention to

alternatives of dependence, converging from a functional direction, g that has a
non-zero symmetric part.

As in Section 3.2, under the alternative of dependence H ′
a, for any symmetric

ϕ̃ ∈ L2(Q×Q) we have

vn(ϕ̃) =
√
n

∫ 1

0

∫ 1

0

ϕ̃(x, y) [dPn(x, y)− dA′
n(x, y)]

+
√
nεn

∫ 1

0

∫ 1

0

ϕ̃(x, y)gn(x, y)dQ(x)dQ(y).

The first term of the sum contains the centered part of vn(ϕ̃) and converges in
distribution to vQ(ϕ̃), and if εn = n−1/2, then, as n → ∞, under H0 and under
H ′

a, respectively, we obtain

vn(ϕ̃)
d→ vQ(ϕ̃), and vn(ϕ̃)

d→ vQ(ϕ̃) + 〈ϕ̃, g〉Q×Q.

We write g(x, y) = gs(x, y) + ga(x, y), where gs(x, y) = (1/2)[g(x, y) + g(y, x)]
and ga(x, y) = (1/2)[g(x, y)− g(y, x)] are, respectively, its symmetric and anti-
symmetric parts and note that, due to the symmetry of ϕ̃, we have

〈ϕ̃, g〉Q×Q = 〈ϕ̃, gs〉Q×Q.

The next result gives the form of the optimal linear test statistic that can be used
for testing the null hypothesis against the sequence of dependence alternatives,
H ′

a.

Proposition 4.1. The statistic of the asymptotically most powerful test for
testing H0 against the sequence of alternatives A′

n is of the form

Rs
n(g

s) =
1√
n

n∑
i=1

g(Ui, Vi) + g(Vi, Ui)

2
+ oQ(1).
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The distance, in total variation, between its asymptotic distributions, under the
null and under the symmetric alternatives A′

n, is equal to N(0,1)(T/2),where T
represents the limit of

√
nεn‖g0‖.

Proof. Obviously, for any function g, its symmetric part satisfies g̃s = gs and
due to (4.4), we have L∗gs = gs. Then, the conclusion follows along the lines of
the proof of Proposition 3.3.

Example 4.2. The statistic of the asymptotically most powerful test for testing
H0 against the sequence of dependence alternatives

A′
n(x, y) = xy + εnxy(1− x)(1− y), |εn| ≤ 1

is given by

1√
n

n∑
i=1

(1− 2Ui)(1− 2Vi).

Here the function g(x, y) = g0(x, y) = (1−2x)(1−2y) satisfies the condition (4.4)
and is symmetric. Hence, the detection of A′

n from its copula is possible and the
test has the same power, regardless of whether the colours can be distinguished
or not. For the sequence of dependence alternatives

A′
n(x, y) = xy + εnxy(1− x)(1− y2), |εn| ≤ 1

the function g(x, y) = (1−2x)(1−3y2) also satisfies (4.4) but is not symmetric.
Hence, the detection of this sequence of alternatives in the colour blind situation,
i.e. using the statistic

1√
n

n∑
i=1

[
(1− 2Ui)(1− 3V 2

i ) + (1− 3U2
i )(1− 2Vi)

]

is connected with the loss of power. An example of a sequence of alternatives,
undetectable with εn ∼ n−1/2 in the colour blind situation was given above.
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