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Abstract: Given additional distributional information in the form of mo-
ment restrictions, kernel density and distribution function estimators with
implied generalised empirical likelihood probabilities as weights achieve a
reduction in variance due to the systematic use of this extra information.
The particular interest here is the estimation of the density or distribution
functions of (generalised) residuals in semi-parametric models defined by a
finite number of moment restrictions. Such estimates are of great practical
interest, being potentially of use for diagnostic purposes, including tests
of parametric assumptions on an error distribution, goodness-of-fit tests or
tests of overidentifying moment restrictions. The paper gives conditions for
the consistency and describes the asymptotic mean squared error proper-
ties of the kernel density and distribution estimators proposed in the paper.
A simulation study evaluates the small sample performance of these esti-
mators.
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1. Introduction

In many statistical and economic applications, additional distributional infor-
mation about the data observation dz-vector z may be available in the form
of moment restrictions on its distribution. These constraints may arise from a
particular economic or physical law, e.g., Chen (1997, Section 5), be implied
by estimating equations, Qin and Lawless (1994, Example 1), or correspond
to known population moments of another observable random vector correlated
with z, e.g., in survey samples with auxiliary population information available
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from census data, e.g., Chen and Qin (1993) and Qin and Lawless (1994, Ex-
ample 2). The primary purpose of the paper is to explore the advantages of
this additional information for the estimation of the density and distribution
functions of a scalar residual-like function of z which may depend on unknown
parameters.

To this end, let g(z, β) denote a dg-vector of known functions of the data
observation z ∈ Z and the dβ-vector β ∈ B of parameters where the sample
space Z ⊆ R

dz and parameter space B ⊂ R
dβ with dβ ≤ dg. The moment indi-

cator vector g(z, β) constitutes the basis for improved inference in the following
discussion and analysis. In particular, it will be assumed that the true value
β0 taken by β uniquely satisfies the population unconditional moment equality
condition

E[g(z, β0)] = 0, (1.1)

where E[·] denotes expectation taken with respect to the true population prob-
ability law of z. The true parameter value β0 is generally unknown, but can also
be fully or partially known in particular applications.

Models specified in the form of unconditional moment restrictions (1.1) con-
vey partial information about the distribution F z of z and are ubiquitous in
areas such as economics; see, e.g., the monographs Hall (2005) and Mátyás
(1999). Many other commonly used models lead to estimators that can be re-
formulated as solutions to a set of moment restrictions. Clearly, models given
by conditional moment restrictions imply (1.1). Traditionally, such models are
estimated by the generalised method of moments (GMM); see Hansen (1982).
However, the performance of GMM estimators and associated test statistics is
often poor in finite samples, which has lead to the development of a number of
(information-theoretic) alternatives to GMM.

This paper focuses on the class of generalised (G) empirical likelihood (EL)
estimators, which has attractive large sample properties; see, e.g., Newey and
Smith (2004), Smith (1997, 2011), and Parente and Smith (2014) for a re-
cent review. Special cases of GEL include EL, (Owen, 1988, 1990), Qin and
Lawless (1994), exponentially tilting (ET), Corcoran (1998), Kitamura and
Stutzer (1997), Imbens et al. (1998), and continuous-updating (GMM) estima-
tors (CUE), Hansen et al. (1996); see also Euclidean EL, Antoine et al. (2007). Of
these estimators, EL has the attractive property of being Bartlett-correctable;
see Chen and Cui (2007).

When the parameter vector β0 is overidentified by the moment restriction
(1.1), i.e., dβ < dg, these constraints generally carry useful additional informa-
tion about F z. Given a random sample zi, i = 1, . . . , n, of observations on z,
such information is captured by the associated GEL implied probabilities πi,
i = 1, . . . , n, which enable a nonparametric description of F z satisfying the mo-
ment condition (1.1) given by the estimator F z

π (z) =
∑n

i=1 πi1{zi ≤ z}, where
1{·} denotes the indicator function, Back and Brown (1993), Qin and Law-
less (1994). In the absence of the moment information (1.1) or when β0 is just
identified, dβ = dg, F

z
π (z) reduces to the empirical distribution function (EDF)
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F z
n(z) = n−1

∑n
i=1 1{zi ≤ z}. In general, if dβ < dg, F

z
π (z) is a more efficient

estimator of F z than the EDF F z
n(z) reflecting the value of the overidentifying

information in (1.1). This observation suggests therefore that estimation of the
functionals of F z, T (F z), by T (F z

π ) rather than T (F z
n) will be similarly more

efficient. Indeed this is the case when estimating expectations of certain known
functions of z, see Brown and Newey (1998). A similar advantage is apparent for
EL estimation of quantile functions with known β0, e.g., Chen and Qin (1993)
and Zhang (1995), general EL-based quantile estimation, Yuan et al. (2014), and
EL-based kernel estimation of a univariate density function, e.g., Chen (1997)
and Zhang (1998).

The concern of this paper is with efficient kernel estimation of the probability
density (p.d.f.) and distribution (c.d.f.) functions of a scalar-valued function
u(z, β0) of the data observation z with either known or unknown parameter
vector β0. The former case, when β0 is known, is the classical situation briefly
mentioned above. The central case of interest, when β0 is unknown, is estimation
of the p.d.f and c.d.f. of an error term based on the estimated residuals. Such
estimates are routinely computed by practitioners and are used for both visual
diagnostics, e.g., potentially revealing omitted structure such as multimodality
or other features of interest, and formal diagnostic tests, e.g., goodness-of-fit
and tests of parametric assumptions on the error distribution. The importance
of obtaining residual density estimates with good (higher order) properties can
hardly be understated. Yet, as discussed below, simply applying standard kernel
estimators with default bandwidths to estimated residuals may result in an
inconsistent p.d.f. or c.d.f. estimators as further conditions on the kernel function
and bandwidth are generally required. Similar conclusions have been reached
elsewhere in related literature on residual density estimation in nonparametric
regression and other settings; see, e.g., Ahmad (1992), Cheng (2004), Kiwitt
et al. (2008), Györfi and Walk (2012) and the discussion and references in Bott
et al. (2013).

When β0 is known, kernel density and distribution function estimators ex-
ploiting the GEL implied probabilities instead of the uniform EDF n−1 weights
achieve a reduction of higher order variance due to the systematic use of the
extra moment information in (1.1). The efficiency gains are first order asymp-
totically in the c.d.f. case and second order for p.d.f. estimation. In contradis-
tinction, for residual p.d.f. and c.d.f. estimation, such gains will not always be
realised. One can, however, expect efficiency gains from the knowledge that the
mean of residuals is zero.

The outline of the paper is as follows. Section 2 briefly describes GEL estima-
tion and the associated GEL implied probabilities. The main results concerning
p.d.f. and c.d.f. estimators are given in Sections 3 and 4 for both known and
unknown β0 cases. The finite sample performance of the proposed estimators
is evaluated via a simulation study reported in Section 5. Section 6 concludes.
Appendices A: Proofs and B: Examples respectively detail some additional as-
sumptions for and the proofs of the results in the main text and analyse a
number of examples to illustrate the properties of the estimators developed in
the paper.
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2. Generalised empirical likelihood

The GEL class of estimators for β0 is defined in terms of a real valued scalar
carrier function ρ : V �→ R that is concave on an open interval V containing zero
with derivatives ρ(j)(v) = djρ(v)/dvj and ρj = ρ(j)(0), j = 1, 2, . . ., normalised
without loss of generality such that ρ1 = ρ2 = −1. The special cases ρ(v) =
ln(1 − v) for V = (−∞, 1), ρ(v) = − exp(v), and ρ(v) = −v2/2 − v correspond
to EL, ET, and CUE respectively and are all members of the Cressie and Read
(1984) family where ρ(v) = −(1 + γv)(γ+1)/γ/(γ + 1).

Given a random sample zi, i = 1, . . . , n, of size n of observations on the dz-
dimensional vector z, let gi(β) = g(zi, β), gi = gi(β0), Gi(β) = ∂g(zi, β)/∂β

�,
and Gi = Gi(β0), i = 1, . . . , n. Also let Λn(β) = {λ : λ�gi(β) ∈ V , i = 1, . . . , n}.
The GEL criterion Pn(β, λ) is defined by

Pn(β, λ) = n−1∑n
i=1ρ(λ

�gi(β))− ρ(0),

with λ a dg-vector of auxiliary parameters, each element of which corresponding
to an element of the moment function vector g(z, β); for members of the Cressie
and Read (1984) family of power divergence criteria λ is the Lagrange multiplier
vector associated with imposition of the moment restriction (1.1). The GEL

estimator β̂ is the solution to the saddle point problem

β̂ = argmin
β∈B

sup
λ∈Λn(β)

Pn(β, λ). (2.1)

If Appendix A: Assumptions A.1 and A.2 are satisfied, in particular, the pop-
ulation Jacobian G = E[∂g(z, β0)/∂β

�] and variance Ω = E[g(z, β0)g(z, β0)
�]

matrices are full column rank and positive definite respectively, then all GEL
estimators share the same first order large sample properties, see, e.g., Newey

and Smith (2004, Theorems 3.1 and 3.2), i.e., n1/2(β̂ − β0)
d−→ N(0,Σ), achiev-

ing the semiparametric efficiency lower bound Σ = (G�Ω−1G)−1, Chamberlain
(1987, Theorem 2). Furthermore, if the additional Appendix A: Assumption A.3
is imposed, defining H = ΣG�Ω−1 and P = Ω−1 − Ω−1GΣG�Ω−1, the second
order bias of β̂ is E[β̂]− β0 = n−1Hζλ +O(n−2), where

ζλ = −a+ E[GiHgi] + cρ E[gig
�
i Pgi], (2.2)

with a a dg-vector with elements aj = tr(ΣE[∂2gj(z, β0)/∂β∂β
�]), j= 1, . . . , dg,

and cρ = 1 + ρ3/2; see Newey and Smith (2004, Theorem 4.2).

Remark 2.1. The validity of the higher order bias and variance calculations,
and hence the validity of the results reported below can be formally justified
by that of an Edgeworth expansion of order o(n−1) for the distribution of GEL
parameter estimators. If z is continuously distributed, appropriate conditions
may be found in Bhattacharya and Ghosh (1978) for general smooth functions
of sample moments and Kundhi and Rilstone (2012) for Edgeworth expansions
for GEL estimators. If some of the elements of z are discretely distributed,
Jensen (1989) provides appropriate conditions.
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For given β, the auxiliary parameter estimator is defined by

λ(β) = argmax
λ∈Λn(β)

Pn(β, λ).

Whenever the constraint in λ ∈ Λn(β) is not binding, λ(β) solves the first-order
conditions n−1

∑n
i=1 ρ

(1)(λ(β)�gi(β))gi(β) = 0. The GEL implied probabilities
are then

πi(β) =
ρ(1)(λ(β)�gi(β))

n−1
∑n

j=1ρ
(1)(λ(β)�gj(β))

, i = 1, . . . , n.

The sample moment constraint
∑n

i=1 πi(β)gi(β) = 0 holds whenever the first

order conditions for λ(β) hold. In what follows, π̂i = πi(β̂), i = 1, . . . , n, corre-

sponds to the solution λ̂ = λ(β̂), and, if β0 is known, π̃i = πi(β0), i = 1, . . . , n,
with auxiliary parameter estimator λ̃ = λ(β0). The generic notation πi, i =
1, . . . , n, is used whenever the distinction is unnecessary.

Remark 2.2. Properties of the GEL implied probabilities relevant to the sub-
sequent developments are summarised in Appendix A: Lemmas A.1 and A.2.
Although πi(β), i = 1, . . . , n, sum to unity and are positive if πi(β)gi(β) is small
uniformly in i, they are not guaranteed to be non-negative in finite samples.
The shrinkage estimator πε

i = (πi + εn)/
∑n

j=1(πj + εn), i = 1, . . . , n, where
εn = −min[min1≤i≤n πi, 0], see Antoine et al. (2007), Smith (2011), ensures
non-negativity πε

i ≥ 0, i = 1, . . . , n, and
∑n

i=1 π
ε
i = 1. Alternative solutions

relevant to p.d.f. and c.d.f estimation respectively are discussed in Sections 3
and 4.

Remark 2.3. The implied probabilities were given for EL by Owen (1988), for
ET by Kitamura and Stutzer (1997), for quadratic ρ(·) by Back and Brown
(1993), and for the general case in the 1992 working paper version of Brown
and Newey (2002); see also Smith (1997). For any function a(z, β) and GEL

estimator β̂ the implied probabilities can be used to form a semiparametrically
efficient estimator

∑n
i=1 π̂ia(zi, β̂) of E[a(z, β0)] as in Brown and Newey (1998).

3. GEL-based density estimation

Suppose the p.d.f. f(·) of the scalar random variable u = u(z, β0) is of interest,
where the scalar function u : Z × B �→ U ⊆ R is known up to the parameter
vector β0.

Let N denote an open neighbourhood of β0.

Assumption 3.1. For all β ∈ N there exists a function v : Z×B �→ V ⊆ R
dz−1

such that the vector of functions (u(z, β), v(z, β)�)� is a bijection between Z
and U × V .
Remark 3.1. Assumption 3.1 may be restated equivalently as requiring that for
every β ∈ N there exists a bijection between z and some dz-vector w = w(z, β)
such that, given {wj(z, β)}dz

j=2, u(z, β) and w1(z, β) are bijective. That is to say,
z may be solved for uniquely given values for u, v, and β.
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Remark 3.2. A function u(z, β) satisfying Assumption 3.1 may be thought of as
defining a generalised residual in the sense of Cox and Snell (1968) and Loynes

(1969), with ûi = u(zi, β̂), i = 1, . . . , n, the estimated residuals. Of course,
other possibilities of interest are also included, e.g., estimating the density of an
element of z subject to the extra information available in the moment condition
(1.1).

3.1. Known β0

Suppose that ui = u(zi, β0), i = 1, . . . , n, are observed. Then the classical kernel
density estimator for the p.d.f. f of u = u(z, β0) can be employed; viz.

f̃(u) = n−1∑n
i=1kb(u− ui), (3.1)

where kb(x) = k(x/b)/b, k(·) is a kernel function and b = bn > 0 is a bandwidth
sequence; see Rosenblatt (1956) and Parzen (1962). The estimator f̃ (3.1) will
serve as a benchmark for later comparisons.

The properties of f̃ are well known and can be formally established under
different combinations of smoothness and integrability conditions on the kernel
function k and p.d.f. f ; see, e.g., Rao (1983, Section 2.1). A standard set of such
conditions is given in Assumption 3.2 below. If k is square integrable, but not
absolutely integrable, as is the case for the sinc kernel, conditions such as those
in Tsybakov (2009, Theorem 1.5) can be imposed.

Let R(k) =
∫∞
−∞ k(x)2dx for any square integrable function k; the limits of

integration are omitted whenever there is little scope for confusion. Also let
f (j)(u) = djf(u)/duj for any jth order differentiable function f .

Assumption 3.2. (a)(i) sup−∞<x<∞|k(x)| < ∞,
∫
|k(x)|dx < ∞,

∫
k(x)dx =

1, and lim|x|→∞|xk(x)| = 0; (ii) k is a (2r)th order kernel, i.e., an even function
such that, for some r ≥ 1, μ0(k) = 1, μj(k) = 0, j = 1, . . . , 2r − 1, and
μ2r(k) < ∞, where μj(k) =

∫
xjk(x)dx; (iii) R(k) < ∞; (b) f(·) is s times

continuously differentiable and R(f (j)) < ∞, j = 0, 1, . . . , s. (c) as n → ∞,
b → 0 and nb → ∞.

Remark 3.3. If Assumption 3.2(a)(i) holds, then by Appendix A: Lemma A.3,
E[f̃(u)] → f(u) as b → 0 at all points u of continuity of f and if, in addition,
Assumption 3.2(c) holds, then the mean squared error (MSE), MSE[f̃(u)] =
E[(f̃(u)− f(u))2] → 0 as n → ∞; see, e.g., Parzen (1962).

Remark 3.4. Higher order approximations to MSE[f̃(u)] can be obtained if f
is sufficiently smooth. See, e.g. Rao (1983, Theorem 2.1.5), Wand and Jones
(1995, Section 2.8) or Pagan and Ullah (1999, Section 2.4.3). The idea of using
higher order kernels as a bias reduction technique originates at least as far back
as Bartlett (1963).

Let 1 ≤ r < ∞. Suppose that Assumptions 3.2(a)(ii), 3.2(b) with s = 2r+2,
3.2(c) together with μ2r+2(k) < ∞ and

∫
x2k(x)2dx < ∞ hold. Then

E[f̃(u)] = f(u) + (2r)!−1μ2r(k)f
(2r)(u)b2r +O(b2r+2),
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Var[f̃(u)] = (nb)−1R(k)f(u)− n−1f(u)2 +O(n−1b).

Hence, the mean squared error,

MSE[f̃(u)] = (nb)−1R(k)f(u) + (2r)!−2μ2r(k)
2f (2r)(u)2b4r − n−1f(u)2

+O(b4r+2 ∨ n−1b). (3.2)

Remark 3.5. If k is a (2r)th order kernel and Assumption 3.2(b) holds with

s = 2r, the remainder term in E[f̂(u)] is o(b2r). The ∼ n−1 term is kept explicit
with O remainder for reasons that will become apparent below.

The mean integrated squared error (MISE), MISE[f̃ ] = E[
∫
(f̃(u)−f(u))2du],

is a commonly used global measure of performance. The optimal bandwidth is
then defined as that value of b > 0 minimising MISE, or an approximation
thereof. In particular, the asymptotically optimal bandwidth is defined as the
value b∗ minimising the two leading terms in the expansion

MISE[f̃(·; b)] = (nb)−1R(k) + (2r)!−2μ2r(k)
2R(f (2r))b4r − n−1R(f)

+O(b4r+2 ∨ n−1b), (3.3)

i.e., b∗ = cn−1/(4r+1) where c = [(2r)!2R(k)/(4rμ2r(k)
2R(f (2r))]1/(4r+1). The

asymptotically optimal MISE is thereby

MISE[f̃(·; b∗)] = n−4r/(4r+1)c−1R(k)
[
1 + (4r)−1

]
−n−1R(f)+O(n−1−1/(4r+1)).

The kernel density estimator f̃ attains the optimal rate of convergence under
the specified conditions on k and f ; see, e.g., Tsybakov (2009, Section 1.2.1).

Remark 3.6. If k is of order greater than two, it necessarily takes negative
values. Hence f̃ (3.1) itself need not be a density function. Note, however, that
the positive part estimator, f̃+(u) = max[f̃(u), 0] has MSE at most equal to
MSE[f̃(u)]. Further modifications that ensure integration to unity can be applied
as described in Glad et al. (2003).

The GEL-based kernel density estimator incorporates the information em-
bedded in the moment restriction (1.1) replacing the sample EDF weights n−1

in the construction of f̃(u) (3.1) by the implied probabilities π̃i, i = 1, . . . , n;
viz.

f̃ρ(u) =
∑n

i=1π̃ikb(u− ui). (3.4)

Remark 3.7. The GEL-based kernel density estimator f̃ρ(u) (3.4) is the esti-
mator of f(u) obtained from the revised GEL criterion

∑n
i=1[ρ(η(f(u)− kb(u−

ui))+λ�gi(β))−ρ(0)]/n with the implicit moment condition E[kb(u−ui)] = f(u)
and associated auxiliary parameter η; see Smith (2011, Section 3).

Remark 3.8. If the validity of the moment restriction (1.1) is in doubt, a pre-
test can be conducted using the GEL-based criterion paralleling the classical
likelihood ratio test; see, e.g., Kitamura and Stutzer (1997), Imbens et al. (1998)
and Smith (1997, 2011). For example, under the null hypothesis that (1.1) holds
for some unique β0 ∈ B, the normalised GEL criterion (2.1) evaluated at the
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estimated parameters, 2nPn(β̂, λ̂), is asymptotically chi-square distributed with
dg − dβ degrees of freedom. The parametric null hypothesis of known β0 = β0

can be tested at the α level using the critical region {2nPn(β
0, λ̃) ≥ χ2

dβ
(α)}.

To describe the properties of GEL-based kernel p.d.f. estimator f̃ρ(u) (3.4),
the shorthand notation, e.g., E[gi|u] = E[g(z, β0)|{z : u(z, β0) = u}], for condi-
tional expectation given u is adopted.

Theorem 3.1. If Appendix A: Assumptions A.1–A.3 and 3.2(a)(i) and (c) are
satisfied, then f̃ρ(u) = f̃(u)+op(1) for all u such that f(u) < ∞. If, in addition,
Assumption 3.1 is satisfied, then

E[f̃ρ(u)] = E[f̃(u)] + n−1cρ
(
−E[g�i Ω

−1gi|u]
+E[g�i Ω

−1gig
�
i ]Ω

−1 E[gi|u] + dg
)
f(u) + o(n−1), (3.5)

Var[f̃ρ(u)] = Var[f̃(u)]− n−1 E[gi|u]�Ω−1 E[gi|u]f(u)2 + o(n−1). (3.6)

Thus, the estimators f̃ and f̃ρ are asymptotically first-order equivalent, and

the asymptotically optimal bandwidth for f̃ρ is identical to that of f̃ , i.e., b∗.
Whenever cρ = 0, as is the case for GEL with ρ3 = −2, e.g., EL, the n−1 bias

term in (3.5) vanishes. In general, provided the bandwidth does not go to zero
faster than n−1/(2r), and certainly when b = b∗ ∼ n−1/(4r+1), this bias term is
at most third order. Its contribution to MISE is via the integrated squared bias
(ISB),

ISB[f̃ρ] = ISB[f̃ ] + n−1b2rcρ2(2r)!
−1μ2r(k)

∫ (
−E[g�i Ω

−1gi|u]

+E[g�i Ω
−1gig

�
i ]Ω

−1 E[gi|u] + dg
)
f (2r)(u)f(u)du+ o(n−1b2r ∨ n−2),

with the ∼ n−1b2r term generally non-zero and either positive or negative.
With the asymptotically optimal bandwidth, n−1(b∗)2r ∼ n−3/2+1/(8r+2), which
approaches n−3/2 arbitrarily closely as r increases, whereas the leading terms
in MISE[f̃(·; b∗)] become of order arbitrarily close to n−1.

As long as E[gi|u] �= 0, the GEL-based estimator f̃ρ enjoys a second-order
reduction in variance due to the n−1 term in (3.6), which does not depend on
the choice of GEL carrier function ρ(·). Hence

MISE[f̃ρ] = MISE[f̃ ]− n−1
∫
E[gi|u]�Ω−1 E[gi|u]f(u)2du+ o(n−1).

While this reduction is negligible asymptotically, the leading term in MISE[f̃ ]
approaches zero only a little more slowly than n−1. Hence the effect could be
substantial in small samples.

3.2. Unknown β0

Suppose now that β0 is unknown. Then, after substitution of the estimator
ûi = u(zi, β̂) for ui, i = 1, . . . , n, in f̃ and f̃ρ in (3.1) and (3.4), the analogous
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estimators of f(u) are

f̂(u) = n−1∑n
i=1kb(u− ûi), (3.7)

f̂ρ(u) =
∑n

i=1π̂ikb(u− ûi), (3.8)

respectively. Because ui, i = 1, . . . , n, are now not directly observable, additional
restrictions need to be imposed on k and b to describe the behaviour of the
estimation error ûi−ui, i = 1, . . . , n. Assumption 3.3 gives a set of mild sufficient
conditions, see, e.g., Van Ryzin (1969) and Ahmad (1992); similar conditions
have also been considered in, e.g., Cheng (2005) and Kiwitt et al. (2008).

Assumption 3.3. (a) k is Hölder continuous with exponent 0 < τ ≤ 1; (b)
there exists d(z) ≥ 0 with E[d(z)τ ] < ∞ such that, for some 0 < α ≤ 1,
|u(z, β) − u(z, β0)| ≤ d(z)‖β − β0‖α for all z and for all β ∈ N ; (c) b → 0 and
nατ/2b1+τ → ∞ as n → ∞.

The uniform α-Hölder condition Assumption 3.3(b) on u(z, β), also known as
a Lipschitz condition of order α, is an appropriate way to quantify the ‘degree
of continuity’ of u(z, β); see Zygmund (2003, pp.42–45). Many kernels used in
practice are Lipschitz continuous, and hence satisfy Assumption 3.3(a) with
τ = 1. For example, a kernel that satisfies Assumption 3.3(a) for any 0 < τ ≤ γ
but not for γ < τ ≤ 1 is k(x) = (1 + γ)(1 − |x|)γ/2 if |x| ≤ 1 and 0 otherwise,
yielding the Bartlett (triangular) kernel if γ = 1. Assumption 3.3(c) is important
as it prevents the bandwidth from being too small. Intuitively, if b is very small,
the kernel kb(u − ûi) is very narrowly centred around the incorrect value ûi

potentially excluding the true value ui; see, e.g., Silverman (1986, Figure 2.5)
for a generic illustration. Assumption 3.3(c) requires nb4 → ∞ regardless of the
values of τ and α and b = n−1/4 is the fastest rate achievable when α = τ = 1.
Note that the optimal bandwidth b∗ is excluded if [α(4r + 1)− 2]τ < 2.

Under these conditions, Theorem 3.2 establishes that the differences between
the kernel density estimators f̂ (3.7) and f̂ρ (3.8) and their counterparts f̃ (3.1)

and f̃ρ (3.4) based on observable ui, i = 1, . . . , n, are negligible asymptotically.

Theorem 3.2. If Appendix A: Assumptions A.1–A.3 and 3.3 are satisfied,
then f̂(u) = f̃(u) + op(1) and f̂ρ(u) =

∑n
i=1 π̂ikb(u − ui) + op(1) for all u. If,

in addition, Assumption 3.2(a)(i) holds, f̂ρ(u) = f̃(u) + op(1) a.e.

To obtain higher order expansions for the mean and variance of f̂(u) (3.7)

and f̂ρ(u) (3.8) requires a further strengthening of the assumptions. Let∇u(z, β)
and ∇2u(z, β) denote respectively the dβ-vector and dβ × dβ matrix of the first
and second derivatives of u(z, β) with respect to β. Also let ∇ui = ∇u(zi, β0)
and ∇2ui = ∇2u(zi, β0).

Assumption 3.4. (a) k is twice differentiable and k(2) is Hölder continu-
ous with exponent 0 < τ ≤ 1, k, k(1), and k(2) are absolutely integrable;
lim|x|→∞|xsk(s−1)(x)| = 0, s = 1, 2, 3, and

∫
k(x)dx = 1; (b) u(z, β) is twice

differentiable for all β ∈ N , E[‖∇ui‖4] < ∞, E[‖∇2ui‖4] < ∞, and there exists
d(z) ≥ 0 with E[d(z)4] < ∞ such that, for some 0 < α ≤ 1, ‖∇2u(z, β) −
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∇2u(z, β0)‖ ≤ d(z)‖β − β0‖α for all z and for all β ∈ N ; (c) b → 0 as n → ∞,
nτ/2b3+τ → ∞, and nα/2b5/4 → ∞; (d)(i) f is twice differentiable; (ii) E[∇ui|u],
E[∇�uiHgi|u], and E[∇2ui|u] are differentiable in u and E[∇ui∇�ui|u] is
twice differentiable in u; (iii) d{E[∇ui|u]f(u)}/du, d{E[∇�uiHgi|u]f(u)}/du,
d{E[∇2ui|u]f(u)}/du, and d2{E[∇ui∇�ui|u]f(u)}/du2 are absolutely integra-
ble functions of u.

Assumptions 3.4(a)(b) imply Assumptions 3.3(a)(b) hold with α = τ = 1
with the requirement in Assumption 3.3(c) rendered as n1/2b2 → ∞. Note that
Assumption 3.4(a) also implies Assumption 3.2(a)(i). Assumption 3.4(d) im-
poses additional smoothness and integrability conditions on f and u(z, β). As-
sumption 3.4(c) is much stronger than Assumption 3.3(c) requiring nb8 → ∞
regardless of the values of τ and α thereby prohibiting the asymptotically opti-
mal bandwidth b∗ when k is a second order kernel. For r ≥ 2, b∗ is permissible as
long as τ > 6/(4r−1) and α > 5/(8r+2). Note that, if α > 5/16, nτ/2b3+τ → ∞
implies nα/2b5/4 → ∞.

Theorem 3.3. If Appendix A: Assumptions A.1–A.3, 3.1, and 3.4 are satisfied,
then E[f̂(u)] = E[f̃(u)] +n−1δ(u)+ o(n−1) and E[f̂ρ(u)] = E[f̃(u)] +n−1δ(u)+
n−1δρ(u) + o(n−1), where

δ(u) = d{E[∇�uiHgi|u]f(u)}/du− ζ�λ H�[d{E[∇ui|u]f(u)}/du]
+ 1

2 tr(Σ[d
2{E[∇ui∇�ui|u]f(u)}/du2 − d{E[∇2ui|u]f(u)}/du]), (3.9)

δρ(u) = (−cρ E[g
�
i Pgi|u] + cρ(dg − dβ) + ζ�λ P E[gi|u])f(u). (3.10)

Also,

Var[f̂(u)] = Var[f̃(u)] + n−1[d{E[∇ui|u]f(u)}/du]�Σ[d{E[∇ui|u]f(u)}/du]
+ n−12[d{E[∇ui|u]f(u)}/du]�H E[gi|u]f(u) + o(n−1), (3.11)

Var[f̂ρ(u)] = Var[f̂(u)]− n−1 E[gi|u]�P E[gi|u]f(u)2 + o(n−1). (3.12)

Remark 3.9. The general conclusion of Theorem 3.3 for both bias and variance
is identical to that of Theorem 3.1, i.e., the estimation effects of substituting ûi

for ui, i = 1, . . . , n, and the GEL implied probabilities π̂i for π̃i, i = 1, . . . , n,
are both of order n−1. The bias term in f̂ induced by estimation is similar
to that for f̃ in Theorem 3.1 except that P in (3.10) replaces Ω−1 in (3.5)
and two extra terms enter via ζλ, viz. −a and E[GiHgi] in (2.2). These latter
terms appear in the higher order asymptotic bias n−1H(−a + E[GiHgi]) for
the infeasible GEL estimator based on the optimal moment indicator vector
G�Ω−1g(z, β), see Newey and Smith (2004, Theorem 4.2), and are inherited by
all GEL estimators. Unlike Theorem 3.1 for the known β0 case, this term no
longer vanishes for a particular choice of a carrier function ρ. The replacement
of Ω−1 by P represents the loss of information occasioned by the estimation
of β0. In a number of cases, the term E[gi|u]�P E[gi|u] may vanish, see, e.g.,
Appendix B: Example 3. This of course always occurs for an exactly identified
model dg = dβ since π̂i = n−1 and f̂ρ (3.8) and f̂ (3.7) are identical. However, see
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Appendix B: Example 4, in general f̂ρ may still enjoy a second-order reduction
in variance due to the systematic use of overidentifying moment information
(1.1).

The extra bias term δ(u) (3.9) for f̂ρ and those terms appearing in Var[f̂(u)]
(3.11) primarily arise due to the substitution of ûi for ui, i = 1, . . . , n. Appendix
B: Examples 2 and 3 examine these terms in more detail for regression on a con-
stant and GEL with a constant and zero mean condition respectively. Here, al-
though

∫
[d{E[∇ui|u]f(u)}/du]�Σ[d{E[∇ui|u]f(u)}/du]du is non-negative, the

term
∫
[d{E[∇ui|u]f(u)}/du]�H E[gi|u]f(u)du can be negative, as can be the

ISB term due to the additional δ(u) (3.9).

3.3. Bias correction

While the contribution from the n−1 bias terms to MISE is of a lower order than
the contribution from the variance terms, the effect of bias can be substantial
in small and moderate samples, potentially offsetting any reduction in variance.
The direction of the bias cannot of course be known a priori. Hence it may be
advisable to bias-correct the density estimates by estimating and subtracting
the n−1 bias term.

To be more specific, the bias-corrected estimates are defined as f̂ bc(u) =

f̂(u)−n−1δ̂(u) and f̂ bc
ρ (u) = f̂ρ(u)−n−1δ̂(u)−n−1δ̂ρ(u), where δ̂(u) and δ̂ρ(u)

are suitable (asymptotically) unbiased estimators of δ(u) (3.9) and δρ(u) (3.10).
The implied probabilities π̂i, i = 1, . . . , n, can be used to obtain efficient estima-
tors of the component quantities entering δ(u) and δρ(u) with the modifications
described in Glad et al. (2003) applied to ensure that the bias-corrected estimate
is a density.

Remark 3.10. When β0 is known, bias-correction requires the estimation of the
n−1 term in (3.5) unless cρ = 0, i.e., ρ3 = −2.

4. GEL-based distribution function estimation

The results for distribution function estimation parallel those given in Section 3
for density estimation but can be shown to hold under much weaker conditions,
and so are given here separately.

4.1. Known β0

When ui, i = 1, . . . , n, are observed, the c.d.f. F of u(z, β0) can be estimated by

F̃ (u) = n−1∑n
i=1K((u− ui)/b), (4.1)

with K(u) =
∫ u

−∞ k(x)dx; see Nadaraya (1964) and Watson and Leadbetter
(1964). The kernel distribution function estimator (4.1) can be obtained by
integrating (3.1) or motivated as a smoothed version of the EDF.
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Assumption 3.2(a)(i) is sufficient for F̃ to be an asymptotically unbiased and
consistent estimator of F at all continuity points of F if b → 0 as n → ∞. In
addition, if F is continuous then F̃ converges to F uniformly with probability 1
(w.p.1.); see Yamato (1973). If k satisfies Assumption 3.2(a)(ii) with μ2r+2(k) <
∞ for some r ≥ 1, f satisfies Assumption 3.2(b) with s = 2r + 1, and b → 0 as
n → ∞ (Assumption 3.2(c) is not required here), then

E[F̃ (u)] = F (u) + (2r)!−1μ2r(k)f
(2r−1)(u)b2r +O(b2r+2),

Var[F̃ (u)] = n−1F (u)(1− F (u))− n−1bf(u)ψ(k) +O(n−1b2+1{r>1}),

where ψ(k) = 2
∫
xK(x)k(x)dx. Hence

MISE[F̃ (·; b)] = n−1VF − n−1bψ(k) + (2r)!−2μ2r(k)
2R(f (2r−1))b4r

+O(n−1b2+1{r>1} ∨ b4r+2), (4.2)

where VF =
∫
F (u)(1− F (u))du.

Provided ψ(k) > 0, the asymptotically optimal bandwidth minimising the
leading terms in (4.2) is b∗ = ςn−1/(4r−1), where ς = [(2r)!2ψ(k)/(4rμ2r(k)

2 ×
R(f (2r−1)))]1/(4r−1), and the asymptotically optimal MISE is

MISE[F̃ (·; b∗)] = n−1VF − ςψ(k)[1− (4r)−1]n−4r/(4r−1)

+O(n−(4r+1+1{r>1})/(4r−1)).

Remark 4.1. The leading term n−1VF in (4.2) is the integrated variance and,
hence, the MISE of EDF. Thus, whenever ψ(k) > 0 and b approaches zero at
least as fast as n−1/(4r−1), kernel smoothing provides a second order asymptotic
improvement in MISE relative to the EDF. Smoothness of the kernel estimates
and the reduction in MISE are the two main reasons to prefer the kernel dis-
tribution function estimator (4.1) over the EDF. The condition ψ(k) > 0 is
satisfied if k is a symmetric second order kernel, since in this case ψ(k) =∫
K(x)(1 − K(x))dx > 0. Although ψ(k) need not be positive in general, this

property holds for certain classes of kernels, including Gaussian kernels of arbi-
trary order; see Oryshchenko (2019).

Remark 4.2. If k is of order greater than two, K is not monotone, and the
resultant estimates may not themselves be distribution functions. However, if
necessary, the estimates can be corrected by rearrangement; see Chernozhukov
et al. (2009). The MISE of the rearranged estimator can be at most equal to,
and is often strictly smaller than, the MISE of the original estimator.

The modified GEL-based kernel c.d.f. estimator corresponding to f̃ρ (3.4)
which incorporates the information embedded in the moment restrictions (1.1)
is

F̃ρ(u) =
∑n

i=1π̃iK((u− ui)/b). (4.3)

Theorem 4.1. If Appendix A: Assumptions A.1–A.3 and 3.2(a)(i) are satisfied

and b → 0 as n → ∞, then F̃ρ(u) = F̃ (u) + op(1) at all points of continuity of
F . If, in addition, Assumption 3.1 is satisfied, then

E[F̃ρ(u)] = E[F̃ (u)] + n−1cρ
∫ u

−∞
(
−E[g�i Ω

−1gi|t]
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+E[g�i Ω
−1gig

�
i ]Ω

−1 E[gi|t] + dg
)
dF (t) + o(n−1). (4.4)

If also lim|x|→∞|x2k(x)| = 0, then

Var[F̃ρ(u)] = Var[F̃ (u)]− n−1[
∫ u

−∞ E[gi|t]dF (t)]�Ω−1[
∫ u

−∞ E[gi|t]dF (t)]

+ o(n−1b). (4.5)

These results are qualitatively similar to Theorem 3.1, the important dif-
ference being that the reduction in variance is now first-order asymptotically,
whereas the contribution from the n−1 bias term in (4.4) to MISE is of order
n−1b2r. Ceteris paribus, the asymptotically optimal c.d.f. bandwidth converges
to zero at a faster rate than that for density estimation. Hence the additional
bias effect can be expected to be of less importance.

4.2. Unknown β0

When β0 is unknown, the analogues of F̃ and F̃ρ are respectively

F̂ (u) = n−1∑n
i=1K((u− ûi)/b), (4.6)

F̂ρ(u) =
∑n

i=1π̂iK((u− ûi)/b). (4.7)

Theorem 4.2. If Appendix A: Assumptions A.1–A.3 and 3.2(a)(i) are satisfied,
Assumption 3.3(b) holds with τ = 1 for some 0 < α ≤ 1, and b → 0 and

nα/2b → ∞ as n → ∞, then F̂ (u) = F̃ (u) + op(1), F̂ρ(u) = F̃ (u) + op(1), and

F̂ρ(u) =
∑n

i=1 π̂iK((u− ui)/b) + op(1) for all u.

Similar to Theorem 3.2, Theorem 4.2 establishes that the differences between
F̂ (4.6) and F̂ρ (4.7) and their counterparts based on observable ui, i = 1, . . . , n,
are negligible asymptotically. No additional requirements are placed on k beyond
the standard conditions in 3.2(a)(i) and the restriction on the bandwidth is thus
weaker than Assumption 3.3(c).

Higher order expansions similar to those in Theorem 3.3 may be obtained
under the following conditions.

Assumption 4.1. Suppose Assumption 3.4(b) holds. (a) k is differentiable and
k(1) is Hölder continuous with exponent 0 < τ ≤ 1, k and k(1) are absolutely
integrable, lim|x|→∞|x2k(x)| = 0, lim|x|→∞|x2k(1)(x)| = 0, and

∫
k(x)dx =

1; (b) b → 0 as n → ∞, nτ/2b2+τ → ∞, and nα/2b1/4 → ∞; (c) (i) f(u)
and E[∇ui∇�ui|u] are differentiable in u; (ii) d{E[∇ui∇�ui|u]f(u)}/du is an
absolutely integrable function of u.

Theorem 4.3. If Appendix A: Assumptions A.1–A.3, 3.1, and 4.1 are satis-
fied, then as n → ∞, E[F̂ (u)] = E[F̃ (u)] + n−1Δ(u) + o(n−1) and E[F̂ρ(u)] =

E[F̃ (u)] + n−1Δ(u) + n−1Δρ(u) + o(n−1), where

Δ(u) = E[∇�uiHgi|u]f(u)− ζ�λ H� E[∇ui|u]�f(u)



3956 V. Oryshchenko and R. J. Smith

+ 1
2 tr

(
Σ[d{E[∇ui∇�ui|u]f(u)}/du− E[∇2ui|u]f(u)]

)
, (4.8)

Δρ(u) =
∫ u

−∞(−cρ E[g
�
i Pgi|t] + cρ(dg − dβ) + ζ�λ P E[gi|t])dF (t) (4.9)

=
∫ u

−∞δρ(t)dt.

Also,

Var[F̂ (u)] = Var[F̃ (u)] + n−1 E[∇ui|u]�ΣE[∇ui|u]f(u)2

+ 2n−1 E[∇ui|u]�H[
∫ u

−∞ E[gi|t]dF (t)]f(u) + o(n−1), (4.10)

Var[F̂ρ(u)] = Var[F̂ (u)]− n−1[
∫ u

−∞ E[gi|t]dF (t)]�P [
∫ u

−∞ E[gi|t]dF (t)]

+ o(n−1b). (4.11)

If, in addition, d{E[∇ui|u]f(u)}/du is absolutely integrable, the remainder term

of Var[F̂ (u)] is o(n−1b).

Remark 4.3. If δ(u) in Theorem 3.3 is defined, then Δ(u) =
∫ u

−∞ δ(t)dt, but
there is no requirement that Δ(u) is absolutely continuous in Theorem 4.3. Oth-
erwise, the interpretation is exactly the same as in Theorem 3.3. In particular,
the main qualitative conclusions in Appendix B: Examples 3 and 4 still hold.

5. Simulation evidence

5.1. Preliminaries

Consider the inverse hyperbolic sine (IHS) transformation model

arsinh(θ0y)/θ0 = δ0 + γ0x+ u, E[u|x] = 0; (5.1)

here β = (δ, γ, θ)� and z = (y, x)�. The IHS transformation was proposed
in Johnson (1949, p.158) as an alternative to the Box-Cox power transform,
(yλ − 1)/λ, y ≥ 0, and developed in Burbidge et al. (1988) and MacKinnon
and Magee (1990); see also, e.g., Ramirez et al. (1994), Brown et al. (2015) and
the references therein for recent applications in statistics and econometrics, and
Tsai et al. (2017) for comparisons with other transformations. When θ = 0, the
IHS transform is defined as the limiting value, limθ→0 arsinh(θy)/θ = y, which
corresponds to the Box-Cox transform with λ = 1; when θ �= 0, the shapes of the
IHS transforms are similar to those of the Box-Cox with λ < 1. The advantage
of the IHS transform is that it is a smooth function of y ∈ R and θ ∈ R with
values at θ = 0 defined as the corresponding limits.

The infeasible optimal instruments in the IHS transformation model (5.1) are

S(x, β0) = (−1, −x, E[tanh(θ0(u+ δ0 + γ0x))|x]/θ20 − (δ0 + γ0x)/θ0)
�;

see Robinson (1991). The last element of S(x;β0), s3(x;β0), depends on the
conditional distribution of u given x, and, in general, there is little reason to
argue for a particular scalar function of x as a good approximant. For example,
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if u|x ∼ N(0, σ2), based on tanh(x) � 2Φ((π/2)1/2x) − 1 twice, s3(x;β0) is
approximately tanh

(
θ0(δ0 + γ0x)/(πθ

2
0σ

2/2 + 1)1/2
)
/θ20 − (δ0 + γ0x)/θ0 which

suggests the use of odd degree polynomials in x as instruments; other and better
approximations are of course possible.

In all cases the true parameters are δ0 = 1, γ0 = 2 and θ0 = 0.08 which yield
a signal-to-noise ratio of γ2

0/(1+γ2
0) = 4/5 = 0.8 somewhat more stringent than

that of 16/17 = 0.941 in Robinson (1991, Section 7).

5.2. Design

Since the conditional distribution u|x is generally unknown, p.d.f. and c.d.f.
estimators are compared based on moment condition E[g(z, β0)] = 0 (1.1) where

g(z, β) = u(z, β)(1, x, . . . , xdg−1)�,

for dg = 3 (exactly identified), 4 and 5 (over-identified).
Three data generating processes for (x, u) are considered.

Scenario 1. x and u are independent standard normal N(0, 1); cf. Robinson
(1991, Section 7, case (ii)).

Remark 5.1. Scenario 1 satisfies the conditions of Appendix B: Example 3.
Hence IVar[f̂ρ] = IVar[f̂ ] + o(n−1) and the relative integrated variance (IVar)

IVar[f̂ ]/ IVar[f̃ ] = 1− b
4π1/2R(k)

+ b
τ�DτR(k)

∫ (
d{(τ0|u(u)− τ0)f(u)}/du

)2
du+ o(b), (5.2)

where τ0|u(u) = E[tanh(θ0(u+δ0+γ0x))|u]/θ20−(δ0+u)/θ0, τj = E[xjs3(x, β0)],

j = 0, 1, 2, . . ., τ = (τ0, τ1, . . . , τdg−1)
�, and D = M−1 − diag(I2, 0) with M =

{Mij}dg

i,j=1, Mij = E[xi+j−2], i, j = 1, . . . , dg. The term −b/(4π1/2R(k)) does
not depend on the number of moment conditions dg and is the asymptotic
reduction in integrated variance due to the constraint that the mean of u is
zero; see also Appendix B: Example 2. The second term in b is non-negative
and represents the increase in integrated variance due to estimation of γ0 and
θ0; it decreases as the number of moment condition increases; e.g., for dg = 4,
5, 10, 20, τ�Dτ = 9.8092, 9.8514, 9.9857, and 9.9859, respectively.

Scenarios 2 and 3. x and u have joint density fux(u, x) = xfNM (ux)fx(x)
where x is a generalised gamma random variable, Stacy (1962), with param-
eters p = 2, d = ν and a = (2/ν)1/2 for some ν > 4 and fNM is the nor-
mal mixture density with m components, viz. fNM (w) =

∑m
j=1 ωjφσj (w − μj),

−∞ < μj < ∞, σj > 0, j = 1, . . . ,m,
∑m

j=1 ωj = 1, and
∑m

j=1 ωjμj = 0, i.e.,
E[w] = 0. Here φ(x) denotes the standard normal p.d.f. and φσ(x) = φ(x/σ)/σ.
The joint density fux is the density of u = w/x and x where w and x are in-
dependent. The conditional density of u given x is fu|x(u|x) = xfNM (ux) =
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Fig 1. Selected mixture densities (scaled)

∑m
j=1 ωjφσj/x(u − μj/x). Hence, E[u|x] = 0 and E[u2

i |x] =
∑m

j=1 ωj(σ
2
j +

μ2
j )/x

2. The marginal density of u is a mixture of noncentral t densities fu(u) =∑m
j=1 ωjtν(u/σj ; μj/σj)/σj where tν(·; η) is the density of a noncentral t-distri-

buted random variable with ν degrees of freedom and noncentrality parameter
η allowing a wide variety of shapes for fu by varying the mixture fNM . The
skewed unimodal and bimodal densities shown in Figure 1 describe the NM
densities for Scenarios 2 and 3 respectively, i.e., the mixture densities #2 and
#8 of Marron and Wand (1992) centred to have zero mean.

5.3. Kernel functions and bandwidths

Fourth order Gaussian-based kernels, k(x) = (3 − x2)φ(x)/2 and K(x) =
Φ(x) + xφ(x)/2, where Φ(x) =

∫ x

−∞ φ(u)du, are employed; see Wand and Schu-
cany (1990, Section 2) and Oryshchenko (2019) respectively. Thus the choices
of the asymptotically optimal bandwidths (27/4

√
π)1/9R(f (4))−1/9n−1/9 and

(7/2
√
π)1/7R(f (3))−1/7n−1/7 for p.d.f. and c.d.f. estimation respectively are per-

mitted, thereby satisfying Assumptions 3.4(c) and 4.1(b). The practical issue of
estimating the derivatives of f required for the computation of R(f (j)), j = 3, 4,
is ignored and the respective true values used. For the standard normal distribu-
tion these are R(φ(3)) = 15/(16

√
π) and R(φ(4)) = 105/(32

√
π); for the mixture

distributions, approximate values are shown in Figure 1.

5.4. Results

The study compares the performance of GEL-based kernel p.d.f. and c.d.f. esti-
mators. The GEL parameter estimators are CUE, EL and ET, the most notable
special cases of the GEL family. For each estimator the mean and variance
were computed on a grid of 1000 points between −5 and 5 and are reported
as the integrated squared bias and integrated variance relative to those of the
corresponding infeasible estimator based on the true u, i.e., f̃ and F̃ .
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Tables 1, 2 and 3 report results for Scenarios 1, 2, and 3 respectively. The
ISB, IVar and MISE (all ×105) for the infeasible f̃ and F̃ are presented. Rows

ISB, IVar, and MISE are the ISB, IVar, and MISE of f̂ , f̂ρ (F̂ , F̂ρ) relative to

the infeasible f̃ (F̃ ), respectively; row ‘vs dg = 3’ is the MISE of f̂ , f̂ρ (F̂ , F̂ρ)
relative to the corresponding value for dg = 3; row ‘w. vs unw.’ is the MISE of

f̂ρ (F̂ρ) relative to f̂ (F̂ ). Rows MISE, ‘vs dg = 3’, and ‘w. vs unw.’ examine
the significance of the paired t-statistics in a two-sided test for equality of the
respective ISE means, e.g.,

∫
(f̂(u)− f(u))2du; the symbol † indicates that the

p-value is between 0.01 and 0.05 whereas ‡ that it is less than 0.01, and in all
other cases the p-value is greater than 0.05. Values of relative MISE less than 1
are emphasised in bold.

Sample sizes n = 100, 500, 1000, and 2000 are examined.

All computations were carried out in MATLAB; the relevant code and ad-
ditional results, including the properties of GEL estimators, are available from
the first named author upon request. All results are based on 10, 000 random
draws.

5.4.1. Scenario 1

The first ∼ b term in eq. (5.2) is approximately −0.321n−1/9, which for n =
100, 500, 1000, and 2000 is approximately −0.192, −0.161, −0.149, and −0.138
respectively. The second ∼ b term is approximately 0.04728n−1/9 for dg = 4 and
0.04708n−1/9 for dg = 5, which offsets the reduction in variance slightly. The

predicted relative IVar of f̂ and f̂ρ up to order o(b) is thus 0.836, 0.863, 0.873
and 0.882 for n = 100, 500, 1000, and 2000 respectively and is identical within
three digit precision for dg = 4 and 5.

The results reported in Table 1 confirm these predictions. In fact, the reduc-
tion in variance is even larger than expected in small and medium samples due
to the o(b) effects. Furthermore, estimators f̂ and f̂ρ have smaller ISB relative

to f̃ . A comparison of f̂ and f̂ρ between dg = 3 (just-identified) and dg = 4, 5
(over-identified) for moderate and larger sample sizes emphasises further the

contribution of additional moment information. Hence f̂ and f̂ρ enjoy a reduc-
tion in MISE of as much as 21% for n = 100 and 10% for n = 2000 relative
to f̃ . The benefits are even more pronounced for c.d.f. estimation, where the
reduction in MISE can be as much as 56% for n = 100 and around 53% in
moderate samples. There are also small but statistically significant benefits to
re-weighting which are mostly due to the smaller biases of f̂ρ and F̂ρ relative

to f̂ and F̂ at moderate and larger sample sizes. There is some deterioration in
ISB, IVar and, thus, MISE with increases in dg which can be attributed to the
increased importance of outliers.

Finally, while in moderate and large samples the performances of CUE, EL,
and ET are virtually identical, in small samples ET can be unstable with larger
dg.
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Table 1

Performance of GEL-based residual density and distribution function estimators in the IHS
transformation model, arsinh(0.08y)/0.08 = 1 + 2x+ u, in Scenario 1

dg = 3 dg = 4 dg = 5

f̂ F̂ f̂ f̂ρ F̂ F̂ρ f̂ f̂ρ F̂ F̂ρ

n = 100 f̃ : ISB=31.3, IVar=449.0, MISE=480.2; F̃ : ISB=8.9, IVar=402.3, MISE=411.2.
CUE ISB 0.70 3.41 0.13 0.20 0.47 1.12 0.12 0.37 0.56 1.85

IVar 1.29 0.71 0.88 0.88 0.46 0.43 0.87 0.86 0.47 0.42
MISE 1.26 ‡ 0.78 ‡ 0.83 ‡ 0.83 ‡ 0.46 ‡ 0.45 ‡ 0.82 ‡ 0.83 ‡ 0.47 ‡ 0.45 ‡

vs dg = 3 0.66 ‡ 0.66 ‡ 0.60 ‡ 0.58 ‡ 0.65 ‡ 0.66 ‡ 0.61 ‡ 0.59 ‡
w. vs unw. 0.999 0.965 ‡ 1.010 ‡ 0.964 ‡

EL ISB 0.16 0.17 0.56 0.64 0.17 0.20 0.71 0.87
IVar 0.84 0.84 0.45 0.42 0.87 0.89 0.51 0.45
MISE 0.80 ‡ 0.80 ‡ 0.45 ‡ 0.42 ‡ 0.83 ‡ 0.85 ‡ 0.51 ‡ 0.46 ‡

vs dg = 3 0.64 ‡ 0.64 ‡ 0.58 ‡ 0.55 ‡ 0.66 ‡ 0.68 ‡ 0.66 ‡ 0.60 ‡
w. vs unw. 1.001 0.930 ‡ 1.024 0.906 ‡

ET ISB 0.15 0.20 0.55 1.01 0.14 0.34 0.66 1.70
IVar 0.83 0.89 0.43 0.47 0.85 0.86 0.48 0.53
MISE 0.79 ‡ 0.85 ‡ 0.44 ‡ 0.48 ‡ 0.81 ‡ 0.84 ‡ 0.49 ‡ 0.88

vs dg = 3 0.63 ‡ 0.68 ‡ 0.56 ‡ 0.62 ‡ 0.64 ‡ 0.67 ‡ 0.64 ‡ 1.16
w. vs unw. 1.071 † 1.092 1.037 1.789

n = 500 f̃ : ISB=10.0, IVar=119.8, MISE=129.8; F̃ : ISB=1.8, IVar=88.3, MISE=90.2.
CUE ISB 0.37 1.53 0.46 0.36 0.29 0.28 0.40 0.27 0.27 0.33

IVar 0.99 0.61 0.87 0.87 0.46 0.45 0.88 0.88 0.47 0.46
MISE 0.94 ‡ 0.63 ‡ 0.84 ‡ 0.83 ‡ 0.45 ‡ 0.45 ‡ 0.84 ‡ 0.83 ‡ 0.47 ‡ 0.46 ‡

vs dg = 3 0.89 ‡ 0.88 ‡ 0.72 ‡ 0.71 ‡ 0.90 ‡ 0.89 ‡ 0.74 ‡ 0.73 ‡
w. vs unw. 0.991 ‡ 0.988 ‡ 0.988 ‡ 0.986 ‡

EL ISB 0.45 0.45 0.29 0.30 0.41 0.40 0.28 0.29
IVar 0.87 0.87 0.46 0.45 0.88 0.88 0.47 0.46
MISE 0.83 ‡ 0.84 ‡ 0.45 ‡ 0.45 ‡ 0.84 ‡ 0.84 ‡ 0.47 ‡ 0.46 ‡

vs dg = 3 0.89 ‡ 0.89 ‡ 0.72 ‡ 0.72 ‡ 0.89 ‡ 0.90 ‡ 0.74 ‡ 0.73 ‡
w. vs unw. 1.002 ‡ 0.993 ‡ 1.003 † 0.979 ‡

ET ISB 0.45 0.39 0.29 0.28 0.40 0.31 0.27 0.30
IVar 0.87 0.87 0.46 0.45 0.88 0.88 0.47 0.46
MISE 0.83 ‡ 0.83 ‡ 0.45 ‡ 0.45 ‡ 0.84 ‡ 0.83 ‡ 0.46 ‡ 0.46 ‡

vs dg = 3 0.89 ‡ 0.88 ‡ 0.72 ‡ 0.71 ‡ 0.89 ‡ 0.89 ‡ 0.74 ‡ 0.73 ‡
w. vs unw. 0.996 ‡ 0.991 ‡ 0.994 ‡ 0.986 ‡

n = 1000 f̃ : ISB=6.1, IVar=66.1, MISE=72.2; F̃ : ISB=0.9, IVar=45.6, MISE=46.5.
CUE ISB 0.48 1.03 0.62 0.55 0.41 0.33 0.58 0.46 0.36 0.28

IVar 0.99 0.62 0.89 0.89 0.48 0.48 0.90 0.90 0.49 0.49
MISE 0.95 ‡ 0.63 ‡ 0.87 ‡ 0.86 ‡ 0.48 ‡ 0.47 ‡ 0.87 ‡ 0.86 ‡ 0.49 ‡ 0.48 ‡

vs dg = 3 0.91 ‡ 0.91 ‡ 0.76 ‡ 0.75 ‡ 0.92 ‡ 0.91 ‡ 0.78 ‡ 0.77 ‡
w. vs unw. 0.992 ‡ 0.990 ‡ 0.988 ‡ 0.988 ‡

EL ISB 0.62 0.62 0.40 0.40 0.59 0.58 0.37 0.36
IVar 0.89 0.89 0.48 0.48 0.89 0.89 0.49 0.48
MISE 0.86 ‡ 0.86 ‡ 0.48 ‡ 0.48 ‡ 0.87 ‡ 0.87 ‡ 0.49 ‡ 0.48 ‡

vs dg = 3 0.91 ‡ 0.91 ‡ 0.76 ‡ 0.76 ‡ 0.91 ‡ 0.91 ‡ 0.77 ‡ 0.77 ‡
w. vs unw. 1.001 † 0.996 ‡ 1.001 0.989 ‡

ET ISB 0.62 0.58 0.40 0.36 0.58 0.50 0.36 0.30
IVar 0.89 0.89 0.48 0.48 0.89 0.89 0.49 0.48
MISE 0.86 ‡ 0.86 ‡ 0.48 ‡ 0.47 ‡ 0.87 ‡ 0.86 ‡ 0.48 ‡ 0.48 ‡

vs dg = 3 0.91 ‡ 0.91 ‡ 0.76 ‡ 0.76 ‡ 0.91 ‡ 0.91 ‡ 0.77 ‡ 0.76 ‡
w. vs unw. 0.996 ‡ 0.993 ‡ 0.993 ‡ 0.990 ‡

n = 2000 f̃ : ISB=3.5, IVar=36.6, MISE=40.1; F̃ : ISB=0.4, IVar=23.0, MISE=23.5.
CUE ISB 0.55 0.62 0.74 0.69 0.53 0.45 0.71 0.62 0.49 0.37

IVar 1.02 0.65 0.92 0.92 0.52 0.52 0.93 0.93 0.53 0.52
MISE 0.98 ‡ 0.65 ‡ 0.90 ‡ 0.90 ‡ 0.52 ‡ 0.51 ‡ 0.91 ‡ 0.90 ‡ 0.53 ‡ 0.52 ‡

vs dg = 3 0.92 ‡ 0.92 ‡ 0.80 ‡ 0.79 ‡ 0.93 ‡ 0.92 ‡ 0.81 ‡ 0.80 ‡
w. vs unw. 0.994 ‡ 0.994 ‡ 0.990 ‡ 0.992 ‡

EL ISB 0.74 0.74 0.52 0.52 0.71 0.71 0.48 0.48
IVar 0.92 0.92 0.52 0.52 0.92 0.92 0.52 0.52
MISE 0.90 ‡ 0.90 ‡ 0.52 ‡ 0.52 ‡ 0.90 ‡ 0.90 ‡ 0.52 ‡ 0.52 ‡

vs dg = 3 0.92 ‡ 0.92 ‡ 0.80 ‡ 0.80 ‡ 0.92 ‡ 0.93 ‡ 0.81 ‡ 0.80 ‡
w. vs unw. 1.000 0.999 1.001 0.996 ‡

ET ISB 0.74 0.71 0.53 0.48 0.71 0.65 0.49 0.41
IVar 0.92 0.92 0.52 0.52 0.92 0.92 0.52 0.52
MISE 0.90 ‡ 0.90 ‡ 0.52 ‡ 0.52 ‡ 0.90 ‡ 0.90 ‡ 0.52 ‡ 0.52 ‡

vs dg = 3 0.92 ‡ 0.92 ‡ 0.80 ‡ 0.79 ‡ 0.93 ‡ 0.92 ‡ 0.80 ‡ 0.80 ‡
w. vs unw. 0.997 ‡ 0.996 ‡ 0.994 ‡ 0.994 ‡

Notes: see text.
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Table 2

Performance of GEL-based residual density and distribution function estimators in the IHS
transformation model, arsinh(0.08y)/0.08 = 1 + 2x+ u, in Scenario 2

dg = 3 dg = 4 dg = 5

f̂ F̂ f̂ f̂ρ F̂ F̂ρ f̂ f̂ρ F̂ F̂ρ

n = 100 f̃ : ISB=29.3, IVar=822.0, MISE=852.5; F̃ : ISB=3.8, IVar=427.7, MISE=432.5.
CUE ISB 0.73 5.71 0.85 1.13 2.65 5.14 0.99 1.52 3.65 7.65

IVar 1.12 0.75 0.93 0.94 0.54 0.50 0.93 0.94 0.55 0.49
MISE 1.11 ‡ 0.79 ‡ 0.93 ‡ 0.94 ‡ 0.56 ‡ 0.54 ‡ 0.93 ‡ 0.95 ‡ 0.57 ‡ 0.55 ‡

vs dg = 3 0.84 ‡ 0.85 ‡ 0.70 ‡ 0.68 ‡ 0.84 ‡ 0.86 ‡ 0.72 ‡ 0.70 ‡
w. vs unw. 1.013 ‡ 0.963 ‡ 1.026 ‡ 0.966 ‡

EL ISB 0.71 0.78 1.95 2.59 0.70 0.83 1.99 3.03
IVar 0.92 0.93 0.53 0.50 0.93 0.96 0.56 0.51
MISE 0.91 ‡ 0.93 ‡ 0.54 ‡ 0.52 ‡ 0.92 ‡ 0.95 ‡ 0.57 ‡ 0.54 ‡

vs dg = 3 0.82 ‡ 0.84 ‡ 0.68 ‡ 0.66 ‡ 0.83 ‡ 0.86 ‡ 0.72 ‡ 0.68 ‡
w. vs unw. 1.015 ‡ 0.956 ‡ 1.029 ‡ 0.934 ‡

ET ISB 0.77 0.97 2.37 4.19 0.86 1.28 2.99 6.22
IVar 0.91 0.95 0.51 0.59 0.92 0.94 0.55 0.63
MISE 0.90 ‡ 0.95 0.53 ‡ 0.62 ‡ 0.92 ‡ 0.96 0.58 ‡ 0.80

vs dg = 3 0.82 ‡ 0.86 ‡ 0.67 ‡ 0.80 0.83 ‡ 0.87 ‡ 0.73 ‡ 1.03
w. vs unw. 1.054 † 1.174 1.053 ‡ 1.390

n = 500 f̃ : ISB=10.0, IVar=210.2, MISE=220.4; F̃ : ISB=0.8, IVar=89.9, MISE=90.9.
CUE ISB 0.80 4.25 0.88 0.86 0.96 1.36 0.87 0.84 1.15 1.92

IVar 1.08 0.82 0.93 0.93 0.53 0.52 0.93 0.93 0.53 0.51
MISE 1.07 ‡ 0.85 ‡ 0.93 ‡ 0.93 ‡ 0.54 ‡ 0.52 ‡ 0.93 ‡ 0.93 ‡ 0.54 ‡ 0.53 ‡

vs dg = 3 0.87 ‡ 0.87 ‡ 0.63 ‡ 0.62 ‡ 0.87 ‡ 0.87 ‡ 0.63 ‡ 0.62 ‡
w. vs unw. 1.001 0.980 ‡ 1.001 0.980 ‡

EL ISB 0.87 0.89 0.87 0.94 0.84 0.85 0.86 0.98
IVar 0.93 0.98 0.53 0.72 0.93 0.93 0.53 0.52
MISE 0.93 ‡ 0.97 0.53 ‡ 0.72 0.92 ‡ 0.93 ‡ 0.53 ‡ 0.52 ‡

vs dg = 3 0.87 ‡ 0.91 † 0.63 ‡ 0.85 0.87 ‡ 0.87 ‡ 0.63 ‡ 0.62 ‡
w. vs unw. 1.049 1.343 1.005 ‡ 0.978 ‡

ET ISB 0.88 0.87 0.93 1.16 0.85 0.82 1.03 1.50
IVar 0.93 0.93 0.53 0.52 0.92 0.93 0.52 0.51
MISE 0.93 ‡ 0.93 ‡ 0.53 ‡ 0.52 ‡ 0.92 ‡ 0.92 ‡ 0.53 ‡ 0.52 ‡

vs dg = 3 0.87 ‡ 0.87 ‡ 0.63 ‡ 0.62 ‡ 0.86 ‡ 0.87 ‡ 0.62 ‡ 0.61 ‡
w. vs unw. 1.001 ‡ 0.982 ‡ 1.002 ‡ 0.984 ‡

n = 1000 f̃ : ISB=6.5, IVar=115.0, MISE=121.7; F̃ : ISB=0.5, IVar=45.7, MISE=46.3.
CUE ISB 0.84 2.78 0.94 0.92 0.89 0.99 0.91 0.87 0.94 1.19

IVar 1.09 0.81 0.94 0.94 0.54 0.53 0.94 0.94 0.54 0.52
MISE 1.07 ‡ 0.83 ‡ 0.94 ‡ 0.94 ‡ 0.54 ‡ 0.53 ‡ 0.94 ‡ 0.94 ‡ 0.54 ‡ 0.53 ‡

vs dg = 3 0.88 ‡ 0.88 ‡ 0.65 ‡ 0.64 ‡ 0.88 ‡ 0.87 ‡ 0.65 ‡ 0.64 ‡
w. vs unw. 0.999 ‡ 0.982 ‡ 0.999 ‡ 0.980 ‡

EL ISB 0.94 0.95 0.87 0.89 0.92 0.92 0.84 0.88
IVar 0.94 0.94 0.54 0.53 0.94 0.94 0.54 0.53
MISE 0.94 ‡ 0.94 ‡ 0.54 ‡ 0.54 ‡ 0.94 ‡ 0.94 ‡ 0.54 ‡ 0.53 ‡

vs dg = 3 0.88 ‡ 0.88 ‡ 0.65 ‡ 0.64 ‡ 0.87 ‡ 0.88 ‡ 0.65 ‡ 0.64 ‡
w. vs unw. 1.001 ‡ 0.982 ‡ 1.003 ‡ 0.984 ‡

ET ISB 0.94 0.93 0.88 0.93 0.91 0.88 0.89 1.01
IVar 0.94 0.94 0.54 0.53 0.94 0.94 0.53 0.52
MISE 0.94 ‡ 0.94 ‡ 0.54 ‡ 0.53 ‡ 0.94 ‡ 0.94 ‡ 0.54 ‡ 0.53 ‡

vs dg = 3 0.88 ‡ 0.88 ‡ 0.65 ‡ 0.64 ‡ 0.87 ‡ 0.87 ‡ 0.65 ‡ 0.63 ‡
w. vs unw. 1.000 0.982 ‡ 1.000 0.983 ‡

n = 2000 f̃ : ISB=4.2, IVar=64.9, MISE=69.1; F̃ : ISB=0.3, IVar=23.7, MISE=24.0.
CUE ISB 0.93 1.88 0.99 0.97 0.96 0.97 0.96 0.92 0.94 1.01

IVar 1.09 0.81 0.95 0.95 0.55 0.54 0.95 0.95 0.55 0.54
MISE 1.08 ‡ 0.82 ‡ 0.95 ‡ 0.95 ‡ 0.56 ‡ 0.55 ‡ 0.95 ‡ 0.95 ‡ 0.55 ‡ 0.54 ‡

vs dg = 3 0.88 ‡ 0.88 ‡ 0.68 ‡ 0.67 ‡ 0.88 ‡ 0.87 ‡ 0.68 ‡ 0.66 ‡
w. vs unw. 0.999 ‡ 0.983 ‡ 0.998 ‡ 0.979 ‡

EL ISB 0.99 0.99 0.95 0.95 0.97 0.97 0.91 0.93
IVar 0.95 0.95 0.56 0.55 0.95 0.95 0.55 0.54
MISE 0.95 ‡ 0.95 ‡ 0.56 ‡ 0.55 ‡ 0.95 ‡ 0.95 ‡ 0.56 ‡ 0.54 ‡

vs dg = 3 0.88 ‡ 0.88 ‡ 0.68 ‡ 0.67 ‡ 0.88 ‡ 0.88 ‡ 0.68 ‡ 0.66 ‡
w. vs unw. 1.000 0.983 ‡ 1.000 0.978 ‡

ET ISB 0.99 0.98 0.96 0.95 0.95 0.93 0.92 0.94
IVar 0.95 0.95 0.55 0.54 0.95 0.95 0.55 0.54
MISE 0.95 ‡ 0.95 ‡ 0.56 ‡ 0.55 ‡ 0.95 ‡ 0.94 ‡ 0.55 ‡ 0.54 ‡

vs dg = 3 0.88 ‡ 0.88 ‡ 0.68 ‡ 0.67 ‡ 0.87 ‡ 0.87 ‡ 0.67 ‡ 0.66 ‡
w. vs unw. 0.999 ‡ 0.983 ‡ 0.999 ‡ 0.980 ‡

Notes: see text.
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Table 3

Performance of GEL-based residual density and distribution function estimators in the IHS
transformation model, arsinh(0.08y)/0.08 = 1 + 2x+ u, in Scenario 3

dg = 3 dg = 4 dg = 5

f̂ F̂ f̂ f̂ρ F̂ F̂ρ f̂ f̂ρ F̂ F̂ρ

n = 100 f̃ : ISB=23.9, IVar=1546.0, MISE=1570.5; F̃ : ISB=1.3, IVar=485.4, MISE=487.0.
CUE ISB 7.34 41.60 4.25 5.01 14.61 24.59 4.68 6.19 17.12 33.44

IVar 1.19 0.76 1.01 1.01 0.53 0.50 1.01 1.02 0.55 0.50
MISE 1.28 ‡ 0.88 ‡ 1.06 ‡ 1.08 ‡ 0.57 ‡ 0.56 ‡ 1.07 ‡ 1.10 ‡ 0.59 ‡ 0.59 ‡

vs dg = 3 0.82 ‡ 0.84 ‡ 0.65 ‡ 0.65 ‡ 0.83 ‡ 0.86 ‡ 0.67 ‡ 0.68 ‡
w. vs unw. 1.018 ‡ 0.986 ‡ 1.033 ‡ 0.999

EL ISB 4.08 4.08 13.99 15.96 4.28 4.38 13.51 17.07
IVar 0.99 1.01 0.51 0.49 1.00 1.04 0.54 0.51
MISE 1.04 ‡ 1.05 ‡ 0.55 ‡ 0.53 ‡ 1.05 ‡ 1.09 ‡ 0.57 ‡ 0.55 ‡

vs dg = 3 0.81 ‡ 0.82 ‡ 0.62 ‡ 0.61 ‡ 0.82 ‡ 0.85 ‡ 0.65 ‡ 0.64 ‡
w. vs unw. 1.014 ‡ 0.972 ‡ 1.034 ‡ 0.972

ET ISB 4.14 4.71 14.22 22.01 4.53 5.69 14.89 27.85
IVar 0.99 1.01 0.50 0.49 1.00 1.02 0.66 0.84
MISE 1.03 ‡ 1.06 ‡ 0.54 ‡ 0.54 ‡ 1.05 ‡ 1.09 ‡ 0.78 1.91

vs dg = 3 0.81 ‡ 0.83 ‡ 0.62 ‡ 0.62 ‡ 0.82 ‡ 0.85 ‡ 0.90 2.25
w. vs unw. 1.027 ‡ 1.006 1.040 ‡ 2.459

n = 500 f̃ : ISB=9.6, IVar=379.2, MISE=388.9; F̃ : ISB=0.4, IVar=100.3, MISE=100.8.
CUE ISB 2.39 13.99 1.54 1.58 2.61 3.94 1.60 1.69 2.84 5.19

IVar 1.10 0.76 1.00 1.00 0.51 0.50 1.00 1.00 0.51 0.50
MISE 1.13 ‡ 0.81 ‡ 1.01 ‡ 1.01 ‡ 0.52 ‡ 0.51 ‡ 1.01 ‡ 1.02 ‡ 0.52 ‡ 0.51 ‡

vs dg = 3 0.89 ‡ 0.90 ‡ 0.64 ‡ 0.63 ‡ 0.90 ‡ 0.90 ‡ 0.65 ‡ 0.64 ‡
w. vs unw. 1.002 ‡ 0.981 ‡ 1.004 ‡ 0.982 ‡

EL ISB 1.54 1.55 2.55 2.65 1.57 1.59 2.46 2.59
IVar 1.00 1.00 0.51 0.50 1.00 1.07 0.51 0.80
MISE 1.01 ‡ 1.01 ‡ 0.51 ‡ 0.50 ‡ 1.01 ‡ 1.09 0.52 ‡ 0.81

vs dg = 3 0.89 ‡ 0.89 ‡ 0.64 ‡ 0.62 ‡ 0.89 ‡ 0.96 0.64 ‡ 1.00
w. vs unw. 1.002 ‡ 0.979 ‡ 1.074 1.563

ET ISB 1.53 1.56 2.59 3.40 1.58 1.64 2.65 4.11
IVar 1.00 1.00 0.51 0.49 1.00 1.00 0.50 0.49
MISE 1.01 ‡ 1.01 ‡ 0.51 ‡ 0.50 ‡ 1.01 ‡ 1.01 ‡ 0.51 ‡ 0.51 ‡

vs dg = 3 0.89 ‡ 0.89 ‡ 0.64 ‡ 0.62 ‡ 0.89 ‡ 0.90 ‡ 0.64 ‡ 0.63 ‡
w. vs unw. 1.002 ‡ 0.982 ‡ 1.004 ‡ 0.985 ‡

n = 1000 f̃ : ISB=6.6, IVar=206.9, MISE=213.5; F̃ : ISB=0.2, IVar=50.4, MISE=50.6.
CUE ISB 1.86 8.15 1.33 1.34 1.66 2.16 1.37 1.39 1.80 2.79

IVar 1.09 0.74 1.00 1.00 0.51 0.50 1.00 1.00 0.51 0.50
MISE 1.12 ‡ 0.77 ‡ 1.01 ‡ 1.01 ‡ 0.52 ‡ 0.51 ‡ 1.01 ‡ 1.01 ‡ 0.52 ‡ 0.51 ‡

vs dg = 3 0.90 ‡ 0.90 ‡ 0.67 ‡ 0.66 ‡ 0.91 ‡ 0.91 ‡ 0.67 ‡ 0.66 ‡
w. vs unw. 1.001 ‡ 0.980 ‡ 1.001 ‡ 0.978 ‡

EL ISB 1.34 1.35 1.65 1.64 1.36 1.37 1.68 1.74
IVar 1.00 1.13 0.51 1.09 1.00 1.00 0.51 0.50
MISE 1.01 ‡ 1.14 0.52 ‡ 1.09 1.01 ‡ 1.01 ‡ 0.52 ‡ 0.50 ‡

vs dg = 3 0.90 ‡ 1.02 0.67 ‡ 1.41 0.90 ‡ 0.90 ‡ 0.67 ‡ 0.65 ‡
w. vs unw. 1.124 2.108 1.001 † 0.973 ‡

ET ISB 1.34 1.34 1.66 1.91 1.36 1.37 1.76 2.32
IVar 1.00 1.00 0.51 0.50 1.00 1.00 0.51 0.49
MISE 1.01 ‡ 1.01 ‡ 0.51 ‡ 0.50 ‡ 1.01 ‡ 1.01 ‡ 0.51 ‡ 0.50 ‡

vs dg = 3 0.90 ‡ 0.90 ‡ 0.67 ‡ 0.65 ‡ 0.90 ‡ 0.90 ‡ 0.66 ‡ 0.65 ‡
w. vs unw. 1.001 ‡ 0.979 ‡ 1.001 ‡ 0.979 ‡

n = 2000 f̃ : ISB=4.0, IVar=113.2, MISE=117.2; F̃ : ISB=0.1, IVar=25.6, MISE=25.8.
CUE ISB 1.60 4.53 1.24 1.23 1.34 1.54 1.25 1.25 1.41 1.86

IVar 1.10 0.74 1.00 1.00 0.52 0.51 1.00 1.00 0.52 0.51
MISE 1.11 ‡ 0.76 ‡ 1.01 ‡ 1.01 ‡ 0.53 ‡ 0.52 ‡ 1.01 ‡ 1.01 ‡ 0.52 ‡ 0.51 ‡

vs dg = 3 0.91 ‡ 0.91 ‡ 0.69 ‡ 0.68 ‡ 0.91 ‡ 0.91 ‡ 0.69 ‡ 0.67 ‡
w. vs unw. 0.999 ‡ 0.981 ‡ 0.999 ‡ 0.977 ‡

EL ISB 1.25 1.25 1.34 1.35 1.25 1.26 1.36 1.38
IVar 1.00 1.00 0.52 0.51 1.00 1.11 0.52 0.91
MISE 1.01 ‡ 1.01 ‡ 0.53 ‡ 0.52 ‡ 1.01 ‡ 1.12 0.53 ‡ 0.92

vs dg = 3 0.91 ‡ 0.91 ‡ 0.69 ‡ 0.68 ‡ 0.91 ‡ 1.00 0.69 ‡ 1.20
w. vs unw. 0.999 ‡ 0.980 ‡ 1.105 1.743

ET ISB 1.24 1.24 1.34 1.43 1.24 1.25 1.39 1.62
IVar 1.00 1.00 0.52 0.51 1.00 1.00 0.52 0.51
MISE 1.01 ‡ 1.01 ‡ 0.53 ‡ 0.52 ‡ 1.01 ‡ 1.01 ‡ 0.52 ‡ 0.51 ‡

vs dg = 3 0.91 ‡ 0.91 ‡ 0.69 ‡ 0.68 ‡ 0.91 ‡ 0.91 ‡ 0.69 ‡ 0.67 ‡
w. vs unw. 0.999 ‡ 0.980 ‡ 0.999 ‡ 0.977 ‡

Notes: see text.
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5.4.2. Scenarios 2 and 3

Scenarios 2 and 3 with densities of (x, u) which are heavy-tailed and also, e.g.,
skewed and bimodal, illustrate the many difficulties for both GEL estimation
and kernel p.d.f. and c.d.f. estimation which are absent in the relatively benign
Scenario 1.

The performance of CUE in small samples is generally worse than that of
EL and ET. It ranks last by MSE in both scenarios with n = 100 and 500,
except Scenario 3 with n = 100 when ET underperforms. In a number of cases
increasing with dg the optimisation routine for ET failed. Somewhat surprisingly,
although it is known to be sensitive to outliers, EL appears to deliver good
results in the simulation experiments. It ranks first by MSE in Scenario 3 with
dg = 5 and alternates with ET otherwise. These differences become very small
with n = 1, 000 and greater.

The conclusion about the inferior performance of CUE in small samples holds
for CUE-based kernel p.d.f. and c.d.f. estimators as well; see Tables 2 and 3,
in particular, the ISBs of f̂ and f̂ρ with dg = 4, 5 in Table 2. However, the
ranking of EL and ET-based kernel p.d.f. and c.d.f. estimators by MISE does
not always correspond to the ranking of the underlying EL and ET estimators of
β0 by MSE. In particular, the sensitivity of EL to outliers adversely affects the
estimators f̂ρ and F̂ρ via the implied probabilities in Scenario 3 with n = 500
and greater; see Table 3. ET and CUE perform better in those cases.

Unlike Scenario 1, in Scenario 3 none of the feasible kernel density estima-
tors have smaller MISE than their infeasible counterparts for the sample sizes
considered. In Scenario 2, with less complicated distributional features, these
estimators do achieve a reduction in MISE with dg = 4, 5. The same is true for
the feasible kernel c.d.f. estimators in Scenario 2 with dg = 3, 4, 5, and more
often than not in Scenario 3 as well, with the few exceptions mentioned above.
Importantly, it is generally beneficial to increase the number of moment condi-
tions beyond those necessary to identify the parameters except when stability
of GEL estimators of β0 is likely to deteriorate.

Finally, the benefits of re-weighting are present, but not universal, and as
expected, are quite small; cf. Appendix B: Example 4.

6. Summary and conclusions

Large sample results and simulation evidence reported in this paper suggest that
it is generally sensible to apply either standard or re-weighted kernel estimators
to estimate the p.d.f. or c.d.f. of a scalar residual u(z, β0) in a variety of situa-
tions, provided the error associated with the estimation of β0 satisfies some mild
regularity conditions and care is taken to ensure the bandwidth is not too small.
If the assumptions on u(z, β) prove difficult to verify in practice, using fourth or
higher order kernels and the corresponding asymptotically optimal bandwidths
will generally assist with ensuring the appropriate regularity conditions hold.

Incorporating information from overidentifying moment conditions by re-
weighting the estimators using GEL implied probabilities offers efficiency gains
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which are realised in regular situations. However, if the model is highly nonlinear
and the distribution of the data is heavy-tailed or contaminated with outliers,
the methods proposed in this paper, including GEL, should be applied with
some caution in very small samples. Robust hybrid estimators such as exponen-
tially tilted empirical likelihood, see, e.g., Schennach (2007), may prove useful
in these circumstances.

While the results in this paper are presented only for scalar-valued u(z, β),
generalisations to the vector case are relatively straightforward provided an
analogue of the bijection Assumption 3.1 holds.

An issue for future research is the construction of tests for overidentifying
moment conditions or parametric restrictions based on the differences between
the kernel p.d.f. estimators f̂ρ and f̂ or f̃ρ and f̃ for known β0. Test statis-
tics of the Bickel-Rosenblatt type based on the integrated squared difference∫
(f̂ρ(u) − f̂(u))2du, Bickel and Rosenblatt (1973), Fan (1994, 1998), or the

integrated absolute difference, Cao and Lugosi (2005), would be of interest.
Alternatively, Kolmogorov-Smirnov or Cramér-von Mises-type tests could be
constructed based on the differences between kernel c.d.f. estimators.

The practical problem of data-driven bandwidth selection also remains par-
tially open. In a related context, Bott et al. (2013, Theorem 3) show that data-
driven bandwidth selection is generally impossible without restrictions on the
p.d.f. f and the behaviour of the estimation error. Establishing validity of a
cross-validation scheme or other data-driven bandwidth selection methods when
the data is observed with estimation or small measurement errors remains a
challenge for future research.

Appendix A: Proofs

Throughout the Appendix, 0 < C < ∞ and 0 ≤ ω ≤ 1 will denote generic
constants that may be different in different uses. CS, T, and H refer to the
Cauchy-Schwarz, triangle, and Hölder inequalities, respectively with LIE and
WLLN the law of iterated expectations and Khintchine’s i.i.d. weak law of large
numbers.

In addition, int(·) denotes the interior of ·, w.p.(a.)1 with probability (ap-
proaching) 1, and N is an open neighbourhood of β0.

A.1. GEL stochastic expansions

The following identification and regularity conditions are imposed.

Assumption A.1. (a) β0 ∈ B is the unique solution to E[g(z, β)] = 0; (b) B is
compact; (c) g(z, β) is continuous at each β ∈ B w.p.1; (d) E[supβ∈B‖g(z, β)‖2]<
∞; (e) Ω is nonsingular; (f) ρ(v) is twice continuously differentiable in a neigh-
bourhood of zero.

Assumption A.1 is Newey and Smith (2004, Assumption 1) and is sufficient

for the consistency of β̂. Moreover, λ̂ = argmaxλ∈Λn(β̂)
Pn(β̂, λ) exists w.p.a.1
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and λ̂ = Op(n
−1/2); see Newey and Smith (2004, Theorem 3.1).

Let ∇g(z, β) denote the vector of first order partial derivatives of g(z, β) with
respect to β.

Assumption A.2. (a) β0 ∈ int(B); (b) g(z, β) is continuously differentiable for
β ∈ N and E[supβ∈N ‖∇g(z, β)‖] < ∞; (c) rank(G) = dβ .

Assumption A.2 is Newey and Smith (2004, Assumption 2). If Assumptions

A.1 and A.2 hold then n1/2((β̂ − β0)
�, λ̂�)�

d−→ N (0, diag(Σ, P )); see Newey
and Smith (2004, Theorem 3.2).

Let ∇2g(z, β) denote a vector of all distinct second order partial derivatives
with respect to β.

Assumption A.3. (a) E[‖g(z, β0)‖6] < ∞; (b) g(z, β) is twice differentiable for
β ∈ N , E[‖∇g(z, β0)‖4] < ∞, E[‖∇2g(z, β0)‖2] < ∞; (c) there exists d(z) ≥ 0
with E[d(z)2] < ∞ such that ‖∇2g(z, β)−∇2g(z, β0)‖ ≤ d(z)‖β − β0‖ for all z
and β ∈ N ; (d) ρ(v) is four times differentiable with Lipschitz fourth derivative
in a neighbourhood of zero.

Cf. Newey and Smith (2004, Assumption 3).

Write g̃ = n−1
∑n

i=1 gi, G̃ = n−1
∑n

i=1 Gi −G, and Ω̃ = n−1
∑n

i=1 gig
�
i −Ω.

Also let gji = ∂g(zi, β0)/∂βj and Gj
i = ∂2g(zi, β0)/∂βj∂β

�, j = 1, . . . , dβ . From
the proof of Theorem 3.4 in Newey and Smith (2004), GEL estimators satisfy
the following stochastic expansion[

β̂ − β0

λ̂

]
= −

[
H
P

]
g̃ +

[
−Σ H
H� P

]
ζ̃ +Op(n

−3/2), (A.1)

where

ζ̃ =

⎧⎨⎩
[
0 G̃�

G̃ Ω̃

]
− 1

2

dβ∑
j=1

[Hg̃]j

[
0 E[Gj

i ]
�

E[Gj
i ] E[gji g

�
i + gig

j�
i ]

]

−1

2

dg∑
j=1

[P g̃]j

[
E[∂2gij/∂β∂β

�] E[G�
i ejg

�
i + gijG

�
i ]

E[gie
�
j Gi + gijGi] −ρ3E[gijgig

�
i ]

]⎫⎬⎭
[
H
P

]
g̃.

Remark A.1. Write ζ̃ = (ζ̃�β , ζ̃�λ )� partitioned conformably with β and λ. Then

E[ζ̃β ] = 0 and E[ζ̃λ] = ζλ given in eq. (2.2). If β0 is known, the stochastic

expansion for λ̃ is identical to that in eq. (A.1) except H is set to zero and

Ω−1 replaces P , i.e., λ̃ = −Ω−1g̃ + Ω−1ζ̃λ + Op(n
−3/2), where ζ̃λ = Ω̃Ω−1g̃ +

ρ3
∑dβ

j=1[Ω
−1g̃]j E[gijgig

�
i ]Ω

−1g̃/2. Thus, in expectation, the first two terms in

eq. (2.2) are eliminated and E[ζ̃λ] = n−1cρ E[gig
�
i Ω

−1gi].

Remark A.2. When β0 is known, Assumptions A.3(b,c) can be relaxed to g(z, β)
is continuously differentiable for β ∈ N , E[supβ∈N ‖∇g(z, β0)‖] < ∞, and there
exists d(z) ≥ 0 with E[d(z)] < ∞ such that ‖∇g(z, β)−∇g(z, β0)‖ ≤ d(z)‖β −
β0‖ for all z and β ∈ N . The Lipschitz condition in Assumptions A.3(b,c,d) can
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also be relaxed to α-Hölder for some 0 < α ≤ 1 and changing the remainder
terms from O(n−3/2) to O(n−1−α/2).

Remark A.3. The two-step GMM estimator is defined as

β̂GMM = argmin
β∈B

ĝ(β)�Ω̂(β̃)−1ĝ(β),

where β̃ is a
√
n-consistent preliminary estimator of β0. If the preliminary esti-

mator β̃ is first order efficient, i.e., β̃ − β0 = −Hg̃ +Op(n
−1), then, if Assump-

tions A.1–A.3 hold, all GMM estimators β̂GMM admit the same expansion to
order Op(n

−3/2); see Newey and Smith (2004, Section 3). Moreover, defining

λ̂GMM = −Ω̂(β̃)−1ĝ(β̂GMM ), the expansion is[
β̂GMM − β0

λ̂GMM

]
= −

[
H
P

]
g̃ +

[
−Σ H
H� P

]
ζ̃GMM +Op(n

−3/2),

where

ζ̃GMM =

{[
0 G̃�

G̃ Ω̃−
∑dβ

j=1 E[g
j
i g

�
i + gig

j�
i ]e�j Hg̃

]

−1

2

dβ∑
j=1

[Hg̃]j

[
0 E[Gj

i ]
�

E[Gj
i ] 0

]

−1

2

dg∑
j=1

[P g̃]j

[
E[∂2gij/∂β∂β

�] 0
0 0

]⎫⎬⎭
[
H
P

]
g̃.

Writing ζ̃GMM = (ζ̃GMM�
β , ζ̃GMM�

λ )� partitioned conformably with β and

λ, ζGMM
β = E[ζ̃GMM

β ] = E[G�
i Pgi] and ζGMM

λ = E[ζ̃λ] = −a + E[GiHgi] +

E[gig
�
i Pgi]. Hence, the second order bias of β̂GMM , Newey and Smith (2004,

Theorem 4.2), is given by

E[β̂GMM ]− β0 = −n−1ΣζGMM
β + n−1HζGMM

λ +O(n−3/2),

the notable difference with GEL being the additional term −n−1ΣζGMM
β with

the term n−1HζGMM
λ identical to that of CUE.

A.2. Preliminary lemmas

Lemma A.1. If Assumptions A.1–A.3 are satisfied, then

nπ̂i = 1− g�i P g̃− ρ3

2 (g�i P g̃)2 + g�i
[
H�, P

]
ζ̃ + g̃�PGiHg̃+ cρg̃

�P g̃+ op(n
−1)

(A.2)
uniformly i = 1, . . . , n.
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Proof. Let v̂i = λ̂�g(zi, β̂). A third order Taylor expansion of ρ(1)(v̂i) around 0
yields

ρ(1)(v̂i) = −1− v̂i +
ρ3

2 v̂2i +
ρ4

6 v̂3i (1 + op(1)),

noting |v̂i|
p−→ 0 uniformly i = 1, . . . , n by Newey and Smith (2004, Lemma

A1). A Taylor expansion from eq. (A.1) of g(zi, β̂) about β0 yields g(zi, β̂) =
gi−GiHg̃+op(n

−1/2) uniformly i = 1, . . . , n by Owen (1990, Lemma 3). Hence,
substituting, using eq. (A.1),

ρ(1)(v̂i) = −1 + g�i P g̃ − g�i
[
H�, P

]
ζ̃ − g̃�H�G�

i P g̃ + ρ3

2 (g�i P g̃)2 + op(n
−1).

From a similar expansion, using n−1
∑n

i=1 g(zi, β̂) = ΩP g̃+Op(n
−1), eq. (A.1),

and PΩP = P ,

n−1∑n
i=1ρ

(1)(v̂i) = −1− λ̂�ΩP g̃ + ρ3

2 λ̂�Ωλ̂+Op(n
−3/2)

= −1 + cρg̃
�P g̃ +Op(n

−3/2).

Hence, [n−1
∑n

i=1ρ
(1)(v̂i)]

−1 = −1− cρg̃
�P g̃ +Op(n

−3/2) and

nπ̂i = 1−g�i P g̃+g�i
[
H�, P

]
ζ̃+ g̃�H�G�

i P g̃− ρ3

2 (g�i P g̃)2+cρg̃
�P g̃+op(n

−1)

uniformly i = 1, . . . , n. �
Corollary A.1 (Known β0). If Assumptions A.1–A.3 are satisfied, then

nπ̃i = 1− g�i Ω
−1g̃ − ρ3

2 (g�i Ω
−1g̃)2 + g�i Ω

−1ζ̃λ + cρg̃
�Ω−1g̃ + op(n

−1) (A.3)

uniformly i = 1, . . . , n.

Let a(z) denote a real scalar function of z such that E[a(z)2] < ∞. Write
ai = a(zi), i = 1, . . . , n.

Lemma A.2. If Assumptions A.1–A.3 are satisfied, then

E[(nπ̂i−1)ai]=n−1
(
−cρ E[aig

�
i Pgi]+E[aig

�
i ]Pζλ + cρ(dg − dβ) E[ai]

)
+o(n−1)

(A.4)
uniformly i = 1, . . . , n. For i �= j,

E[(nπ̂i − 1)aiaj ] = E[(nπ̂i − 1)ai] E[aj ]− n−1 E[aig
�
i ]P E[gjaj ] +O(n−2),

(A.5)

E[(nπ̂i − 1)(nπ̂j − 1)aiaj ] = n−1 E[aig
�
i ]P E[gjaj ] +O(n−2). (A.6)

Let ā = n−1
∑n

i=1 ai and â =
∑n

i=1 π̂iai. Then,

Var[â] = Var[ā]− n−1 E[aig
�
i ]P E[gjaj ] +O(n−2). (A.7)

Proof. The first result follows from the expansion for π̂i in Lemma A.1. In par-
ticular, noting E[gi] = 0 and E[aiop(n

−1)] = o(n−1) by uniformity of op(n
−1),

then, by independence,
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E[(nπ̂i − 1)ai]

= −n−1 E[aig
�
i Pgi]− ρ3

2 n−1 E[aig
�
i P E[gjg

�
j ]Pgi]

+ E[aig
�
i ]

[
H�, P

]
E[ζ̃] + n−1 tr(E[aiGi]H E[gjg

�
j ]P )

+ cρn
−1 E[ai] tr(E[gjg

�
j ]P ) + o(n−1)

= −n−1cρ E[aig
�
i Pgi] + n−1 E[aig

�
i ]Pζλ + n−1cρ(dg − dβ) E[ai] + o(n−1)

uniformly i = 1, . . . , n, using E[ζ̃] = (0�, n−1ζ�λ )�, PΩP = P , HΩP = 0, and
tr(ΩP ) = dg − dβ . Eqs. (A.5) and (A.6) follow by a similar argument.

Finally note that â − ā = n−1
∑n

i=1(nπ̂i − 1)ai. Hence, Var[â] = Var[ā] +
Var[â− ā] + 2Cov[â− ā, ā]. Now, from above, E[â− ā] = O(n−1). Hence,

Var[â− ā] = Ei �=j [(nπ̂i − 1)(nπ̂j − 1)aiaj ] +O(n−2)

= n−1 E[aig
�
i ]P E[gjaj ] +O(n−2).

Also,

Cov[â− ā, ā] = n−1 E[(nπ̂i − 1)a2i ] + (1− n−1) Ei �=j [(nπ̂i − 1)aiaj ]

− E[(nπ̂i − 1)ai)]E[aj ]

= −n−1 E[aig
�
i ]P E[gjaj ] +O(n−2). �

Corollary A.2 (Known β0). If Assumptions A.1–A.3 are satisfied, then

E[(nπ̃i−1)ai] = n−1cρ
(
−E[g�i Ω

−1giai] + E[g�i Ω
−1gig

�
i ]Ω

−1 E[giai] + dg E[ai]
)

+ o(n−1)
(A.8)

uniformly i = 1, . . . , n. Lemma A.2 remains valid with Ω−1 replacing P .

Repeated use is made of the following lemma; see Bochner (1955, Theorem
1.1.1) and Parzen (1962, Theorem 1A). See also Pagan and Ullah (1999, Ap-
pendix A.2.6).

Lemma A.3. Suppose that f : R �→ R and k : R �→ R are Borel functions
satisfying (a)

∫∞
−∞|f(x)|dx < ∞; (b) sup−∞<x<∞|k(x)| < ∞,

∫∞
−∞|k(x)|dx <

∞, and lim|x|→∞|xk(x)| = 0. Then
∫∞
−∞b−1|k((y−x)/b)||f(x)|dx < ∞ a.e. and

lim
b↓0

|
∫∞
−∞b−1k((y − x)/b)f(x)dx− f(y)

∫∞
−∞k(t)dt| = 0 (A.9)

at every continuity point y of f ; if f is uniformly continuous, then convergence
is uniform. Under the same conditions limb↓0|

∫∞
−∞ b−1k((y − x)/b)rf(x)dx −

f(y)
∫∞
−∞ k(t)rdt| = 0 at every continuity point y of f for any r ≥ 1. If

sup−∞<x<∞|f(x)| < ∞,
∫∞
−∞|k(x)|dx < ∞ is sufficient for (A.9).

Remark A.4. If k is Hölder continuous with exponent 0 < τ ≤ 1 and, thus,
uniformly continuous, and absolutely integrable, then it is bounded.
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A.3. Proofs of theorems

Proof of Theorem 3.1. Write f̃ρ(u) = f̃(u) + n−1
∑n

i=1(nπ̃i − 1)kb(u − ui). By
Corollary A.1 and Owen (1990, Lemma 3), max1≤i≤n|nπ̃i − 1| = op(1). By
Lemma A.3, E[|kb(u − ui)|] < ∞ whenever |f(u)| < ∞ which holds a.e. Thus,
kb(u − ui), i = 1, . . . , n, satisfies the conditions for WLLN. Hence, the first
conclusion follows.

From Assumption 3.2(a)(i), bE[kb(u − ui)
2] < ∞ a.e. By CS, invoking As-

sumptions A.1(e) and A.3(a), E[|gib1/2kb(u − ui)|] < ∞ and E[|g�i Ω−1gib
1/2 ×

kb(u− ui)|] < ∞. Hence, by Corollary A.2, setting ai = b1/2kb(u− ui),

E[(nπ̃i − 1)kb(u− ui)] = n−1cρ{−E[g�i Ω
−1gikb(u− ui)]

+ E[g�i Ω
−1gig

�
i ]Ω

−1 E[gikb(u− ui)]

+ dg E[kb(u− ui)]}+ o(n−1).

Under Assumption 3.2(a)(i), E[kb(u − ui)] = f(u) + o(1). Invoking Assump-
tion 3.1 and the change of variables z �→ (u, v�)�, then, by LIE and Lemma
A.3, E[gikb(u − ui)] =

∫
E[gi|t]f(t)kb(u − t)dt = E[gi|u]f(u) + o(1). Similarly,

E[g�i Ω
−1gikb(u − ui)] = E[g�i Ω

−1gi|u]f(u) + o(1). The final result is a direct
consequence of Lemma A.2 and the same argument. �

Set

δ̂1(u) = n−1∑n
i=1 [kb(u− ûi)− kb(u− ui)] ; (A.10)

δ̂2(u) = n−1∑n
i=1(nπ̂i − 1) [kb(u− ûi)− kb(u− ui)] ; (A.11)

δ̂3(u) = n−1∑n
i=1(nπ̂i − 1)kb(u− ui). (A.12)

Note f̂(u) = f̃(u) + δ̂1(u) and f̂ρ(u) = f̂(u) + δ̂2(u) + δ̂3(u).

Proof of Theorem 3.2. Under Assumptions A.1 and A.2, β̂ ∈ N w.p.a.1 and
n1/2(β̂ − β0) = Op(1). First, by Assumption 3.3(a,b), from eq. (A.10),

|δ̂1(u)| ≤ 1
n

∑n
i=1|kb(u− ûi)− kb(u− ui)| ≤ C

nb1+τ

∑n
i=1|ûi − ui|τ

≤ C
nατ/2b1+τ ‖n1/2(β̂ − β0)‖ατ 1

n

∑n
i=1d(zi)

τ = op(1)

since n−1
∑n

i=1 d(zi)
τ = Op(1) by WLLN and nατ/2b1+τ → ∞ from Assumption

3.3(c). Next, max1≤i≤n|nπ̂i−1| = op(1) by Lemma A.1 and Owen (1990, Lemma
3), from eq. (A.11),

|δ̂2(u)| ≤ 1
n

∑n
i=1|(nπ̂i − 1) [kb(u− ûi)− kb(u− ui)]|

≤ C
nατ/2b1+τ ‖n1/2(β̂ − β0)‖ατ ( max

1≤i≤n
|nπ̂i − 1|) 1n

∑n
i=1d(zi)

τ = op(1).

Hence, the first conclusion follows. The final result follows from eq. (A.12) by
noting that also

|δ̂3(u)| ≤ 1
n

∑n
i=1|(nπ̂i−1)kb(u−ui)| ≤ ( max

1≤i≤n
|nπ̂i−1|) 1n

∑n
i=1|kb(u−ui)| = op(1)

by WLLN since E[|kb(u− ui)|] < ∞ a.e. by Lemma A.3. �
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Proof of Theorem 3.3. Preliminaries. From a second order Taylor expansion
around β0,

kb(u− ûi) = kb(u− ui)− k
(1)
b (u− ui)∇�ui(β̂ − β0)

+ 1
2 (β̂ − β0)

�[k
(2)
b (u− ūi)∇ūi∇�ūi − k

(1)
b (u− ūi)∇2ūi](β̂ − β0),

where k
(j)
b (x) = k(j)(x/b)/bj+1, j = 1, 2, and ūi = u(zi, β̄), i = 1, . . . , n, with β̄

on the line segment joining β̂ and β0, with ∇ūi and ∇2ūi, i = 1, . . . , n, defined
analogously. Note that ‖β̄ − β0‖ ≤ ‖β̂ − β0‖ = Op(n

−1/2). Assumption 3.4(b)
and twice differentiability of u(z, β) for β ∈ N implies there exist d0(z) ≥ 0
with E[d0(z)

4] < ∞ and d1(z) ≥ 0 with E[d1(z)
4] < ∞ such that |u(z, β) −

u(z, β0)| ≤ d0(z)‖β − β0‖ and ‖∇u(z, β) − ∇u(z, β0)‖ ≤ d1(z)‖β − β0‖ for all

z and β ∈ N . Thus, by T, ‖∇ūi∇�ūi −∇ui∇�ui‖ ≤ 2d1(zi)‖∇ui‖‖β̂ − β0‖ +
d1(zi)

2‖β̂− β0‖2. By Owen (1990, Lemma 3), max1≤i≤n d1(zi)
2 = op(n

1/2) and
max1≤i≤n d1(zi)‖∇ui‖ = op(n

1/2). Hence, ‖∇ūi∇�ūi − ∇ui∇�ui‖ ≤
n−1/2[d1(zi)‖∇ui‖+op(1)]Op(1). By CS, from Assumption 3.4(b), for 0 < τ ≤ 1,
E[d0(zi)

τ‖∇ui‖2] < ∞ and E[d1(zi)
2‖∇ui‖2] < ∞. Thus, E[|b−1/2k(2)((u −

ui)/b)|d1(zi)‖∇ui‖] < ∞ since E[b−1k(2)((u − ui)/b)
2] < ∞ also by CS and

using Lemma A.3. Hence, by T, and noting nτ/2b3+τ → ∞, 0 < τ ≤ 1, from
Assumption 3.4(c),

‖ 1
n

∑n
i=1(k

(2)
b (u− ūi)∇ūi∇�ūi − k

(2)
b (u− ui)∇ui∇�ui)‖

≤ C
nτ/2b3+τ ‖n1/2(β̂ − β0)‖τ 1

n

∑n
i=1d0(zi)

τ‖∇ui‖2

+ 1
n

∑n
i=1

[
1

n1/2b5/2
|b−1/2k(2)((u− ui)/b)|+ op(1)

nτ/2b3+τ

]
× [d1(zi)‖∇ui‖+ op(1)]Op(1)

= op(1).

Assumption 3.4(a) implies k(1) is Lipschitz, and hence, invoking Assump-

tion 3.4(b), for all mean values β̄ between β̂ and β0, |k(1)b (u − ūi) − k
(1)
b (u −

ui)| ≤ b−3Cd0(zi)‖β̂ − β0‖ w.p.a.1. By Assumption 3.4(a) and Lemma A.3,
E[b−1|k(1)((u − ui)/b)|4/3] < ∞ a.e., and as E[d(zi)

4] < ∞, E[|b−3/4k(1)((u −
ui)/b)|d(zi)] < ∞ using H with exponents 4/3 and 4. Therefore, by the same
argument as above,

‖ 1
n

∑n
i=1(k

(1)
b (u− ūi)∇2ūi − k

(1)
b (u− ui)∇2ui)‖

≤ C
n1/2b3

‖n1/2(β̂ − β0)‖ 1
n

∑n
i=1d0(zi)‖∇2ui‖

+ 1
nα/2b5/4

‖n1/2(β̂ − β0)‖α 1
n

∑n
i=1

[
|b−3/4k(1)((u− ui)/b)|+

C
n1/2b7/4

d0(zi)‖n1/2(β̂ − β0)‖
]
d(zi)

= op(1).

Using expansion eq. (A.1) and Lemma A.1 eq. (A.2), from eq. (A.10),

δ̂1(u) =
1
n

∑n
i=1k

(1)
b (u− ui)∇�uiHg̃ − 1

n

∑n
i=1k

(1)
b (u− ui)∇�ui [−Σ, H] ζ̃



Improved density and CDF estimation 3971

+ 1
2 g̃

�H� 1
n

∑n
i=1[k

(2)
b (u− ui)∇ui∇�ui − k

(1)
b (u− ui)∇2ui]Hg̃

+ op(n
−1), (A.13)

from eq. (A.11),

δ̂2(u) = − 1
n

∑n
i=1k

(1)
b (u− ui)∇�uiHg̃g̃�Pgi + op(n

−1), (A.14)

and, from eq. (A.12),

δ̂3(u) =
1
n

∑n
i=1{−g�i P g̃ − ρ3

2 (g�i P g̃)2 + g�i
[
H�, P

]
ζ̃ + g̃�PGiHg̃

+ cρg̃
�P g̃}kb(u− ui) + op(n

−1).
(A.15)

Expectation. Since HΩH� = Σ, from eq. (A.13),

E[δ̂1(u)] = n−1 E[k
(1)
b (u− ui)∇�uiHgi]− n−1 E[k

(1)
b (u− ui)∇�ui]Hζλ

+ 1
2n

−1 tr
(
ΣE[k

(2)
b (u− ui)∇ui∇�ui − k

(1)
b (u− ui)∇2ui]

)
+o(n−1).

Assumption 3.4(a) states lim|x|→∞|x2k(1)(x)|= 0 and implies that
∫
k(1)(x)dx =

0,
∫
xk(1)(x)dx = −1, and xk(1)(x) satisfies the hypotheses of Lemma A.3, i.e.,

it is bounded and absolutely integrable. Thus, invoking Assumption 3.4(d), by
the mean value theorem and Lemma A.3,

E[k
(1)
b (u− ui)∇ui] =

1
b

∫
E[∇ui|u− bt]f(u− bt)k(1)(t)dt

= 1
b E[∇ui|u]f(u)

∫
k(1)(t)dt

−
∫
(d{E[∇ui|u− ωbt]f(u− ωbt)}/du)tk(1)(t)dt

= d{E[∇ui|u]f(u)}/du+ o(1). (A.16)

Similarly, E[k
(1)
b (u − ui)∇�uiHgi] = d{E[∇�uiHgi|u]f(u)}/du + o(1) and

E[k
(1)
b (u − ui)∇2ui] = d{E[∇2ui|u]f(u)}/du + o(1). Furthermore, Assumption

3.4(a) also implies that
∫
k(2)(x)dx = 0,

∫
xk(2)(x)dx = 0,

∫
x2k(2)(x)dx = 2,

and x2k(2)(x) satisfies the hypotheses of Lemma A.3. Thus, by a second order
Taylor expansion and a similar argument to eq. (A.16),

E[k
(2)
b (u− ui)∇ui∇�ui]

= 1
b2

∫
E[∇ui∇�ui|u− bt]f(u− bt)k(2)(t)dt

= 1
b2 E[∇ui∇�ui|u]f(u)

∫
k(2)(t)dt

− 1
bd{E[∇ui∇�ui|u]f(u)}/du

∫
tk(2)(t)dt

+ 1
2

∫
(d2{E[∇ui∇�ui|u− ωbt]f(u− ωbt)}/du2)t2k(2)(t)dt

= d2{E[∇ui∇�ui|u]f(u)}/du2 + o(1).
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Since HΩP = 0, from eq. (A.14), E[δ̂2(u)] = o(n−1). By Lemma A.2 eq.

(A.4) and the same argument used in the proof of Theorem 3.1, E[δ̂3(u)] =
n−1{−cρ E[g

�
i Pgi|u] + E[gi|u]�Pζλ + cρ(dg − dβ)}f(u) + o(n−1).

Variance. Since E[δ̂1(u)] = O(n−1), from eq. (A.13),

Var[δ̂1(u)]

= n−2∑n
i=1

∑n
j=1 E[k

(1)
b (u− ui)∇�uiHg̃g̃�H�∇ujk

(1)
b (u− uj)] + o(n−1)

= n−1[d{E[∇ui|u]f(u)}/du]�Σ[d{E[∇ui|u]f(u)}/du] + o(n−1).

Similarly, noting E[δ̂2(u)] = o(n−1), from Lemma A.2, it is straightforward

to verify that Var[δ̂2(u)] = o(n−1). Furthermore, also using Lemma A.2, as

E[δ̂3(u)] = O(n−1) and E[kb(u − ui)gi] = E[gi|u]f(u), Var[δ̂3(u)] =
n−1 E[gi|u]�P E[gi|u]f(u)2 + o(n−1). It is straightforward to verify that

Cov[δ̂1, δ̂2] = o(n−1), recalling HΩP = 0,

Cov[δ̂1(u), δ̂3(u)]

= −n−2∑n
i=1

∑n
j=1 E[k

(1)
b (u−ui)∇�uiHg̃g̃�Pgjkb(u−uj)]+O(n−2)

= O(n−2),

Cov[δ̂1(u), f̃(u)] = n−1 E[k
(1)
b (u− ui)∇�ui]H E[gjkb(u− uj)] + o(n−1)

= n−1[d{E[∇ui|u]f(u)}/du]�H E[gi|u]f(u) + o(n−1),

Cov[δ̂2(u), δ̂3(u)] = o(n−1), Cov[δ̂2(u), f̃(u)] = o(n−1), noting again HΩP = 0,
and finally,

Cov[δ̂3(u), f̃(u)] = −n−1 E[gi|u]�P E[gi|u]f(u)2 + o(n−1).

Combining these results gives eqs. (3.10)–(3.12). �
Proof of Theorem 4.1. Since limx→−∞ K(x) = 0 and limx→∞ K(x) = 1, we
have

∫
K(x)k(x)dx = 1/2, and

∫
|K(x)k(x)|dx < ∞, E[K((u−ui)/b)] = F (u)+∫

k(t)[F (u− bt)− F (u)]dt and E[K((u− ui)/b)
2] = F (u) + 2

∫
K(t)k(t)[F (u−

bt) − F (u)]dt. F as a c.d.f. is bounded and hence E[K((u − ui)/b)
2] < ∞, and

E[K((u− ui)/b)] = F (u) + o(1) and E[K((u− ui)/b)
2] = F (u) + o(1) as b → 0

and at all points of continuity of F . Therefore, cf. the proof of Theorem 3.1,
|F̃ρ(u)− F̃ (u)| = op(1).

Equation (4.4) follows by Corollary A.2 with ai = K((u−ui)/b), i = 1, . . . , n.
Assumptions 3.2(a)(i) and lim|x|→∞|x2k(x)| = 0 imply that xk(x) satisfies the
conditions of Lemma A.3. Since

∫
xk(x) = 0 and E[|E[gi|u]|] < ∞, integration

by parts and an application of the mean value theorem give

E[giK((u− ui)/b)]

=
∫∞
−∞K((u− s)/b) E[gi|s]dF (s)
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=
[
K((u− s)/b)

∫ s

−∞ E[gi|t]dF (t)
]∞
−∞

+
∫ u

−∞ E[gi|t]dF (t)− b
∫∞
−∞(E[gi|u− ωbt]f(u− ωbt))tk(t)dt

=
∫ u

−∞ E[gi|t]dF (t) + o(b). (A.17)

Similarly, E[g�i Ω
−1giK((u−ui)/b)] =

∫ u

−∞ E[g�i Ω
−1gi|t]dF (t). Eq. (4.5) follows

by Corollary A.2 and eq. (A.17). �
Set

Δ̂1(u) = n−1∑n
i=1[K((u− ûi)/b)−K((u− ui)/b)]; (A.18)

Δ̂2(u) = n−1∑n
i=1(nπ̂i − 1)[K((u− ûi)/b)−K((u− ui)/b)]; (A.19)

Δ̂3(u) = n−1∑n
i=1(nπ̂i − 1)K((u− ui)/b). (A.20)

Note F̂ (u) = F̃ (u) + Δ̂1(u) and F̂ρ(u) = F̂ (u) + Δ̂2(u) + Δ̂3(u).

Proof of Theorem 4.2. Since k is bounded, K is Lipschitz continuous and, by
the proof of Theorem 4.1, E[|K((u−ui)/b)|] < ∞ for all u. Then, as in the proof
of Theorem 3.2, invoking Assumptions A.1–A.3 and 3.3(b), from eqs. (A.18)–
(A.20),

|Δ̂1(u)| ≤ C
nα/2b

‖n1/2(β̂ − β0)‖α 1
n

∑n
i=1d(zi) = op(1);

|Δ̂2(u)| ≤ ( max
1≤i≤n

|nπ̂i − 1|) C
nα/2b

‖n1/2(β̂ − β0)‖α 1
n

∑n
i=1d(zi) = op(1);

|Δ̂3(u)| ≤ ( max
1≤i≤n

|nπ̂i − 1|) 1n
∑n

i=1|K((u− ui)/b)| = op(1). �
Proof of Theorem 4.3. Preliminaries. From a second order Taylor expansion
around β0,

K((u− ûi)/b) = K((u− ui)/b)− kb(u− ui)∇�ui(β̂ − β0)

+ 1
2 (β̂−β0)

�[k
(1)
b (u− ūi)∇ūi∇�ūi − kb(u− ūi)∇2ūi](β̂ − β0),

where ūi = u(zi, β̄), i = 1, . . . , n, with β̄ on the line segment joining β̂ and β0;
∇ūi and ∇2ūi, i = 1, . . . , n, are defined analogously. By the same argument as in
the proof of Theorem 3.3, noting that Assumption 4.1(a) implies k is Lipschitz
and nb6 → ∞ as nτ/2b2+τ → ∞, invoking Assumption 3.4(b),

‖ 1
n

∑n
i=1(k

(1)
b (u− ūi)∇ūi∇�ūi − k

(1)
b (u− ui)∇ui∇�ui)‖

≤ C
nτ/2b2+τ ‖n1/2(β̂ − β0)‖τ 1

n

∑n
i=1d0(zi)

τ‖∇ui‖2

+ 1
n

n∑
i=1

[
1

n1/2b3/2
|b−1/2k(1)((u− ui)/b)|+ op(1)

nτ/2b2+τ

]
× [d1(zi)‖∇ui‖+ op(1)]Op(1)

= op(1)
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and

‖ 1
n

∑n
i=1(kb(u− ūi)∇2ūi − kb(u− ui)∇2ui)‖

≤ C
n1/2b2

‖n1/2(β̂ − β0)‖ 1
n

∑n
i=1d0(zi)‖∇2ui‖

+ 1
nα/2b1/4

‖n1/2(β̂ − β0)‖α 1
n

∑n
i=1

[
|b−3/4k((u− ui)/b)|

+ C
n1/2b7/4

d0(zi)‖n1/2(β̂ − β0)‖
]
d(zi)

= op(1).

Therefore, using expansion eq. (A.1) and Lemma A.1,

Δ̂1(u) = n−1∑n
i=1kb(u− ui)∇�uiHg̃ − n−1∑n

i=1kb(u− ui)∇�ui [−Σ, H] ζ̃

+ 1
2 g̃

�H�n−1∑n
i=1[k

(1)
b (u− ui)∇ui∇�ui − kb(u− ui)∇2ui]Hg̃

+ op(n
−1), (A.21)

Δ̂2(u) = −n−1∑n
i=1kb(u− ui)∇�uiHg̃g̃�Pgi +Op(n

−3/2), (A.22)

Δ̂3(u) = n−1∑n
i=1[−g�i P g̃ − ρ3

2 (g�i P g̃)2 + g�i
[
H�, P

]
ζ̃ + g̃�PGiHg̃

+ cρg̃
�P g̃]K((u− ui)/b) + op(n

−1). (A.23)

Expectation. Similarly to the proof of Theorem 3.3, from eq. (A.21),

E[Δ̂1(u)] = n−1 E[kb(u− ui)∇�uiHgi]− n−1 E[kb(u− ui)∇�ui]Hζλ

+ 1
2n

−1 tr
(
ΣE[k

(1)
b (u− ui)∇ui∇�ui − kb(u− ui)∇2ui]

)
+ o(n−1).

Assumption 4.1(a) implies k(x) satisfies the hypotheses of Lemma A.3. Hence
E[kb(u − ui)∇ui] = E[∇ui|u]f(u) + o(1), E[kb(u − ui)∇�uiHgi] =
E[∇�uiHgi|u]f(u) + o(1), and E[kb(u − ui)∇2ui] = E[∇2ui|u]f(u) + o(1). As-
sumption 4.1(a) also implies xk(1)(x) satisfies the hypotheses of Lemma A.3.

Hence, by the mean value theorem as in eq. (A.16), E[k
(1)
b (u− ui)∇ui∇�ui] =

d{E[∇ui∇�ui|u]f(u)}/du+ o(1). Therefore, E[Δ̂1(u)] = n−1Δ(u) + o(n−1) as
required.

Likewise, as in the proof of Theorem 3.3, from eq. (A.22), E[Δ̂2(u)] = o(n−1).

Finally, by Lemma A.2 and the proof of Theorem 4.1, E[Δ̂3(u)] = n−1Δρ(u) +
o(n−1).

Variance. Using expansions eqs. (A.21)–(A.23), Cov[Δ̂1(u), Δ̂2(u)], Cov[Δ̂1(u),

Δ̂3(u)], Cov[Δ̂2(u), Δ̂3(u)], Cov[F̃ (u), Δ̂2(u)], and Var[Δ̂2(u)] are all O(n−2).
Also,

Var[Δ̂1(u)] = n−1 E[kb(u− ui)∇ui]
�ΣE[kb(u− uj)∇uj ] +O(n−2),

Cov[F̃ (u), Δ̂1(u)] = n−1 E[kb(u− ui)∇ui]
�H E[gjK((u− uj)/b)] + o(n−3/2),

Var[Δ̂3(u)] = n−1 E[giK((u− ui)/b)]
�P E[giK((u− ui)/b)] +O(n−2),
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Cov[F̃ (u), Δ̂3(u)] = −n−1 E[giK((u− ui)/b)]
�P E[giK((u− ui)/b)] +O(n−2).

Eqs. (4.10) and (4.11) then follow immediately using eq. (A.17) and E[kb(u −
ui)∇ui] = E[∇ui|u]f(u)+ o(1). If d{E[∇ui|u]f(u)}/du is absolutely integrable,
then, using Lemma A.3, E[kb(u − ui)∇ui] = E[∇ui|u]f(u) − b

∫
(d{E[∇ui|u −

ωbt]f(u− ωbt)}/du)tk(t)dt = E[∇ui|u]f(u) + o(b). �

Appendix B: Examples

Example 1. u Not a Function of β
When u = u(z) is a function of z but not of β, ui, i = 1, . . . , n, are of course

observable. Hence the estimators f̃ eq. (3.1) and f̂ eq. (3.7) are identical and

the terms δ̂1 and δ̂2 in the proof of Theorem 3.3 are zero. The density estimators
f̃ρ eq. (3.4) and f̂ρ eq. (3.8) use different implied probabilities, π̃i versus π̂i, i =
1, . . . , n. Thus, Theorem 3.1 with known β0 is unchanged whereas, in Theorem
3.3 with estimated β0, E[f̂ρ(u)] = E[f̃(u)]+n−1δρ(u)+o(n−1) with δρ(u) defined

in eq. (3.10). Eq. (3.12) also holds with f̃ replacing f̂ .
Classical examples, e.g., either fully or partially known mean, variance, or

third moment of u, are included here. For example, symmetry may be imposed
by the moment condition that the third moment around an unknown mean is
known to be zero.

The situation in which interest concerns the density of u(z1), say, but the
remaining dz − 1 variates z2 satisfy moment conditions E[g(z2, β0)] = 0 is also
permitted. Provided u(z1) and g(z2, β0) are not independent, GEL-based es-
timators for f will generally enjoy a reduction in variance due to the extra
information from the moment condition E[g(z2, β0)] = 0.

Example 2. Regression on a Constant
To explain the method behind the proof of Theorem 3.3 and to provide the
background for Example 3 below, the estimation of the density of the residual u
from a regression on a constant is examined, viz., y = β0+u, with β0 estimated
by the sample average β̂ = ȳ = n−1

∑n
i=1 yi = β0 + ū. The estimated residuals

are ûi = yi − β̂ = ui − ū, i = 1, . . . , n. If Assumption 3.4(a) holds, f̂(u) =

f̃(u) + δ̂1(u), where, for some 0 ≤ ω ≤ 1,

δ̂1(u) = n−1∑n
i=1k

(1)
b (u− ui)ū

+ 1
2n

−1∑n
i=1k

(2)
b (u− ui)ū

2

+ 1
2n

−1∑n
i=1[k

(2)
b (u− ui + ωū)− k

(2)
b (u− ui)]ū

2.

By Hölder continuity of k(2), for some 0 < C < ∞, |k(2)b (u − ui + ωū) −
k
(2)
b (u − ui)| ≤ C|n1/2ū|τ/nτ/2b3+τ → 0 in probability if nτ/2b3+τ → ∞, and

in mean square if E[u4] < ∞. Furthermore, for some ε > 0, n(1−ε)/2ū2 is es-
sentially bounded w.p.1 as n → ∞. To see this, suppose E[X2

n] < ∞. Then,
for any ε > 0 and 0 < B < ∞, by the Chebyshev inequality,

∑∞
n=1 P (|Xn| ≥
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n(1+ε)/2B) ≤ E[X2
n]
∑∞

n=1 n
−(1+ε)/B2 < ∞. Thus, by the first Borel-Cantelli

Lemma, P (n−(1+ε)/2|Xn| ≥ B i.o.) = 0, i.e., n−(1+ε)/2|Xn| is essentially
bounded w.p.1 as n → ∞. Since E[u4] < ∞ by assumption, for some ε > 0,
however small, n(1−ε)/2ū2 = n−(1+ε)/2(n1/2ū)2 is essentially bounded w.p.1 as
n → ∞. Next,

E[(n−1∑n
i=1[k

(2)
b (u− ui + ωū)− k

(2)
b (u− ui)])

2ū4]

≤ E[( max
1≤i≤n

|k(2)b (u− ui + ωū)− k
(2)
b (u− ui)|)2ū4]

≤ C2(nτ/2b3+τ )−2nτ(1+ε)/2 E[(n(1−ε)/2|ū|2)τ ū4]

= o(n−2+τ(1+ε)/2) = o(n−1b3) w.p.1.

The first inequality follows from n−1
∑

i a
2
i ≤ max1≤i≤n a

2
i , the second by Hölder

continuity of k(2) as above and writing |n1/2ū|2τ = nτ(1+ε)/2(|n(1−ε)/2ū|2)τ , the
third as, by Assumption 3.4(c), nτ/2b3+τ → ∞ and, by the extremal Hölder
inequality with exponents ∞ and 1, E[(n(1−ε)/2|ū|2)τ ū4] ≤ O(n−2) noting that
n(1−ε)/2|ū|2 is essentially bounded w.p.1 as n → ∞ and E[ū4] = O(n−2) and,
finally, as o(n−2+τ(1+ε)/2) = o(n−1b3)n(τ−1)/2+9(τ−1)/[8(3+τ)]+(4τε−1)/8 because
n−3τ/[2(3+τ)]b−3 → 0 by Assumption 3.4(c), choosing ε ≤ 1/4τ gives the result.

If f is twice differentiable and f (2)(u) and uf (1)(u) are absolutely integrable,
applying Appendix A: Lemma A.3,

E[δ̂1(u)] = n−1 E[uik
(1)
b (u− ui)] +

1
2σ

2n−1 E[k
(2)
b (u− ui)] + o(n−1)

= n−1
(
f(u) + uf (1)(u) + 1

2σ
2f (2)(u)

)
+ o(n−1),

where σ2 = E[u2]. Since Var[f̃(u)] ∼ (nb)−1, the covariance between f̃(u) and

the remainder term in δ̂1(u) is of order o(n
−1b), and, hence,

Cov[f̃(u), δ̂1(u)] = n−1 E[k
(1)
b (u− ui)] E[kb(u− uj)uj ] + o(n−1b)

= n−1uf (1)(u)f(u) + o(n−1b), (B.1)

Var[δ̂1(u)] = n−1 E[k
(1)
b (u− ui)]

2 E[u2
j ] + o(n−1b3)

= n−1σ2f (1)(u)2 + o(n−1b). (B.2)

Note that ζλ = 0, d{E[∇ui|u]f(u)}/du = −f (1)(u), d{E[∇�uiHgi|u]f(u)}/du=
f(u) + uf (1)(u), d{E[∇2ui|u]f(u)}/du = 0, and d2{E[∇ui∇�ui|u]f(u)}/du2 =

f (2)(u) from the unbiasedness of β̂ and linearity of u(z, β); cf. Theorem 3.3.
Assuming f (1)(u) is square integrable, and if lim|u|→∞ uf(u)2 = 0,∫
uf (1)(u)f(u)du = −1

2R(f) and, thus,

IVar[f̂ ] = IVar[f̃ ]− n−1(R(f)− σ2R(f (1))) + o(n−1).

Hence, whenever R(f) > σ2R(f (1)), f̂ achieves a second order reduction in
variance relative to f̃ . While this may appear as a costless reduction in variance,
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it is not so. Construction of f̂ explicitly assumes that E[u] exists, and the validity
of the above result requires the first four moments of u to exist, whereas that
of f̃ makes no such assumptions.

When the mean E[u] is known, the GEL-reweighted estimator f̃ρ eq. (3.4)
imposing the constraint E[u] = 0 will achieve a second order reduction in vari-
ance of n−1σ−2u2f(u)2, i.e., IVar[f̃ρ] = IVar[f̃ ]−n−1σ−2

∫
u2f(u)2du+o(n−1);

see, e.g., Chen (1997, eq. (13), p.56). In particular, for normally distributed

u, R(φσ) − σ2R(φ
(1)
σ ) = 1/4

√
πσ, which equals σ−2

∫
u2φσ(u)

2du exactly. For

the Student t distribution with ν > 2 degrees of freedom, R(tν) − σ2R(t
(1)
ν ) =

R(tν)(2ν
2 − 3ν − 17)/4(ν2 − 4), which is positive for ν > 4, the condition for

the first four moments of u to exist, whereas σ−2
∫
u2tν(u)

2du = R(tν)(ν −
2)/(2ν − 1) which is always larger than R(tν)− σ2R(t

(1)
ν ). This difference may

be interpreted as the cost of estimating the mean of u.
The same or similar terms appear in the expansions for the variance of f̂ in

other contexts (the O(n−1) bias terms tend to be ignored as their contribution
to MISE is o(n−1)); cf. Muhsal and Neumeyer (2010, eq.(3.5)). As the next
example demonstrates, these same effects appear in a large class of parametric
moment condition models.

Example 3. GEL With a Constant and Zero Mean Restriction
Consider GEL estimation based on moment indicator functions of the form
g(z, β) = u(z, β)α(w) where u(z, β) is scalar, β a dβ-vector of parameters, and
α(w) a dg-vector of functions of w. Suppose that u(z, β0) is independent of w,
Assumption 3.1 holds, and the moment condition E[g(z, β0)] = 0 includes the
restriction E[u(z, β0)] = 0. Furthermore, it is assumed that u(z, β) contains
a constant; the inclusion of an explicit constant is not essential as the results
here continue to hold if E[∂u(z, β0)/∂β

�|w]γ = c for some non-zero vector γ and
scalar c, in which case E[α(w)] = Gγ/c. Without loss of generality let α1(w) = 1
and ∂u(z, β0)/∂β1 = −1.

Since u and w are independent, E[gi|u] = uE[α(w)], Ω = σ2 E[α(w)α(w)�],
where σ2 = E[u2|w] = E[u2]. Then, because the first column of G is −E[α(w)],
as PG = 0, E[gi|u]�P E[gi|u] = 0. That is, there is no second order reduction
in variance due to re-weighting.

Since the first column (and row) of Ω is σ2 E[α(w)], Ω−1 E[gi|u] = uσ−2e1,
where ej is the jth unit dg-vector, j = 1, . . . , dg. For an n × m matrix A, let
A(s:t), 1 ≤ s ≤ t ≤ m, denote the n×(t−s+1) submatrix comprised of columns

j = s, . . . , t of A. Noting that Ω−1 E[α(w)] = e1/σ
2 and E[α(w)]�Ω−1 E[α(w)] =

1/σ2, partition Σ and H as

Σ = σ2

[
1+e�1 G(2:dβ)Q

−1G�
(2:dβ)e1 e�1 G(2:dβ)Q

−1

Q−1G�
(2:dβ)e1 Q−1

]
,

H = −
[
e�1 −e�1 G(2:dβ)Q

−1G�
(2:dβ)(σ

2Ω−1−e1e
�
1 )

−Q−1G�
(2:dβ)(σ

2Ω−1−e1e
�
1 )

]
,

whereQ = G�
(2:dβ)

(σ2Ω−1−e1e
�
1 )G(2:dβ) and e�1 G(2:dβ)= (E[∂u(z, β0)/∂β2], . . . ,

E[∂u(z, β0)/∂βdβ
]) is the first row of G(2:dβ). Thus, H E[gi|u] = −ue1. As the
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first element of d{E[∇ui|u]f(u)}/du is −f (1)(u), [d{E[∇ui|u]f(u)}/du]�H ×
E[gi|u]f(u) = uf (1)(u)f(u), same as eq. (B.1).

Partition d{E[∇ui|u]f(u)}/du =
(
−f (1)(u), [d{E[∇ui|u]f(u)}/du](2:dβ)

)�
.

Hence,

[d{E[∇ui|u]f(u)}/du]�Σ[d{E[∇ui|u]f(u)}/du]
= σ2f (1)(u)2 + σ2f (1)(u)2e�1 G(2:dβ)Q

−1G�
(2:dβ)

e1

− 2σ2f (1)(u)e�1 G(2:dβ)Q
−1[d{E[∇ui|u]f(u)}/du](2:dβ)

+ σ2[d{E[∇ui|u]f(u)}/du]�(2:dβ)
Q−1[d{E[∇ui|u]f(u)}/du](2:dβ).

(B.3)

The first term in (B.3) is the same as the main term in (B.2). The remain-

ing terms represent the additional increase in the variance of f̂(u) due to the
estimation error in β2, . . . , βdβ

.
The independence of u and w is crucial to the above argument implying

E[gi|u] = uE[α(w)], and P annihilates E[α(w)]. The next example illustrates
that these relationships need not hold in the dependent case.

Example 4. Linear Regression Model With E[u|x] = 0 but Dependent
u and x
For simplicity, consider the linear regression model

y = δ0 + γ0x+ u, (B.4)

where E[u|x] = 0. Here β = (δ, γ)� and z = (y, x)�.
Estimation of β0 may be based on the unconditional moment restriction

E[g(z, β0)]= 0 where

g(z, β) = u(z, β)(1, x, x2, . . . , xq−1)�, q ≥ 2 (B.5)

Suppose that u and x are distributed with joint density1

fU,X(u, x) =
2(ν/2)ν/2√
2πωΓ(ν/2)

xνe−x2(ν+u2/ω2)/2,

x ≥ 0, −∞ < u < ∞, ν > 0, ω > 0. (B.6)

The marginal distributions of u and x are the non-standardized Student t dis-
tribution with ν degrees of freedom and scale parameter ω and the generalised
gamma (Stacy, 1962) with parameters p = 2, d = ν, and a = (2/ν)1/2. The
moments of x are mk = E[xk] = (2/ν)k/2Γ((ν+k)/2)/Γ(ν/2), k > −ν, and sat-
isfy the recursion mk+2 = (1 + k/ν)mk. The odd moments of u of order k < ν
are zero, while the even moments are E[u2k] = ω2kπ−1/2νkΓ(ν/2 − k)Γ(k +
1/2)/Γ(ν/2), k < ν/2.

1x is distributed as (w/ν)1/2 where w ∼ χ2
ν and, if ν = 1, as a standard half-normal

random variable. The joint density eq. (B.6) is that of u = z/x and x, where z ∼ N(0, ω2),
independent of x.
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Fig 2. Relative efficiency of β̂: q ≥ 4 vs. q = 2 (solid line); q = 3 vs. q = 2 (dashed line);
and q ≥ 4 vs. q = 3 (dash-dotted line).

The conditional density of u given x is fU |X(u, x) = φω/x(u) and, hence,
E[u|x] = 0, but u and x are dependent. If ν > 2, E[u2|x] = ω2/x2. The
conditional moments of x given u are mk|u(u) = E[xk|u] = mk+1/m1(1 +

(u/ω)2/ν)k/2, k > −ν−1. The transformation in Assumption 3.1 has v(z, β) = x
and, hence, E[gi|u] = u(1, m1|u(u), m2|u(u), . . . , mq−1|u(u))

�.
To describe the quantities involved, let q

sM = {mi+j−2−s}qi,j=1 be a q × q
matrix composed of the (i+ j−2− s)th moments of x. Note that, if q > 2, then
q
0M

�
(s)

q
2M

−1 q
0M(t) = ms+t for s, t = 1, 2, . . ., (s ∧ t) ≤ q − 2, and q

2M
−1 q

0M(t) =

et+2 for 1 ≤ t ≤ q−2. The relevant GEL matrices are Ω = ω2 q
2M, G = − q

0M(1:2)

and, if q ≥ 4,

Σ = ω2ν
ν(ν+2)−(ν+1)2m2

1

[
ν+2 −(ν+1)m1

−(ν+1)m1 ν

]
, H = − 1

ω2Σ
[
e�3
e�4

]
,

and

P = 1
ω2

q
2M

−1 − 1
ω2

ν
ν(ν+2)−(ν+1)2m2

1

×
[
(ν + 2)e3e

�
3 − (ν + 1)m1

(
e3e

�
4 + e4e

�
3

)
+ νe4e

�
4

]
.

For the exactly identified case, q = 2, G is square and invertible. Hence,
Σ = G−1ΩG�−1, H = G−1, and P = 0. Closed form expressions for Σ, H, and
P when q = 3 can be obtained in a straightforward fashion. That Σ remains
unaltered as q increases above 4 is of course due to the special form of the
conditional variance of u. Figure 2 displays the relative efficiency of β̂ based on
the first q compared with the first q′ moment conditions, [det(Σq)/ det(Σq′)]

1/dβ ,
for various values of ν.

If q ≥ 4, only the moment indicators xj−1u(z, β), j = 3, 4, are used to
estimate β0. Information in the remaining moment conditions, however, can be
usefully exploited to improve the efficiency of the density estimators f̂ and f̂ρ.
The quantities entering the integrated variance eqs. (3.11) and (3.12) can be
computed as

tr
(
Σ
∫
[d{E[∇ui|u]f(u)}/du][d{E[∇ui|u]f(u)}/du]�du

)
,
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Fig 3. Quantities entering the integrated variance of f̂ and f̂ρ in Example 4 (×nω)

tr
(
H
∫
E[gi|u][d{E[∇ui|u]f(u)}/du]�f(u)du

)
, and tr

(
P
∫
E[gi|u] E[gi|u]�f(u)2du

)
,

where

∫
d{E[∇ui|u]f(u)}

du

(
d{E[∇ui|u]f(u)}

du

)�
du

= Γ((ν+3)/2)
ω3π1/2ν3/2Γ(ν/2)

⎡⎣ νΓ(ν+3/2)Γ((ν+3)/2)
Γ(ν/2+1)Γ(ν+3)

ν1/2Γ(ν+3)
21/2Γ(ν+7/2)

ν1/2Γ(ν+3)
21/2Γ(ν+7/2)

Γ(ν+5/2)Γ(ν/2+2)
2Γ(ν+2)Γ((ν+5)/2)

⎤⎦ ,

the q × 2 matrix
∫
E[gi|u][d{E[∇ui|u]f(u)}/du]�f(u)du has rows

1
(2π)1/2ω

[
(2/ν)i/2Γ((ν+3)/2)Γ(ν+i/2)Γ((ν+i)/2))

Γ(ν/2)2Γ(ν+(i+3)/2) , (2/ν)(i−1)/2(ν+2)Γ((ν+1)/2)Γ(ν+(i+1)/2)
2Γ(ν/2)Γ(ν+i/2+2)

]
,
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i = 1, . . . , q, and the q×q matrix
∫
E[gi|u] E[gi|u]�f(u)2du with (i, j)th element

ωmimj
ν3/2Γ(ν+(i+j−3)/2)
4π1/2Γ(ν+(i+j)/2)

, i, j = 1, . . . , q.

Figure 3 shows the values of the above quantities and the overall effect on
the integrated variance for selected values of q and ν > 2; note that the validity
of the asymptotic expansions requires ν > 4, but variance is defined for ν > 2.
While the main reduction in variance is still due to the zero mean restriction
as in Example 3 (Panels A and B), there are small additional gains due to
re-weighting (Panel C). The latter do increase as more moment conditions are
added.
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