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Abstract: We present a sequential sampling methodology for weakly struc-
tural Markov laws, arising naturally in a Bayesian structure learning con-
text for decomposable graphical models. As a key component of our sug-
gested approach, we show that the problem of graph estimation, which in
general lacks natural sequential interpretation, can be recast into a sequen-
tial setting by proposing a recursive Feynman-Kac model that generates
a flow of junction tree distributions over a space of increasing dimensions.
We focus on particle McMC methods to provide samples on this space,
in particular on particle Gibbs (PG), as it allows for generating McMC
chains with global moves on an underlying space of decomposable graphs.
To further improve the PG mixing properties, we incorporate a systematic
refreshment step implemented through direct sampling from a backward
kernel. The theoretical properties of the algorithm are investigated, show-
ing that the proposed refreshment step improves the performance in terms
of asymptotic variance of the estimated distribution. The suggested sam-
pling methodology is illustrated through a collection of numerical examples
demonstrating high accuracy in Bayesian graph structure learning in both
discrete and continuous graphical models.
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1. Introduction

Understanding the underlying dependence structure of a multivariate distribu-
tion is becoming increasingly important in modern applications when analysing
complex data. These dependencies are conveniently represented by a graphi-
cal model (GM) in which the set of nodes represents feature variables in the
model and the set of edges encodes the dependence structure. A specific family
of undirected graphical models extensively studied in the literature are those
which are Markov with respect to decomposable graphs, usually referred to as
decomposable graphical models (DGMs), to which we restrict our attention in
the present paper. For these models, joint densities factorise into products of
densities over certain subsets of nodes described by cliques and separators. This
makes such models attractive from a computation point of view, since key sta-
tistical quantities – such as likelihood ratios and prior distributions – can be
calculated or specified locally and graphs can be build up sequentially; see e.g.
Lauritzen (1996).

Recently, the family of weakly structural Markov (WSM) probabilistic laws
for decomposable graphs was introduced by Green and Thomas (2017), pro-
viding an analogous clique-separator factorisation for the graph law as for the
data distribution. In this paper, we focus on a fully Bayesian and computational
approach for inferring posterior graph laws given observed data, a process usu-
ally called structure learning. Specifically, we consider strong hyper- and weakly
structural Markov prior laws for the model parameters and graphs respectively,
so that the resulting graph posterior also factorises over the set of cliques and
separators; see e.g. Dawid and Lauritzen (1993).

The common strategy of Bayesian structure learning i based on the class
of Markov chain Monte Carlo (McMC) methods such as e.g. the Metropolis-
Hastings sampling scheme. These methods generate, by performing local pertur-
bations on the edge set, Markov chains by either operating directly on the space
of decomposable graph or their corresponding junction trees; see for example
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Giudici and Green (1999); Dellaportas and Forster (1999); Jones et al. (2005);
Green and Thomas (2013). Further pertinent approaches include e.g. Stingo
and Marchetti (2015) who focus on Gaussian DGMs and propose edge moves
by dynamically updating the perfect sequence of the cliques in the graph. A com-
pletely different strategy is presented in Elmasri (2017a,b) where a node-driven
McMC sampler operates on tree-dependent bipartite graphs.

The main issue for the above-mentioned samplers as well as other McMC
strategies based on local moves is the limited mobility of their corresponding
Markov chains, since at each step, only a small part of the edge set is altered. To
tackle this issue, we present a procedure for recasting the problem of structure
learning in WSM laws, which in general lacks natural sequential interpreta-
tion, into a sequential setting by an auxiliary construction that we refer to as
a temporal embedding, relying partly on the methodology of sequential Monte
Carlo (SMC) samplers; see Del Moral, Doucet and Jasra (2006). Specifically,
we propose a recursive Feynman-Kac model which generates a flow of junction
tree distributions over a space of increasing dimensions and develop an efficient
SMC sampler on this space. The SMC algorithm is then incorporated as an
inner loop of a particle Gibbs (PG) sampler (Andrieu, Doucet and Holenstein,
2010), providing global moves on the underlying graph space. In order to reduce
the variance and improve the mobility of the standard PG sampler, we further
introduce a step of systematic refreshment by means of backwards sampling.

Our suggested temporal embedding of WSM laws is constructed by a four step
temoralisation procedure which can be summarised as follows. The procedure
is initiated by defining a family of laws on decomposable graph spaces defined
on all subsets of the node set. In the context of Bayesian structure learning,
these laws will correspond to graph posteriors defined over the corresponding
subsets of random variables. The second step of the temporalisation is to extend
each graph law to the space of junction tree representations. Following Green
and Thomas (2013), this is carried through by rescaling of the underlying graph
probabilities by the number of equivalent junction tree representations. In this
construction, the marginal law of an underlying graph will be preserved from the
first step. Now, in the context of sequential Bayesian structure learning the user
may, by always processing the nodes in some given order, run the risk of over-
looking dependence relations running counter to this specific order. It is hence
desirable to allow the node processing order to be randomised. For this purpose,
the third step of the temporalisation procedure augments the junction tree dis-
tributions to mixtures of junction tree distributions over different subsets of
underlying graph nodes. Finally, in the last step of the temporalisation process,
we introduce a sequence of Markov kernels allowing the distributions formed
in the third step to be embedded into a recursive Feynman-Kac-distribution
flow. The distributions of the resulting Feynman-Kac flow, with ”time param-
eter” given by the number of nodes of the underlying graph, can be sampled
efficiently using sequential Monte Carlo methods.

A central part in the construction of any SMC algorithm is the design of
a proposal distribution, which should both dominate the target of interest and
preferably be computationally efficient. In our case the junction tree representa-
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tion introduced in the second step of the temporalisation is of key importance,
since it enables us to fulfill these requirements through the so-called Christmas
tree algorithm (CTA), presented in the companion paper Olsson, Pavlenko and
Rios (2018). The CTA by construction defines a Markov kernel, with closed-
form transition probabilities, that dominates the temporalised version of the
graph law. Up to our knowledge, the last property seems much harder to obtain
by, e.g., operating directly on a path space of decomposable graphs; see e.g.
Markenzon, Vernet and Araujo (2008).

The rest of the paper is structured as follows. In Section 2 we introduce some
notation and present standard theoretical results for decomposable graphs and
the junction tree representation. Section 3 presents the four stage temporal-
isation strategy procedure. The SMC sampler is designed in Section 4 along
with the standard PG and its systematic refreshment extension. In Section 5 we
present two motivating examples showing how the WSM laws arise in a Bayesian
inference context. In Section 6 we investigate numerically the performance of
the suggested PG sampler for three examples of Bayesian structure learning in
DGMs. Appendix A contains some graph theoretical notations, proofs and a
lemma.

2. Preliminaries

Notational convention

We will always assume that all random variables are well defined on a common
probability space (Ω,F ,P). We denote by N the positive natural numbers and
for any (m,n) ∈ N

2 we use �m,n� to denote the unordered set {m, . . . , n}. By
R+ and R

∗
+ we denote the non-negative and positive real numbers respectively.

Measurable spaces

Given some measurable space (X,X ), we denote by M(X ) and M1(X ) the sets
of measures and probability measures on (X,X ), respectively. In the case where
X is a finite set, X is always assumed to be the power set ℘(X) of X, and we
simply write M(X) and M1(X) instead of M(℘(X)) and M1(℘(X)), respectively.
In the finite case, counting measures will be denoted by |dx|. We let F(X ) be
the set of measurable functions on (X,X ).

Kernel notation

Let μ be a measure on some measurable space (X,X ). Then for any μ-integrable
function h, we use the standard notation

μh :=

∫
h(x)μ(dx)

to denote the Lebesgue integral of h w.r.t. μ.
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In addition, let (Y,Y) be some other measurable space and K some possibly
unnormalised transition kernel K : X × Y → R+. The kernel K induces two
integral operators, one acting on functions and the other on measures. More
specifically, given a measure ν on (X,X ) and a measurable function h on (Y,Y),
we define the measure

νK : Y � A �→
∫

K(x,A) ν(dx)

and the function

Kh : X � x �→
∫

h(y)K(x, dy)

whenever these quantities are well-defined.
Finally, given a third measurable space (Z,Z) and a second kernel L : Y×Z →

R+ we define, with K as above, the product kernel

KL : X×Z � (x,B) �→
∫

L(y,B)K(x, dy),

whenever this is well-defined.

Decomposable graphs and junction trees

The notion of decomposable graphs and junction trees are introduced below. For
general graph theoretical concepts and notations the reader is referred to A.1.
A graph G is called decomposable if and only if its cliques can be be arranged in
a so-called junction tree, i.e. a tree whose nodes are the cliques in G, and where
for any pair of cliques Q and Q′ in G, the intersection Q∩Q′ is contained in each
of the cliques on the unique path Q ∼ Q′. Decomposable graphs are sometimes
alternatively termed chordal or triangulated, as an equivalent requirement is
that every cycle of length 4 or more is chorded, see e.g Diestel (2005). Each edge
(Q,Q′) in a junction tree is associated with the intersection S = Q ∩Q′, which
is referred to as a separator. Since all junction tree representations of a specific
decomposable graph G have the same separators, it makes sense to speak about
“the separators of a decomposable graph”. We denote by S(G) the multiset of
separators formed by a graph G, where each separator has a multiplicity. The set
of equivalent junction tree representations of a decomposable graph G is denoted
by T (G), and μ(G) := |T (G)| denotes the number of such representations. The
unique graph underlying a specific junction tree T is denoted by g(T ).

3. Temporal embedding of weakly structural Markov laws

From now on, let V be a fixed set of p ∈ N distinct nodes. Without loss of
generality, we let V = �1, p�. For U ⊆ V , we denote by GU the space of decom-
posable graphs with nodes U , i.e., GU := {(U,E) : E ⊆ U × U}. In particular,
set G := GV . In addition, let Ḡ := ∪U⊆V GU be the space of all decomposable
graphs with nodes given by V or some subset of the same.
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Definition 1. A positive function γ on Ḡ is said to satisfy the clique-separator
factorisation (CSF) if for all G ∈ Ḡ,

γ(G) =

∏
Q∈Q(G) γ(Q)∏
S∈S(G) γ(S)

.

For some given function γ satisfying the CSF, the aim of this paper is to
develop a strategy for sampling from the family of so-called weakly structural
Markov laws on M1(G) (Green and Thomas, 2017), which assuming full support
on G, are characterised as

η�(dG) =
γ�(dG)

γ�1G
, (3.1)

where

γ�(dG) := γ|G(G) |dG|,

with γ|G denoting the restriction of γ to G and |dG| the counting measure on G.
The normalising constant γ�1G =

∑
G∈G γ�(G) will be considered as intractable,

as computing the same requires the summation of over the whole space G, which
is impractical as the cardinality of G is immense already for moderate p.

Our goal is now to develop an efficient strategy for sampling from distribu-
tions of form (3.1). As mentioned in the introduction, particle McMC methods
are appealing as these allow McMC chains with “global” moves to be defined
also on large spaces. However, unlike our setting, SMC methods sample from
sequences of distributions, and a key ingredient of our developments is hence
to provide an auxiliary, sequential reformulation of the sampling problem un-
der consideration. This construction, which we will refer to as temporalisation,
comprise four steps described in the following.

Step I

Using the function γ inducing the target (3.1) of interest, define, for each U ⊆ V ,
the measure

η�〈U〉(dG) =
γ�〈U〉(dG)

γ�〈U〉1GU

in M1(GU ), where

γ�〈U〉(dG) := γ|GU
(G) |dG|,

with γ|GU
denoting the restriction of γ to GU and |dG| the counting measure on

GU . Note that η�〈V 〉 coincides with η�, the target of interest. As usual, we will
let the same symbols γ�〈U〉 and η�〈U〉 denote the probability functions of these
measures.
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Step II

Extend each distribution η�〈U〉 to a distribution η∗〈U〉 on TU := ∪G∈GU
T (G),

the space of junction tree representations of graphs in GU . Following Green and
Thomas (2013), one way of carrying through this extension is to define, for each
U ⊆ V , the measure

η∗〈U〉(dT ) := γ∗〈U〉(dT )
γ∗〈U〉1TU

(3.2)

in M1(TU ), where

γ∗〈U〉(dT ) := γ�〈U〉 ◦ g(T )
μ ◦ g(T ) |dT |,

with |dT | denoting the counting measure on TU . In particular, we set γ∗ = γ∗〈V 〉
and η∗ = η∗〈V 〉.

Step III

Let, for all m ∈ �1, p�, Sm be the space of all m-combinations of elements in
�1, p�. An element Sm ∈ Sm is of form Sm = (S1|m, . . . , Sm|m) where {S�|m}m�=1 ⊆
�1, p� are distinct. In particular, Sp = {(1, . . . , p)}. For (�, �′) ∈ �1,m�2 such
that � ≤ �′, we denote S�:�′|m := (S�|m, . . . , S�′|m). In addition, we define, for all
m ∈ �1, p�, the extended state spaces

Xm :=
⋃

Sm∈Sm

({Sm} × TSm) ,

and, for some given discrete probability distribution σm on Sm, extended target
distributions

ηm(dxm) =
γm(dxm)

γm1Xm

,

in M1(Xm), where

γm(dxm) = γm(dSm, dTm) := γ∗〈Sm〉(dTm)σm(dSm).

Here we have chosen to write Tm instead of TSm in order to avoid double sub-
script notation. The measures {σm}pm=1 are supposed to satisfy the recursion

σm+1 = σmΣ̄m,

where

Σ̄m(Sm, dSm+1) := δSm(dS1:m|m+1)Σm(S1:m|m+1, dSm+1|m+1), (3.3)

withΣm being a Markov transition kernel from Sm to �1, p� such thatΣm(Sm, j) =
0 for all j ∈ Sm.
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Step IV

Let {Rm}p−1
m=1 be a sequence of Markov transition kernels acting in the reversed

direction, i.e., for each m, Rm : Xm+1 × ℘(Xm) → [0, 1], and define, following
Del Moral, Doucet and Jasra (2006), for all m ∈ �1, p�,

γ̄m(dx1:m) := γm(dxm)

m−1∏
�=1

R�(x�+1, dx�) (3.4)

and

η̄m(dx1:m) :=
γ̄m(dx1:m)

γ̄m1X1:m

=
γ̄m(dx1:m)

γm1Xm

, (3.5)

where X1:m :=
∏m

�=1 X�.
1

Trivially, η̄m allows ηm as a marginal distribution with respect to the last
component xm, therefore we regard (3.5) as a temporal embedding of (3.1). We
conclude this section by some remarks and comments on the steps of the above
described procedure. We first note that, in step II, by Lemma 3 (see A.2), for
G ∈ GU ,

Pη∗〈U〉 (τ = T | g(τ) = G) =
Pη∗〈U〉 (τ = T, g(τ) = G)

Pη∗〈U〉 (g(τ) = G)
=

η∗〈U〉(T )
η�〈U〉(G)

1{G=g(T )}.

Moreover, using (A.1), the right hand side can be expressed as

η∗〈U〉(T )
η�〈U〉(G)

1{G=g(T )} =
η�〈U〉 ◦ g(T )

η�〈U〉(G)μ ◦ g(T )1{G=g(T )}
=

1

μ(G)
1T (G)(T ),

i.e., under η∗〈U〉, conditionally on the event {g(τ) = G}, the tree τ is uniformly
distributed over the set T (G) (recall that μ(G) is the cardinality of T (G)). In
other words, a draw from η∗〈U〉 can be generated by drawing a graph according
to η�〈U〉 and then drawing a tree uniformly over all junction tree representations
of that graph.

In step III, each γm(dxm) has a density γm(xm) = γ∗〈Sm〉(Tm)σm(Sm) (by
abuse of notation, we reuse the same symbol) w.r.t. |dxm|, the counting measure
on Xm. Moreover, since σp = δ�1,p�, η

∗ is the marginal of ηp with respect to the
Tp component. Further we note that Σ̄m is a Markov transition kernel from
Sm to Sm+1. In other words, Σ̄m transforms a given m-combination Sm into
an (m + 1)-combination Sm+1 by selecting randomly an element s∗ from the
(non-empty) set �1, p� \ Sm according to Σm(Sm, ·) and adding the same to
Sm. When selecting s∗, several approaches are possible; s∗ can, e.g., be selected
randomly from the set {s ∈ �1, p� : mins′∈Sm |s− s′| ≤ δ} for some prespecified
distance δ ∈ �1, p�. Also the initial distribution σ1 can be designed freely, e.g.,
as the uniform distribution over �1, p�.

1Here and in the following, we put a bar on top of a measure, kernel, function, etc., in
order to indicate that the quantity is defined on a path space.
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In step IV, as the reversed kernels are assumed to be Markovian and known
to the user, each extended target distribution η̄m is known up to the same
normalising constant γm1Xm as its marginal ηm. The algorithm that we propose
is based on the observation that the distribution flow {ηm}pm=1 satisfies the
recursive Feynman-Kac model

ηm+1(dxm+1) =
ηmQm(dxm+1)

ηmQm1Xm+1

(m ∈ �1, p− 1�), (3.6)

where we have defined the un-normalised transition kernel

Qm(xm, dxm+1) :=

⎧⎨
⎩

γm+1(dxm+1)Rm(xm+1, xm)

γm(xm)
, xm ∈ Supp(γm),

0, otherwise.

In the SMC sampler framework of Del Moral, Doucet and Jasra (2006), fo-
cus is set on sampling from a sequence of probability densities known up to
normalising constants and defined on the same state space. In this context, the
authors propose to transform the given distribution sequence into a sequence
of distributions over state spaces of increasing dimension (given by powers of
the original space) by means an auxiliary Markovian transition kernel. In this
construction, each extended distribution is of form (3.4), with Xm ≡ X for all m,
and allows the original density of interest as a marginal with respect to the last
component xm. Having access to such a flow of distributions over spaces of in-
creasing dimensions, standard SMC methods provide numerically stable online
approximation of the marginals, the latter satisfying a Feynman-Kac recursion
of form (3.6).

In our case, we arrive at the recursion (3.6) from an entirely different di-
rection, i.e., by starting off with a single distribution defined on a possibly
high-dimensional space and constructing an auxiliary sequence of increasingly
complex distributions used for directing an SMC particle sample towards the
distribution of interest (see the next section).

4. Particle approximation of temporalised weakly structural Markov
laws

In the following we discuss how to obtain a particle interpretation of the recur-
sion (3.6). Assume for the moment that we have at hand a sequence {Km}p−1

m=1

of proposal kernels such that Qm(xm, ·) � Km(xm, ·) for all m ∈ �1, p− 1� and
all xm ∈ Xm. In our applications, we will let these proposal kernels correspond
to the so-called Christmas tree algorithm (CTA) proposed in the companion
paper Olsson, Pavlenko and Rios (2018) and overviewed in Section 4.1.2.

4.1. Sequential Monte Carlo approximation

We proceed recursively and assume that we are given a sample {(ξim, ωi
m)}Ni=1

of particles, each particle ξim = (ςim, τ im) being a random draw in Xm (more
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specifically, ςim is a random m-combination in �1, p� and τ im a random draw in
Zςim

), with associated importance weights (the ωi
m’s) approximating ηm in the

sense that for all h ∈ F(Xm),

ηNmh � ηmh as N → ∞,

where

ηNm(dxm) :=

N∑
i=1

ωi
m

ΩN
m

δξim(dxm),

with ΩN
m :=

∑N
i=1 ω

i
m, denotes the weighted empirical measure associated with

the particle sample.
In order to produce an updated particle sample {(ξim+1, ω

i
m+1)}Ni=1 approxi-

mating ηNm+1, we plug ηNm into the recursion (3.6) and sample from the resulting
distribution

ηNmQm(dxm+1)

ηNmQm1Xm+1

=
N∑
i=1

ωi
mQm(ξim, dxm+1)∑N

�=1 ω
�
mQm1Xm+1(ξ

�
m)

by means of importance sampling. For this purpose we first extend the previous
measure to the index component, yielding the mixture

η̌Nm+1(di, dxm+1) :=
ωi
mQm(ξim, dxm+1)∑N

�=1 ω
�
mQm1Xm+1(ξ

�
m)

|di|

on the product space �1, N� × Xm+1, and sample from the latter by drawing
i.i.d. samples {(Iim+1, ξ

i
m+1)}Ni=1 from the proposal distribution

ρNm+1(di, dxm+1) :=
ωi
m

ΩN
m

Km(ξim, dxm+1) |di|.

Each draw (Iim+1, ξ
i
m+1) is assigned an importance weight

ωi
m+1 := wm(ξ

Ii
m+1

m , ξim+1) ∝
dη̌Nm+1

dρNm+1

(Iim+1, ξ
i
m+1),

where we have defined the importance weight function

wm(xm, xm+1) :=
dQm(xm, ·)
dKm(xm, ·) (xm+1) =

γm+1(xm+1)Rm(xm+1, xm)

γm(xm)Km(xm, xm+1)
. (4.1)

Finally, the weighted empirical measure

ηNm+1(dxm+1) :=

N∑
i=1

ωi
m+1

ΩN
m+1

δξim+1
(dxm+1)

is returned as an approximation of ηm+1.
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We will always assume that the proposal kernel Km is of form

Km(xm, dxm+1) = Σ̄m(Sm, dSm+1)K
∗
m〈Sm, Sm+1〉(Tm, dTm+1), (4.2)

where Σ̄m is defined in (3.3) and for all (Sm, Sm+1) ∈ Sm×Sm+1,K
∗
m〈Sm, Sm+1〉

is a Markov transition kernel from XSm to XSm+1 . Each lawK∗
m〈Sm, Sm+1〉(Tm, ·),

Tm ∈ TSm , has a probability function, which we denote by the same symbol.
Note that the assumption (4.2) implies that for all i ∈ �1, N�,

ςi1:m|m+1 = ς
Ii
m+1

m ,

and, consequently, by (3.3),

σm+1(ς
i
m+1) = σmΣ̄m(ςim+1) = σm(ς

Ii
m+1

m )Σ̄m(ς
Ii
m+1

m , ςim+1).

Thus, the importance weight (4.1) simplifies according to

wm(ξ
Ii
m+1

m , ξim+1)

=
γ∗〈ςim+1〉(τ im+1)σm+1(ς

i
m+1)Rm(ξ

Ii
m+1

m , ξim+1)

γ∗〈ςI
i
m+1

m 〉(τ I
i
m+1

m )σm(ς
Ii
m+1

m )Σ̄m(ς
Ii
m+1

m , ςim+1)K
∗
m〈ςI

i
m+1

m , ςim+1〉(τ
Ii
m+1

m , τ im+1)

=
γ∗〈ςim+1〉(τ im+1)Rm(ξ

Ii
m+1

m , ξim+1)

γ∗〈ςI
i
m+1

m 〉(τ I
i
m+1

m )K∗
m〈ςI

i
m+1

m , ςim+1〉(τ
Ii
m+1

m , τ im+1)
.

Further, we have the identity

γ∗〈ςim+1〉(τ im+1)

γ∗〈ςI
i
m+1

m 〉(τ I
i
m+1

m )
=

μ ◦ g(τ I
i
m+1

m )

μ ◦ g(τ im+1)
×

∏
Q∈Q(g(τ i

m+1))
γ(Q)

∏
Q∈Q(g(τ

Ii
m+1

m ))
γ(Q)−1

∏
S∈S(g(τ i

m+1))
γ(S)

∏
S∈S(g(τ

Ii
m+1

m ))
γ(S)−1

=
μ ◦ g(τ I

i
m+1

m )

μ ◦ g(τ im+1)
×

∏
Q∈Q(g(τ i

m+1))�Q(g(τ
Ii
m+1

m ))
γ(Q)1〈τ

i
m+1〉(Q)

∏
S∈S(g(τ i

m+1))�S(g(τ
Ii
m+1

m ))
γ(S)1〈τ

i
m+1〉(S)

,

(4.3)

where � denotes symmetric difference and

1〈τ im+1〉(Q) := 21Q(g(τ i
m+1))

(Q)− 1

(1〈τ im+1〉(S) is defined similarly).

The computational burden involved in computing the first factor of (4.3) can
be substantially reduced by exploiting the factorisation presented in Olsson,
Pavlenko and Rios (2018, Theorem 7) and restated below. Let Gm+1 ∈ Gm+1 be
a graph expanded from a graph Gm ∈ Gm in the sense that Gm+1[{1, . . . ,m}] =
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Gm, then we can define the set S� ⊂ S(Gm+1) consisting of the separators
created by the expansion. The factorisation is then given as

μ(Gm)

μ(Gm+1)
=

∏
s∈U1

νG(s)∏
s∈U2

νGm+1
(s)

,

where U1 = {s ∈ S(Gm) : ∃s′ ∈ S�, such that s ⊂ s′} and U2 = {s ∈ S(Gm+1) :
∃s′ ∈ S�, such that s ⊂ s′} are the set of separators in Gm and Gm+1 re-
spectively, contained in some separator in S�. The function νG(s) denotes the
number of equivalent junction trees that can be obtained by randomizing a junc-
tion tree for the graph G at the separator s. For a more detailed presentation

see Olsson, Pavlenko and Rios (2018). The sets Q(g(τ im+1))�Q(g(τ
Ii
m+1

m )) and

S(g(τ im+1))�S(g(τ I
i
m+1

m )) in the second factor might be composed by only a few
cliques and separators, respectively, and computing the products in the numer-
ator and denominator of (4.3) will in that case be an easy operation. This is the
case for the CTA described in Section 4.1.2 below.

In summary the identity (4.3) suggests that the first part of the importance
weights may, in principle, be computed with a complexity that does not in-
crease with the iteration index m as long as the proposal kernel K∗

m only mod-
ifies and extends locally the junction tree (and, consequently, the underlying
graph).

The SMC update described above is summarised in Algorithm 1. Here and in
the following, we let Pr({a�}N�=1) denote the categorical probability distribution
induced by a set {a�}N�=1 of positive (possibly unnormalised) numbers; thus,
writing W ∼ Pr({a�}N�=1) means that the variable W takes the value � ∈ �1, N�

with probability a�/
∑N

�′=1 a�′ .

Data: {(ξim, ωi
m)}Ni=1

Result: {(ξim+1, ω
i
m+1)}Ni=1

1 for i ← 1, . . . , N do
2 draw Iim+1 ∼ Pr({ω�

m}N�=1);

3 draw ςim+1 ∼ Σ̄m(ς
Iim+1
m , dSm+1);

4 draw τ im+1 ∼ K∗
m〈ςI

i
m+1

m , ςim+1〉(τ
Iim+1
m , dTm+1);

5 set ξim+1 ← (ςim+1, τ
i
m+1);

6 set ωi
m+1 ←

γ∗〈ςim+1〉(τ im+1)Rm(ξ
Iim+1
m , ξim+1)

γ∗〈ς
Iim+1
m 〉(τ

Iim+1
m )K∗

m〈ς
Iim+1
m , ςim+1〉(τ

Iim+1
m , τ im+1)

;

Algorithm 1: SMC update

Naturally, the SMC algorithm is initialised by drawing i.i.d. draws (ξi1)
N
i=1

from some initial distribution κ ∈ M1(X1) and letting ωi
1 = γ1(ξ

i
1)/κ(ξ

i
1) for all

i, where the density (with respect to dx1) of κ is denoted by the same symbol.
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In addition, letting κ be of form

κ(dx1) = σ1(dS1)κ
∗〈S1〉(dT1)

yields the weights ωi
1 = γ∗〈ςi1〉(τ i1)/κ∗〈ςi1〉(τ i1).

As a by-product, Algorithm 1 provides, for all m ∈ �1, p� and h ∈ F(Xp),
unbiased estimators

γN
mh :=

1

Nm

(
m−1∏
�=1

ΩN
�

)
N∑
i=1

ωi
mh(ξim)

of γmh. In particular,

γN
p 1Xp =

1

Np

p∏
�=1

ΩN
�

is an unbiased estimator of the normalising constant γp1Xp = γ∗1Tp of the
distribution of interest.

4.1.1. Design of retrospective dynamics

As we will see, the reversed kernels {Rm}p−1
m=1 will typically be designed on the

basis of the forward proposal kernels {Km}p−1
m=1. It is clear that for all m ∈

�1, p− 1�, the constraint that Qm(xm, ·) � Km(xm, ·) for all xm ∈ Xm is satis-
fied as soon as the retrospective kernel Rm is such that Supp(Rm(xm+1, ·)) ⊆
Supp(Km(·, xm+1)) for all xm+1 ∈ Supp(γm+1). Consequently, if for all m ∈
�1, p− 1�,

Supp(η1K1 · · ·Km) = Supp(γm+1), (4.4)

one may, e.g., construct each retrospective kernel Rm by identifying, for all
xm+1 ∈ Supp(γm+1), a nonempty set

Sm(xm+1) ⊆ Supp(Km(·, xm+1)) ∩ Supp(γm),

and letting

Rm(xm+1, xm) := |Sm(xm+1)|−11Sm(xm+1)(xm) (xm+1 ∈ Supp(γm+1)),

(4.5)

i.e., Rm(xm+1, dxm) is the uniform distribution over Sm(xm+1). The existence
of such a nonempty set is guaranteed by (4.4). Indeed, let xm+1 ∈ Supp(γm+1);
then, by (4.4), ∑

xm∈Xm

η1K1 · · ·Km(xm)Km(xm, xm+1) > 0,

i.e., there exists at least one x∗
m ∈ Xm such that η1K1 · · ·Km(x∗

m) > 0 and
Km(x∗

m, xm+1) > 0. Thus, again by (4.4), x∗
m ∈ Supp(Km(·, xm+1))∩Supp(γm),

which is hence nonempty. For xm+1 /∈ Supp(γm+1), Rm(xm+1, dxm) may be
defined arbitrarily. As we will see next, the property (4.4) is satisfied by the
junction tree expanders used by us.
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4.1.2. The Christmas tree algorithm

Following the presentation of Olsson, Pavlenko and Rios (2018) we disregard,
without loss of generality, the permutations of the nodes for the underlying
graphs specified by Xm. This implies that we consider a fixed set of ordered
nodes Sm = (1, . . . ,m) ∈ Sm and by Tm we mean TSm .

As previously mentioned {Km}p−1
m=1 and {Rm}p−1

m=1 will here correspond to
the kernels induced by the CTA and its reversed version, respectively. The CTA
kernel takes as input a junction tree Tm ∈ Tm and expands it into a new junction
tree Tm+1 ∈ Tm+1 according to Km(Tm, dTm+1) by adding the internal node
m+1 to the underlying graph g(Tm) in such a way that g(Tm+1)[{1, . . . ,m}] =
g(Tm). It requires two input parameters (α, β) ∈ (0, 1)2 jointly controlling the
sparsity of the produced underlying graph. Specifically, at the initial step of the
algorithm, a Bernoulli trial with parameter β is performed in order to determine
whether or not the internal node m+1 is being isolated in the underlying graph
of the produced tree. If m + 1 is not isolated, a high value of the parameter α
controls the number of cliques in Tm+1 that will contain m + 1. In this sense,
Km(Tm, dTm+1) is a mixture distribution with weight parameter β.

4.2. Particle Gibbs sampling

In the following, we discuss how to sample from the extended target η1:p, having
the distribution η∗ of interest as a marginal distribution, using Markov chain
Monte Carlo (McMC) methods. A particle Gibbs (PG) sampler constructs, using
SMC, a Markov kernel PN

p leaving η1:p invariant. Algorithmically, the more or
less only difference between the PG kernel and the standard SMC algorithm
is that the PG kernel, which is described in detail in Algorithm 2, evolves the
particle cloud conditionally on a fixed reference trajectory specified a priori ;
this conditional SMC algorithm is constituted by Lines 1–16 in Algorithm 2.
After having evolved, for p time steps, the particles of the conditional SMC
algorithm, the PG kernel draws randomly a particle from the last generation
(Lines 17–19), traces the genealogical history of the selected particle back to the
first generation (Lines 20–22), and returns the traced path (Line 23).

As as established in (Chopin and Singh, 2015, Proposition 8), PN
p is η1:p-

reversible and thus leaves η1:p invariant. Interestingly, reversibility holds true
for any particle sample size N ∈ N \ {1}. Thus, on the basis of PN

p , the PG

sampler generates (after possible burn-in) a Markov chain {X�
1:p}�∈N according

to

X1
1:p

PN
p−→ X2

1:p

PN
p−→ X3

1:p

PN
p−→ X4

1:p → · · ·

and returns
∑M

�=1 h(X
�
1:p)/M as an estimate of η1:ph for any η1:p-integrable

objective function h ∈ F(X1:p). Here M ∈ N denotes the McMC sample size. In
particular, in the case where the objective function h depends on the argument
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Tp only, we obtain the estimator

M∑
�=1

h(Z�
p)/M (4.6)

of η∗h, where each Z�
p variable is extracted, on Line 18, at iteration � − 1. of

Algorithm 2.

Data: a reference trajectory x1:p ∈ X1:p

Result: a draw X1:p from PN
p (x1:p, dx′

1:p)

1 for i ← 1, . . . , N − 1 do
2 draw ςi1 ∼ σ1(dS1);

3 draw τ i1 ∼ κ∗〈ςi1〉(dT1);

4 set ξi1 ← (ςi1, τ
i
1);

5 set ξN1 ← x1;
6 for i ← 1, . . . , N do
7 set ωi

1 ← γ∗〈ςi1〉(τ i1)/κ∗〈ςi1〉(τ i1);
8 for m ← 1, . . . , p− 1 do
9 for i ← 1, . . . , N − 1 do

10 draw Iim+1 ∼ Pr({ω�
m}N�=1);

11 draw ςim+1 ∼ Σ̄m(ς
Iim+1
m , dSm+1);

12 draw τ im+1 ∼ K∗
m〈ςI

i
m+1

m , ςim+1〉(τ
Iim+1
m , dTm+1);

13 set ξim+1 ← (ςim+1, τ
i
m+1);

14 set ξNm+1 ← xm+1;

15 for i ← 1, . . . , N do

16 set ωi
m+1 ←

γ∗〈ςim+1〉(τ im+1)Rm(ξ
Iim+1
m , ξim+1)

γ∗〈ς
Iim+1
m 〉(τ

Iim+1
m )K∗

m〈ς
Iim+1
m , ςim+1〉(τ

Iim+1
m , τ im+1)

;

17 draw Jp ∼ Pr({ω�
p}N�=1);

18 set Zp ← τ
Jp
p ;

19 set Xp ← (�1, p�, Zp);
20 for m ← p− 1, . . . , 1 do

21 set Jm ← I
Jm+1
m ;

22 set Xm ← ξ
Jm+1
m ;

23 set X1:p ← (X1, . . . , Xp);
24 return X1:p

Algorithm 2: One transition of PG.

4.3. Particle Gibbs with systematic refreshment

For the graph-oriented applications of interest in the present paper, the naive
implementation of the PG sampler will suffer from bad mixing, even though
the distribution of interest, η∗, is defined only on the marginal space Tp. Thus,
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we will modify slightly the standard PG sampler by inserting an intermediate
refreshment step in between the PG iterations. More specifically, define

Gp(x1:p, dx
′
1:p) = δxp(dx

′
p)

p−1∏
m=1

Rm(x′
m+1, dx

′
m) (x1:p ∈ X1:p).

Given x1:p, drawing X1:p ∼ Gp(x1:p, dx
′
1:p) amounts to setting, deterministi-

cally, Xp = xp and simulating X1:p−1 according to the Markovian retrospec-

tive dynamics induced by the kernels {Rm}p−1
m=1. Note that each distribution

Gp(x1:p, dx
′
1:p) depends exclusively on xp. Describing a standard Gibbs substep

for sampling from η1:p, Gp is η1:p-reversible; see, e.g., (Cappé, Moulines and
Rydén, 2005, Proposition 6.2.14). Consequently, also the product kernel PN

p Gp

is η1:p-invariant. Unlike standard PG, the McMC sampling scheme that we pro-
pose, which is summarised in Algorithm 3, generates (after possible burn-in) a
Markov chain {X�

1:p}�∈N according to

X1
1:p

PN
p Gp−→ X2

1:p

PN
p Gp−→ X3

1:p

PN
p Gp−→ X4

1:p → · · ·

and returns

ηN,M
1:p h :=

1

M

M∑
�=1

h(X�
1:p)

as an estimator of η1:ph for any η1:p-integrable function h. In addition, as previ-
ously, in the case where the objective functions h depends on the argument Tp

only, we obtain the estimator

η∗N,Mh :=
1

M

M∑
�=1

h(Z�
p) (4.7)

of η∗h, where each Z�
p variable is extracted, on Line 2, at iteration � − 1 of

Algorithm 3.

Data: a reference trajectory x1:p ∈ X1:p

Result: a draw X1:p from PN
p Gp(x1:p, dx′

1:p)

1 draw, using Algorithm 2, X′
1:p ∼ PN

p (x1:p, dx′
1:p);

2 set Xp = (�1, p�, Zp) ← X′
p;

3 for m ← p− 1, . . . , 1 do
4 draw Xm ∼ Rm(Xm+1, dxm);

5 set X1:p ← (X1, . . . , Xp);
6 return X1:p

Algorithm 3: One transition of PG with systematic refreshment.
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4.3.1. Particle Gibbs with systematic refreshment vs. standard particle Gibbs

As established by the following theorem, the systematic refreshment step im-
proves indeed the mixing of the algorithm. For any functions g and h in L2(η1:p)
we define the scalar product 〈g, h〉 := η1:p(gh). Moreover, for all η1:p-invariant
Markov kernels M on (X1:p,X1:p) and functions h ∈ L2(η1:p) such that

∞∑
�=1

|〈h,M�h〉| < ∞, (4.8)

we define the asymptotic variance

v(h,M) := lim
M→∞

1

M
Var

(
M∑
�=1

h(X�
1:p)

)
, (4.9)

where {X�
1:p}∞�=1 is a Markov chain with initial distribution η1:p and transition

kernel M. (The assumption (4.8) can be shown to imply the existence of the
limit (4.9)). In the case where the latter Markov chain satisfies a central limit
theorem for the objective function h, the corresponding asymptotic variance
is given by (4.9). As established by the following result, whose proof relies on
asymptotic theory for inhomogeneous Markov chains developed in Maire, Douc
and Olsson (2014), the improved mixing implied by systematic refreshment of
the trajectories implies a decrease of asymptotic variance w.r.t. standard PG.

Theorem 2. For all N ∈ N and all functions h∗ ∈ L2(η
∗) such that both PN

p Gp

and PN
p satisfy the summation condition (4.8) with h := 1X1:p−1 � h∗, it holds

that

v(h,PN
p Gp) ≤ v(h,PN

p ).

Proof. See A.2.

5. Application to decomposable graphical models

In this section we show in more detail how distributions of form (3.1) appear
in Bayesian analysis of graphical models. To rigorously describe the setting, we
shall need some further notations. Let {(Ym,Ym)}pm=1, p ∈ N, be a sequence
of measurable spaces and define Y :=

∏p
m=1 Ym and Y :=

⊗p
m=1 Ym. Let Y =

(Y1, . . . , Yp) : Ω → Y be a random element. We consider a fully dominated model
where the distribution of Y has a density f on Y with respect to some reference
measure ν :=

⊗p
m=1 νm on (Y,Y), where each νm belongs to M(Ym). For some

subset {a1, . . . , am} ⊆ �1, p� with a1 ≤ . . . ≤ am, we let YA := (Ya1 , . . . , Yam)
and define YA =

∏m
�=1 Ya�

and YA =
⊗m

�=1 Ya�
. By slight abuse of notation, we

denote by f(yA) the marginal density of YA with respect to νA :=
⊗m

�=1 νa�
.

For disjoint subsets A, B, and S of �1, p�, we say, following Lauritzen (1996),
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that YA and YB are conditionally independent given YS , denoted YA ⊥ YB |YS ,
if it holds that

f(yA∪B | yS) = f(yA | yS)f(yB | yS), for all yA ∈ YA, yB ∈ YB , yS ∈ YS ,
(5.1)

where the conditional densities are defined as f(yA | yS) := f(yA∪S)/f(yS).
The distribution of Y is said to be globally Markov w.r.t. the undirected graph
G = (V,E), with V = �1, p� and E ⊆ V × V , if for disjoint subsets A, B, and S
of V it holds that

A ⊥G B |S ⇒ YA ⊥ YB | YS .

We call the distribution governed by f a decomposable model if it is globally
Markov w.r.t. a decomposable graph. Then, by repeated use of (5.1), it is easily
shown that the density of a decomposable model satisfies the CSF-type identity

f(y) =

∏
Q∈Q(G) f(yQ)∏
S∈S(G) f(yS)

, (5.2)

where we, in order to justify the notation yQ and yS , by slight abuse of notation
identify the cliques Q and the separators S (which are complete graphs) with
the corresponding subsets of V .

In the following we consider the dependence structure G as unknown, and
take a Bayesian approach to the estimation of the same on the basis of a given,
fixed data record y ∈ Y. For this purpose, we assign a prior distribution

π(dG) :=
��(dG)

��1G
(5.3)

in M1(G) to G, where
��(dG) := �|G(G) |dG|

and � : Ḡ → R
∗
+ is a function satisfying the CSF in Definition 1. For instance, in

the completely uninformative case, � ≡ 1; in the presence of prior information
concerning the maximal clique size of the underlying graph, one may let �(G) =
1{∨Q∈Q(G)|Q| ≤ M} for someM ∈ N controlling the sizes of the cliques. In both
cases, the CSF is immediately checked, see e.g Bornn et al. (2011). We let the
same symbol π denote also the corresponding probability function.

In this Bayesian setting, focus is set on the posterior distribution η� of the
graph G given the available data y, which is, by Bayes’ formula, obtained via
(3.1) with γ� induced by

γ(G) =

∏
Q∈Q(G) f(yQ)�(GQ)∏
S∈S(G) f(yS)�(GS)

, G ∈ Ḡ.

The problem of computing the posterior may consequently be perfectly cast into
the setting of Section 3.

The model will in general comprise additional unknown parameters collected
in a vector θ, which is assumed to belong to some measurable parameter space
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(ΘG,PG) depending on the graph G. We add θ and G to the notation of the
likelihood, which is assumed to be of form

f(y | θ,G) =

∏
Q∈Q(G) f(yQ | θQ)∏
S∈S(G) f(yS | θS)

. (5.4)

Our Bayesian approach calls for a prior also on θ = {θQ, θS : Q ∈ Q(G), S ∈
S(G)}, and we will always assume that this is hyper Markov w.r.t. the underlying
graph G. More specifically, we assume that the conditional distribution of θ
given G has a density w.r.t. some reference measure, denoted dθ for simplicity,
on (Θ,P). This density is assumed to be of form

π(θ |G;ϑ) =

∏
Q∈Q(G) π(θQ;ϑQ)∏
S∈S(G) π(ϑS ;ϑS)

, (5.5)

where ϑ = {ϑQ, ϑS : Q ∈ Q(G), S ∈ S(G)} is a set of hyperparameters and
each factor π(θQ;ϑQ) (and π(ϑS ;ϑS)) is a probability density π(θQ;ϑQ) =
z(θQ;ϑQ)/I(ϑQ) with I(ϑQ) =

∫
z(θQ;ϑQ) dθQ being a normalising constant.

In the case where each π(θQ;ϑQ) is a conjugate prior for the corresponding
likelihood factor f(yQ | θQ) it holds that

f(yQ | θQ)z(θQ;ϑQ) = c|Q|z(θQ;ϑ
′
Q(yQ)), (5.6)

for some updated hyperparameter ϑ′
Q(yQ) and some constant c > 0. If the

normalising constants I(ϑQ) are tractable, we may marginalise out the param-
eter and consider directly the posterior of G given data y. Indeed, since for all
hyperparameters,

∫ ∏
Q∈Q(G) z(θQ;ϑQ)∏
S∈S(G) z(ϑS ;ϑS)

dθ =

∏
Q∈Q(G) I(ϑQ)∏
S∈S(G) I(ϑS)

,

the marginalised likelihood is obtained as

f(y |G) =

∫ ∏
Q∈Q(G) f(yQ | θQ)π(θQ;ϑQ)∏
S∈S(G) f(yS | θS)π(θS ;ϑS)

dθ

= cp
∫ ∏

Q∈Q(G) z(θQ;ϑ
′
Q(yQ))/I(ϑQ)∏

S∈S(G) z(θS ;ϑ
′
S(yS))/I(ϑS)

dθ

= cp
∏

Q∈Q(G) I(ϑ
′
Q(yQ))/I(ϑQ)∏

S∈S(G) I(ϑ
′
S(yS))/I(ϑS)

,

Thus, by Bayes’ formula, the marginal posterior η� of G given the available data
y can be expressed by (3.1) with γ� induced by

γ(G) =

∏
Q∈Q(G) �(GQ)I(ϑ

′
Q(yQ))/I(ϑQ)∏

S∈S(G) �(GS)I(ϑ′
S(yS))/I(ϑS)

, G ∈ Ḡ. (5.7)
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Example 1 (discrete log-linear models). Let V be a set of p criteria defining a
contingency table. Without loss of generality, we let V = �1, p� and denote the
table by I = I1×· · ·× Ip, where each Im is a finite set. An element i ∈ I is referred
to as a cell. In this setting, I = (I1, . . . , Ip) is a discrete-valued random vector
whose distribution θ is assumed to be globally Markov w.r.t. some decomposable
graph G = (V,E) with E ⊆ V × V , i.e.,

θ(i) = P (I = i) =

∏
Q∈Q(G) θ(iQ)∏
S∈S(G) θ(iS)

, i ∈ I. (5.8)

The vector I may, e.g., characterise a randomly selected individual w.r.t. the
table I. Given G, the parameter space of the model is determined by the clique
and separator marginal probability tables θ(iQ) and θ(iS); more specifically,

ΘG =

{
θ(iQ) ∈ (0, 1), θ(iS) ∈ (0, 1) : i ∈ I,Q ∈ Q(G), S ∈ S(G),

∑
i∈I

θ(i) = 1

}
.

Let Y be a collection of n ∈ N i.i.d. observations from the model; e.g., Y is
an n × p matrix where each row corresponds to an observation of I. Then also
Y forms a DGM with state space Y = In1 × · · · × Inp and probability function
f(y | θ,G) given by (5.4) with

f(yQ | θQ) =
∏

iQ∈IQ

θ(iQ)
n(iQ)

(and similarly for f(yS | θS)), where IQ =
∏

m∈Q Im, θQ := {θ(iQ)}iQ∈IQ , and
n(iQ) counts the number of elements of yQ belonging to the marginal cell iQ.

The problem of estimating the dependence structure G is complicated fur-
ther by the fact that also the probabilities θ are unknown in general. When
assigning a prior π(θ |G;ϑ) to the latter conditionally on the former, we fol-
low Dawid and Lauritzen (1993) and let the prior π(θQ;ϑQ) of each θQ be a
standard Dirichlet distribution, Dir(ϑQ), where ϑQ = {ϑQ(iQ)}iQ∈IQ are hyper
parameters often referred to as pseudo counts. Under the assumption that the
collection {π(θQ;ϑQ)}Q∈Q(G) is pairwise hyper consistent in the sense that for
all (Q,Q′) ∈ Q(G)2 such that Q ∩ Q′ �= ∅, π(θQ;ϑQ) and π(θQ′ ;ϑQ′) induce
the same law on θQ∩Q′ , which in this case is implied by the condition

ϑQ(iQ∩Q′) :=
∑

jQ∈IQ:jQ∩Q′=iQ∩Q′

ϑQ(jQ)

=
∑

jQ′∈IQ′ :jQ∩Q′=iQ∩Q′

ϑQ′(jQ′) = ϑQ′(iQ∩Q′),

(Dawid and Lauritzen, 1993, Theorem 3.9) implies the existence of a unique

hyper Dirichlet law of the form (5.5). Thus, z(θQ;ϑQ) =
∏

iQ∈IQ
θ(iQ)

ϑQ(iQ)
,

I(ϑQ) = B(ϑQ) :=
∏

iQ∈IQ
Γ(ϑQ(iQ))/Γ(

∑
iQ∈IQ

ϑQ(iQ)) (the beta function),

and the conjugacy (5.6) holds with c = 1 and ϑ′
Q(yQ) = {ϑ′

Q(iQ)(yQ)}iQ∈IQ ,
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where ϑ′
Q(iQ)(yQ) = ϑQ(iQ)+n(iQ). Then, putting a prior of form (5.3) on the

graph, (5.7) implies that the marginal posterior of G given data y is obtained
through (3.1) with γ� induced by

γ(G) =

∏
Q∈Q(G) �(Q)B(ϑ′

Q(yQ))/B(ϑQ)∏
S∈S(G) �(S)B(ϑ′

S(yS))/B(ϑS)
, G ∈ Ḡ.

Example 2 (Gaussian graphical models). A p-dimensional Gaussian random
vector forms a Gaussian graphical model if it is globally Markov w.r.t. some
graph G = (V,E) with V = �1, p� and E ⊆ V × V . In the following we assume
that the model has zero mean (for simplicity) and is, given G, parameterised by
its precision (inverse covariance) matrix belonging to the set

ΘG = {θ ∈ M+
p : θij = 0 for all (i, j) /∈ E},

where M+
p denotes the space of p× p positive definite matrices. It is well known

that in this model, a zero in the precision matrix, θij = 0, is equivalent to con-
ditional independence of the ith and jth variables given the rest of the variables,
see Speed and Kiiveri (1986). In addition, when G is decomposable, a model with
θ ∈ ΘG is globally Markov w.r.t. G. In the following, for any matrix p×p matrix
M and A ⊆ �1, p�, denote by MA the |A|× |A| matrix obtained by extracting the
elements (Mij)(i,j)∈A2 from M . Suppose that G is decomposable and that are we
have access to n independent observations from the model. The observations are
stored in an n×p data matrix Y , whose likelihood f(y | θ,G) is, as a consequence
of the global Markov property, given by (5.4) with

f(yQ | θQ) =
1

(2π)|Q| |θQ|
n/2 exp (−tr(θQsQ)/2) ,

(and similarly for f(yS | θS)) where s = yᵀy, |Q| is the cardinality of Q, and
|θQ| is the determinant of θQ.

For Bayesian inference on θ, we follow Dawid and Lauritzen (1993) and
furnish, given G, θ with a hyper Wishart prior π(θ |G) of form (5.5), with each
π(θQ;ϑQ) being proportional to

z(θQ;ϑQ) = |θQ|βQ exp (−tr(θQvQ)/2) ,

where βQ := (δ+ |Q|−1)/2, ϑQ = (δ, vQ) with v ∈ M+
p being a scale matrix and

δ > ∨Q∈Q(G)|Q|−1 the number of degrees of freedom, and normalising constant

I(ϑQ) = 2δ|Q|/2Γ|Q|(βQ)

|vQ|βQ
,

where Γp denotes the multivariate gamma function. Since all hyperparame-
ters ϑQ are extracted from the same scale matrix v, the collection of priors
{π(θQ;ϑQ)}Q∈Q(G) is automatically pairwise hyper consistent, and the existence
of the (unique) hyper Wishart prior is guaranteed by Dawid and Lauritzen (1993,
Theorem 3.9). As

f(yQ | θQ)z(θQ;ϑQ) =
1

(2π)|Q| |θQ|
αQ exp (−tr{θQ(sQ + vQ)}/2) ,
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where αQ := (δ+n+ |Q|− 1)/2, we conclude that the conjugacy condition (5.6)
holds for c = 1/(2π) and ϑ′

Q(yQ) = (δ′Q, v
′
Q) with δ′Q = δ+ n and v′Q = sQ + vQ

(and similarly for factors corresponding to separators). Consequently, assigning
also a prior of form (5.3) to the graph, (5.7) implies that the marginal posterior
of G given data y is, in this case, obtained through (3.1) with γ� induced by

γ(G) =

∏
Q∈Q(G) �(Q)ρ(Q)∏
S∈S(G) �(S)ρ(S)

, G ∈ Ḡ,

with

ρ(Q) :=
|vQ|αQ

|vQ + sQ|βQ

Γ|Q|(αQ)

Γ|Q|(βQ)
,

and ρ(S) defined analogously.

6. Numerical study

In this section we investigate numerically the performance of the suggested
PG algorithm for three example datasets. The first example treats the classical
Czech autoworkers dataset found in e.g. Edwards and Havránek (1985). The
second one considers simulated data generated from the discrete p = 15 nodes
structure, introduced in Jones et al. (2005). The third example investigates a
continuous dataset simulated from a Gaussian DGM of dimensionality p = 50
with a time-varying dependence structure.

The proposal and backward kernels {Km}p−1
m=1 and {Rm}p−1

m=1 are given by
the CTA and its reversed version, respectively, provided in Section 3 and 4 of
the companion paper Olsson, Pavlenko and Rios (2018). The transition kernels
{Σm}p−1

m=1 introduced in (3.3) are defined by selecting s∗ uniformly at random
from the set {s ∈ �1, p� : mins′∈Sm |s− s′| ≤ δ} as suggested in Section 3.

We assign the uniform prior for the graph structure in each of the exam-
ples. The estimated graph posteriors are summarized in terms of marginal edge
distributions presented as heatmaps, where the probability of an edge (a, b) is
estimated according to (4.7) by letting h(Z) = 1(a,b)∈E , where E here denotes
the edge set for g(Z).

We study the number of edges in the graph (graph size) in order to evaluate
the mixing properties. Since in many practical situations the aim is to select one
particular model that best represents the underlying dependence structure, we
also present the maximum aposteriori (MAP) graph for each of the examples.

All the experiments were performed on the Tegnér cluster at PDC having
one intel 2 × 12 core Intel E5-2690v3 Haswell processor per node. The Python
program used to generate the examples is part of the trilearn library available
at https://github.com/felixleopoldo/trilearn.

6.1. Czech autoworkers data

This dataset, previously analyzed many times in the literature comprises 1841
men cross-classified with respect to six potential risk factors for coronary throm-

https://github.com/felixleopoldo/trilearn
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bosis randomly selected from a population of Czech autoworkers: (Y1) smoking,
(Y2) strenuous mental work, (Y3) strenuous physical work, (Y4) systolic blood
pressure, (Y5) ratio of beta and alpha lipoproteins and (Y6) family anamnesis
of coronary heart disease. In absence of any prior information we assume that
the data are generated from the discrete log-linear DGM presented in Section 5.
Each of the 64 cells in the contingency table is assigned a pseudo count of 1/64,
which in turn induces hyper parameters in the conjugate prior Hyp-Dir(ϑ) de-
fined by {π(θQ;ϑQ)}Q∈Q(G) where ϑQ = {ϑQ(iQ)}i∈IQ and ϑQ(iQ) = |IV \Q|/64.
This type of low dimensional model is suitable for evaluation purposes since it
is possible to exactly compute the posterior distribution. Specifically, the total
number of decomposable graphs with six nodes is equal to 18154, allowing for
full computation of the posterior distribution.

All the estimators are based on N = 100 particles and averaging is performed
over M = 10000 PG-runs according to equation (4.7). Due to the absence of a
time-dependent dynamic, we set the bandwidth δ to p.

The heatmaps for the exact and estimated posterior distributions are dis-
played in Figure 1, along with the estimated auto-correlation. A visual inspec-
tion of the marginal edge probabilities in the heatmaps indicates a good agree-
ments between the distributions. From the fast decay from one to zero in the
auto-correlation plot we deduce that the PG-sampler exhibit very good mixing
properties for this problem.

Table 1 summarizes the edge sets for the top five graphs on both the exact and
estimated posterior distribution along with their corresponding probabilities. It
is important to note that the top five graphs are exactly the same for these
two distributions and the estimated probabilities are in a good agreement with

Fig 1. True edge heatmap (left), estimated heatmap (middle) and auto-correlation of the
number of edges in the trajectory of graph (right).
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the exact ones. Our findings are also consistent with the results obtained by
Massam, Liu and Dobra (2009) and Madigan and Raftery (1994). Specifically,
our top highest posterior probability graphs are the same as those identified by
Massam, Liu and Dobra (2009), see Table 2, case α = 1.0 in that paper.

Table 1

The estimated graph probabilities are compared to the true posterior probabilities for the five
graphs with the highest posterior probabilities.

Edge set Exact Estimated
(1, 3), (1, 5), (2, 3), (3, 5), (4, 5) 0.248 0.263

(1, 3), (1, 4), (1, 5), (2, 3), (3, 5), (4, 5) 0.104 0.115
(1, 3), (1, 4), (1, 5), (2, 3), (3, 5) 0.101 0.103

(1, 3), (2, 3), (2, 5), (4, 5) 0.059 0.062
(1, 3), (1, 5), (2, 3), (2, 6), (3, 5), (4, 5) 0.051 0.051

Finally, after evaluating a range of different combinations, we conclude that
our results obtained in this example appear to be insensitive to the choice of
CTA parameters α and β for this small scale problem.

6.2. Discrete data with p = 15

In this example we study a discrete log-linear DGM with p = 15 nodes and the
dependence structure displayed in Figure 2, presented in (Jones et al., 2005,
Figure 1). The parameters were selected to satisfy (5.8) thereby ensuring that
the distribution ΘG specified in Example 1 will be Markov with respect to G.
Analogously to the previous example, the we use the Hyp-Dir(ϑ) prior and
assign to each cells in the contingency table a pseudo count of 1/215. Due to
the absence of any time interpretation of the model, the bandwidth parameter
δ is selected as p. We used the CTA parameters α = 0.2 and β = 0.8, obtained
as the parameter setting giving best mixing properties within all the possible
combination on the grid α, β = 0.2, 0.5, 0.8.

Fig 2. The true underlying decomposable graph on p = 15 nodes along with its adjacency
matrix.
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Fig 3. Estimation of the graph posterior for the log-linear model with p = 15 and n = 100.
The CTA parameters are α = 0.2, β = 0.8 and δ = 15. The number of McMC sweeps M
is set to 10000. The left and right panel correspond to N = 20 and N = 100, respectively.
For both panels from top to bottom, the first figure presents the estimated edge heatmap, the
estimated MAP graph and estimated auto-correlation of the number of edges in the graph.

To evaluate how the estimation accuracy is affected by the number of parti-
cles, we sampled n = 1000 data vectors and estimated both the graph posterior
and the auto-correlation function with N = 20 and N = 100. By comparing the
true underlying graph in Figure 2 with the heatmaps and the MAP in Figure 3,
we observe that increasing N from 20 to 100 gives a slightly better agreement
with the true adjacency matrix. This effect can be further explained by the
behavior of the estimated auto-correlation function; by increasing N a clear re-
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duction of the auto-correlation can be noted. Qualitatively we conclude that the
mobility of the PG-sampler is improved when increasing N .

6.3. Continuous data with temporal dependence

In this example, we study a Gaussian DGM where a temporal interpretation
of the underlying dependence structure is suitable. The graph structure along
with its adjacency matrix are displayed in Figure 4 and can be interpreted as
an AR-process with lag varying between 1 and 5. The model to be considered is
represented by a Gaussian distribution with zero mean and covariance matrix
θ−1 defined as

(θ−1)ij =

{
σ2, if i = j

ρσ2, if (i, j) ∈ G

and θij = 0 if (i, j) /∈ G. This is a modification of the second order intra-
class structure considered in Green and Thomas (2013), where the bandwidth
is varying. We have sampled n = 100 data vectors from this model where
the variance σ2, and correlation coefficient ρ, were set to 1.0 and 0.9, respec-
tively.

Fig 4. The true underlying decomposable graph on p = 50 nodes along with its adjacency
matrix.

Following Example 2, θ is assigned a hyper Wishart prior, where for each
clique Q the degrees of freedom is set to be equal to p = 50, and the scale
matrix is set to be the identity matrix of dimension |Q|.

In this example, 10 PG trajectories of length M = 10000 were sampled, of
which the first 3000 samples were removed as burn-in period. The temporal in-
terpretation of the structure of this graph is particularly suited for investigating
the role of δ as a tuning parameter. The heatmaps and MAP graph estimates
most similar to the true graph for the configurations δ = 5 and δ = 50 are
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Fig 5. Heatmaps (top row) and MAP graph estimates (bottom row) for the PG-sampler with
δ = 5 (left panel) and δ = 50 (right panel).

diplayed in Figure 5. By comparing the two heatmaps one can notice that the
dependence structure can be better captured by selecting a value of δ which
corresponds to the maximal bandwidth size of 5 for the true graph. In addition,
by letting α = 0.5 and β = 0.8 we are able to express a priority for connected
graphs, we obtain a heatmap pattern which better mimics the true one. This
effect is also reflected by the log-likelihood trajectories in the bottom row of
Figure 6. The graph size auto-correlation (after burn-in) shown in the middle
row of Figure 6, decays slightly faster by a smaller δ and the mobility of the size
trajectory, top row of Figure 6 is improved in this example.

6.4. Comparison to the Metropolis-Hastings algorithm

We have compared the PG-sampler with the Metropolis-Hastings (MH) algo-
rithm proposed in Green and Thomas (2013) for the Gaussian example in Sec-
tion 6.3. Following the suggestions from that paper we randomise the junc-
tion tree every λ iteration, we executed their algorithm for both λ = 100 and
λ = 1000. We can confirm the claim that a more frequent junction tree randomi-
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Fig 6. Ten size trajectories (top row), estimated size auto-correlations (middle row) and the
graph log-likelihoods (bottom row) for the PG-sampler with δ = 5 (left panel) and δ = 50
(right panel).

sation has an improving effect on recovering the underlying model. Therefore,
results only for λ = 100 are demonstrated here.

The main advantage of the PG-sampler as compared to the MH-sampler is
its mixing properties. Figure 8 shows the 10 trajectories of the MH-sampler
after 350000 iterations (in total 500000 graphs were sampled), out of which 4
trajectories seem to have reached stationarity; see the size- and log-likelihood
trajectories displayed in green, orange, gray and brown. In the middle panel
of Figure 6 and Figure 8, it is seen that the estimated auto-correlation of the
MH-sampler is substantially stronger than that for the PG-sampler for both
choices of δ, being on average about 20000 for the MH-sampler as compared
to about 500 for the PG-samples with δ = 5. Figure 7 shows the heatmap and
MAP estimate corresponding to the green trajectories in Figure 8.

On the other hand, the MH-sampler is superior in speed, which is at cost of
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Fig 7. Heatmaps (left panel) and MAP graph estimates (right panel) for the MH-sampler
with junction tree randomization at every λ = 100 iteration.

Fig 8. Ten size trajectories (top panel), estimated size auto-correlations (middle panel) and
the graph log-likelihoods (bottom panel) for the MH-sampler with junction tree randomization
at each λ = 100 iteration.
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the slower mixing seemingly inherited by the local moves. Using the Java imple-
mentation from Green and Thomas (2013), the MH-sampler with randomising
interval λ = 100 were able to sample about 20000 samples per second, while
each sample took about 3 seconds for the PG-sampler. Note that the implemen-
tation by Green and Thomas (2013) considers the intra-class model introduced
Section 6.3 so that θ is defined by the two parameters σ2 and ρ, and two inde-
pendent priors are assigned for these instead of the hyper Wishart distribution
as presented in Example 2. However, a gain in sample time for the MH-sampler
is expected since, in each PG iteration, the conditional SMC procedure gener-
ates p(N − 1) junction trees with O(p2) internal nodes per PG sample. Also,
when a new junction tree is proposed in the SMC algorithm, the previous junc-
tion tree, which it stems from is copied since it could potentially be an ancestor
for other trees as well due to the re-sampling step. As scope for future research,
investigating new data structures for junction trees which are tailored to se-
quential sampling is of great interest. We also expect that the speed of the
PG-sampler could be improved by, for example parallelizing the SMC-updates
and by improved caching strategies.

Appendix A

A.1. Graph theory

Given a set V = {a1, . . . , ap} of p ∈ N distinct elements, an undirected graph G
with nodes V is specified by a set of edges E ⊆ V ×V , and we write G = (V,E).
In addition, we say that G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊂ E.
For any pair (a, b) of nodes in G, a path from a to b, denoted by a ∼ b, is a
sequence {ank

}�+1
k=1, with � ∈ �1, p − 1�, of distinct nodes such that an1 = a,

an�+1
= b, and (ank

, ank+1
) ∈ E for all k ∈ �1, ��. Here � is called the length of

the path. A graph is called a tree if there is a unique path between any pair of
nodes. A graph is connected when there is a path between every pair of nodes,
and a subtree is a connected subgraph of a tree. Let G = (V,E) be a graph and
A, B, and S subsets of V ; then S is said to separate A from B if for all a ∈ A and
b ∈ B, every path a ∼ b intersects S. This is denoted by A ⊥G B | S. A graph is
complete if E = V ×V . Let V ′ ⊆ V ; then the induced subgraph G[V ′] = (V ′, E′)
is the subgraph of G with nodes V ′ and edges E′ given by the subset of edges in
E having both endpoints in V ′. We write G′ = (V ′, E′) ≤ G = (V,E) to indicate
that G′ = G[V ′]. A subset W ⊆ V is a complete set if it induces a complete
subgraph. A complete subgraph is called a clique if it is not an induced subgraph
of any other complete subgraph. We denote byQ(G) the family of cliques formed
by a graph G.2 A triple (A,B, S) of disjoint subsets of V is a decomposition of
G = (V,E) if A ∪ B ∪ S = V , A �= ∅, B �= ∅, S is complete, and it holds that
A ⊥G B | S.

2We use calligraphy uppercase to denote families of graphs, or, more generally, families of
sets (as a graph is, given the nodes, specified through the edge set). Consequently, calligraphy
uppercase will also used to denote σ-fields.
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A.2. Proofs and lemmas

The following lemma, proved in a slightly different form in Thomas and Green
(2009), establishes that each extension (3.2) has the correct marginal w.r.t. the
graph, i.e., that η�〈U〉 is the distribution of g(τ) when τ ∼ η∗〈U〉.
Lemma 3. For all U ⊆ V and h ∈ F(G),

Eη∗〈U〉 [h ◦ g(τ)] = η�〈U〉h,
where η∗〈U〉 is defined in (3.2).

Proof. Since

γ∗〈U〉1TU
=

∑
T∈TU

γ∗〈U〉(T ) =
∑

G∈GU

∑
T∈T (G)

γ�〈U〉 ◦ g(T )
μ ◦ g(T )

=
∑

G∈GU

μ(G)
γ�〈U〉(G)

μ(G)
= γ�〈U〉1GU

,

it holds that

η∗〈U〉(dT ) = η�〈U〉 ◦ g(T )
μ ◦ g(T ) |dT |. (A.1)

Now, let h ∈ F(GU ); then by a similar computation,

Eη∗〈U〉 [h ◦ g(T )] =
∑

G∈GU

∑
T∈T (G)

h ◦ g(T )η
�〈U〉 ◦ g(T )
μ ◦ g(T )

=
∑

G∈GU

μ(G)h(G)
η�〈U〉(G)

μ(G)
= η�〈U〉h,

which completes the proof.

Proof of Theorem 2. First, as established in (Chopin and Singh, 2015, Propo-
sition 8), the standard PG kernel PN

p is η1:p-reversible. As mentioned above,
the kernel Gp is straightforwardly η1:p-reversible as a standard Gibbs substep.
Moreover, for all x1:p ∈ X1:p, Gp(x1:p,X1:p−1 × {xp}) = 1 and Gp dominates
trivially the Dirac mass on the off-diagonal, in the sense that for all A ∈ X1:p

and x1:p ∈ X1:p, Gp(x1:p, A \ x1:p) ≥ δx1:p(A \ x1:p) = 0. The assumptions of
(Maire, Douc and Olsson, 2014, Lemma 18) are thus fulfilled, and the proof is
concluded through application of the latter.
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