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Abstract

Let S be the random walk obtained from “coin turning” with some sequence {pn}n≥2,
as introduced in [8]. In this paper we investigate the scaling limits of S in the spirit of
the classical Donsker invariance principle, both for the heating and for the cooling
dynamics. We prove that an invariance principle, albeit with a non-classical scaling,
holds for “not too small” sequences, the order const·n−1 (critical cooling regime) being
the threshold. At and below this critical order, the scaling behavior is dramatically
different from the one above it. The same order is also the critical one for the Weak
Law of Large Numbers to hold. In the critical cooling regime, an interesting process
emerges: it is a continuous, piecewise linear, recurrent process, for which the one-
dimensional marginals are Beta-distributed. We also investigate the recurrence of the
walk and its scaling limit, as well as the ergodicity and mixing of the nth step of the
walk.
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1 Introduction

We start with reviewing the notion of the coin turning process, which has been
introduced recently in [8].

Let p2, p3, p4... be a given deterministic sequence of numbers such that pn ∈ [0, 1] for
all n; define also qn := 1 − pn. We define the following time-dependent “coin turning
process” Xn ∈ {0, 1}, n ≥ 1, as follows. Let X1 = 1 (“heads”) or = 0 (“tails”) with
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probability 1/2. For n ≥ 2, set recursively

Xn :=

{
1−Xn−1, with probability pn;

Xn−1, otherwise,

that is, we turn the coin over with probability pn and do nothing with probability qn.
(Equivalently, one can define p1 = 1/2 and X1 ≡ 0.)

Consider XN := 1
N

∑N
n=1Xn, that is, the empirical frequency of 1’s (“heads”) in the

sequence of Xn’s. We are interested in the asymptotic behavior of this random variable
when N →∞. Since we are interested in limit theorems, it is convenient to consider a
centered version of the variable Xn; namely Yn := 2Xn − 1 ∈ {−1,+1}. We have then

Yn :=

{
−Yn−1, with probability pn;

Yn−1, otherwise.

Let also Fn := σ(Y1, Y2, ..., Yn), n ≥ 1.
Note that the sequence {Yn} can be defined equivalently as follows:

Yn := (−1)
∑n
i=1Wi ,

where W1,W2,W3, ... are independent Bernoulli variables with parameters p1, p2, p3, ...,
respectively, and p1 = 1/2.

Remark 1.1 (Poisson binomial random variable). The number of turns that occurred up
to n, that is

∑n
i=2Wi, is a Poisson binomial random variable. �

For the centered variables Yn, we have Yj = Yi(−1)
∑j
i+1Wk , j > i, and so, using Corr

and Cov for correlation and covariance, respectively, one has

Corr(Yi, Yj) = Cov(Yi, Yj) = E(YiYj) = E(−1)
∑j
i+1Wk (1.1)

=

j∏
i+1

E(−1)Wk =

j∏
k=i+1

(1− 2pk) =: ei,j ;

E(Yj | Yi) = YiE(−1)
∑j
i+1Wk = ei,jYi. (1.2)

The quantity ei,j will play an important role throughout the paper.
Next, we define our basic object of interest.

Definition 1.2 (Coin-turning walk). The random walk S on Z corresponding to the coin-
turning, will be called the coin-turning walk. Formally, Sn := Y1 + ...+ Yn for n ≥ 1; we
can additionally define S0 := 0, so the first step is to the right or to the left with equal
probabilities. As usual, we then can extend S to a continuous time process, by linear
interpolation.

Remark 1.3. Even though Y is Markovian, S is not. However, the 2-dimensional process
U defined by Un := (Sn, Sn+1) is Markovian. It lives on a ladder embedded into Z2. See
Figure 1. �

In [8], several scaling limits of the form limn→∞ Law
(
Sn
bn

)
= L, have been established,

where {bn}n≥1 is an appropriate sequence (depending on the sequence of pn’s) tending
to infinity and L is a non-degenerate probability law. In [8] the focus was on the
limn→∞ pn = 0 case.

Remark 1.4 (Supercritical cases). Note that if
∑
n pn < ∞ then by the Borel-Cantelli

lemma, only finitely many turns will occur a.s.; therefore the Xj ’s will eventually become
all ones or all zeros, and hence

XN → ζ a.s.,
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Figure 1: The process of ordered pairs Un := (Sn, Sn+1) is a Markov chain.

where ζ ∈ {0, 1}. By the symmetry of the definition with respect to heads and tails (or,
by the bounded convergence theorem), ζ is a Bernoulli(1/2) random variable.

Similarly, if
∑
n qn <∞ then S will be eventually stuck at two neighboring integers,

again, by the Borel-Cantelli lemma. �
These two trivial cases (we call them “lower supercritical” and “upper-supercritical”

cases) are not considered, and so we have the following assumption.

Assumption 1.5 (Divergence). In the sequel we are going to assume that
∑
n pn =∞

and also
∑
n qn =∞.

2 Mixing

Unlike in [8] and in the previous section, we now do not randomize the walk with
taking Y1 to be a symmetric random variable. Nevertheless, it is still true for the

indicators of turns Wk, that Yj = Yi(−1)
∑j
i+1Wk , j > i, and that for ei,j =

∏j
k=i+1(1−2pk)

we have E(Yj | Yi) = YiE(−1)
∑j
i+1Wk = ei,jYi, hence E(YiYj) = ei,j .

2.1 Characterization of mixing

We will say that the sequence of random variables (Yn)n≥1 satisfies the mixing
condition if

lim
j→∞

eij = 0,∀i ∈ N. (2.1)

Under mixing, limj→∞E(Yj | Yi) = 0, so Yj “becomes symmetrized” for i fixed and large
j. Also, limj→∞E(Yi Yj) = 0 and limj→∞EYj = 0, hence

lim
j→∞

Cov(Yj , Yi) = 0, (2.2)

in accordance with the usual notion of mixing.

Mixing has a very simple characterization in terms of the sequence {pn}n≥1.
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Proposition 2.1 (Condition for mixing). Mixing holds if and only if∑
n

min(pn, qn) =∞. (2.3)

Proof of Proposition 2.1. Since

min(pi, qi) =

{
pi, if pi ≤ 1/2;

qi = 1− pi, if pi > 1/2,

we have

|ei,j | =

∣∣∣∣∣
j∏

k=i+1

(1− 2pk)

∣∣∣∣∣ =
∏

i<k≤j,pk≤1/2

(1− 2pk)×
∏

i<k≤j,pk>1/2

(1− 2qk) =

j∏
k=i+1

(1− 2 min(pk, qk)).

When pk 6= 1/2 for all k ≥ 1, (2.1) and (2.3) are equivalent by a well known result
about infinite products; when pk = 1/2 infinitely often, (2.1) and (2.3) are clearly
simultaneously satisfied.

In all other cases, define k0 := max{k ∈ N | pk = 1/2}. For i < k0, ei,j = 0 for all large
j, while for i ≥ k0, (2.1) is tantamount to (2.3), just like in the first case.

2.2 Why is mixing a natural assumption?

The mixing condition is stronger than Assumption 1.5 if pk keeps crossing the line
1/2 (i.e. lim inf pk < 1/2 < lim sup pk), while they are equivalent when pk settles on one
side of 1/2 eventually.

In the first case Assumption 1.5 is automatically satisfied, as pk ≥ 1/2 i.o. and also
qk ≥ 1/2 i.o. Defining I := {i ∈ N : pi ≤ 1/2}, we see that the mixing condition is
nevertheless violated if and only if∑

i

min(pi, qi) =
∑
i∈I

pi +
∑
i 6∈I

qi <∞,

that is, when
∑
i∈I pi < ∞ and

∑
i6∈I qi < ∞. In this case, recalling that Wi is the

indicator of a turn at time i, by Borel-Cantelli,

P (∃n0 ∈ N : Wi = 1Ic(i) for all i ≥ n0 | F1) = 1,

where 1Ic is the characteristic function of the set N \ I. That is, along I, “turning”
eventually stops, while along N \ I, “staying” eventually stops.

Our conclusion is that when mixing does not hold, the random walk is “eventually
deterministic”, and thus the setup is less interesting. For example, from the point of view
of recurrence, the problem becomes a question about a deterministic process; whether
that process takes any integer value infinitely many times depends simply on the set I
(as long as

∑
i∈I

pi <∞ and
∑
i 6∈I

qi <∞.)

To have a concrete example, let I = {2, 4, 6, . . . } be the set of positive even integers.
Then, for large times, the walk will alternate between taking two consecutive steps up
and taking two consecutive steps down. This excludes recurrence of course, as the
process becomes stuck at some triple of consecutive integers. We summarize the above
discussion in Figure 2.

We conclude this Section with some notation.
Throughout the paper cn ∼ dn will mean that limn→∞ cn/dn = 1, while cn = o(dn) will

mean that limn→∞ cn/dn = 0. Convergence in distribution will be denoted by
d→.
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3 Review of relevant literature

3.1 Some results from [8]

Some of the basic results of [8] are summarized in the following theorem.

Theorem A. Let S denote the coin-turning walk.

(i) (“Time-homogeneous case”.) Let pn = c for all n ≥ 1, where 0 < c < 1. Then

Law

(
SN√
N

)
→ Normal

(
0, σ2

c

)
, where σ2

c := 1 + 2

∞∑
i=1

Cov(Yi, Yj) =
1− c
c

.

(ii) (“Lower critical case”.) Fix a > 0 and let

pn =
a

n
, n ≥ n0

for some n0 ∈ N. Then1

Law

(
SN
N

)
→ Beta(a, a),

where Beta(α, β) denotes the Beta distribution with parameters α, β.

(iii) (“Lower subcritical case”.) Fix γ, a > 0 and let

pn =
a

nγ
, n ≥ n0

1A nice exercise, left to the reader, is to show that when the sequence is precisely (p1 = 1/2), p2 = 1/3, p3 =

1/4, p4 = 1/5, ..., SN
N

has precisely discrete uniform law for each N . This fact, as Márton Balázs pointed out to
us, can be related to Pólya urns. The more general connection of our model with Pólya urns will be presented
in a forthcoming paper.
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for some n0 ∈ N. (Since γ > 1 corresponds to the supercritical case, we assume
that 0 < γ < 1.) Then

Law

(
SN√
N1+γ

)
→ Normal

(
0, σ2

a,γ

)
, where σ2

a,γ :=
1

a(1 + γ)
.

3.2 Recent results by Benaïm, Bouguet and Cloez

In a recent follow up paper to [8] by Bouguet and Cloez [3], the setting has been
generalized in such a way that instead of two states (heads and tails or ±1), one considers
D ≥ 2 states, and with probability pn in the nth step the state changes according to a
given irreducible Markov chain.2 (They also allow a small error term.) They assume that
{pn}n≥1 is a decreasing sequence and p := limn pn is not necessarily zero. This excludes
the p = 1 case we consider, except the trivial pn ≡ 1 case, and the most interesting case
is p = 0, the one we call cooling dynamics.

Bouguet and Cloez prove several interesting results, generalizing/strengthening those
in [8]. For example they show that if

∑
n pn =∞, limn→∞ npn =∞ and

∑
n(pnn

2)−1 <∞,
then the empirical distribution of the states converges almost surely to the unique
invariant probability distribution of the Markov chain.

The relationship with [8] is explained in 4.2 in [3].
The paper builds on the authors’ previous results with M. Benaïm in [2], and they

point out in [3] that

“In particular, the results we use provide functional convergence of the
rescaled interpolating processes to the auxiliary Markov processes...”

at which point the authors refer to [2] and another article. Also, after their Theorem 2.8,
treating the critical pn = c/n case, they note that

“It should be noted that our approach for the study of the long-time behavior
of ... also provides functional convergence for some interpolated process ...
from which Theorem 2.8 is a straightforward consequence.”

On the one hand, their Theorem 2.8 is really about the convergence of Sn/n only, and the
“interpolating process” alluded to is not the random walk S, and it is not completely clear
if the authors of [3] are trying to say that one in fact can obtain from [2] the functional
convergence for S in the critical case as stated in our Theorem 4.11(3).

On the other hand, it seems that this derivation is after all doable, as we explain
briefly below. The reader may safely skip this part though and return to it only after
reading our main results. Indeed, let us suppose that we already know tightness and
only want to check the convergence of the finite dimensional distributions, that is the
existence of the limit (in law)

lim
n→∞

(Snt1/n, Snt2/n, ..., Sntk/n), (3.1)

for some 0 < t1 < t2 < ... < tk. When pn = c/n for large n’s, define τt :=
∑btc

1 pn. Define

the “pasting process” X̂ by

X̂(t) :=

∞∑
n=1

Sn
n
1{τn≤t<τn+1}, t ≥ 0.

A little algebra reveals that the existence of the limit in (3.1) is equivalent to that of

lim
t→∞

(
X̂(τtt1)t1, X̂(τtt2)t2, ..., X̂(τttk)tk

)
.

2E.g. when D = 2, one can still consider unequal probabilities for switching between the states in different
directions.
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Using the fact that limt→∞(τt − log t) is a constant, we can rewrite this limit as

lim
t→∞

(X̂(τtt1 )(0) t1, X̂
(τtt1 )(log(t2/t1)) t2, ..., X̂

(τttk )(log(tk/tk−1)) tk),

where X̂(z)(t) := X̂(t+ z), z > 0. Now, if the limit (in law)

lim
z→∞

(X̂(z)(s1), X̂(z)(s2), ..., X̂(z)(sk))

is known, we are done, and this latter type of limit of “pseudo-trajectories” is what has
been derived in [2] under some suitable assumptions.

In summary, [3] provides a very valuable complement to [8]. Moreover, with some
further efforts, our result on the zigzag process in the present paper can apparently be
recovered from the results presented in the sequence [2, 3], and vice versa.

4 Our main results

4.1 The law of the nth step for large n

Recall that
Yn := (−1)

∑n
i=1Wi ,

where W1,W2,W3, ... are independent Bernoulli variables with parameters p1, p2, p3, ...,
respectively.

When pk ≤ 1/2 for all large k, ρ :=
∏∞
i=2(1 − 2pi) is well defined as the terms are

in [0, 1] with finitely many exceptions. In particular, when
∑
pi <∞, by Borel-Cantelli,

Yi = Y for all large i, a.s., and in Proposition 1 in [8] it has been shown that in this case

P(Y = 1 | Y1 = 1) = lim
n
P(Yn = 1 | Y1 = 1) =

1 + ρ

2
,

P(Y = 1 | Y1 = −1) = lim
n
P(Yn = 1 | Y1 = −1) =

1− ρ
2

.

This may be generalized is as follows.

Theorem 4.1. Define N := card{i : pi > 1/2} ∈ N ∪ {∞}.

(a) If mixing holds, or if ∃i : pi = 1/2 then limnP(Yn = 1 | F1) = 1/2.

(b) If mixing does not hold, then there are two cases (k ∈ {−1, 1}):

(i) if N <∞, then ρ 6= 0 and lim
n→∞

P(Yn = 1 | Y1 = k) =
1

2
(1 + kρ).

(ii) if N =∞ then P(Yn = 1 | Y1 = k) has no limit.

Remark 4.2 (Ergodicity). Part (a) in Theorem 4.1 is interpreted as “mixing implies
ergodicity”, since (1/2, 1/2) is the invariant distribution for the switching matrix

M =

(
0 1

1 0

)
,

and we can consider our model as one where at step n the transition given by M may or
may not apply (with probabilities pn and 1− pn, resp.). �
Remark 4.3 (Speed of convergence). Regarding Theorem 4.1, one may wonder what the
speed of convergence is when the limit exists. A closer look at the proof of Theorem 4.1
in Section 6 shows that the total variation distance to the limit decays as

exp

(
−2

n∑
1

min{pi, 1− pi}

)
.

We leave the details to the reader. �
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4.2 Scaling limits for the walk

Recently, Sean O’Rourke has asked whether the results of [8] could be extended
to convergence in the process sense, in the spirit of the classical Donsker invariance
principle (see e.g. [10] for the classical result and its proof). We are now going to
answer this question, and moreover, consider additional cases too, where turns are
becoming more and more frequent (i.e. pn is getting close to one), such as, for example,
pn = 1− c/n or pn = 1− n−γ , 0 < γ < 1 for large n.

Note: In the rest of the paper, for convenience we assume again that p1 = 1/2, i.e. we
symmetrize the setting.

4.2.1 The time-homogeneous case

As a warm up, we start with the time-homogeneous case.

Theorem 4.4 (Time-homogeneous case). Assume that pn = c for n ≥ n0. For n ≥ 1,
define the rescaled walk Sn by

Sn(t) :=
Sb c

1−cntc√
n

, t ≥ 0,

and letW denote the Wiener measure. Then limn→∞ Law(Sn) =W on C[0,∞).

Remark 4.5. We will show that Theorem 4.4 follows trivially from our general martingale
approximation method of Subsection 6.2. However, we note that one can also give a
direct proof using that the “turning times” are geometrically distributed. Here is a sketch:
assuming that e.g. Y1 = 1 we can consider the period consisting of the first run of 1’s
together with the first run of −1’s. The second, third etc. periods are defined similarly,
and the piece-wise linear “roof-like” processes in these periods are i.i.d. (up to their
respective starting values). Since the length of each run is geometrically distributed,
and those geometric variables are independent, the Renewal Theorem applies to the
lengths of the periods. One then applies the classical invariance principle to the process
considered at each second “turning time”, and finally extends the result for all times.
We leave the details to the reader. �
Remark 4.6. Theorem 4.4 is also covered by those in [5, 6]. The first one treats the
“uniformly strong mixing” condition for Markov chains and weak convergence. �

4.2.2 Heating regime

The following theorem will give an invariance principle for the “heating” case, that is for
the case when the pn are getting close to one. But before that we present an important
remark.

Remark 4.7 (Even and odd parts). It turns out that in the heating regime, the right

approach is to look at the sums of the two sub-series I =
∑

odd :=

∞∑
k=1

q2k−1 and II =

∑
even :=

∞∑
k=1

q2k separately. If either I < ∞ or II < ∞, then the invariance principle

breaks down.

Indeed, by Borel-Cantelli then, after some finite time, every other step turns the coin
a.s., and consequently, S is stuck on a set of size three, which rules out the validity
of any invariance principle. We conclude that for an invariance principle to hold, it
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is not enough to assume merely that
∞∑
k=0

qk = ∞; one needs to assume that in fact

I = II =∞. �
In light of the previous remark, without the loss of generality, from now on we will

work under the following assumption.

Assumption 4.8. I = II =∞.

Before we state the following theorem, we need some more notation. Introduce

an :=

∞∑
i=0

Cov(Yn, Yn+i) = 1 +

∞∑
i=1

(1− 2pn+1)(1− 2pn+2) . . . (1− 2pn+i) (4.1)

= 1 +

∞∑
i=1

(−1)i(1− 2qn+1)(1− 2qn+2) . . . (1− 2qn+i), n ≥ 1,

which is well defined as the sum of a Leibniz series, and also

vn :=

n∑
i=1

4a2i piqi, n ≥ 1, (4.2)

and

ξi := (−1)Wi − E
[
(−1)Wi

]
= (−1)Wi + 2pi − 1; Λ2

n :=

n∑
i=1

a2i ξ
2
i ,

so that Eξ2i = Var((−1)Wi) = 4piqi and EΛ2
n = vn.

Theorem 4.9 (Invariance principle; heating regime). Assume that qn → 0. Besides
Assumption 4.8, assume that there exists a C > 0 such that at least one of the following
two assumptions is satisfied:

q2m ≥ C max
`≥m

q2`+1, ∀m ≥ m0 (even terms “dominate”); (4.3)

q2m+1 ≥ C max
`≥m+1

q2`, ∀m ≥ m0 (odd terms “dominate”). (4.4)

(a) For n ≥ 1, define the rescaled walk Sn by setting

Sn(t) :=
SZ(nt)√

n
, t ≥ 0. (4.5)

where Z(x) := inf{n ∈ N : vn ≥ x}. Then

lim
n→∞

Law(Sn) =W on C[0,∞), (4.6)

whereW is the Wiener measure.

(b) We have limn→∞ Λn =∞ almost surely3, and lim
n→∞

Λ2
n

EΛ2
n

= 1 in probability.

Remark 4.10 (Equivalent condition). One can rewrite (4.3) in a “backward looking” way:

q2m+1 ≤ const ·min{q2`, ` ≤ m}, ∀m ≥ 0,

as both are equivalent to saying that qn ≥ const · qr for r > n if n is even and r is odd. A
similar statement holds for (4.4). �

3Note that Drogin in [7] proves, in fact, two invariance principles. The second one uses the function s2 (our
Λ2) for time-change.
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4.2.3 Cooling regime

When lim
n→∞

pn = 0, one deals with a so-called “cooling dynamics” as the turns become

infrequent. In this case, the scaling limit is not necessarily Brownian motion, as the
following theorem shows. Loosely speaking, the order const·n−1 is the critical one in the
sense that for sequences of larger order the invariance principle is in force, however at
this order or below it the situation is dramatically different.

Theorem 4.11 (Cooling regime). Let the process Sn be defined by Sn(t) := Snt/n, t ≥ 0,
where for non-integer values of nt we assign Snt using the usual linear interpolation. Let
R be the process (“random ray”) defined by R(t) := tR, where R is a random variable
equal to ±1 with equal probabilities. We have the following limits in the process sense
(using the topology of uniform convergence on compacts for the paths):

1. Supercritical case:
∞∑
n=1

pn <∞. Then limn→∞ ‖Sn(·)−R(·)‖∞ = 0 almost surely.

2. Strongly critical case: pn = o(1/n) but
∞∑
n=1

pn = ∞. Then limn→∞ Sn(·) = R(·) in

law.

3. Critical case: pn = c/n for n ≥ n0. Recalling the notion of the zigzag process
(defined in Section 6.1), limn→∞ S(n) is the zigzag process, where the limit is meant
in law.

4. Subcritical case: (Cooling but larger order than 1/n) Let p1 = 1/2. Assume that, as
n→∞,

(a) An := npn ↑ ∞;
(b) pn ↓ 0.

Then, for the rescaled walk (4.5) the invariance principle (4.6) holds.

4.2.4 Neither heating nor cooling regime

The following result generalizes the case when lim
n→∞

pn = a with 0 < a < 1, as well as the

time-homogeneous case of Theorem 4.4: the invariance principle holds as long as the pn
are bounded away from both 0 and 1.

Theorem 4.12 (Invariance principle; neither heating nor cooling regime). Assume that

0 < lim inf
n→∞

pn ≤ lim sup
n→∞

pn < 1. (4.7)

Then for the rescaled walk (4.5) the invariance principle (4.6) holds.

4.3 Validity of the WLLN

With regard to the Weak Law of Large Numbers (by which we mean that Sn/n→ 0 in
probability), we know that it breaks down at the critical regime. On the other hand, the
following result shows that above that order it is always in force.

Theorem 4.13 (WLLN). Let pn ≤ 1/2 for all n ≥ 1 and assume that limn→∞ npn = ∞.

Then lim
n→∞

Sn
n

= 0 in probability.

4.4 Recurrence

We now turn our attention to the recurrence/transience of the walk and its scaling
limit.
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Definition 4.14. We call S recurrent if

P(Sn = 0 i.o. | Y1) = 1. (4.8)

Let us introduce the following mild condition on the walk.

Assumption 4.15 (Spreading). Assume that for all n,K ∈ N,

lim
m→∞

P(|Sm| ≤ K | Fn) = 0, a.s.

Remark 4.16. Assumption 4.15 is trivially satisfied when σ2
n := Var(Sn) → ∞ and the

scaling limit

lim
m→∞

P

(
Sn+m
σn+m

∈ [a, b] | Fn
)

= Q([a, b]), a.s. (4.9)

holds with a, b ∈ R, a ≤ b and n ∈ N, and some probability measure Q such that
Q({0}) = 0. These scaling limits we did establish in many cases in [8].

Let us now assume also mixing. Reformulate (4.9) as

lim
m
P

(
Sn+m − Sn
σn+m

∈ [a, b] | Sn, Yn
)

= Q([a, b]), a.s.

It is easy to see that the conditioning on Yn could be safely dropped, as the “initial” nth
step gets forgotten. �
Theorem 4.17. Besides Assumption 4.15, assume also mixing. Then S is recurrent.

In the next statement, the part that concerns the walk is a particular case of Theorem
4.17, provided that one knows that Assumption 4.15 holds. (For example, this is the case
when pn = c/n for n ≥ n0 with some n0 and c > 0.)

Theorem 4.18 (Recurrence; lower critical case). Suppose that pn ≤ c/n for n ≥ n0 with
some n0 and c > 0, and at the same time

∑
n pn = ∞. Then S is recurrent, and in the

pn = c/n, n ≥ n0 case, the scaling limit (zigzag process) is recurrent as well.

Finally, we summarize our scaling results in Figure 3.

5 Examples and open problems

In this section, we compute the scaling Z(·) for a few examples in the cooling regime
and the heating regime. We first give two concrete examples for the heating regime.
Notice that the scaling function Z is the generalized inverse of v defined in (4.2). Hence,
it suffices to determine v in order to obtain the scaling of S(n).

Example 5.1 (Heating regime). Set pn = 1 − c
2nγ , for n ≥ n0, where 0 < γ < 1. By

Proposition 6.5 in Section 6.2, Var(Sm) = (1 + o(1))vm, so we only need to compute
Var(Sm), and then Z(·) is asymptotically equivalent to the “inverse” of Var(Sm). First
note that

eij = Cov(Yi, Yj) =

j∏
k=i+1

(1− 2pk), |eij | =
j∏

k=i+1

(
1− c

kγ

)
,

and

Var(Sn) = n+ 2

n−1∑
i=1

n∑
j=i+1

eij = n+ 2

n−1∑
i=1

n∑
j=i+1

(−1)i+j
j∏

k=i+1

|eij |.
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Figure 3: Three regimes of possible convergence.

Thus

Var(Sn)− Var(Sn−1) = 1 + 2

n−1∑
i=1

ein = 1− 2

n−1∑
i=1

(−1)n−1−i|ein|.

Let us now show that

n−1∑
i=1

(−1)n−1−i|ein| =
n−1∑
i=1

(−1)n−1−i
n∏
k=i

(
1− 2

kγ

)
=

1

2
− c+ o(1)

4nγ
. (5.1)
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In the case when i ≤ n− n
2γ+1

3 (note that γ < 2γ+1
3 < 1), one has

|ein| ≤
n∏

k=n−n
2γ+1

3

(
1− c

kγ

)
≤
(

1− c

nγ

)n 2γ+1
3

≤ exp
(
−cn

1−γ
3

)
,

yielding

n−n
2γ+1

3∑
i=1

|ein| < ne−cn
1−γ
3 = o(n−γ). (5.2)

For i ≥ n− n
2γ+1

3 we have

n−1∑
i=n−n

1+2γ
3

(−1)n−1−i|ein| = (|en−1,n| − |en−2,n|) + (|en−3,n| − |en−4,n|) + . . .

=
c

(n− 1)γ
|en−1,n|+

c

(n− 3)γ
|en−3,n|+

c

(n− 5)γ
|en−5,n|+ . . .

= d1 + d3 + d5 + · · · =
n

(2γ+1)
3∑

j=1, odd

dj ,

(5.3)

where

dj =
c

(n− j)γ

(
1− c

(n− j + 1)γ

)(
1− c

(n− j + 2)γ

)
...
(

1− c

nγ

)
,

with 1 ≤ j ≤ n
2γ+1

3 . Define also

bj := κ(1− κ)j , where κ :=
c

nγ
.

Note that

dj ≤
c

(n− j)γ
(

1− c

nγ

)j
=

(
1− j

n

)−γ
bj =

(
1 +O

(
n−

2−2γ
3

))
bj

but

dj ≥
c

nγ

(
1− c

(n− j + 1)γ

)j
=

(
1− c

(
1− j−1

n

)−γ − 1

nγ − c

)j
bj

=

(
1−O

(
j

n1+γ

))j
bj =

(
1−O

(
j2

n1+γ

))
bj =

(
1−O

(
n−

1−γ
3

))
bj .

Hence,
|bj − dj | = bj × o(1),

implying
n(2γ+1)/3∑
j=1, odd

dj = (1 + o(1))

n(2γ+1)/3∑
j=1, odd

bj . (5.4)

At the same time,

b1 + b3 + . . . = κ(1− κ)[1 + (1− κ)2 + (1− κ)4 + . . . ] =
κ(1− κ)

1− (1− κ)2
=

1− κ
2− κ

=
1

2
− κ

2(2− κ)
=

1

2
− c+ o(1)

4nγ
,
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so

n(2γ+1)/3∑
j=1, odd

bj =

∞∑
j=1, odd

bj −O
(

(1− κ)n
2γ+1

3

)
=

∞∑
j=1, odd

bj −O
(
e−cn

1−γ
3

)
=

1

2
− c+ o(1)

4nγ
.

(5.5)
Then, combining (5.2), (5.3), (5.4) and (5.5) we obtain (5.1). Hence

Var(Sn)− Var(Sn−1) = 1− 2

[
1

2
− c+ o(1)

4nγ

]
=
c+ o(1)

2nγ
,

and as a result, Var(Sn) = c
2(1−γ)n

1−γ + o(n1−γ).

Our conclusion is that Z(x) ∼ b(2x(1− γ)/c)
1

1−γ c, that is, for the rescaled walk (4.5)
the limit in (4.6) holds.

Example 5.2 (Heating regime). Let pn = 1− c
n , n ≥ n0, for some n0 ≥ 1. From Lemma

6.6 in Section 6, limn→∞ an = 1/2, hence

vm =

m∑
n=1

4a2npnqn = (1 + o(1))

m∑
n=1

(
1− c

n

) c
n

= (c+ o(1)) lnm.

Thus, for the rescaled walk (4.5), the limit (4.6) holds, but now with Z(x) ∼ bex/cc.
Next is an example for the cooling regime.

Example 5.3 (Subcritical case; cooling regime). If pn = c
nγ for some c > 0, γ ∈ (0, 1) and

all n ≥ n0, then for the rescaled walk (4.5) the invariance principle (4.6) holds. Indeed,
similarly to the previous examples, one only needs to know the order of Var(Sn). By

Theorem 2 of [8], Var(Sn) = (1 + o(1)) n1+γ

c(1+γ) , so Z(x) ∼
⌊
[c(1 + γ)]

1
1+γ (x)

1
1+γ

⌋
.

We finally present a few open problems.

Problem 5.4 (When pn is not comparable to 1/n; different PPP’s). What can be said about
the case when lim infn npn = 0 and lim supn npn = ∞? A somewhat related question is
whether the following is possible for some situations: the scaling limit is a piecewise
deterministic process and the turning points form a PPP but the intensity is different
from const/x dx.

Problem 5.5 (Random temporal environment). One can also consider a random walk
in a random temporal environment (as opposed to the more usual random spatial
environment) as follows. Assume now that the pn are i.i.d. random and follow the same
distribution (supported on [a, b], for 0 < a < b < 1) or a family of distributions on [a, b].
What can one say about the walk in the quenched or in the annealed case?

6 Proofs

The rest of the paper is organized as follows. After presenting two preparatory
sections on martingale approximation and on a piecewise deterministic process, we give
the proofs of the main results.

6.1 Preparation I: the zigzag process

We now define a stochastic process, which we will relate to the critical case in the
cooling regime.

Definition 6.1 (Zigzag process). Consider a Poisson point process (PPP) on [0,∞) with
intensity measure a

x dx with a > 0. (Such a process is known as the scale-invariant
Poisson process, see [1].) Once the realization is fixed, the value of the process at t ≥ 0

is obtained as follows. Starting with the segment containing t and going backwards

EJP 25 (2020), paper 3.
Page 15/38

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP406
http://www.imstat.org/ejp/


The coin-turning walk and its scaling limit

Figure 4: The zigzag process: turning points form a PPP on [0,∞) with intensity measure
a
x dx. (Obtained by simulating S.)

towards the origin, color the first, third, fifth, etc. segments between the points blue.
The second, fourth, etc. will be colored red. Given this Poisson intensity, we will have
infinitely many segments towards zero (and also towards infinity) almost surely.

Let λb(t) and λr(t) denote the Lebesgue measure of the union of blue, resp. red
segments between 0 and t. Then we define the zigzag process X by

Xt := W [λb(t)− λr(t)],

where W is a random sign, that is W = −1 or W = 1 with equal probabilities. See
Figure 4.

It is easy to check directly that the law of the process is invariant under scaling both
axes by the same number.

Remark 6.2 (One-dimensional marginals). It is more challenging to check directly for the
one-dimensional marginals of the zigzag process that 1

2 (Xt + 1) is Beta(a, a)-distributed,
although this follows immediately from Theorem 4.11 along with the scaling limit result
for the one-dimensional distributions in [8]. Edward Crane has shown us a nice direct
proof for this fact though. The interested reader may enjoy trying to find such a proof
him/herself. �

6.2 Preparation II: approximating the walk with a martingale

We are interested in the scaling limit of the random walk S, and in particular, whether
we have a Donsker-style invariance principle, leading eventually to Brownian motion.
Following the general principle that “it always helps to find a martingale”, in this section
we investigate the following important, though still somewhat vague, question.

Question 6.3 (M). For a given sequence {pn}n≥1, is the walk S “sufficiently close” to
some martingale M?
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After Question (M), the next question is of course:

Question 6.4 (INV.M). Is there an invariance principle for M?

Focusing now on Question (M) only, we recall from (1.1) and (1.2) the identity
ei,j = E(Yj | Yi)/Yi, and that for 1 ≤ i < j < k, ei,jej,k = ei,k. With the convention
ei,i := E(Y 2

i ) = 1, recall the definition of an =
∑∞
i=0 en,n+i from (4.1), assuming that the

series is convergent (if pn ≥ 1/2 for large n, then it always is; see below). Then

Mn := Y1 + . . . Yn−1 + anYn

is a martingale. Indeed,

E(Mn+1 −Mn | Fn) = E((1− an)Yn + an+1Yn+1 | Fn)

= (1− an)Yn + an+1E(Yn+1 | Yn)

= [(1− an) + an+1en,n+1]Yn,

which is identically zero, since an+1en,n+1 = an − 1, as

an+1en,n+1 =

∞∑
i=1

en,n+1en+1,n+i =

∞∑
i=1

en,n+i = an − 1.

Observe also that

Var(Mn+1 −Mn) = Var ((1− an)Yn + an+1Yn+1)

= (1− an)2Var(Yn) + a2n+1Var(Yn+1) + 2(1− an)an+1Cov(Yn, Yn+1)

= a2n+1 + (1− an)2 + 2(1− an)an+1en,n+1 = a2n+1 − (1− an)2 (6.1)

= a2n+1

[
1− e2n,n+1

]
= 4a2n+1pn+1qn+1

since Var(Yn) = E(Y 2
n ) = 1 for each n.

To understand what we mean by being sufficiently close to a martingale, recall that
the rescaled walk Sn is defined by

Sn(t) :=
SZ(nt)√

n
=
MZ(nt) + (1− aZ(nt))YZ(nt)√

n
, t ≥ 0,

where

Z(n) := inf{m : vm ≥ n}, n ≥ 1. (6.2)

Since |Yk| = 1, if the an are not too large then it suffices to analyze the sequence of the

rescaled martingales Mn(t) :=
MZ(nt)√

n
instead of the sequence of the rescaled random

walks. Thus, we have the answer in the affirmative to Question (M), provided that

(a) an is well-defined;

(b) aZ(n) = o(
√
n) (e.g. an remains bounded) as n → ∞. (We dropped t as it is just a

constant.)

Proposition 6.5 (Equivalent conditions for (b)). Set

σ2
n := Var(Sn).

Since the martingale differences Mi −Mi−1 are uncorrelated and centered, one has

Var(Mn) = E

( n∑
i=1

[Mi −Mi−1]

)2
 =

n∑
i=1

E[(Mi −Mi−1)2] = vn,

where vn is defined by (4.2) and Var(Mi −Mi−1) is given by (6.1). Then the conditions
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(b.1) vn →∞, an = o
(√
vn
)
;

(b.2) σn →∞, an = o(σn)

are equivalent; and when they are satisfied,
√
vn ∼ σn.

Of course, (b.1)⇔ (b.2)⇒ (b). Moreover, if vn →∞, then the condition an = o
(√
vn
)

is in fact equivalent to (b). The proofs of these statements are provided later. �
To answer Question (INV.M), we refer to the invariance principle of Drogin.

Proposition D1972 (Part of Theorem 1 in [7]). Let (Xi)i≥1 be a sequence of square
integrable random variables adapted to the filtration (Fi)i≥1. Assume that they are
martingale differences: E(Xi | Fi−1) = 0, and that vm :=

∑m
i=1E(X2

i | Fi−1) → ∞
a.s. Define the processes S and Sn, n ≥ 1 by S(vm) =

∑m
i=1Xi, S(0) := 0, and by

Sn(t) := S(nt)/
√
n, t ≥ 0, using linear interpolation between integer times. Then the

following are equivalent (recall (6.2)):

(i) If ε > 0, then

1

n

Z(n)∑
i=1

X2
i 1{X2

i>nε} →L1 0 as n→∞. (6.3)

(ii) As n→∞, the law of Sn converges to the Wiener measure and

vZ(n)

n
→L1

1.

Note that, in our setting, both vm and Z(n) are deterministic. To summarize the
discussions on Questions (M) and (INV.M) above, in our setting, once the limit process is
Brownian motion, we need to check the following conditions,

(a) an is well-defined;

(b) aZ(n) = o(
√
n), or equivalently, an = o(σn) (given vn →∞), as n→∞.

(c) vn →∞ and (6.3) holds.

Here (a) along with (b) guarantee that the answer is “yes” for (M), and (c) guarantees
the same for (INV.M).

6.3 Some specific cases

The first two cases we are looking at are in the cooling regime, the last one is
in the heating regime. We will use the conditions discussed in the last paragraph in
Proposition 6.5.

6.3.1 Cooling, critical

Let pn = c/n for large n. If c ≥ 1/2, then (a) fails to hold, because then an = ∞.
Otherwise an is of order n1−2c, and

√
vn is of the same order, and thus (b) fails to hold.

In both cases, the answer to Question (M) is negative.

6.3.2 Cooling, subcritical

Let pn ≤ 1/2 for all4 n ≥ 1 and pn = c/nγ for n large, where 0 < γ < 1. In this case the
answers to (M) and to (INV.M) are both in the affirmative, and one can compute that
an = nγ

2c (1 + o(1)).

4We may assume this without the loss of generality, as the validity of the invariance principle does not
depend on a finite number of terms.
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6.3.3 Cooling, subcritical; the necessity of lim inf
n→∞

pn
pn+1

> 0

One can see that assumption (a) in Theorem 4.11(4) guarantees that

lim inf
n→∞

pn
pn+1

> 0.

The following example shows the necessity of this bound, that is that the property
an = o(vn) can break down if this lim inf vanishes. Indeed, let

pi :=
ln k

2 · k!
for k! < i ≤ (k + 1)!, k = 1, 2, . . . .

Then
(k+1)!∏
i=k!+1

(1− 2pi) =

(
1− ln k

k!

)k·k!
= (1 + o(1))e−k ln k =

1 + o(1)

kk

and
∑
k

(k+1)!−k!
kk

<∞, so an is well-defined. Moreover,

am! =

∞∑
i=0

em!,m!+i ≥ 1 +

(m+1)!−m!∑
i=1

(1− 2pm!+1) . . . (1− 2pm!+i)

= 1 +

[
1− lnm

m!

]
+

[
1− lnm

m!

]2
+ · · ·+

[
1− lnm

m!

](m+1)!−m!

=
1−O

(
e−m lnm

)
1−

(
1− lnm

m!

) = (1 + o(1))
m!

lnm
.

At the same time,

vm!

4
=

m!∑
i=1

a2i piqi =

m−1∑
k=0

(k+1)!∑
i=k!+1

a2i piqi ≤
m−1∑
k=0

 (k+1)!∑
i=k!+1

a2i
ln k

k!


≤
m−1∑
k=0

(1 + o(1))
k!

ln k
≤ (1 + o(1))(m− 1)!

ln(m− 1)
≤ 1 + o(1)

m
· m!

lnm
= o

(
a2m!

)
,

since for k! < i ≤ (k + 1)!,

ai ≤
(k+1)!−k!∑

j=0

[
1− ln k

k!

]j
+

[
1− ln k

k!

](k+1)!−k!

·
(k+2)!−(k+1)!∑

j=0

[
1− ln(k + 1)

(k + 1)!

]j

+

[
1− ln k

k!

](k+1)!−k!

·
[
1− ln(k + 1)

(k + 1)!

](k+1)!−k!

·
(k+3)!−(k+2)!∑

j=0

[
1− ln(k + 2)

(k + 2)!

]j
+ . . .

≤ (1 + o(1))
k!

ln k
+ e−k ln k(k + 2)! + e−k ln ke−(k+1) ln(k+1)(k + 3)! + . . .

≤ (1 + o(1))
k!

ln k
+

(k + 2)!

kk
+

(k + 3)!

(k + 1)m+1
+

(k + 4)!

(k + 2)k+2
+ ... = (1 + o(1))

k!

ln k
.

At this point it is worth noting that with these pi’s, the assumption (4)(a) in Theorem
4.11 is violated too, since for i = (m+ 1)!, one has

ipi = (m+ 1)! p(m+1)! = (m+ 1)!
lnm

2 ·m!
=

[
1

2
+
m

2

]
lnm,

while

(i+ 1)pi+1 = [(m+ 1)! + 1]
ln(m+ 1)

2 · (m+ 1)!
=

[
1

2
+ o(1)

]
lnm� ipi.

EJP 25 (2020), paper 3.
Page 19/38

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP406
http://www.imstat.org/ejp/


The coin-turning walk and its scaling limit

6.3.4 Heating

Let pn = 1− qn and qn → 0 but
∑
qn =∞. We have

an = 1 +

∞∑
i=1

(−1)i(1− 2qn+1)(1− 2qn+2) . . . (1− 2qn+i),

and, since 1 − 2pn = 2qn − 1 < 0 for large n, using the Leibniz criterion, along with
the assumption that

∑
qn = ∞, it follows that an is well defined. The validity of the

martingale approximation follows from the fact that an ≤ 1 but vn →∞; see the proof of
Theorem 4.9.

6.4 Proof of Theorem 4.1

Clearly, if pi = 1/2 for some i ∈ N then the process “gets symmetrized” from time i
on (and ρ = 0), and the statement is trivial. We will thus assume in the rest of the proof
that pi 6= 1/2, ∀i ∈ N.

Furthermore, we will handle the conditional probability P(· | Y1 = 1) only, the
argument for P(· | Y1 = −1) is similar. In terms of the Wi, one has Yn := (−1)

∑n
i=1Wi ,

where W1,W2,W3, ... are independent Bernoulli variables with parameters p1, p2, p3, ...,
respectively and we will handle the p1 = 0 (i.e. W1 ≡ 0) case. In particular, one has∏n
i=1(1− 2pi) =

∏n
i=2(1− 2pi).

Let xn := P(Yn = 1). We have the recursion

xn+1 = pn(1− xn) + (1− pn)xn, n ≥ 1;

x1 = 1,

and the substitution yn := xn − 1/2 yields yn+1 = (1− 2pn)yn with y1 = 1/2. Hence,

yn+1 =
1

2

n∏
i=1

(1− 2pi). (6.4)

Case 1: N =∞. We have to prove that xn converges to 1/2 or has no limit, according to
whether min(pi, qi) is summable or not.

Let Nn := card{i ≤ n : pi > 1/2}; then limn→∞Nn =∞. Since

min(pi, qi) =

{
pi. if pi < 1/2;

qi = (1− pi), if pi > 1/2,

we have

n∏
i=1

(1− 2pi) =
∏

i≤n,pi≤1/2

(1− 2pi)×
∏

i≤n,pi>1/2

(1− 2pi)

= (−1)Nn
∏

i≤n,pi≤1/2

(1− 2pi)×
∏

i≤n,pi>1/2

(1− 2qi) = (−1)Nn
n∏
i=1

(1− 2 min(pi, qi)).

Given that limn(−1)Nn does not exist, there are two cases:
(i) the right-hand side converges because the product (without the (−1)Nn factor)

converges to zero and mixing holds (
∑∞
i=1 min(pi, qi) = ∞), in which case limn yn = 0

and limn xn = 1/2.
(ii) the right-hand side has no limit and mixing does not hold in which case yn (hence

xn) has no limit.
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Case 2: N <∞. Let us assume first that N = 0, that is, pi < 1/2, i ≥ 1. If
∑∞
i=1 pi = ∞

then in (6.4) we have
∏n
i=1(1 − 2pi) ↓ 0, implying limn yn = 0 and limn xn = 1/2. If∑∞

i=1 pi <∞, then ρ =
∏∞
i=1(1− 2pi) > 0 and limn yn = 1

2ρ, that is, limn xn = 1
2 (1 + ρ).

In the general case, for large i, min(pi, qi) = pi < 1/2, and mixing is tantamount to∑∞
i=1 pi =∞. The proof is almost the same as before, using the fact that the product has

positive terms for large enough indices.

6.5 Proof of Theorem 4.4

The martingale method is applicable in this case too. Indeed, direct computation

gives an = 1
2p , ∀n and vn =

n∑
4a2i piqi = 1−p

p n. Hence an = o(
√
vn), a2i ξ

2
i are bounded,

so (6.3) holds, and thus we can apply Proposition D1972, yielding the answer to (INV.M)
in the affirmative.

6.6 Proof of Theorem 4.9

First we will prove the statement under the more restrictive assumption that

lim sup
n→∞

qn+1

qn
<∞, (6.5)

and then we upgrade it for showing the statement under the condition appearing in the
theorem.

6.6.1 STEP 1

We start with a simple lemma.

Lemma 6.6. Assume that for the non-negative sequence (qn),

• qn → 0,

•
∑
n qn =∞,

• condition (6.5) holds.

Then lim infn→∞ an > 0, where the an are defined by (4.1). Moreover, if lim
n→∞

qn+1

qn
= 1,

then lim
n→∞

an = 1/2.

Remark 6.7. The condition that qn → 0 is really necessary in Lemma 6.6. Indeed,
fix c1, c2 > 0, c1 6= c2 and let qn = c1/n if n is odd and qn = c2/n if n is even. Then
qn+1/qn 6→ 1, though (6.5) still holds. In this case an 6→ 1/2, rather (as it is not hard to

show) lim
k→∞

a2k =
c1

c1 + c2
6= c2
c1 + c2

= lim
k→∞

a2k+1. �

Proof. Fix some n, and for m ≥ n let

wm :=

m∏
j=n+1

(1− 2qj), m > n, wn := 1,

and note that wm ↓ 0 as m→∞ due to
∑
qi =∞. Then

an =

∞∑
i=0

(−1)iwn+i =

∞∑
k=0

(wn+2k − wn+2k+1) =

∞∑
k=0

2qn+2k+1 wn+2k.

Now take any finite c > lim supn qn+1/qn, and assume that n is so large that q`+1/q` < c

for all ` ≥ n. Then

wn+2k − wn+2k+2 = 2(qn+2k+1 + qn+2k+2 − 2qn+2k+1qn+2k+2) · wn+2k (6.6)

≤ 2(qn+2k+1 + qn+2k+2) · wn+2k ≤ (1 + c) · 2qn+2k+1wn+2k.
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As a result,

(1 + c)an =

∞∑
k=0

(1 + c) · 2qn+2k+1 wn+2k ≥
∞∑
k=0

(wn+2k − wn+2k+2) = wn = 1 > 0,

where the telescopic sum converges due to the fact that wm → 0. Since c >

lim supn qn+1/qn is arbitrary, we can even conclude that

lim inf
n→∞

an ≥
1

1 + lim supn→∞ qn+1/qn
. (6.7)

To prove the second part of the claim, observe that from (6.7) we already have
lim infn an ≥ 1/2. To handle the other direction, fix an ε > 0 and let n be so large that
qn+2k+2

qn+2k+1
≥ 1− ε/2 and qn+2k+2 ≤ ε/4 for all k ≥ 0. Then

qn+2k+1 + qn+2k+2 − 2qn+2k+1qn+2k+2 =

(
1 +

qn+2k+2

qn+2k+1
− 2qn+2k+2

)
qn+2k+1

≥ (2− ε) · qn+2k+1,

given that
qn+2k+2

qn+2k+1
→ 1 and qn+2k+2 → 0. Hence (see (6.6))

wn+2k − wn+2k+2 ≥ (2− ε) · 2qn+2k+1wn+2k

and

(2− ε)an =

∞∑
k=0

(2− ε) · 2qn+2k+1 wn+2k ≤
∞∑
k=0

(wn+2k − wn+2k+2) = wn = 1.

Since ε > 0 is arbitrary, we conclude that lim supn an ≤ 1/2, which completes the
proof.

We now continue the proof of the theorem under the assumption that (6.5) holds.

Proof of Theorem 4.9 (a): Note that all conditions at the end of Section 6.2 related
to Questions (M) and (INV.M) are satisfied (as an is well-defined and stays bounded),
except (6.3). Since in our case Xi = aiξiYi−1 and |Yi| = 1, what we need is to show that

lim
n→∞

1

n

Z(n)∑
i=1

a2i ξ
2
i 1{a2i ξ2i>nε} = 0. (6.8)

(Note that Z(n) in our case is deterministic, and so is vm.) Since

ξ2i = [(−1)Wi + (2pi − 1)]2 ≤ 4, and |ai| ≤ 1,

as ai is a Leibniz series, all but finitely many terms in the sum in (6.8) are zero, prov-
ing (6.8). We conclude that (6.3) holds.

Next, a direct computation shows that vm = 4
∑m
i=1 a

2
i piqi. Then

lim
m→∞

vm =

∞∑
i=1

4a2i piqi =∞

follows from Lemma 6.6 and from the assumptions pn → 1 and
∑
qn =∞. The proof of

(a) is thus complete.
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Proof of Theorem 4.9 (b): First, we prove that Λ2
n =

∑n
i=1 a

2
i ξ

2
i → ∞. Recall that

ξi = (−1)Wi − E(−1)Wi = 2pi − 1 + (−1)Wi satisfies Eξ2i = Var((−1)Wi) = 4piqi. Let also
Ui := a2i ξ

2
i ∈ [0, 4].

Since the Wi are independent, so are the ξi, and hence, for Λ2
n, the Three Series Theo-

rem applies: the non-negative series
∑
i Ui diverges if for some A > 0,

∑
iE[Ui; |Ui| ≤ A]

diverges. But for A > 4,∑
i

E[Ui; |Ui| ≤ A] =
∑
i

E(Ui) =
∑
i

a2i piqi =∞,

as ai is bounded away from zero, pi → 1 and
∑
qi =∞.

Alternatively, let ε > 0. Then pi → 1 and
∑
qi = ∞ along with the second Borel-

Cantelli lemma guarantee that ξi = 2pi− 1 + (−1)Wi ≥ 2− ε for infinitely many i’s almost
surely. We are done because the ai are bounded away from zero.

For the second statement, by using Chebyshev’s inequality, it is enough to show that

lim
n→∞

Var(Λ2
n)

(EΛ2
n)2

= 0. (6.9)

Since an, pn, qn ∈ [0, 1],

Var(Λ2
n) = 4

n∑
i=1

a4i piqi(pi − qi)2 ≤ 4

n∑
i=1

qi. (6.10)

Moreover, for large n’s,

EΛ2
n = vn = 4

n∑
i=1

a2i pi qi ≥ c
n∑
i=1

qi (6.11)

for some c > 0, since lim inf
i→∞

ai > 0 by Lemma 6.6 and pi → 1. Given that
∑n
i=1 qi → ∞,

(6.10) and (6.11) together yield (6.9), thus completing the proof of the statement.

6.6.2 STEP 2

We now upgrade the result obtained in STEP 1, by dropping the restriction that (6.5)
holds. We need the following

Lemma 6.8 (Comparison with “regular” sequences). Let 0 ≤ qn ≤ 1/2, n ≥ 1.
(i) Assume that there exists a sequence q∗k → 0 such that q∗n is not summable, regular,

in the sense that (6.5) holds, and qn ≤ q∗n for even n, while qn ≥ q∗n for odd n. Then
lim inf
k→∞

a2k > 0.

(ii) Assume that there exists a sequence q̃k → 0 such that q̃n is not summable, regular
in the sense that (6.5) holds, and qn ≤ q̃n for odd n, while qn ≥ q̃n for even n. Then
lim inf
k→∞

a2k+1 > 0.

Proof of Lemma 6.8. Since 0 ≤ qn ≤ 1/2 for n ≥ 1, it is easy to check the following (for
example by observing that for k > n, the coefficients of qk in an form a Leibniz series as
well):

• Let n = 2k. Then an is decreasing5 in all qi for which i is even and increasing in all
qi for which i is odd.

• Let n = 2k + 1. Then an is increasing in all qi for which i is even and decreasing in
all qi for which i is odd.

5The terms increasing and decreasing are not used in the strict sense.
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Turning to the proof of (i) (a similar proof works for (ii), which we omit), note that,
because of its monotonicity and non-summability (use I = ∞ and q∗2k ≥ q2k), STEP 1
yields that (q∗n) is such that lim inf an > 0, and in particular, lim infk a2k > 0. Hence, by
the first bullet point above, lim infk a2k > 0 also for (qn), proving (i).

Proof of Theorem 4.9. First, without the loss of generality, we assume that m0 = 1

(changing a finite number of terms does not change the validity of the invariance
principle). Similarly, we may and will assume that qn ≤ 1/2 for all n ≥ 1, as we assume
anyway that qn → 0.

We only need that vn = 4
∑n
i=1 a

2
i pi qi → ∞, what is left is very similar to STEP 1.

This will follow from pn → 1 and Assumption 4.8, provided that either lim infk a2k > 0

or lim infk a2k+1 > 0. By Lemma 6.8, it is sufficient to construct either a sequence (q∗n)

or a sequence (q̃n) satisfying the properties in the lemma. These sequences will be
automatically divergent, given Assumption 4.8 and that (q∗n) resp. (q̃n) dominate (qn) for
even resp. odd n’s. Now, assume for example (4.3) (assuming (4.4) leads to a similar
argument). Define

q̃2m := C max{q2`+1, ` ≥ m}, m ≥ 1;

q̃2m+1 := max{q2`+1, ` ≥ m}, m ≥ 0.

Then (q̃n) is regular because q̃n+1

q̃n
≤ max{C−1, C} for all n ≥ 1, and trivially q2m ≥ q̃2m

and q̃2m+1 ≥ q2m+1. Hence, lim infk a2k+1 > 0 by Lemma 6.8(ii).

Remark 6.9 (One of the two subsequences can be arbitrary). Chose an arbitrary “odd”
subsequence, satisfying the conditions that it tends to zero and yet not summable. Then
take a sufficiently large “even” subsequence that dominates it in the sense of (4.3), but
still tends to zero (for example, let q2n := 1/

√
2n and q2n+1 := 1/(2n + 1)). Then (4.3)

holds, while the condition lim supn qn+1/qn < ∞ (cf. (6.5) in the proof) fails to hold, as
limn q2n/q2n+1 =∞.

By the same token, one can first chose an arbitrary non-summable “even” sequence,
with the terms tending to zero and then a dominating “odd” one. �

6.7 Proof of Proposition 6.5

Recall that Sn = Mn + (1− an)Yn, hence

Var(Sn) = Var(Mn) + (1− an)2 + 2(1− an)Cov(Mn, Yn),

where, by Cauchy-Schwarz, |Cov(Mn, Yn)| ≤
√
E(M2

n) =
√
vn, so

σ2
n − vn = (1− an)(1− an + 2Cov(Mn, Yn)) = (1− an)(1− an +An

√
vn),

where |An| ≤ 1. Then
σ2
n

vn
− 1 =

1− an√
vn
·
(

1− an√
vn

+An

)
,

if vn →∞ and an = o(
√
vn) as n→∞, hence

√
vn ∼ σn follows.

Similarly, we have

1− vn
σ2
n

=
1− an
σn

(
1− an
σn

+An
√
vn/σn

)
.

Using the shorthands wn :=

√
vn
σ n

and bn :=
1− an
σn

, one obtains the quadratic equation

w2
n + bnAnwn + b2n − 1 = 0, where bn → 0. Hence

wn =
−bnAn ±

√
b2nA

2
n + 4(1− b2n)

2
,
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but of course wn ≥ 0. Therefore, bn → 0 implies that wn → 1, that is,
√
vn ∼ σn. This is

clearly the case when σn →∞ and an = o(σn) as n→∞.

6.8 Proof of Theorem 4.11 – strongly critical case

First, it is easy to see that if X is a symmetric random variable, concentrated on
[−t, t], then Var(X) ≤ t2, with equality if and only if the law of X is 1

2 (δ−t + δt).
Now assume that limn→∞ npn = 0. By a well-known criterion for tightness (see

Theorem 4.10 in [10]), the laws of the S(n) are tight on C([0, T ]) if besides the condition
limη→+∞ supn≥1P(S(n)(0) > η) = 0, one also has

lim
δ↓0

sup
n≥1

P

 max
|t−s|≤δ
0≤t,s≤T

|S(n)(t)− S(n)(s)| > ε

 = 0, ∀ε > 0.

Since S(n)(0) = 0, n ≥ 1, the first condition clearly holds. The second one is satisfied by
the uniform Lipschitz-ness: |S(n)(t)− S(n)(s)| ≤ |t− s|, n ≥ 1.

Given tightness on C([0, T ]), it is sufficient to show that the limit at time t > 0 is
1
2 (δ−t + δt), that is, it satisfies Var(X) ≥ t2. Indeed, the only continuous functions f on
(0, T ) satisfying |f(t)| = t are f(t) = t and f(t) = −t. For simplicity we will work with
t = 1 (otherwise use a simple scaling), that is we will show that every partial limit at
time t = 1 is such that its variance is at least one.

To achieve this, fix N ≥ 1 and recall from [8] (see the two displayed formulae right
before Theorem 3 there) that

Var

(
SN
N

)
=

1

N
+

2

N2

∑
1≤i1<i2≤N

ei1,i2 .

This quantity is monotone decreasing in all pn’s as long as they are all less or equal than
1/2, because the same holds for each fixed ei,j . Fix ε > 0 and let N = N(ε) be such that
ε/N ≤ 1/2 and that also ε/n > pn holds for all n > N . Define p̂n so that it coincides with
pn for n ≤ N and p̂n = a/n for n > N . By monotonicity,

Var

(
Sn
n

)
≥ Var

(
Ŝn
n

)
, n ≥ 1,

where Ŝ is the walk for the sequence (p̂n).
In [8] it was shown that

lim
n→∞

Var

(
Ŝn
n

)
=

1

2ε+ 1
=⇒ lim inf

n→∞
Var

(
Sn
n

)
≥ 1

2ε+ 1
.

Since ε > 0 was arbitrary,

lim inf
n→∞

Var

(
Sn
n

)
≥ 1.

Now, if Snj/nj → X in law, then

lim
j→∞

Var

(
Snj
nj

)
= Var(X),

because E(Sn) = 0 and the variables are all supported in [−1, 1] (and so the test function
f(x) = x2 is admissible). From the last two displayed formula, we have that Var(X) ≥ 1

and we are done.
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6.9 Proof of Theorem 4.11 – supercritical case

By the Borel-Cantelli Lemma, for almost every ω, either Sn(ω) = 1 for all large n or
Sn(ω) = −1 for all large n. As n→∞, in the first case the path converges uniformly to a
straight line with slope 1; in the second case it converges uniformly to a straight line
with slope −1.

6.10 Proof of Theorem 4.11 – critical case

Fix T > 0, denote byMT the set of all locally finite point measures on the interval
(0, T ], and denote by N (n) = N (n,T ) the laws of the point processes induced by the turns
of the walk S(n) on the time interval (0, T ].

Let t ∈ (0, T ); to each point measure we assign a continuous (zigzagged) path
that increases at6 t.

Definition 6.10 (Assigning paths). Define the map Φt :MT → C[0, T ] as follows.

• First, label the (countably many) atoms on (0, t] from right to left as a1, a2, ..., i.e.,
the closest one on the left to t as a1, the second closest as a2, etc., and note that
t = a1 is possible; also label the atoms on (t, T ], from the closest to the farthest as
b1, b2,...;

• assign “+” sign to the intervals (the union of which is denoted by S+
t )

...[a7, a6), [a5, a4), [a3, a2), [a1, b1), [b2, b3), [b4, b5), [b6, b7), ...;

• assign “−” sign to the intervals (the union of which is denoted by S−t )

...[a8, a7), [a6, a5), [a4, a3), [a2, a1), [b1, b2), [b3, b4), [b5, b6), ...

Let µ ∈MT . For 0 < r ≤ T , define

Φt(µ)(r) := L((0, r] ∩ S+
t )− L((0, r] ∩ S−t ), with Φt(µ)(0) := 0, (6.12)

where L is the Lebesgue measure on the real line. Then Φt(µ)(·) is well-defined and
continuous on [0, T ]. Intuitively, it describes the difference between the total length of
increasing parts and the total length of decreasing parts, assuming increase at t. Clearly,

|Φt(µ)(r)| ≤ r, 0 < r ≤ T. (6.13)

Remark 6.11. The case t = 0 is excluded, i.e. one cannot set the path Φt(µ)(·) to first
increase at t = 0, as our point measures may not be locally finite around 0. For instance,
we will show that Nn converges to a limiting Poisson Point Process (PPP) N , and this N
blows up at 0. However, for t > 0, Φt(r)→ 0 as r → 0.

We now turn to the case of a PPP with intensity c
x (we replaced the constant a of

Theorem 4.11 by c in the proof to avoid confusion).

Proposition 6.12 (Turning points→ PPP with intensity c
x ). Given 0 < a < b <∞, c > 0,

set pn = c
n ∧ 1, and denote the number of turns from step dane + 1 to step dbne by

N (n)((a, b]). Denoting µc;a,b := c ln(b/a) =
∫ b
a
c
x dx, one has

(i) for k ≥ 0, 0 < a < b, as n→∞,

P
(
N (n)((a, b]) = k

)
= exp(−µc;a,b)

µkc;a,b
k!

+O

(
1

n

)
; (6.14)

Law(N (n)((a, b]))
n→∞−→ Poiss(µc;a,b); (6.15)

6I.e. it increases on [t, t+ ε] for some small ε > 0.
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(ii) given 0 < t1 < t2 < ... < tl <∞, the random variables

N (n)((t1, t2]), N (n)((t2, t3]), ..., N (n)((tl−1, tl])

are independent (independent increments), and

Law
(
N (n)((t1, t2]), N (n)((t2, t3]), ..., N (n)((tl−1, tl])

)
n−→∞−→ Poiss(c)

(
(µc;t1,t2), (µc;t2,t3)..., (µc;tl−1,tl)

)
,

where Poiss(c) = Poiss((0,∞), cx dx) is the law of the PPP with intensity c
x dx on

(0,∞).

Proof. (of Proposition 6.12:)
STRATEGY OF THE PROOF: We first prove part (i). Once that is done, since the turns
from step dtine + 1 to step dtjne and from dtlne + 1 to dtjne are independent for any
0 < ti < tj ≤ tl < tr <∞, part (ii) will immediately follow.

Regarding part (i), we only need to prove equation (6.14), and then (6.15) will easily
follow. In fact we only give here the proof (in three steps) of (6.14) for a, b integers, i.e.,
dane = an, dbne = bn, for n large enough; the proof for general 0 < a < b can then be
easily adjusted.

STEP 1: Given c > 0, and n large enough, define

Πc,n := P(no turn between an+ 1 and bn).

We now provide an estimate for Πc,n, namely

Πc,n = exp(−µc;a,b) +O

(
1

n

)
. (6.16)

Indeed,

Πc,n =
an+ (1− c)
an+ 1

· an+ 1 + (1− c)
an+ 2

· an+ 2 + (1− c)
an+ 3

· ... · bn− 1 + (1− c)
bn

=

(
an+ (1− c)

an
· an+ 1 + (1− c)

an+ 1
...
bn− 1 + (1− c)

bn− 1

)
×
(

an

an+ 1
· an+ 1

an+ 2
· ... · bn− 1

bn

)
=
a

b
·
(
an+ (1− c)

an
· an+ 1 + (1− c)

an+ 1
...
bn− 1 + (1− c)

bn− 1

)
=
a

b
exp

(
bn−an∑
i=1

ln(an+ i− c)− ln(an+ i− 1)

)
=
a

b
exp

(
bn−an∑
i=1

∫ an+i−c

an+i−1

dx

x

)
.

The exponent tends to (1− c) ln b
a , and so limn→∞Πc,n = exp(−c ln(b/a)) = exp(−µc;a,b).

Indeed,

1− c
an+ i− c

≤
∫ an+i−c

an+i−1

1

x
dx ≤ 1− c

an+ i− 1
,

hence

bn−an∑
i=1

1− c
an+ i− c

≤
bn−an∑
i=1

∫ an+i−c

an+i−1

1

x
dx ≤

bn−an∑
i=1

1− c
an+ i− 1

,
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where lim
n→∞

bn−an∑
i=1

1

an+ i− c
= lim
n→∞

bn−an∑
i=1

1

an+ i− 1
= ln(b/a), leading to (6.16).

STEP 2: we now estimate

P(N (n)((a, b]) = 1) = P(there is one turn from step an+ 1 to step bn).

Note that the turning step can happen at step an + i, for i = 1, 2, ..., bn − an, with
corresponding probabilities (an+1−c

an+1 ·
an+2−c
an+2 · ... ·

bn−c
bn ) · c

an+i = Πc,n · c
an+i , i = 0, 1, ..., bn−

an− 1. Thus,

P(N (n)((a, b]) = 1) = Πc,n

bn−an−1∑
i=0

c

an+ i
= Πc,n · c ·∆n,

where

∆n =

bn−an−1∑
i=0

1

an+ i
.

Since

ln
b

a
=

∫ bn

an

dx

x
≤ ∆n ≤

∫ bn

an

dx

x
+

(
1

an
− 1

an+ 1

)
(bn− an) = ln

b

a
+

(b− a)

a(an+ 1)
,

one has

∆n = ln
b

a
+O(1/n), (6.17)

and then (6.16), (6.17) give

P
(
N (n)((a, b]) = 1

)
=
µc;a,b

1!
e−µc;a,b +O

(
1

n

)
.

STEP 3: we verify (6.14) using induction, and so we assume that

P
(
N (n)((a, b]) = k

)
= exp(−µc;a,b)

µkc;a,b
k!

+O

(
1

n

)
, (6.18)

and show that k can be replaced by k + 1 as well. On the the event {N (n)((a, b]) = k},
there should be k turns from step an + 1 to step bn + 1, say the turns happen at
an + i1, an + i2, ..., an + ik, where i1, ..., ik is an increasing sequence taking values in
{0, 1, ..., bn− an− 1}. Similarly to the k = 1 case, the probability for this to happen is

p = Πc,n ·
(

c

an+ i1

c

an+ i2
...

c

an+ ik

)
.

Then P(N (n)((a, b]) = k) is the sum of all such terms, i.e.,

P(N (n)((a, b]) = k) = Πc,n · ck ·
∑

0≤i1<···<ik≤bn−an−1

1

an+ i1

1

an+ i2
...

1

an+ ik
.

By assumption (6.18) and the estimate (6.16), we have

∑
0≤i1<···<ik≤bn−an−1

1

an+ i1

1

an+ i2
...

1

an+ ik
=

(c ln( ba ))k

k!
+O

(
1

n

)
=
µkc;a,b
k!

+O

(
1

n

)
.

(6.19)
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Similarly,

P(N (n)((a, b]) = k + 1) =
∏
c,n

∑
0≤i1<···<ik+1≤bn−an−1

c

an+ i1

c

an+ i2
. . .

c

an+ ik+1
,

where the sequence i1 < i2 < ... < ik < ik+1 takes values in {0, 1, ..., bn− an− 1}. Now

c

an+ j
P(N (n)((a, b]) = k) =

∏
c,n

∑
0≤i1<i2<...<ik≤bn−an−1

c

an+ i1

c

an+ i2
...

c

an+ ik

c

an+ j
,

for j = 0, 1, ..., bn− an− 1. Now consider the sumbn−an−1∑
j=0

c

an+ j

P(N (n)((a, b]) = k
)

(6.20)

=

bn−an−1∑
j=0

Πc,n ·
∑

0≤i1<···<ik≤bn−an−1

c

an+ i1

c

an+ i2
...

c

an+ ik

c

an+ j

 .

In each sum on the right-hand side, there are two different kinds of terms: terms of the
type

c

an+ i1

c

an+ i2
...

c

an+ ik

c

an+ ik+1
,

where im,m = 1, 2, ..., k + 1 are all different (no repetitions), and terms of the type

c

an+ i1

c

an+ i1

c

an+ i2
...

c

an+ ik
,

where im,m = 1, 2, ..., k are all different (one repetition). We then rearrange the right-
hand side: sum the “non-repeating” terms as one group, denoted by I; sum the “once
repeating” ones where the term c

an+j is the one repeated by Ij , j = 0, 1, ..., bn− an− 1,
and we estimate I, Ij separately.

I =(k + 1) ·

Πc,n

∑
i1<i2<...<ik<ik+1

c

an+ i1

c

an+ i2
...

c

an+ ik

c

an+ ik+1


=(k + 1) · P

(
N (n)((a, b]) = k + 1

)
,

since each product c
an+i1

c
an+i2

... c
an+ik

c
an+ik+1

appears k + 1 times in sum I. Further,

Ij =
c2

(an+ j)2

Πc,n

∑
0≤i1<i2<...<ik≤bn−an−1

im 6=j

c

an+ i1

c

an+ i2
...

c

an+ ik


≤I0 =

c2

(an)2

Πc,n

∑
1≤i1<i2<...<ik≤bn−an−1

c

an+ i1

c

an+ i2
...

c

an+ ik


≤ c2

(an)2
P
(
N (n)((a, b]) = k

)
=

c2

(an)2

(
exp(−µc;a,b)

µkc;a,b
k!

+O

(
1

n

))
,

hence

bn−an−1∑
j=0

Ij ≤ (bn− an) · (I0) ≤ bn− an
(an)2

·

(
µkc;a,b
k!

e−µc;a,b +O

(
1

n

))
= O

(
1

n

)
.
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Now, by the estimates on I, Ij , for (6.20) one has

(k + 1) · P
(
N (n)((a, b]) = k + 1

)
+O

(
1

n

)
= I +

bn−an−1∑
j=1

Ij

=

bn−an−1∑
j=0

c

an+ j

P(N (n)((a, b]) = k
)

=

(
µc;a,b +O

(
1

n

))
·

(
exp(−µc;a,b)

µkc;a,b
k!

+O

(
1

n

))
=
µk+1
c;a,b

k!
e−µc;a,b +O

(
1

n

)
,

and we conclude that (6.18) holds with k replaced by k + 1. This completes the proof of
Step 3, and of the proposition altogether.

Note: We use the endpoints dane+ 1, dbne because dane+1,
n → a+, dbnen → b, so the above

limit represents the number of turns in (a,b] in the scaling limit.

In the sequel we will consider measures equipped with both the weak and the
vague topologies. When we consider laws on C([0, T ], ‖.‖[0,T ]) where ‖.‖[0,T ] denotes

supremum norm, weak convergence is denoted by
w→. When one uses vague topology for

measures and random measures are considered, Xn
vd→ X will be used for convergence

in distribution.

Proposition 6.13 (Convergence for point measures and paths). Let 0 < t < T . Then

(i) As n→∞, N (n) vd→ Poiss(c) onMT equipped with the vague topology, where Poiss(c)
is the PPP on (0, T ] with intensity c

x dx.

(ii) Φt : MT → C[0, T ] is a continuous and uniformly bounded functional, when the
former space is equipped with the vague topology, and the latter with the supremum
norm ‖.‖[0,T ].

(iii) As n→∞, Φt(N
(n))

w→ Φt(Poiss(c)) on C([0, T ], ‖ · ‖).

Proof. (of Proposition 6.13:) (i) In order to use Lemma A.2 of the Appendix, one needs
to define a new metric on (0, T ] by ρ(x, y) := |1/x − 1/y|. Then ∆ := ((0, T ], ρ) is a
complete separable metric space; notice that (0, ε] is not bounded under ρ. Setting
I := {(a, b], 0 < a < b ≤ T}, it is obvious that I is a semi-ring of bounded Borel sets
in ∆, and µ(∂(a, b]) = µ({a} ∪ {b}) = 0, hence I ⊂ ∆̂EPoiss(c), where ∆̂EPoiss(c) is the
class of all bounded sets A ⊂ ∆ with EPoiss(c)(∂A) = 0. Then by Lemma A.2 of the

Appendix, we only need to prove, N (n)(f)
d→ Poiss(c)(f), for any f ∈ Î+, i.e., any f

with f =
k∑
i=1ci1(ai,bi], where (ai, bi] ∈ I and ai > 0. Note that f is undefined on

(0,min ai]. Then N (n) vd→ Poiss(c) on (0, T ] follows from N (n)(1(a,b])
d→ Poiss(c)(1(a,b]) for

0 < a < b ≤ T , which in turn, follows from Proposition 6.12.

(ii) Assume that µn, µ ∈ MT , and µn
v→ µ. Then for any ε > 0 small enough,

µn
v→ µ on [ε, T ]. Since µ is locally finite, it has finitely many atoms on [ε, T ], say

ε ≤ x1 ≤ ... ≤ xl ≤ T . It easy to see that ∃ n0 such that for any n ≥ n0, µn also has l
atoms there. Moreover, ∃ K = K(ε, l) ≥ n0, such that, for any n ≥ K,

|x(n)i − xi| ≤
ε

2(l + 2)2
, for all i = 1, 2, ..., l.
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By (6.13), |Φt(µn)(ε)− Φt(µ)(ε)| ≤ 2ε, and by definition (6.12), we have

|Φt(µn)(t)− Φt(µ)(t)| ≤ l + 2

(l + 2)2
ε, so

‖Φt(µn)− Φt(µ)‖[0,T ] ≤
(l + 2)2

(l + 2)2
ε = ε, n ≥ K.

Hence, Φt is continuous. Moreover, ‖Φt(µ)‖[0,T ] ≤ T , so Φt is also uniformly bounded.
Finally, (iii) immediately follows from (i), (ii) and Lemma A.2, completing the proof of

Proposition 6.13.

Having Proposition 6.13 at our disposal, it is now easy to prove that the processes
S(n) in the statement of the theorem converge in law to the zigzag process, by checking
the convergence of the finite dimensional distributions, and then tightness.

Convergence of fidi’s: Given 0 < t1 < t2 < ... < tk, to check that the law of (S
(n)
t1 , ..., S

(n)
tk

)

converges as n→∞, let A1, A2, ..., Ak ⊂ R be Borel sets, and denote

~A := (A1, ..., Ak), − ~A := (−A1, ...,−Ak);

(S
(n)
~t
∈ ~A) :=

(
S
(n)
t1 ∈ A1, ..., S

(n)
tk
∈ Ak

)
;

(Φt(u)~t ∈ ~A) := (Φt(u)t1 ∈ A1, ...,Φt(u)tk ∈ Ak) .

Moreover, {S(n)
s = +} ({S(n)

s = −}) will denote the event that the zigzag path is increas-
ing (decreasing) at s+, by which we mean that there exists a small interval [s, s+ ε] such
that S(n) has slope 1 (−1) on (s, s+ ε). Then

P
(
S
(n)
~t
∈ ~A

)
=P

(
S
(n)
~t
∈ ~A | S(n)(t1) = +

)
P
(
S(n)(t1) = +

)
+P

(
S
(n)
~t
∈ ~A | S(n)(t1) = −

)
P
(
S(n)(t1) = −

)
,

where, by symmetry, P
(
S(n)(t1) = +

)
= P

(
S(n)(t1) = −

)
= 1

2 , and

P
(
S
(n)
~t
∈ ~A | S(n)(t1) = +

)
= P

(
Φt1(N (n))~t ∈ ~A

)
.

By Proposition 6.13, Φt1(N (n))
w→ Φt1(Poiss(c)) on C[0, tk]; composing with projections

yields

P
(
S
(n)
~t
∈ ~A | S(n)(t1) = +

)
n→∞−→ P

(
Φt1(Poiss(c))~t ∈ ~A

)
.

Similarly,

P
(
S
(n)
~t
∈ ~A | S(n)(t1) = −

)
= P

(
−S(n)

~t
∈ ~−A | −S(n)(t1) = +

)
tends to P

(
Φt1(Poiss(c))~t ∈ − ~A

)
as n→∞, hence

P
(
S
(n)
~t
∈ ~A

)
n→∞−→ 1

2

(
Φt1(Poiss(c))~t ∈ ~A

)
+

1

2

(
Φt1(Poiss(c))~t ∈ − ~A

)
.

Tightness: We repeat the argument in the proof of the strongly critical case here. Use

that limη→+∞ supn≥1P(S(n)(0) > η) = 0 together with

lim
δ↓0

sup
n≥1

P

 max
|t−s|≤δ
0≤t,s≤T

|S(n)(t)− S(n)(s)| > ε

 = 0, ∀ε > 0
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are sufficient for tightness on C([0, T ]). These are indeed satisfied because S(n)(0) =

0, n ≥ 1 and because of the uniform Lipschitz-ness. This completes the proof of the
theorem in the critical case.

Note: One can use any Φs, s > 0, instead of Φt1 (again, s = 0 is excluded), without
causing too much change; then

P
(
X

(n)
~t
∈ ~A | X(n)(s) = +

)
n→∞−→ P

(
Φs(Poiss(c))~t ∈ ~A

)
.

Remark 6.14. We can also generalize the condition An := npn = c a bit, namely, one
can mimic the proof in Proposition 6.12 to show the following.

If the An are stable in the sense that

bn∑
k=an

Ak − c
k

n→∞−→ 0, that is
bn∑

k=an

Ak
k

n→∞−→ c ln(b/a), ∀0 < a < b <∞,

then the turns N (n) tend to a PPP with intensity λ(x) = c
x dx. Hence the law of S(n) tends

to that of the same zigzag process, i.e., we have the same scaling limit. This includes,
for example, the following cases:

• An ≡ c for all large n;
• lim
n→∞

An = c;

• An is periodic with average period c,

where c is a positive constant. �

6.11 Proof of Theorem 4.11 – subcritical case

Following the martingale approximation approach and again to prove all conditions
at the end of Section 6.2, we will prove the result in the following steps:

(i) The an ≥ 1 are well-defined; furthermore an = o(n);
(ii) limm→∞ vm =∞;

(iii) a2n = o(vn);
(iv) As n→∞,

1

n

Z(n)∑
i=1

a2i ξ
2
i 1{a2i ξ2i>nε}

L1

−→ 0. (6.21)

Step (i). Since 1− x ≤ e−x, x > 0, and An is a monotone increasing sequence, we have

en,n+i =

n+i∏
k=n+1

(1− 2pk) ≤ e−(2pn+1+...+2pn+i) = e
−2
(
An+1
n+1 +···+An+i

n+i

)
≤ e−2An+1( 1

n+1+···+
1
n+i )

≤ e−2An+1

∫ i
1

dx
n+x = e−2An+1 ln n+i

n+1 =

(
n+ 1

n+ i

)2An+1

, (6.22)

as
∑b
j=a

1
j ≥

∫ b
a

dx
x for all integers a, b with b > a ≥ 2. So

an =1 +

∞∑
i=1

en,n+i ≤ 1 +

∞∑
i=1

(
n+ 1

n+ i

)2An+1

≤ 1 +

∫ ∞
0

(
n+ 1

n+ x

)2An+1

dx

=1 +
(n+ 1)2An+1

2An+1 − 1

1

n2An+1−1
= 1 +

n

2An+1 − 1

(
1 +

1

n

)2An+1

=1 +
n

2An+1 − 1

(
1 +

1

n

)n·2pn+1
(

1 +
1

n

)2pn+1

= 1 +
n

2An+1 − 1
e2pn+1(1 + o(1))

=1 +
n(1 +O(pn+1))(1 + o(1))

2An+1 − 1
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for large n. Since An+1 →∞, we have an = o(n).

Step (ii). There exists an N ≥ 1 such that for all n ≥ N we have pn ≥ 1
n and qn ≥ 1

4 . Also,

an ≥ 1. Hence, for m large enough, vm =
∑m
n=1 4a2npnqn ≥

m∑
n=N

4pnqn ≥
∑m
n=N

1
n →∞ as

m→∞.

Step (iii). Since pn ↓ 0, one has

pnan = pn [1 + (1− 2pn+1) + (1− 2pn+1)(1− 2pn+2) + . . . ] ≥ pn
∞∑
k=0

(1− 2pn)k =
1

2
.

From its definition it follows that vn is monotone; we also know that vn →∞. Hence, by
the Stolz–Cesàro Theorem7, we have

lim sup
n→∞

a2n
vn
≤ lim sup

n→∞

a2n − a2n−1
vn − vn−1

= lim sup
n→∞

(an + an−1)(an − an−1)

4pnqna2n
(6.23)

≤ lim sup
n→∞

(an + an−1)(an − an−1)

2an
≤ 1

2
lim sup
n→∞

(an − an−1),

since 4pnqna
2
n = (2pnan) · qn · 2an, and qn → 1, pnan ≥ 1/2, an−1 ≤ an. Next,

an − an−1 =

∞∑
i=1

[en,n+i − en−1,n−1+i] =

∞∑
i=1

[en,n+i−1(1− 2pn+i)− (1− 2pn)en,n−1+i]

= 2

∞∑
i=1

(pn − pn+i)en,n+i−1.

(6.24)
We have (e.g. by integrating by parts)

∞∑
i=1

i

(n− 1 + i)2An+1+1
≤
∫ ∞
0

xdx

(n− 1 + x)2An+1+1
=

1

2An+1(2An+1 − 1)(n− 1)2An+1−1
.

From the monotonicity of pn and npn, we get pn ≥ pn+i and pn+i

pn
≥ n

n+i . Then, from (6.22)

and (6.24), it follows that8

0 ≤ an − an−1
2pn

=

∞∑
i=1

(
1− pn+i

pn

)
en,n+i−1 ≤

∞∑
i=1

i

n+ i
·
(

n+ 1

n+ i− 1

)2An+1

≤
∞∑
i=1

(n+ 1)2An+1 · i
(n− 1 + i)2An+1+1

≤ (n+ 1)2An+1

2An+1(2An+1 − 1)(n− 1)2An+1−1

=
(n− 1)

(
1 + 1

n−1

)2An+1

2An+1(2An+1 − 1)
=

(n− 1)(1 +O(pn))

4A2
n+1(1 + o(1))

.

Hence

0 ≤ an − an−1 ≤ 2pn
n+ o(n)

4A2
n+1

=
An(1 + o(1))

2A2
n+1

≤ 1 + o(1)

2An+1
→ 0,

so the righthand side of (6.23) tends to zero.

7This is the discrete version of L’Hospital’s rule — see e.g. Problem 70 in [11].

8The last equality is elementary:
(

1 + 1
n−1

)2An+1
= (1+ 1

n−1
)(n−1)2pn+1 ·(1+ 1

n−1
)4pn+1 = O(e2pn+1 ) =

O(1 + 2pn+1) = O(1 + pn).
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Step (iv). We show how, in our case, (iii) implies (iv). Since ai increases in i, and
|ξi| ≤ 2 gives a2i ξ

2
i ≤ 4a2i , we have

{i : a2i ξ
2
i ≥ εn} ⊂ {i : 4a2i ≥ εn} =

{
i : i ≥ (f2(n))−1 (εn/4)

}
,

where f(·) is the linear interpolation such that f(i) = ai, and here v can be treated also
as a positive strictly increasing function on [0,∞) with v(m) = vm, so both (f2)−1, v−1

are well-defined, positive and strictly increasing. Using that Z(n) = v−1(n), Drogin’s
condition (6.21) will be verified if we show that

v−1(n) < (f2(n))−1 (εn/4) , (6.25)

for n large enough, because then, for n large enough, a2i ξ
2
i < εn for i ≤ Z(n), that is,

1{a2i ξ2i>nε} = 0, 1 ≤ i ≤ Z(n).

Since a2m = o(vm), i.e. f2(x) = o(v(x)), for this ε, there is an M such that for
l ≥M , f2(l)/v(l) < ε/4, and for such an M , there is an N such that for x ≥ N we have
v−1(x) ≥M . Hence,

f2(v−1(x))

v(v−1(x))
=
f2(v−1(x))

x
<
ε

4
, ∀x ≥ N,

that is, (6.25) holds for n ≥ N . This completes the proof of (iv) and that of the theorem
altogether.

6.12 Proof of Theorem 4.12

We again use the martingale approximation approach of section 6.2. Notice that

an = 1 +

∞∑
i=0

n+i∏
k=n+1

(1− 2pk). (6.26)

Without the loss of generality, we may assume that 0 < a < pn < b < 1. Then r :=

max{|2a− 1|, |2b− 1|} < 1, and ∣∣∣∣∣
n+i∏

k=n+1

(1− 2pk)

∣∣∣∣∣ ≤ ri,
which is why the sum in (6.26) is well-defined, that is, the an are well-defined, for all
n ≥ 1. Furthermore,

1 +

∞∑
i=0

n+i∏
k=n+1

(1− 2pk) ≤ 1 +

∞∑
i=1

n+i∏
k=n+1

|1− 2pk| ≤1 +

∞∑
i=1

ri =
1

1− r
,

which gives |an| ≤ 1
1−r for all n.

Next, we prove that v(m)
m→∞−→ ∞, or equivalently, that σn

n→∞−→ ∞:

(i) If pn ≤ 1/2, ∀n, then an > 1, ∀n, and we immediately have v(m)
m→∞−→ ∞.

(ii) Otherwise we have a subsequence {pnk}nk such that nk+1−nk > 1 and pnk > 1/2, for
all nk. Notice that, by (6.26) and a direct computation, we have

(an−1 − 1) = (an − 1)(1− 2pn),
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and thus for the subsequence one has

(ank−1 − 1) = (ank − 1)(1− 2pn).

So the two subsequences {ank−1 − 1}k≥1, {ank − 1}k≥1 have opposite signs, hence we
have a subsequence of {an}n≥1 such that its terms are larger than 1. Consequently,
v(m)

m→∞−→ ∞.

Moreover, the condition that lim
n→∞

1

n

Z(n)∑
i=1

a2i ξ
2
i 1{a2i ξ2i>nε} = 0 is easy to verify, since

our an are bounded.
In conclusion, the answers to (M) and to (INV.M) are both in the affirmative, yielding

the invariance principle (4.6).

6.13 Proof of Theorem 4.13

Fix a > 0 and let N = N(a) be such that a/N ≤ 1/2 and that also a/n < pn holds for
all n > N . Define p̂n so that it coincides with pn for n ≤ N and p̂n = a/n for n > N . Let Ŝ
denote the walk for the sequence (p̂n), and note that this walk depends on the parameter
a > 0. By the monotonicity established in the proof of Theorem 4.11,

Var

(
Sn
n

)
≤ Var

(
Ŝn
n

)
, n ≥ 1.

In [8] it was shown that

lim
n→∞

Var

(
Ŝn
n

)
=

1

2a+ 1
=⇒ lim sup

n→∞
Var

(
Sn
n

)
≤ 1

2a+ 1
.

Since a > 0 was arbitrary,

lim
n→∞

Var

(
Sn
n

)
= 0,

implying WLLN.

6.14 Proof of Theorem 4.17

We first need a lemma.

Lemma 6.15. For every m, n and ` such that ` > n ≥ m ≥ 1 we have that

P(S` ≤ Sn | Ym) ≥ 1

2
(1− |em,n+1|).

Proof of Lemma. We do the proof for Ym = 1, for Ym = −1 the proof is essentially the
same. Writing out em,n+1 = E(Yn+1 | Ym = 1), one obtains

P(Yn+1 = 1 | Ym = 1) =
1 + em,n+1

2
; P(Yn+1 = −1 | Ym = 1) =

1− em,n+1

2
. (6.27)

Next, we claim that

1

2
P(S` ≤ Sn | Yn+1 = −1) +

1

2
P(S` ≤ Sn | Yn+1 = +1) ≥ 1

2
. (6.28)

Indeed, let us start our walk at time n instead of time zero at the location Sn, such
that its first step is random and equals 1 or −1 with equal probabilities. Then the LHS
of (6.28) is the probability that n− ` times later this walk ends up at a position which is
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not larger than its initial position. By symmetry, this value is at least 1/2. By (6.27) and
(6.28) and Markov property,

P(S` ≤ Sn | Ym = 1) =
∑
j=±1

P(S` ≤ Sn, Yn+1 = j | Ym = 1)

=
∑
j=±1

P(S` ≤ Sn | Yn+1 = j)P(Yn+1 = j|Ym = 1)

≥ min
j=±1

P(Yn+1 = j|Ym = 1)
∑
j=±1

P(S` ≤ Sn | Yn+1 = j) ≥ 1− |em,n+1|
2

,

as claimed.

We now turn to the proof of Theorem 4.17 and show e.g. that P(Sn < 0 i.o. | F1) = 1;
one can similarly show that P(Sn > 0 i.o. | F1) = 1. It turns out that is enough to
construct a sequence (`k)k≥0 such that P(S`i+1

< 0 | F`i) ≥ r holds with some r > 0, and
the statement then follows from the extended Borel-Cantelli Lemma. Below we define
such a sequence recursively, for r = 1/6.

Let `0 := 1. Once {`i, 0 ≤ i ≤ k} have been constructed, we construct `k+1 as follows.
By mixing, we can pick an Nk (depending on `k only) such that |e`k,`| < 1/3 for all ` ≥ Nk.
By Lemma 6.15 then, for all ` ≥ Nk,

P(S` < S`k | F`k) ≥ 1/3. (6.29)

Using that |S`k | ≤ `k along with Assumption 4.15,

lim sup
`→∞

P(0 ≤ S` < S`k | F`k) ≤ lim
`→∞

P(0 ≤ S` < `k | F`k) = 0, a.s.

Hence, ∃ `k+1 > max{`k, Nk} that depends only on `k such that

P(0 ≤ S`k+1
< S`k | F`k) ≤ 1/6. (6.30)

By combining (6.29) and (6.30) we conclude that

P(S`k+1
< 0 | F`k) ≥ 1/3− 1/6 = 1/6.

The sought sequence (`k)k≥0 has thus been constructed.

6.15 Proof of Theorem 4.18

Let τ0 := 0 and

τn := inf{m > 2τn−1 : Ym = −1}, n = 1, 2, . . . .

Since
∑
pn = ∞, by the Borel-Cantelli Lemma, there are infinitely many turns. As a

result, with probability 1, all τn are well-defined and finite. Clearly, τn →∞, as n→∞.
Let

An := {Yi = −1, for all i ∈ [τn, 2τn]} ∈ F2τn =: Gn,

and note that An ⊆ {S2τn ≤ 0} =: Bn. If we show that
∑
nP(An | Gn−1) =∞ then by the

extended Borel-Cantelli lemma (see Corollary 5.29 in [4]), it follows that P(An i.o.) = 1;
hence P(Bn i.o.) = 1, and so P(Sn ≤ 0 i.o.) = 1.

Now, for n ≥ n0,

P(An | Gn−1, τn = k) =

(
1− c

k + 1

)(
1− c

k + 2

)
. . .
(

1− c

2k

)
,
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when k is admissible (i.e. the condition has positive probability). Since obviously τn ≥ n,
we know that this is never the case for k < n.

Since the product on the right hand side tends9 to 2−c, as k → ∞, and only k’s for
which k ≥ n are admissible,

P(An | Gn−1, τn = k) ≥ 2−c−1

holds for all large enough n and admissible k’s. Thus P(An | Gn−1) ≥ 2−c−1 holds for all
large enough n, and we are done. A completely symmetric argument shows that also
P(Sn ≥ 0 i.o.) = 1, thus proving the recurrence of the walk S.

A similar proof, left to the reader, establishes that the scaling limit (zigzag process) is
recurrent as well.

A Appendix

Here we invoke some background on random measures that we utilized in the proof
of Proposition 6.13. Much more material on random measures can be found in [9].

Assume that we are given a complete separable metric space S.

Definition A.1 (Dissecting subsets). Denote by Ŝ the set of all bounded Borel sets of S.
A subset I ⊂ Ŝ is called dissecting if

(a) every open set G ⊂ S is a countable union of sets in I;

(b) every set B ∈ Ŝ is covered by finitely many sets in I.

The following lemma is a useful result concerning the weak convergence of random
measures. (The measures are equipped with the vague topology, recall Notation 1.)

Lemma A.2 (Theorem 4.11 in [9]). Let ξ, (ξn)n be random measures on S and let E
denote the expectation for ξ. Furthermore, let

1. Ĉs be the set of all continuous compactly supported functions on S;

2. ŜEξ be the class of all bounded sets A ⊂ S with Eξ(∂A) = 0;

3. Î+ be the set of all non-negative simple (i.e. finite range) I-measurable functions
for a fix dissecting semi-ring I ⊂ ŜEξ.

Then, as n→∞, ξn
vd−→ ξ if and only if ξn(f)

d−→ ξ(f) holds either for all f ∈ Ĉs or for all
f ∈ Î+.
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