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Transition probabilities for infinite two-sided
loop-erased random walks
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Abstract

The infinite two-sided loop-erased random walk (LERW) is a measure on infinite
self-avoiding walks that can be viewed as giving the law of the “middle part” of an
infinite LERW loop going through 0 and ∞. In this note we derive expressions for
transition probabilities for this model in dimensions d ≥ 2. For d = 2 the formula can
be further expressed in terms of a Laplacian with signed weights acting on certain
discrete harmonic functions at the tips of the walk, and taking a determinant. The
discrete harmonic functions are closely related to a discrete version of z 7→

√
z.

Keywords: loop-erased random walk; Laplacian; Green’s function; discrete harmonic functions.
AMS MSC 2010: 82B41; 60G99.
Submitted to EJP on January 18, 2019, final version accepted on October 16, 2019.
Supersedes arXiv:1810.08593v1.

1 Introduction

By chronologically erasing loops from a simple random walk (SRW) one gets a
measure on self-avoiding walks (SAWs) called loop-erased random walk (LERW). There
are several different versions depending on the boundary conditions of the SRW one
starts with. In this note we will consider two-sided infinite volume versions on Zd

when d ≥ 2. The infinite one-sided LERW from 0 is defined by starting a SRW from 0

and erasing loops as they form, and letting this process run. For d ≥ 3 this works as
stated but for d = 2 because of recurrence, one needs to condition the random walk on
never returning to 0. (Technically, this conditioning, which is on a probability 0 event,
is done by weighting by the random walk potential kernel.) Here we will focus on a
two-sided version of the infinite LERW. We can think of this as giving the distribution
of a “middle part” of an infinite LERW loop going through both∞ and 0. Defining this
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Transition probabilities for two-sided LERW

process requires work. Roughly speaking, one can consider chordal LERW conditioned
to visit 0 in successively larger domains, and take an infinite volume limit. (Chordal
LERW in a domain A is obtained by loop-erasing a SRW starting and ending at given
distinct boundary points, otherwise staying inside A.) A priori, any limit will depend
on the sequence of domains, and showing that the limit is independent of this (and
boundary conditions) is non-trivial. We refer to [11] for complete constructions of this
process in dimensions 2 and 3, these being the more difficult cases, and [12, 14] for the
remaining cases. We review parts of the story in the next section. Our main results
concern transition probabilities for this model.

Theorem 1.1. Let d ≥ 2 and write p̂ = p̂d0,∞ for the infinite two-sided LERW probability
measure, for SAWs on Zd through 0 and∞ (see Theorem 2.1). Let η = [η−, . . . , η+] be a
finite SAW going through 0. Then

p̂(η) = (2d)−|η| · Fη · φ(η),

and if ζ ∈ Zd is a lattice neighbor of η+, then in particular,

p̂(ηζ | η) =
p̂(ηζ)

p̂(η)
=

1

2d
·GZd\η(ζ, ζ) · φ(ηζ)

φ(η)
.

Here ηζ is the self-avoiding walk obtained by concatenating ζ to η, Fη is the random walk
loop measure of loops that stay in Zd \ {0} and intersect η, GZd\η is the random walk
Green’s function for Zd \ η, and φ is the limit of a particular escape probability for two
independent random walks with a non-intersection condition given in Section 2.

We will prove this theorem in Section 2. In the plane we can give a different
expression for the transition probability. The proof of this result requires some additional
work which is done in Section 3. In order to state the result, let us introduce a few
additional functions; we refer to Section 3.1 for more details. First let τ+ be the first
time SRW Sj on Z2 visits R+ = {x : x ≥ 0} and for R > 0, let σR = min{j ≥ 0 : |Sj | ≥ R}.
Then we define

v(z) = lim
R→∞

R1/2 Pz{σR < τ+}

where Pz is the measure of SRW started at z. The existence of this limit (with an error
estimate) is stated in Proposition 3.10 which we prove in the Appendix. One can think
of v(z) as a discrete version of (a constant times) the imaginary part of

√
z. In fact, we

show that |v(z)− 4
π Im

√
z| ≤ c/|z|1/2. Next, for a given SAW η going through 0 let

vη(z) = v(z)−
∑
y∈η

Hq
Z2\η (z, y) v(y),

where Hq
Z2\η is the Poisson kernel in Z2 \ η for a random walk with signed weights:

The edge weights are q(e) = ±1/4, with negative sign iff e = (k, k − i) with k ∈ N.
The functions u, uη are defined similarly replacing v by a discrete harmonic conjugate.
(So u(z) is a discrete version of a constant times Re

√
z.) See (3.9) and (3.11) for the

definitions.

Theorem 1.2. Consider the setting of Theorem 1.1 and set d = 2. If η1 = 1 and ζ ∈ Z2

with |η+ − ζ| = 1, then

p̂(ηζ | η) =
1

4
·Gq

Z2\η(ζ, ζ) ·
∣∣∣∣Dq(ηζ)

Dq(η)

∣∣∣∣ ,
where

Dq(η) = det

[
Lqvη(η−) Lqvη(η+)

Lquη(η−) Lquη(η+)

]
.

EJP 24 (2019), paper 139.
Page 2/22

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP376
http://www.imstat.org/ejp/


Transition probabilities for two-sided LERW

Here Gq is the Green’s function for random walk with signed weights q, Lq is the
corresponding Laplacian, and uη, vη are as above and defined precisely in Section 3.1.

The definition of the signed weights depends on a choice of branch cut (or “zipper”)
just below the real axis. Other choices are possible, but the resulting formula in the
theorem is independent of this choice.

Compare the theorem with the well-known representation of chordal two-dimensional
LERW as Laplacian random walk, in the case when the walk runs from a to b (both
boundary points) in a domain A: given η starting from a, the probability that the next
step is to ζ equals

1

4
·
HA\η(ζ, b)

LHA\η(η+, b)
=

1

4
·GA\η(ζ, ζ) ·

LHA\ηζ (ζ, b)

LHA\η(η+, b)
,

where HA\η is the usual random walk Poisson kernel, L is the discrete (random walk)
Laplacian here acting on the first variable, and G is the random walk Green’s function.
In this case, the marked edge is on the boundary of the slit domain and there is no need
to use signed weights. The reader may also compare the formula of Theorem 1.2 with
Theorem 3.1 of [3] which gives the probability that a chordal LERW visits a particular
interior edge in terms of a determinant involving signed Poisson kernels. In fact, that
formula is used in the proof of Theorem 1.2.

In general it is not easy to compute explicitly p̂(η) for a given SAW η using the
techniques of this paper, but at the end of the paper we will provide one simple example
showing that

p̂(ηk) =
1

4
(
√

2− 1)k−1 (1.1)

in the case when d = 2 and η is the straight line η = ηk = [0, 1, 2 . . . , k].
This paper was motivated by a question from Kenyon and Wilson when they were

preparing a paper on spanning trees with a two-sided backbone [15] which also proved
the formula (1.1) using different techniques. At the time, we thought that our results
[3] immediately gave a determinantal formula (a version of Fomin’s identity) for the
two-sided walk and (1.1). It turned out that taking the limit, and, in particular, showing
independence of boundary conditions required more work. This paper was delayed
until Lawler adapted the proof in [11], which had originally been only for the three
dimensional walk, to the two dimensional case to give the independence. This allows
us now to build on [3] to give the determinantal expression in Theorem 1.2. Besides
the fact that we employ different methods, a major difference between our paper and
[15] is that we do not deal with the full spanning tree. It could however be constructed
by starting with the two-sided loop-erased walk in [11] and using Wilson’s algorithm to
complete the tree.

2 Infinite two-sided LERW

We now describe the infinite two-sided LERW centered at the origin as constructed
in [11]. A walk on Zd is an ordered sequence of nearest neighbors. A self-avoiding walk
(SAW) is a walk visiting each vertex at most once. LetW =Wd denote the set of SAWs
on Zd that visit the origin. We can write

W =

∞⋃
j=0

∞⋃
k=0

Wj,k

whereWj,k is the set of η ∈ W with j + k + 1 vertices that can be written as

η = [η−j , η−j+1, . . . , η0 = 0, η1, . . . , ηk].
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Transition probabilities for two-sided LERW

Each element ofWj,k can be viewed as a pair of nonintersecting SAWs starting at the
origin and traversing j and k edges, respectively. If η ∈ W, we write η−, η+ for the initial
and terminal vertices, i.e., if η ∈ Wj,k, then η− = η−j and η+ = ηk. If η ∈ Wj,k, we write
ηo for the corresponding SAW in W0,j+k obtained by translating η− to the origin. We
write η ≺ η̃ if η is a segment of η̃; more precisely, if η ∈ Wj,k, η̃ ∈ Wl,m then η ≺ η̃ if and
only if j ≤ l, k ≤ m, and

ηn = η̃n, n = −j,−j + 1, . . . , k.

The infinite two-sided LERW [. . . , Ŝ−2, Ŝ−1, Ŝ0, Ŝ1, Ŝ2, . . .] is defined by giving the finite
dimensional distributions

p̂(η) := P{[Ŝ−j , . . . , Ŝk] = η}, η ∈ Wj,k.

They are defined via a limit established in [11, Theorem 1] which we discuss now.
Suppose A is simply connected subset of Zd containing the origin. Let a, b ∈ ∂A be such
that there there exists a self-avoiding path from a to b, otherwise in A, that goes through
the origin. Let η ∈ W with η ⊂ A. Let S1, S2 be independent simple random walks
starting at the origin and for j = 1, 2, T jA := min{t : Sjt /∈ A}. Let VA, VA(a, b) denote the
non-intersection events

VA =
{
LE(S1[0, T 1

A]) ∩ S2[1, T 2
A] = ∅

}
,

VA(a, b) = VA ∩ {S1(T 1
A) = a, S2(T 2

A) = b}.

Here LE denotes chronological loop erasure. On the event VA, we write η̃ for the element
of W obtained by concatenating the reversal of LE(S1[0, T 1

A]) with LE(S2[0, T 2
A]). If

η ∈ W, we let
V ηA = VA ∩ {η ≺ η̃}, V ηA(a, b) = VA(a, b) ∩ {η ≺ η̃},

p̂A(η) =
P[V ηA ]

P[VA]
, p̂A(η; a, b) =

P[V ηA(a, b)]

P[VA(a, b)]
.

In other words, p̂A(η; a, b) is the probability that a loop-erased walk from a to b in A

contains η given that it goes through the origin. For R > 0, let DR = {z ∈ Z2 : |z| < R}.
Theorem 2.1 ([11]). There exist c <∞, u > 0 and a function p̂ :W → [0, 1] such that the
following holds. Suppose A is a simply connected subset of Zd containing the origin and
a, b ∈ ∂A with P[VA(a, b)] > 0. Then for all η ∈ W with η ⊂ Dr ⊂ Dn ⊂ A and n ≥ 2r,

|log p̂A(η; a, b)− log p̂(η)| ≤ c
( r
n

)u
.

It follows immediately that

|log p̂A(η)− log p̂(η)| ≤ c
( r
n

)u
.

We often write this as
p̂A(η) = p̂(η)

[
1 +O

(( r
n

)u)]
.

By the definition and the theorem, we see that the law is reversible, that is, p̂(η) = p̂(ηR),
where ηR is the reversal of η, and translation invariant in the sense that p̂(η) = p̂(ηo).
Moreover, the law will have the same reflection and rotation symmetries as Zd. In
particular, the trivial SAW of length 0, η = [0] satisfies p̂(η) = 1 and p̂(η) = 1/2d if |η| = 1.

Given the theorem, we can also express the probabilities in terms of transition
probabilities. Since the measure is invariant under translation, rotation, and path
reversal, it is sufficient to consider η ∈ W0,k. If |ζ − η+| = 1, we write ηζ = η⊕ [η+, ζ] and

p̂(ηζ | η) =
p̂(ηζ)

p̂(η)
= lim
n→∞

p̂An(ηζ)

p̂An(η)
= lim
n→∞

p̂An(ηζ ; an, bn)

p̂An(η; an, bn)
.
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Here we write An for a sequence of A as in Theorem 2.1 with An ↑ Zd as n→∞ and we
write an, bn for boundary points of An. Theorem 2.1 tells us that the limits can be taken
over any sequence of simply connected An with dist(0, ∂An)→∞ and an, bn ∈ ∂An with
P[VAn(an, bn)] > 0. We will give the transition probability in terms of a function φ that
we will now define. We will define it for η ∈ W0,j ; it is extended to other η by the equality
φ(η) = φ(ηo).

Definition 2.2. Let η ∈ W0,j with ηζ ⊂ A.

• Let S1, S2 be independent simple random walks starting at η+, 0, respectively; let
T 1
A, T

2
A be the first visits to ∂A; and let T 1

η , T
2
η the first visits to η after time zero by

S1, S2, respectively.

• Set ω1 = S1[0, T 1
A] and ω2 = S2[0, T 2

A].

Then we define:

φA(η) = P{T 1
A < T 1

η , T
2
A < T 2

η , LE(ω1) ∩ ω2 = ∅}, (2.1)

φA(η; z, w) = P{T 1
A < T 1

η , T
2
A < T 2

η , LE(ω1) ∩ ω2 = ∅, S1
T 1
A

= z, S2
T 2
A

= w}.

By splitting
ω1 = [η+, ζ]⊕ [ζ, . . . , ω1

k]⊕ [ω1
k, . . . , ω

1
n],

where k is the largest index i such that ω1
i = ζ, we can see that

p̂A(ηζ | η) :=
p̂A(ηζ)

p̂A(η)
=
GA\η(ζ, ζ)

2d

φA(ηζ)

φA(η)
. (2.2)

By iterating this, it follows that

p̂A(η) = (2d)−|η| Fη(Â)
φA(η)

φA(0)
, (2.3)

and similarly

p̂A(η; z, w) = (2d)−|η| Fη(Â)
φA(η; z, w)

φA(0; z, w)
. (2.4)

Here, and throughout, we write Â = A \ {0}, 0 is used to denote the trivial SAW of length
zero, and

Fη(Â) =

|η|∏
j=1

GAj (ηj , ηj),

where Aj = A \ {η0, . . . , ηj−1}. Note that we can also write

Fη(Â) = exp

{∑
l

m(l)

}
,

where m denotes the random walk loop measure and the sum is over all loops l ⊂ Â that
intersect η. See Proposition 9.3.1 and Lemma 9.3.2 of [10].

Theorem 2.1 says that we can take limits in (2.3) and (2.4). Let An be a sequence of
simply connected sets containing the origin with dist(0, ∂An)→∞ and let an, bn ∈ ∂An
with P[VAn(an, bn)] > 0. We can then define

φ(η) = lim
n→∞

φAn(η)

φAn(0)
= lim
n→∞

φAn(η; an, bn)

φAn(0; an, bn)
.

This definition, together with (2.3) and (2.2), implies Theorem 1.1.

EJP 24 (2019), paper 139.
Page 5/22

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP376
http://www.imstat.org/ejp/


Transition probabilities for two-sided LERW

3 Infinite two-sided LERW: the planar case

In the case d = 2, one can give a different expression for the transition probability.
This will be a fairly simple consequence of work in [3] combined with Theorem 1 in [11]
(from which Theorem 2.1 was derived). An important ingredient is an idea of Kenyon to
introduce a “zipper” or branch cut onto the lattice; in [3] this was interpreted in terms
of random walks and loop measures with weights negative on those edges crossing the
zipper. Similar ideas are also important when analyzing the Ising model at criticality,
see, e.g., [4].

We will use complex notation and write Z2 = Z+ iZ. From here on, let

An = {x+ iy ∈ Z×Z : |x| < n}, an = −n, bn = n, (3.1)

denote the infinite strip and define p(n)(η) to be the probability that a LERW from an to
bn in An includes η conditioned on the event that the LERW passes through the origin. It
follows from Theorem 2.1 that one has independence of boundary conditions so that

p̂(η) = lim
n→∞

p(n)(η).

We will compute the transition probability by writing the expression for the strip An and
then taking the limit as n→∞. This argument will only use the expressions derived in
[3] and random walk estimates.

We will first restate the main result for d = 2, and then we will define the quantities
in the statement.

Proposition 3.1. If η ∈ W with η1 = 1, |η+ − ζ| = 1, then

p̂(ηζ | η) =
1

4
·Gq

Z2\η(ζ, ζ) ·
∣∣∣∣Dq(ηζ)

Dq(η)

∣∣∣∣ ,
where

Dq(η) = det

[
Lqvη(η−) Lqvη(η+)

Lquη(η−) Lquη(η+)

]
.

We need to define Gq
Z2\η(ζ, ζ), Lq and the functions in the determinant. This will be

done in the next subsection. The proof of Proposition 3.1 requires a number of estimates
(provided in Section 3.2) and will be completed in this section’s third and last subsection.
One of the intermediate results, Proposition 3.10, is of independent interest and will be
proven in the Appendix for the sake of fluidity of this section.

3.1 Signed weights and discrete square root

We now introduce the key objects that appear in Proposition 3.1, namely Gq, u, v, and
Lq. There is some arbitrariness in the definition of u, v, q although the quantity Dq(η) is
independent of the choices. Our choices are natural given the particular embedding of
the lattice into the complex plane. Letting our domains (An, an, bn) be as in (3.1) is a
convenient choice that will allow us to make use of some symmetries.

We will need to do some basic analysis of the discrete Laplacian “with zipper” in Z2.
If z, w ∈ Z2 let p(z, w) be the usual simple random walk weight, i.e.,

p(z, w) =
1

4
1{|z − w| = 1}

and q(z, w) the weights obtained by putting a branch cut or “zipper” directly below the
positive real axis:

q(k, k − i) = q(k − i, k) = −p(k, k − i) = −1/4, k = 1, 2, 3, . . . ,
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and otherwise q(z, w) = p(z, w). One can think of q as being the opposite of p for all
edges crossing the zipper {z ∈ C : z = 1

2 −
1
2 i+ x, x ∈ R+} and otherwise the same as p.

Given this, let us set some more notation.

• In this section a walk is a sequence of nearest neighbor vertices on Z2 and a self-
avoiding walk (SAW) is a walk with no self-intersections. A loop is a walk starting
and ending at the same vertex (with possible additional self-interesections.) The
p- and q-weights of a walk are the products of the weights of the traversed edges.
The weight of the length-0 walk is by convention 1.

• We write L and Lq for the p- and q-Laplacians acting on functions defined on Z2:

Lf(z) =

 ∑
w: |w−z|=1

p(z, w) f(w)

− f(z),

Lqf(z) =

 ∑
w: |w−z|=1

q(z, w) f(w)

− f(z).

Note that the Laplacian of f is also defined on Z2. We write Lxf, L
q
xf for the

Laplacians acting on the function x 7→ f(x, y).

• The p- and q-Green’s functions for random walk in A ( Z2 are defined by

GA(z, w) =
∑

ω:z;w,ω⊂A
p(ω), GqA(z, w) =

∑
ω:z;w,ω⊂A

q(ω),

where the sums are over all walks ω starting at z, ending at w, otherwise in A.

• One can check that if η is a SAW going through 0, then

Gq
Z2\η(w,w) =

∑
ω:w;w,ω⊂Z2\η

4−|ω| (−1)J(ω),

where the sum is over all random walk loops rooted at w in Z2 \ η and J(ω) is the
winding number of the loop about 0 which is the same as the winding number about
η, since the loops do not intersect it.

• If A ( Z2, we define HA(z, w), Hq
A(z, w) for z ∈ Z2, w ∈ Z2 \ A as the Poisson

kernels corresponding to the respective Green’s functions. That is, if z ∈ A,

HA(z, w) =
∑

ω:z;w,ω\{w}⊂A

p(ω), Hq
A(z, w) =

∑
ω:z;w,ω\{w}⊂A

q(ω), (3.2)

where the sums are over all walks ω starting at z, ending at w, otherwise staying in
A. For z ∈ Z2 \ A, by definition HA(z, w) = Hq

A(z, w) = 1w(z) (a Dirac mass at w).
More generally, if E ⊂ ∂A, then we write

HA(z, E) =
∑
w∈E

HA(z, w)

for the discrete harmonic measure of E in A.

• Note that for w ∈ Z2 \ A, h(z) := Hq
A(z, w) is the unique bounded function on Z2

with

h(z) = 1w(z), z ∈ Z2 \A,

Lqh(z) = 0, z ∈ A.
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Another way of looking at h is as follows. Let Sn denote a simple random walk and
let Qn denote the number of times that the walk has crossed the branch cut by
time n. If τ is the hitting time of Z2 \A, then

h(z) = Ez
[
(−1)Qτ 1{Sτ = w}

]
.

We can also think about this in terms of a two-cover of Z2.

• We also define Poisson kernels for two boundary points: If z, w are distinct points
in ∂A, we define the boundary Poisson kernels,

H∂A(z, w) = LzHA(z, w) = LwHA(z, w),

Hq
∂A(z, w) = LqzHA(z, w) = LqwHA(z, w).

We can also write H∂A(z, w), Hq
∂A(z, w) in a form analogous to that in (3.2).

• We will in places need to compare discrete Poisson kernels with their continuous
counterparts. For a domain A ⊂ C, if w ∈ A, z ∈ ∂A, and ∂A is locally analytic at
z, the Poisson kernel hA(w, z) is the density of harmonic measure with respect to
Lebesgue measure. As in the discrete case, we will write

hA(w,E) =

∫
E

hA(w, z) |dz|

for domains A with a Poisson kernel and measurable E ⊂ ∂A.

• We define

Z+ = {0, 1, 2, . . .}, Z∗+ = {1, 2, . . .}

and

Z− = {. . . ,−2,−1, 0}, Z∗− = {. . . ,−2,−1}.

• For R ∈ R+, we let

DR = {z ∈ Z2 : |z| < R}, CR = ∂DR (3.3)

be the discrete disk and circle, respectively, of radius R. Also let

UR = {x+ iy ∈ Z2 : |x| < R, |y| < R} (3.4)

be the discrete square centered at 0 of side-length 2R with sides parallel to the
axes.

3.2 Random walk estimates

This section contains a number of useful estimates for random walks with or without
signed weights.

The first three estimates are for the Poisson kernel for walks with signed weights and
exploit cancellations implied by the signed weights.

Lemma 3.2. There exists c <∞ such that the following is true. Let K ⊂ Z2 be a finite
set including the origin. Then for all z,

∑
w∈K

|Hq
Z2\K(z, w)| ≤ c

√
diam(K)

|z|
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Proof. It suffices to prove the result in the case where K = Dn with n ∈ N. Indeed, if
|z| ≥ n and K ⊂ {|z| ≤ n}, then

Hq
Z2\K(z, w) =

∑
z′∈Dn

Hq
Z2\Dn(z, z′)Hq

Z2\K(z′, w),

and hence, since
∑
w∈K |H

q
Z2\K(z′, w)| ≤

∑
w∈K HZ2\K(z′, w) ≤ 1,∑

w∈K
|Hq
Z2\K(z, w)| ≤

∑
z′∈Dn

∑
w∈K

|Hq
Z2\Dn(z, z′)| |Hq

Z2\K(z′, w)|

≤
∑
z′∈Dn

|Hq
Z2\Dn(z, z′)|.

Let l, l′ be the half-infinite lines

l = {ki : k ≥ n}, l′ = −l = {−ki : k ≥ n}.

Let τ = min{t : St ∈ Dn}, T = min{t : St ∈ l}, T ′ = min{t : St ∈ l′}. On the event
{T < T ′ < τ} we can give a bijection on paths by switching S[T, T ′] with its reflection
about the imaginary axis. The measure of the reflected path is the negative of the
measure of the first path and hence these paths cancel. There is a similar bijection on
{T ′ < T < τ}. Therefore, by the Beurling estimate,∑

z′∈Dn

|Hq
Z2\Dn(z, z′)| ≤ Pz{τ < max{T, T ′}}

≤ Pz{τ < T}+ Pz{τ < T ′} ≤ c
√

n

|z|
.

Lemma 3.3. There exists c <∞ such that the following is true. Let K ⊂ Z2 be a finite
set including the origin, z ∈ Z2 \K and let r = max{|z|,diam(K)}. Then∑

x∈Car

|Hq
Dar\K(z, x)| ≤ c a−1/2.

Proof. Let ψ = inf{k ≥ 0 : S(k) ∈ Car} and λ = sup{k ≤ ψ : S(k) ∈ Cr} and write Qz for
the q-measure of paths started at z. Then for z ∈ Z2 \K,x ∈ Car,

|Hq
Dar\K(z, x)| = |

∑
w∈Cr

∑
k≥1

Qz(λ = k, S(λ) = w, S(ψ) = x)|

= |
∑
w∈Cr

∑
k≥1

Qz(λ = k, S(k) = w, S[k, ψ] /∈ Dr, S(ψ) = x)|

≤ sup
w∈Cr

|Hq
Dar\Dr (w, x)|.

So, writing for a set A ⊂ Z2, τA = inf{k ≥ 0 : S(k) ∈ A} and using the same argument as
in Lemma 3.2 for the final inequality,∑

x∈Car

|Hq
Dar\K(z, x)| ≤ sup

w∈Cr
Pw(τCar < τZ∗+) ≤ ca−1/2.

Lemma 3.4. There exists c <∞ such that the following is true. Let K be a finite subset
including the origin and suppose A ( Z2 \K. Then for z ∈ A,

∑
w∈K

|Hq
Z2\K(z, w)−Hq

A(z, w)| ≤ c
√

diam(K)

R

∑
z′∈∂A\K

HA(z, z′),

where R = min{|z′| : z′ ∈ ∂A \K}.
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Transition probabilities for two-sided LERW

Proof. If z ∈ A,w ∈ K,

Hq
Z2\K(z, w) = Hq

A(z, w) +
∑

z′∈∂A\K

Hq
A(z, z′)Hq

Z2\K(z′, w).

Therefore, by Lemma 3.2,∑
w∈K

|Hq
Z2\K(z, w)−Hq

A(z, w)| ≤
∑

z′∈∂A\K

∑
w∈K

|Hq
A(z, z′)| |Hq

Z2\K(z′, w)|

≤ c

√
diam(K)

R

∑
z′∈∂A\K

HA(z, z′).

Recall the stopping times for simple random walk Sn on Z2 defined in the Introduction:

τ+ = min{j ≥ 0 : Sj ∈ Z+}

and
σR = min{j ≥ 0 : |Sj | ≥ R}.

We define the important function

v(z) = lim
R→∞

R1/2 Pz{σR < τ+},

which, as we will see, gives a probabilistic definition of a discrete version of a constant
times Im

√
z. (See also [5] for a related construction.) Of course, one has to check that

the limit exists. This is most certainly known but we choose to give a self-contained proof
which contains an error bound. This is done in Proposition 3.10, the proof of which is
given in the Appendix. We shall also need the following sequence of lemmas. The first
gives a coupling of Brownian motion and random walk given by the KMT approximation
(see [6] and [7]) in a form which follows from Lemma A.5 and Theorem A.3 in [2]:

Lemma 3.5. There exists c ∈ (0,∞) so that for each R <∞, there is a probability space
on which a planar simple random walk started at z and planar standard Brownian motion
started at z′ with |z − z′| ≤ 2 can be constructed in such a way that

P

{
sup

0≤t≤TR
|Bt − S2t| > c logR

}
≤ cR−3,

where TR = inf{t ≥ 0 : |Bt| ≥ R}.
We now show in a sequence of three lemmas that the probability that random walk

exits the slit disk at a specific point, given that it exits on the circle, is about the same
for all points on a mesoscopic scale. It turns out that the partial results in Lemmas 3.6
and 3.7 are easier to prove in the slit square U−R = UR \ [0, . . . , R], where UR is as in
(3.4). This is because the slit square can be split into a finite number of rectangles and
the (discrete) Poisson kernel for a rectangle can be given explicitly; this idea is used in
Section 5 of [3] and we state some of the main results here.

Lemma 3.6. If z ∈ ∂U−R , let dR(z) be the distance from z to the set {R,±R± iR}. Then

H∂U−R
(0, z) � H∂U−R

(0, ∂UR)
dR(z)

R2
� 1

R1/2

dR(z)

R2
.

More generally, if m ≤ R/2 and w ∈ ∂Um,

HU−R
(w, z) � HU−R

(w, ∂UR)
dR(z)

R2
� |w −m|
m1/2R1/2

dR(z)

R2
.
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Transition probabilities for two-sided LERW

Proof. We sketch the proof since similar estimates have appeared in several places. For
the proof that

HU−R
(w, ∂UR) � |w −m|

m1/2R1/2

if w ∈ ∂Um, see [10, Proposition 5.3.2]. If N = b3R/4c, then we can write

HU−R
(w, z) =

∑
ζ,ξ∈∂UN

HU−N
(w, ζ)GU−R

(ζ, ξ)H∂(U−R \∂U
−
N )(z, ξ),

to see that

HU−R
(w, z) � HU−N

(w, ∂UN )H∂(U−R \∂U
−
N )(z, ∂UN ).

This can be estimated using the fact thatHU−N
(w, ∂UN ) � HU−R

(w, ∂UN ) and by comparing
the other term with the Poisson kernel in a rectangle which can be given explicitly in
terms of a finite Fourier series (see [10, Section 8.1]).

Lemma 3.7. Let 0 < α < 1. There exists β > 0 such that for R ∈ N, a ∈ U−bRαc and
b ∈ ∂UR,

H∂U−R
(0, b)

H∂U−R
(0, ∂UR)

=
HU−R

(a, b)

HU−R
(a, ∂UR)

(1 +O(R−β)).

Proof. If Rα < m < R, let µm, νm be the distribution of the first visit (after time zero) to
∂Um starting at 0, a, respectively, conditioned that the walk leaves U−R at ∂UR. Set

‖µm − νm‖ =
1

2

∑
w∈∂Um

|µm(w)− νm(w)|.

Then a simple coupling argument implies that ‖µm − νm‖ is decreasing in m and the last
lemma shows that there exists δ > 0 such that if Rα < m < R/4, then

‖µ2m − ν2m‖ ≤ (1− δ) ‖µm − νm‖.

In particular, if R/4 ≤ m < R/2,

‖µm − νm‖ ≤ cR−β ,

and

|µR(b)− νR(b)| ≤ 2 ‖µm − νm‖ max
w∈∂Um

HU−R
(w, b) ≤ cR−β µR(b).

Lemma 3.8. For every 0 < α < 1, there exists β > 0 such that for any z, z′ ∈ Z2 with
|z|, |z′| ≤ Rα, any w ∈ CR,

Pz{S(σR) = w|σR < τ+} = Pz
′
{S(σR) = w|σR < τ+}(1 +O(R−β)).

Proof. Write U,U− for UbR/2c, U
−
bR/2c and let T be the first time that a simple random

walk leaves U−. We can write

Pz{S(σR ∧ τ+) = w | ST ∈ ∂U} =
∑
b∈∂U

HU−(z, b)

HU−(z, ∂U)
Pb{S(σR ∧ τ+) = w},

and similarly for z′. Using Lemma 3.7 we see that for |z|, |z′| ≤ Rα, b ∈ ∂U ,

HU−(z, b)

HU−(z, ∂U)
=

HU−(z′, b)

HU−(z′, ∂U)
(1 +O(R−β)),
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Transition probabilities for two-sided LERW

which implies

Pz{S(σR ∧ τ+) = w | ST ∈ ∂U} = Pz
′
{S(σR ∧ τ+) = w | ST ∈ ∂U} (1 +O(R−β)),

Pz{σR < τ+ | ST ∈ ∂U} = Pz
′
{σR < τ+ | ST ∈ ∂U} (1 +O(R−β)).

Since,

Pz{S(σR) = w|σR < τ+} =
Pz{S(σR) = w | ST ∈ ∂U}
Pz{σR < τ+ | ST ∈ ∂U}

,

and similarly for z′, we get the lemma.

For z ∈ C we will write θz = arg z ∈ [0, 2π).

Lemma 3.9. There exist c <∞, β > 0 such that if |z| ≤ R3/4, then∣∣∣Ez [sin(θS(σR)/2) | σR < τ+
]
− π

4

∣∣∣ ≤ cR−β .
Proof. Lemma 3.8 implies that there exists β > 0 such that for |z|, |w| ≤ R3/4,∣∣Ez [sin(θS(σR)/2) | σR < τ+

]
−Ew

[
sin(θS(σR)/2) | σR < τ+

]∣∣ ≤ cR−β .
Hence it suffices to show the result for z = −bR3/4c. For the remainder of the proof, we
write P,E for Pz,Ez and let (Bt, St) be a Brownian motion and a simple random walk
coupled as in Lemma 3.5, so that

P

{
sup

0≤t≤s2R
|Bt − S2t| ≥ c0 logR

}
≤ c0R−3.

Here sR is the hitting time by the Brownian motion of {|z| = R}. We let T+ be the hitting
time of [0,∞) by B.

Using the Beurling estimate (see [13] for the discrete version, [8] for a discussion of
the continuous case) in an argument very similar to that in Proposition 3.1 in [2], one
can show that

P
{∣∣BsR∧T+

− SσR∧τ+
∣∣ ≥ R1/2 logR

}
≤ cR−1/4. (3.5)

Let ER, ẼR be the events

ER = {σR < τ+}, ẼR = {sR < T+}.

Proposition 2.4.5 in [9] for the former and a direct calculation for the latter give P(ER) �
P(ẼR) � R−1/8. However, note that

P(ER4ẼR) ≤ P{d(B(sR ∧ T+), R) ≤ R1/2 logR}

+P
{∣∣BsR∧T+

− SσR∧τ+
∣∣ ≥ R1/2 logR

}
≤ cR−1/2 logR+ cR−1/4 ≤ cR−1/4,

where the first term on the right of the first inequality can be estimated by a direct
calculation using conformal invariance and the second is estimated in (3.5). Here 4
denotes symmetric difference. Hence we have produced a coupling of a Brownian motion
conditioned on ẼR with a random walk conditioned on ER such that, except for an event
of probability O(R−1/8), |BsR∧T+ − SσR∧τ+ | ≤ R1/2 logR. In particular,∣∣∣E [sin(θS(σR)/2) | ER

]
−E

[
sin(θB(sR)/2) | ẼR

]∣∣∣ ≤ cR−1/8.
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Transition probabilities for two-sided LERW

We are left with estimating the quantity for Brownian motion which can be done using
conformal invariance. The Poisson kernel in the slit disk is (see for instance the proof of
Lemma 5.1 in [3])

hD\[0,1)(εe
iµ, eiθ) =

1

2π
ε1/2 sin(µ/2) sin(θ/2) +O(ε). (3.6)

This implies that, with ξ = s1 ∧ T+,

Pεe
iµ

{|Bξ| = 1} =
2

π
ε1/2 sin(µ/2) +O(ε),

so the Poisson kernel in the slit disk conditional on leaving at the circle before hitting
the positive real line is

h̄D\[0,1)(εe
iµ, eiθ) =

1

4
sin(θ/2) +O(ε1/2). (3.7)

Therefore, with ξ the first exit time of D \ [0, 1),

Eεe
iµ

[
sin

(
θBξ
2

) ∣∣∣∣|Bξ| = 1

]
=

1

4

∫ 2π

0

(sin2(θ/2) +O(ε1/2) sin(θ/2)) dθ, (3.8)

and the right-hand side equals π
4 +O(ε1/2), from which our estimate follows by scaling.

We postpone the proof of the following proposition to the Appendix.

Proposition 3.10. For each z, the limit

v(z) = lim
R→∞

R1/2 Pz{σR < τ+}

exists. Moreover, there exists c <∞ such that for all z ∈ Z2 \ {0}∣∣∣∣v(z)− 4

π
Im
√
z

∣∣∣∣ ≤ c sin(θz/2)

|z|1/2
.

Note that

v(z) = 0, z ∈ Z+,

Lv(z) = 0, z ∈ Z2 \Z+,

Lqv(z) = 0, z ∈ Z2 \ {0}.

Defining

f(z) = Im
√
z = |z|1/2 sin(θz/2),

it follows from (3.23) below that

v(z) = lim
R→∞

4

π
Ez[f(SσR∧τ+)]

= lim
R→∞

4

π

∑
w∈CR

Hq
DR

(z, w) f(w).

The second equality uses the fact that f(w) = f(w) and hence if z ∈ DR ∩Z+, we can
reflect paths in R to see that ∑

w∈CR

Hq
DR

(z, w) f(w) = 0.
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Transition probabilities for two-sided LERW

We now consider a discrete harmonic conjugate of v (though note that u lives on the
same lattice as v),

u(x+ iy) =

{
v(−x+ iy), y ≥ 0

−v(−x+ iy), y < 0
(3.9)

We can think of u as (a constant times) a discrete version of Re
√
z. Then,

u(z) = 0, z ∈ Z−,

Lu(z) = 0, z ∈ Z2 \ {(x, y) ∈ Z2 : x ≥ 0, y ∈ {−1, 0}},

Lqu(z) = 0, z ∈ Z2 \ {0}.

If η ∈ W, we define
vη(z) = v(z)−

∑
y∈η

Hq
Z2\η (z, y) v(y) (3.10)

uη(z) = u(z)−
∑
y∈η

Hq
Z2\η(z, y)u(y). (3.11)

Then we have
uη(z) = vη(z) = 0, z ∈ η,

Lquη(z) = Lqvη(z) = 0, z ∈ Z2 \ η.

By Lemma 3.2, if |z| > n,

|
∑
y∈η

Hq
Z2\η(z, y) v(y)| = |

∑
w∈Dn

∑
y∈η

Hq
Z2\Dn(z, w)Hq

Z2\η(w, y) v(y)|

≤
∑
w∈Dn

∑
y∈η
|Hq
Z2\Dn(z, w)||Hq

Z2\η(w, y) v(y)|

≤ cmax
y∈η
|v(y)|

√
n

|z|
,

and similarly for u. Hence, if |z| is large enough,

|vη(z)− v(z)|+ |uη(z)− u(z)| = |
∑
y∈η

Hq
Z2\η(z, y) v(y)|+ |

∑
y∈η

Hq
Z2\η(z, y)u(y)|

≤ cη |z|−1/2,

where cη depends only on η.
Recall that An is the infinite strip {x+ iy : |x| < n}. We define, for z ∈ An,

v(n)η (z) = Hq
An\η(z,−n), u(n)η (z) = Hq

An\η(z, n),

where u(n)η ≡ v(n)η ≡ 0 for z ∈ η. Finally, let

Dq
n(η) = det

[
Lqv

(n)
η (η−) Lqv

(n)
η (η+)

Lqu
(n)
η (η−) Lqu

(n)
η (η+)

]
.

Before proving our main result for this section, Proposition 3.1, we still need a
convergence result (Lemma 3.12) which will rely on Lemma 3.11 for which the following
definitions are needed:

For z ∈ Dm, w ∈ Cm, we let

hηm(z, w) =
1

2
[Hq

Dm\η(z, w) +Hq
Dm\η(z, w)].
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Transition probabilities for two-sided LERW

Note that for z ∈ η, hηm(z, w) = 0. We can think of {0} as the “empty” SAW and define

hm(z, w) = h{0}m (z, w) =
1

2
[Hq

Dm\{0}(z, w) +Hq
Dm\{0}(z, w)].

Note that hm(z, w) = 0 if z ∈ Z+, so for all z ∈ Dm,

hm(z, w) =
1

2
[Pz{S(σm ∧ τ+) = w}+ Pz{S(σm ∧ τ+) = w}] . (3.12)

Notice that for any function φ defined on Cm,
∑
w∈Cm φ(w) =

∑
w∈Cm φ(w̄), so if

φ(w) = φ(w), then ∑
w∈Cm

Hq
Dm\η(z, w)φ(w) =

∑
w∈Cm

hηm(z, w)φ(w). (3.13)

Lemma 3.11. There exist 0 < u, c <∞, such that for every SAW η through 0 and every
z ∈ Z2 \ η, if r = max{|z|,diam(η)}, m ≥ 2r, and w ∈ Cm,

|hηm(z, w)− vη(z)m−1/2 µm(w)| ≤ c (m/r)−
1+u
2 µm(w),

where

µm(w) =
hm(−1, w)

P−1{σm < τ+}
.

Proof. We define a by m = a2r. Using (3.12) and coupling h-processes started from
different points as in Lemma 3.8, we can see that there exists 0 < u < 1/2 such that for
any x ∈ Dar ∪ Car, w ∈ Cm,

hm(x,w) = Px{σm < τ+}µm(w) [1 +O(a−u)], (3.14)

where

µm(w) =
hm(−1, w)

P−1{σm < τ+}
� m−1 sin(θw/2). (3.15)

Also, if x ∈ Car, using m = a2r and diam(η) ≤ r,

|hm(x,w)− hηm(x,w)| ≤
∑
y∈η
|Hq

Dm\η(x, y)| |hm(y, w)|

≤ c a−1 µm(w)
∑
y∈η
|Hq

Dm\η(x, y)|

≤ c a−3/2 µm(w), (3.16)

where we used (3.14) and the Beurling estimate for the second inequality and Lemmas
3.2 and 3.4 in the last inequality. Since for x ∈ Car,Px{σm < τ+} � a−1/2 sin(θx/2), we
get from (3.14) and (3.16)

|hηm(x,w)−Px{σm < τ+}µm(w)| ≤ c a−1/2 µm(w) [a−1 + sin(θx/2)a−u].

By the strong Markov property (using that hηm(·, w) ≡ 0 on η), we can write

hηm(z, w) =
∑
x∈Car

Hq
Dar\η(z, x)hηm(x,w),

and hence ∣∣∣∣∣hηm(z, w)−
∑
x∈Car

Hq
Dar\η(z, x)Px{σm < τ+}µm(w)

∣∣∣∣∣
≤ c

∑
x∈Car

|Hq
Dar\η(z, x)|µm(w) a−1/2 a−u

≤ c (m/r)−
1+u
2 µm(w),
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Transition probabilities for two-sided LERW

where the last inequality follows from Lemma 3.3. This gives∣∣∣hηm(z, w)− κm(η, z)m−1/2 µm(w)
∣∣∣ ≤ c (m/r)−

1+u
2 µm(w), (3.17)

where
κm(η, z) = m1/2

∑
x∈Car

Hq
Dar\η(z, x)Px{σm < τ+}.

We want to show that this is close to vη(z). Note that by Lemma 3.3,

|κm(η, z)| ≤ m1/2 max
x∈Car

Px{σm < τ+}
∑
x∈Car

|Hq
Dar\η(z, x)| ≤ O(r1/2). (3.18)

Using (3.15) and (3.17), we see that∣∣∣∣∣ ∑
w∈Cm

[hηm(z, w)− κm(η, z)m−1/2µm(w)]
4

π
m1/2 sin(θw/2)

∣∣∣∣∣ ≤ cm−ur(1+u)/2. (3.19)

But we know from Lemma 3.9 that∑
w∈Cm

µm(w) sin(θw/2) =
π

4
+O(m−u),

so by (3.18) ∣∣∣∣∣ ∑
w∈Cm

hηm(z, w)
4

π
m1/2 sin(θw/2)− κm(η, z)

∣∣∣∣∣ ≤ cm−u/2r(1+u)/2. (3.20)

For w ∈ Cm, it follows from Lemma 3.2 and the boundedness of v implied by Proposi-
tion 3.10 that

vη(w) = v(w) +O((r/m)1/2) =
4

π

√
m sin(θw/2) +O((r/m)1/2). (3.21)

Since by the strong Markov property (using that vη ≡ 0 on η),

vη(z) =
∑
w∈Cm

Hq
Dm\η(z, w) vη(w),

equations (3.13) and (3.21), together with Lemma 3.3, imply that∣∣∣∣∣vη(z)−
∑
w∈Cm

hηm(z, w)
4

π

√
m sin(θw/2)

∣∣∣∣∣
=

∣∣∣∣∣vη(z)−
∑
w∈Cm

Hq
Dm\η(z, w)

4

π

√
m sin(θw/2)

∣∣∣∣∣
≤ O((r/m)1/2)

∑
w∈Cm

|Hq
Dm\η(z, w)|

= O(r/m). (3.22)

Therefore, by (3.20) and (3.22), since 0 < u < 1/2,

vη(z) = κm(η, z) +O(m−u/2r(1+u)/2),

which shows that limm→∞ κm(η, z) = vη(z) and (3.17) becomes∣∣∣hηm(z, w)− vη(z)m−1/2 µm(w)
∣∣∣ ≤ c (m/r)−

1+u
2 µm(w).
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Lemma 3.12. There exists 0 < c0 <∞ such that for all z ∈ Z2,

uη(z) = c0 lim
n→∞

n3/2 u(n)η (z),

vη(z) = c0 lim
n→∞

n3/2 v(n)η (z).

Proof. We will prove the second limit; the first is done similarly. Let m = n/2 and write

v(n)η (z) =
∑
w∈Cm

Hq
Dm\η(z, w)Hq

An\η(w,−n).

For w ∈ Cm,

Hq
An\η(w,−n) = Hq

An
(w,−n)−

∑
y∈η

Hq
An\η(w, y)Hq

An
(y,−n)

= Hq
An

(w,−n) +O(n−2),

where the second equality follows from Lemmas 3.2, 3.4, the Beurling estimate, and the
fact that the discrete Poisson kernel in the half-plane is a discrete version of the Cauchy
distribution (see, e.g., Lemma 4.2.1 in [1]). Therefore, by Lemma 3.3 and (3.13),

v(n)η (z) +O(m−5/2) =
∑
w∈Cm

Hq
Dm\η(z, w)Hq

An
(w,−n)

=
∑
w∈Cm

hηm(z, w)Hq
An

(w,−n).

Using the Lemma 3.11, we see that

∑
w∈Cm

hηm(z, w)Hq
An

(w,−n) = O(m−
3+u
2 ) + vη(z)

∑
w∈Cm

µm(w)Hq
An

(w,−n)

m1/2
.

Note that symmetry and the argument of Lemma 3.9 imply that∑
w∈Cm

µm(w)Hq
An

(w,−n)

=
∑
w∈Cm

P−1(S(σm ∧ τ+) = w)

P−1(σm < τ+)
HA−n

(w,−n)

=
∑

w∈Cm,d(w,m)≥m3/4

P−1(S(σm ∧ τ+) = w)

4P−1(σm < τ+)

×GA−n (w,−(n− 1))(1 +O(n−1/2)).

The argument of Lemma 3.9 and Theorem 8.1 in [2] imply that

µm(w)Hq
An

(w,−n) =
1

2π

∫
h̄(−1, w)gA−n (w,−(n− 1))(1 +O(n−1/2+ε)) dw,

where h̄ is the Brownian Poisson kernel in the slit disk conditional on not leaving at the
slit and the integral is over {w : |w| = m, d(w,m) ≥ R3/4}. This last expression can be
shown to equal c

′

n [1 +O(n−u)] for some c′.
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3.3 Proof of Proposition 3.1 and an example

Proof of Proposition 3.1. Recall that we want to check that

p̂(ηζ | η) =
p̂(ηζ)

p̂(η)
=

1

4
Gq
Z2\η(ζ, ζ)

∣∣∣∣Dq(ηζ)

Dq(η)

∣∣∣∣ ,
where

Dq(η) = det

[
Lqvη(η−) Lqvη(η+)

Lquη(η−) Lquη(η+)

]
.

First note that Lemma 3.12 implies

lim
n→∞

Dq
n(ηζ)

Dq
n(η)

=
Dq(ηζ)

Dq(η)
.

We will use Theorem 3.1 of [3] applied to (An,−n, n). We state the result here using the
notation we use in the present paper with η̃ := ηζ . This exact expression is obtained
by considering the loop measure description of LERW with the signed measure q and
making use of an identity due to Fomin; see Section 3 of [3] for more details. We have

p̂(n)(η̃) + p̂(n)(η̃R)

p̂(n)(η) + p̂(n)(ηR)
=

1

4
GqAn\η(ζ, ζ)

∣∣∣∣Dq
n(η̃)

Dq
n(η)

∣∣∣∣ ,
where ηR is the reversed path. A similar expression using the loop measure and Fomin’s
identity with the original probability p allows one to conclude p̂(n)(η) ≈ p̂(n)(ηR) and
similarly for η̃. More precisely,

p̂(n)(η) = p̂(n)(ηR)
[
1 +Oη(n−β)

]
.

See Section 3 of [3] for details. Therefore,

lim
n→∞

p̂(n)(η̃)

p̂(n)(η)
= lim
n→∞

4−1GqAn\η(ζ, ζ)

∣∣∣∣Dq
n(η̃)

Dq
n(η)

∣∣∣∣ = 4−1Gq
Z2\η(ζ, ζ)

∣∣∣∣Dq(η̃)

Dq(η)

∣∣∣∣ .
We conclude this paper with an explicit result which Kenyon and Wilson also obtained

through a different argument in [15]:

Example 3.13. Although p̂(η) is hard to compute in general, one nice case is the straight
line when d = 2, η = ηk = [0, 1, 2 . . . , k], w = k + 1, so that ηw = ηk+1. We first note that

F q
Z2\η(k + 1, k + 1) = FZ2\{...,k−1,k}(k + 1, k + 1) = FZ−(1, 1) = 4(

√
2− 1).

The first equality uses symmetry — if we consider loops that hit the negative real axis,
the total q weight is zero since positive loops (those come from the positive y-axis) cancel
with negative loops. The last equality takes work but is known, see [10, Proposition
9.9.8]. Also, symmetry shows that

Lqv(n)η (0) = Lqu(n)η (k) = 0,

Lqv(n)η (0) = H∂(An\Z+)(0,−n),

Lqu(n)η (k) = H∂(An\{...,k−1,k})(k, n),

and by taking the limit as n→∞, we see that

Dq(ηw) = Dq(η), p̂(ηw | η) =
√

2− 1.

Hence,

p̂(ηk) =
1

4
(
√

2− 1)k−1.
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Appendix: Proof of Proposition 3.10

In this appendix, we prove Proposition 3.10, which we restate now for convenience:

Proposition 3.10. For each z, the limit

v(z) := lim
R→∞

R1/2 Pz{σR < τ+}

exists. Moreover, there exists c <∞ such that for all z ∈ Z2 \ {0}∣∣∣∣v(z)− 4

π
Im
√
z

∣∣∣∣ ≤ c sin(θz/2)

|z|1/2
.

Proof. Define

f(z) = Im
√
z = |z|1/2 sin(θz/2).

We write ∆ for the continuous and L for the discrete Laplacian. We also write A = Z2\Z+.
Since f is the imaginary part of a holomorphic function on C\ [0,∞), ∆f(z) = 0 for z ∈ A.
Let

fR(z) = Ez [f(S(σR ∧ τ+))] .

Note that

fR(z) = [R1/2 +O(1)]Ez
[
sin(θS(σR)/2)1{σR < τ+}

]
= [R1/2 +O(1)]Pz{σR < τ+}Ez

[
sin(θS(σR)/2) | σR < τ+

]
= R1/2 Pz{σR < τ+}

π

4
(1 +O(R−(β∧1/2))), (3.23)

where the last estimate follows from Lemma 3.9. The main estimate we will prove is the
following: There exists c <∞ such that for all z and all R > |z|,

|f(z)− fR(z)| ≤ c f(z) |z|−1. (3.24)

This estimate will imply the lemma as we now show. Suppose R < R′. Since
z 7→ fR(z)− fR′(z) is discrete harmonic in DR \Z+ and equals 0 on the slit and f ≡ fR
on CR (see (3.3)), we have

|fR(z)− fR′(z)| ≤
∑
w∈CR

HCR(z, w)|f(w)− fR′(w)|.

Using (3.24),∑
w∈CR

HCR(z, w)|f(w)− fR′(w)| ≤
∑
w∈CR

HCR(z, w)|f(w)|R−1 ≤ cR−1/2.

It follows that limR→∞ fR(z) exists and, by (3.23), so does the limit defining v and we
have

lim
R→∞

fR(z) =
π

4
v(z).

The proof of the proposition will therefore be complete once we prove (3.24), which we
will now do.

If f were discrete harmonic on A, then we would have f(z) = fR(z). The key estimate
is obtained by comparing the discrete and continuous Laplacian. First, notice that there
exists c <∞ such that

|Lf(z)| ≤ c

|z|7/2
, z ∈ A. (3.25)
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Indeed, f is (continuous) harmonic and since the discrete Laplacian L is a finite difference
approximation to the continuous Laplacian ∆, there is a universal c such that∣∣∣∣Lf(z)− 1

2d
∆f(z)

∣∣∣∣ ≤ cM(z),

where M(z) is the maximum value of the fourth derivatives of f in the disk of radius
1 about z. See Section 1.5 in [10] for more details. One could compute the fourth
derivatives directly but it is easier to use the bound obtained by differentiating the
Poisson formula. If sin(θz/2) is small, then we can use the reflected harmonic function
about zero (that is, changing the sign to negative in the negative imaginary half plane).
This gives a harmonic function on the ball of radius |z|/2 about z whose maximum value
is O(|z|1/2) and hence whose fourth derivatives at z are O(|z|−7/2).

We now claim that there exists c such that for all z,∑
w∈A

GA(z, w) |Lf(w)| ≤ c f(z) |z|−1. (3.26)

To see this, we note that if |z| ≤ R,

∑
R≤|w|≤2R

GA(z, w) ≤ c sin(θz/2)

√
|z|
R
R2, (3.27)

which can be shown as follows: Let

bR(z) =
∑

R≤|w|≤2R

GA(z, w),

and write bR = sup|z|≤4R bR(z). It is easy to verify that there exists c > 0 such that for
k ∈ N, |z| ≤ 4R,

Pz{σ4R ≥ k} ≤ exp{−ck/R2},

so there exists c1 <∞ such that for all |z| ≤ 4R,

Ez[σ4R] =
∑
k≥1

Pz(σ4R ≥ k) ≤ c1R2.

Also there exists ρ < 1 such that starting at z ∈ ∂C4R, the probability to reach C2R

without leaving A is at most ρ. Therefore,

bR ≤ c1R2 + ρ bR,

which gives bR ≤ c1R
2/(1 − ρ). More generally, using gambler’s ruin estimates for

one-dimensional walks (see the argument for (3.29) just below), we see that

Ez[σ4R] ≤ c sin(θz/2)R2.

If R/2 ≤ |z| ≤ R, we then get

bR(z) ≤ c sin(θz/2)R2 + Pz{σR < τ+} bR ≤ c sin(θz/2)R2 + c sin(θz/2) ρ bR.

Finally for |z| ≤ R/2, we get

bR(z) ≤ Pz{σR < τ+} bR.

It follows from Theorem 1 in [13] that

Pz{σR < τ+} ≤ c
√
|z|
R
. (3.28)
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It takes little work to show the following stronger estimate:

Pz{σR < τ+} ≤ c sin(θz/2)

√
|z|
R
. (3.29)

Indeed, it suffices to consider the case θz ≤ π/4. If |z| ≤ R/2, then σR < τ+ implies
that the random walk leaves the square with corners (Re z/2, 0),(3Re z/2, 0), (Re z/2,Re z),
and (3Re z/2,Re z) at a point with nonzero imaginary part. Section 8.1.2 in [10] implies
that this happens with probability comparable to sin(θz), which is comparable to sin(θz/2).
Any such point has magnitude comparable to that of z, so the strong Markov property
together with (3.28) imply (3.29). Note that we assumed for simplicity that Re z/4 ∈ N,
but the argument is the same without that assumption.

This gives (3.27). Using (3.25), we see that for |z| ≤ R,∑
R≤|w|≤2R

GA(z, w) |Lf(w)| ≤ c sin(θz/2)

√
|z|
R
R−3/2.

In particular, if n ≥ 0.∑
2n−1|z|≤|w|≤2n|z|

GA(z, w) |Lf(w)| ≤ c sin(θz/2) 2−n/2 2−3n/2 |z|−3/2

≤ c 2−2n f(z) |z|−1

By summing over all n ≥ 1, we see that∑
|w|≥|z|

GA(z, w) |Lf(w)| ≤ c f(z) |z|−1. (3.30)

Similarly, if |z| ≥ R, ∑
R≤|w|≤2R

GA(z, w) ≤ c sin(θz/2)

√
R

|z|

and hence, using (3.25),∑
2−n|z|≤|w|≤2−n+1|z|

GA(z, w) |Lf(w)| ≤ c sin(θz/2) 2−n/2 (2−n|z|)−7/2

≤ c sin(θz/2) 23n|z|−7/2

If we sum this over all n ≥ 0 such that 2−n|z| ≥ 1, we get∑
|w|≤|z|

GA(z, w) |Lf(w)| ≤ c sin(θz/2) |z|−1/2 = c f(z) |z|−1.

This, combined with (3.30), gives (3.26).
A corollary of (3.26) is as follows. Let B ⊂ A be finite and τ = τB = min{j ≥ 0 : Sj /∈

B}. Then, for z ∈ B,
|f(z)−Ez[f(Sτ )]| ≤ c |z|−1/2 f(z).

Indeed, if M0 = f(S0) and

Mn = f(Sn)−
n−1∑
j=0

Lf(Sj),

then Mn∧τ is a uniformly integrable martingale and hence

Ez[Mτ ] = Ez[M0] = f(z).

But
|Ez[Mτ ]−Ez[f(Sτ )]| ≤

∑
w∈B

GB(z, w) |Lf(w)| ≤ c f(z) |z|−1.

This establishes (3.24) which completes the proof.
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