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Abstract

We consider an extension of the interchange process on the complete graph, in which
a fraction of the transpositions are replaced by ‘reversals’. The model is motivated by
statistical physics, where it plays a role in stochastic representations of xxz-models.
We prove convergence to PD( 1

2
) of the rescaled cycle sizes, above the critical point

for the appearance of macroscopic cycles. This extends a result of Schramm on
convergence to PD(1) for the usual interchange process.
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1 Introduction

Recent years have seen a growing interest in the cycle structure of large random
permutations. A major example is the interchange process, or random-transposition
random walk. One motivation for studying this process is that it plays a key role in a
stochastic representation of the most important quantum spin system, the ferromagnetic
Heisenberg model. This representation was developed by Tóth in the early 1990’s [23]
(after an earlier observation by Powers [20]).

At about the same time, a closely related stochastic representation was discovered
for the anti -ferromagnetic Heisenberg model, by Aizenman and Nachtergaele [2]. Very
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Interchange process with reversals

roughly speaking, in the ferromagnetic Heisenberg model the interaction between
neighbouring electrons behaves like a transposition of the spins. In the antiferromagnetic
model the interaction involves a ‘reversal’, which Aizenman and Nachtergaele depicted
as on the right in Figure 1.

Figure 1: Pictorial representation of a transposition (left) and a ‘reversal’ (right).

In both cases, the stochastic representation of the spin system involves randomly
placing these objects in the product of the graph with an interval. In the case of the
ferromagnetic model, the relevant measure has transpositions appearing randomly at
each edge, in the manner of independent Poisson processes. For the antiferromagnetic
model, the structure is the same except that the transpositions are replaced by ‘reversals’
as on the right in Figure 1. Many quantities of interest for the spin systems, such as
correlation functions, may be expressed using expected values of suitable random
variables in these processes.

Recently, Ueltschi [25] explained that weighted combinations of the two processes
described above also lead to representations of certain quantum spin systems (known as
xxz-models). The relevant measure has independent Poisson processes on the edges as
before, but the objects are now randomly chosen to be either transpositions or ‘reversals’,
independently over the points of the process and with some fixed probability (see Figure
2). In this paper we study such a process defined on the complete graph. Our main result
is that the correlation structure in this model, above a critical point, is described by a
probability distribution on random partitions called the Poisson–Dirichlet distribution
with parameter 1

2 . To state our results more precisely, let us give the relevant definitions.

1.1 Definitions

We consider the complete graph Kn = (Vn, En) on n > 2 vertices. The vertex set is
Vn = {1, 2, . . . , n} and the edge-set consists of all pairs {i, j} of vertices i 6= j. To each
edge and vertex we attach a circle of circumference 1, which we denote by S1. We will
sometimes identify S1 with the unit interval [0, 1). A configuration ω is a finite subset of
En × S1 × { , }, where , are two possible marks which we call a cross and a bar,
respectively. The collection of configurations is denoted Ω. An element (e, ϕ,m) ∈ ω of
the configuration is called a link and if (e, ϕ,m) is a link then we say that ω has a link at
(e, ϕ) ∈ En × S1.

We will primarily be interested in configurations obtained as samples of a (marked)
Poisson point process defined in the following way. Fix ν ∈ [0, 1) and β > 0. For each
edge e ∈ En we consider a Poisson point process with intensity β

n−1 on e × S1, these
Poisson processes being independent for different edges e. This defines a configuration
of unmarked links. The configuration ω is then obtained by assigning to each link a
mark, independently of all other links, which is either a cross, , with probability ν, or
a bar, , with probability 1 − ν. The probability measure corresponding to this point
process will be denoted by Pβ (we consider ν to be fixed and it will be suppressed in the
notation), and the corresponding expectation will be denoted by Eβ . We will refer to this
process as the interchange process with reversals (the usual interchange process would
correspond to taking ν = 1).

Such a configuration ω gives rise to a set of loops γ ⊆ Vn × S1. We first give an
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Interchange process with reversals

Figure 2: An example of a realisation of links with loops coloured. The circles {v}×S1 are
represented as intervals placed vertically, thus there are periodic boundary conditions
vertically. The cycles are (1↑, 3↑, 2↓, 4↑), (5↑), (6↑, 9↑, 8↓) and (7↑). There is one small loop
which does not give rise to a cycle.

informal description and then a more precise definition. For a fixed point (v, ϕ) ∈ Vn×S1

the unique loop, γ(v, ϕ), containing it is constructed by the following process. Starting
from (v, ϕ) we move on the associated circle in the positive direction, i.e. after time
dt we are at a point (v, ϕ + dt). If we encounter a point (v, ϕ′) such that ω has a link
at ({v, w}, ϕ′) for some w ∈ Vn, then we traverse this link to (w,ϕ′) ∈ Vn × S1. We then
continue moving in the positive direction if the link was a cross, or in the negative
direction if the link was a bar. Each time we encounter a link we follow this rule of
traversing the link, reversing our direction if the link was a bar. Continuing until we
arrive back at (v, ϕ) we have traced out a single loop, γ(v, ϕ).

More formally, following [10, 25] we may define the loops as follows. A loop of length
L is a function γ : [0, L) → Vn × S1 such that, writing γ(t) = (v(t), ϕ(t)), the following
properties hold:

1. γ is injective and satisfies limt↑L γ(t) = γ(0).

2. γ is piecewise continuous, and if it is continuous on the interval I ⊂ [0, L) then v(t)

and d
dtϕ(t) are constant on I, with d

dtϕ(t) ∈ {−1, 1}.
3. γ is discontinuous at the point t if and only if ω has a link at ({v(t−), y}, t) for some

y 6= v(t−), in which case v(t+) = y.

4. If I1 = (t1, t2) and I2 = (t2, t3) with γ continuous on I1 and I2 but discontinuous
at t2 then for any s1 ∈ I1 and s2 ∈ I2 we have that d

dtϕ(s1) = d
dtϕ(s2) if the link at

({v(t2−), v(t2+)}, t2) is a cross and d
dtϕ(s1) = − d

dtϕ(s2) if it is a bar.

Loops with the same support but different parameterisations are identified. This means
that the functions γ(t), γ(−t) and, for s ∈ R, γ(s± t) are identified. From this description
we can give ω a natural pictorial representation, see Figure 2.

A cycle is a sequence of vertices v ∈ Vn such that the points (v, 0) are visited by a
single loop. Namely, suppose we start at a point (v1, 0) and follow the loop γ = γ(v1, 0),
in either direction, until we return to the starting point. If we enumerate the successive
visits to Vn × {0} as (v1, 0), . . . , (v`, 0), (v1, 0) then the corresponding cycle is

C = (vd11 , vd22 , . . . , vd`` ), vi ∈ Vn.
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Interchange process with reversals

Here the cycle C has length |C| = `, and the di ∈ {↑, ↓} denote the direction in which we
pass through the point (vi, 0) ∈ Vn × S1, with ↑ corresponding to the positive direction
( d

dtϕ(t) = +1) and ↓ corresponding to negative direction ( d
dtϕ(t) = −1). Note that the

directions di in a cycle are defined up to an overall reversal and that we made an
arbitrary choice of the first vertex v1. It is also worth noting that not every loop gives
rise to a cycle, see Figure 2. A fixed configuration of links, ω, has an associated set of
cycles which we denote by Cω.

1.2 Main result

Let ω be sampled from the measure Pβ. Consider the random graph where an edge
is present between vertices u and v if there is at least one link on {u, v} × S1 in ω. By
the Erdős-Rényi theorem, if β > 1 then the largest connected component of this graph,
V βG , has size approximately zn where z is the positive solution to 1− z = e−βz. (If β < 1

the largest component has size smaller than (log n)2 and the same holds for the largest
cycle.) Let Xω denote the list (|C|/|V βG | : C ∈ Cω) of rescaled cycle sizes, ordered by
decreasing size (we make it into an infinite list by appending infinitely many 0’s). Our
main result is the following.

Theorem 1.1. Let β > 1 and ν ∈ [0, 1). Let ω be sampled from the corresponding
measure Pβ. As n → ∞ the law of Xω converges weakly to the Poisson–Dirichlet
distribution PD( 1

2 ).

More precisely, we will show that for given β > 1 and ε > 0 there exists n(β, ε) such
that for n > n(β, ε) there is a coupling of the interchange process with reversals with a
PD( 1

2 ) sample Y such that

P
(∥∥Y − X

∥∥
∞ < ε

)
> 1− ε. (1.1)

Note that this result holds for any ν < 1.

The Poisson–Dirichlet distribution with parameter θ > 0, PD(θ), can be defined via the
‘stick-breaking’ construction as follows. Let B1, B2, . . . be independent Beta(1, θ) random
variables, thus P(Bi > s) = (1 − s)θ for s ∈ [0, 1]. We construct a random partition
{Pi}i∈N of [0, 1) using the Bi by letting P1 = B1 and Pk+1 = Bk+1(1− P1 − · · · − Pk). We
can think of constructing {Pi}i∈N by progressively breaking off pieces of [0, 1), with the
(k + 1)th removed piece being a fraction Bk+1 of what remained after k pieces had been
removed. The law of the partition {Pi}i∈N is called the GEM(θ) distribution. The PD(θ)
distribution is obtained by sorting the Pi in order of decreasing size.

Returning to the context of Theorem 1.1, let us comment on the case ν = 1 (only
crosses allowed) which is excluded by our result. This is the (usual) interchange process,
and was considered on the complete graph in a famous paper by Schramm [21]. To be
precise, he considered the closely related process where the configuration ω is obtained
by placing the crosses successively one after the other, uniformly and independently at
each step. Viewing the crosses as transpositions, as above, the process is a random-
transposition random walk on the set of permutations of n objects. In this case Schramm
proved that, when the number of transpositions exceeds cn for c > 1

2 , then the rescaled
cycle sizes of the resulting random permutation converge in distribution to PD(1).

The main tool in Schramm’s argument was a coupling with a split-merge process
which has PD(1) as an invariant distribution. Roughly speaking, the important feature is
what happens to an existing cycle when a uniformly chosen transposition is applied. If
the transposition transposes two points which belonged to different cycles then those
cycles merge; if they belonged to the same cycle then the cycle is split. A similar principle
applies to the loops, which on the addition of another cross to ω either merge, if the ends
are in different loops, or split, if both ends are in the same loop (Figure 3).
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Interchange process with reversals

Figure 3: Geometric interpretation of the effect of adding a cross or bar with both
endpoints in the same loop: a) in the case when the points have opposite vertical
orientation within the loop, a bar splits the loop whereas a cross ‘twists’; b) in the case
of the same vertical orientation, a cross splits the loop whereas a bar ‘twists’.

Now we may explain how the case ν < 1 is different from ν = 1, and why we get PD( 1
2 )

rather than PD(1). The key point is that the presence of bars ( ) introduces changes
of orientation within the loops. This means that on adding a link (cross or bar) with
both endpoints in the same loop, this loop will not always split. Whether or not the loop
splits depends on the orientation of the loop at the points where the new link is placed.
Specifically, if the link is a cross then a split occurs if and only if the orientation is the
same; if it is a bar then the opposite applies. The situation is depicted in Figure 3.

Intuitively, when ν < 1 one would expect large loops to encounter many bars. Hence
a uniformly chosen pair of points on a large loop (with the same S1-coordinate) should
have probability close to 1

2 of having the same orientation, meaning that the probability
of splitting is close to 1

2 . The corresponding split-merge dynamics, where proposed splits
occur with probability 1

2 , has PD( 1
2 ) as its invariant distribution.

1.3 Outline and related works

In order to prove Theorem 1.1 we need three ingredients. Firstly, we need that with
high probability (converging to 1 as n→∞) there are cycles of size Θ(n), and that these
large cycles occupy almost the entire giant component V βG . This is proved in Section 2
by a straightforward adaptation of arguments in [21]. Secondly, we need that in large
cycles roughly half of all vertices are passed through in the positive direction (↑) and
roughly half in the negative direction (↓). In fact, we need the stronger statement that
the large cycles are ‘well-balanced’, namely: one may partition them into much smaller
segments such that each segment consists of roughly half ↑ and half ↓ (ruling out, for
example, a situation in which a cycle of size k consists of a block of k/2 vertices passed
in direction ↑ followed by a block of k/2 vertices with direction ↓). This is the main novel
contribution of the present paper, and is the content of Section 4. In proving this result
we rely on a process which we call the exploration process, which we study in Section
3. Thirdly, we show that Schramm’s coupling, when combined with the previous two
ingredients, can be adapted to couple a PD( 1

2 ) sample with X such that the two samples
are close. This appears in Section 5.

We now briefly summarise some other related works apart from Schramm’s paper
[21]. First note that interchange processes, with reversals (ν < 1) or without (ν = 1), can
be defined on more general graphs, by placing independent Poisson processes of links
on the edges of the graph. Most papers dealing with graphs other than the complete
graph have studied the question of whether there can be large cycles. The case when the
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graph is a hypercube, and ν = 1, has been investigated by Kotecký, Miłoś and Ueltschi
[15]. The case of Hamming graphs, also for ν = 1, has been investigated by Miłoś and
Şengül [17] and by Adamczak, Kotowski and Miłoś [1]. In the case when the graph is an
infinite tree one may ask about the occurrence of infinite cycles. For ν = 1 this question
was investigated by Angel [3] and by Hammond [12, 13]; and for ν < 1 by Björnberg and
Ueltschi [8] as well as Hammond and Hegde [14].

As mentioned above, the original interest in the process was due to its connections
with quantum spin systems. When the measure Pβ defining the process is given an
additional weighting of ϑ#loops for ϑ ∈ N, the loop-model is essentially equivalent to a
spin system on the same graph. This was first proved by Tóth [23] in the case ν = 1 (spin-
1
2 Heisenberg ferromagnet for ϑ = 2) and Aizenman and Nachtergaele [2] in the case
ν = 0 (Heisenberg antiferromagnet, provided the graph is bipartite). This connection
was extended to the case ν ∈ [0, 1] by Ueltschi [25]. From a probabilistic point of view,
any ϑ > 0 makes sense. Such models have been considered on trees [9, 5] and on the
Hamming graph [1]. In very recent work there has been some limited progress in the
direction of establishing Poisson–Dirichlet structure in these and related loop models
[4, 7]. For the Heisenberg model (ν = 1 and ϑ = 2) on the complete graph, the critical
point for the appearance of cycles of diverging length was established already in the
early 1990’s by Tóth and by Penrose [18, 22].

Notation

Vn={1, 2, ..., n} vertex set of the complete graph; typical elements denoted u, v, w, . . .
E =

(
V
2

)
edge set of the complete graph

m ∈ { , } the ‘mark’ of a link as either a cross or a bar
ϕ ∈ S1 ‘phase’ or vertical coordinate
Ω space of configurations, i.e. finite subsets of E × S1 × { , }
ω, ωA element of Ω, its restriction to A ⊆ E × S1

~ω, ~ωk ordered sequence of links in ω, its first k elements
β > 0 intensity parameter

Pβ measure of the Poisson links process with intensity β
n−1 per edge

ν ∈ [0, 1) probability of marking a link as a cross
Cω set of cycles defined by ω
Xω list of rescaled cycle sizes

V βG the largest cluster in the random graph whose edges support links
Xt = Xt(v, ϕ) exploration process for loops (started at (v, ϕ) ∈ Vn × S1)
Yt = Yt(v, ϕ) simple exploration process (started at (v, ϕ) ∈ Vn × S1)
τX(Y )(v, ϕ) closing time of (simple) exploration started from (v, ϕ)

{Ft}t≥0 natural filtration of the exploration process

IX(Y )
t number of times Xt (resp. Yt) traverses a link

JX(Y )
t number of links discovered by Xt (resp. Yt)

LX(Y )
t number of windings of Xt (resp. Yt) around S1

KX(Y )
t number of visits to ϕ = 0 ∈ S1 by Xt (resp. Yt)

`k frontier times of the simple exploration
∆k `k+1 − `k
cω(v, k) set of the next k vertices in a cycle starting from v

c
↑(↓)
ω (v, k) number of vertices in cω(v, k) passed in positive or negative direction
Bω(v, k)

∣∣|c↑ω(v, k)| − |c↓ω(v, k)|
∣∣

PD(θ) Poisson–Dirichlet distribution with parameter θ
Y,Z samples from PD(θ)
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2 Large cycles

In this section we show that, for β > 1, with high probability there are cycles of
length of order n. The precise statement appears in Lemma 2.4 at the end of the section.
The argument is a minor adaptation of Schramm’s [21, Section 2].

As in [21], we will actually work not with configurations ω sampled from the Poisson
measure Pβ , but instead with configurations constructed sequentially one link at a time.
Given any configuration ω ∈ Ω, note that the set of cycles Cω only depends on the
relative order of the links of ω as well as their position relative to 0 ∈ S1, but not on
their precise S1-coordinates. Given ω ∈ Ω, let us order its elements (links) with respect
to the S1-coordinate, namely we write ω = {(e1, ϕ1,m1), . . . , (e|ω|, ϕ|ω|,m|ω|)}, with 0 <

ϕ1 < . . . < ϕ|ω| < 1 (we can assume that there are no distinct links with ϕi = ϕj , since
under Pβ this occurs with probability 1). We denote by ~ω = ((e1,m1), . . . , (e|ω|,m|ω|)) the
ordered list of links with S1-coordinates suppressed. With a slight abuse of terminology
we will also refer to the entries (ei,mi) of ~ω as links. As noted above, Cω is a function of
~ω only, hence we may write C~ω.

In the rest of this section we will work with a random ~ω obtained by sequentially
laying down a fixed number t of random links. More precisely, first let e1 be chosen
uniformly from the edge-set En and let m1 ∈ { , } be chosen independently of e1,
with probability ν for . Next, given the first s links (e1,m1), . . . , (es,ms), we select es+1

uniformly from En and the mark ms+1 ∈ { , }, with probability ν for , independently
of each other and of the previous choices. Write ~ωs = ((e1,m1), . . . , (es,ms)) and let
Cs := C~ωs denote the set of cycles after s ≤ t steps. Note that, if t is taken to be Poisson-
distributed with mean β

n−1

(
n
2

)
= β

2n, then Ct is equal in distribution to Cω for ω sampled
from Pβ . Due to concentration properties of the Poisson-distribution, there is very little
difference between Ct for t = bβ2nc on the one hand, and Cω for ω sampled from Pβ on
the other. We will not make this statement more precise at this point, deferring this to
later (see Section 5.3).

We now describe in detail the effect that appending the next link (es+1,ms+1) to
~ωs has on the cycles, that is, the transition Cs → Cs+1. See Figures 4, 5 and 6 for
illustrations in the case when ms+1 = .

v1 v2 v3 v4 w1 w2 w3

merge →
v1 v2 w1 w2 w3 v3 v4

Figure 4: Example of two cycles merging.

v1 v2 v3 v4 v5 v6 v7
split →

v1 v2 v6 v7 v3 v4 v5

Figure 5: Example of a cycle splitting.

For d ∈ {↑, ↓} we write −d for the reversed arrow. We have the following:

• If the endpoints of es+1 are in different cycles of Cs then those cycles merge.

• If the endpoints are in the same cycle C then the result depends on the mark ms+1 in
the following way. Let us assume that C = (vd11 , vd22 , . . . , vd`` ) and that es+1 = {vi, vj}
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v1 v2 v3 v4 v5 v6 v7
twist →

v1 v2 v6 v5 v4 v3 v7

Figure 6: Example of a cycle ‘twisting’, i.e. it stays intact but is restructured internally.

where i < j. Without loss of generality (since directions are defined up to an overall
reversal) we may assume that di =↑.

– If ms+1 = is a cross then C splits if and only if dj =↑; in this case the two
resulting cycles C′ and C′′ are given by:

C′ = (vd11 , . . . , vdii , v
dj+1

j+1 , . . . , v
d`
` ), C′′ = (v

di+1

i+1 , v
di+2

i+2 . . . , v
dj
j ).

On the other hand, if dj =↓ then C is not split; instead it is modified into C′ where

C′ = (vd11 , . . . , vdii , v
−dj−1

j−1 , v
−dj−2

j−2 , . . . , v
−di+1

i+1 , v
dj
j , . . . , v

d`
` ).

– If ms+1 = is a bar then C splits if and only if dj =↓; in this case the two resulting
cycles C′ and C′′ are given by:

C′ = (vd11 , . . . , vdii , v
dj
j , . . . , v

d`
` ), C′′ = (v

di+1

i+1 , v
di+2

i+2 . . . , v
dj−1

j−1 ).

On the other hand, if dj =↑ then C is not split but modified into C′ where

C′ = (vd11 , . . . , vdii , v
−dj
j , v

−dj−1

j−1 , . . . , v
−di+1

i+1 , v
dj+1

j+1 , . . . , v
d`
` ).

Note that the edge es+1 may be selected by first choosing vi uniformly from En and
then vj uniformly from En \ {vi}. In particular we see that, just as in [21, Lemma 2.1],
we have:

Lemma 2.1. In the step from ~ωs to ~ωs+1, the probability that some cycle is split into two
cycles, with at least one containing at most k vertices, is at most 2k/(n− 1).

Building on this, and replicating the arguments of Schramm [21], we obtain the
following sequence of lemmas. Lemma 2.2 is proved exactly as [21, Lemma 2.2]. Lemma
2.3 is a version of [21, Lemma 2.3] and is proved in a similar way, see [1, Lemma 5.1] for
details. Briefly, the reason that these results hold exactly as in [21] is that, firstly, if the
endpoints of es+1 are in different cycles then those cycles always merge, and, secondly,
the cycle may or may not split if the endpoints are in the same cycle. This means that
both the upper bounds on the probability of splitting, as well as the lower bounds on the
probability of merging, are identical to [21]. This is all that we need.

In the following statements we consider a random graph Gs with vertex set Vn
obtained by placing an edge between a pair {i, j}, i 6= j, if in ~ωs there is at least one link
(er,mr), r ≤ s, such that er = {i, j}. We write V sG(k) for the set of vertices in connected
components of Gs containing at least k vertices. Similarly, we write V sC (k) for the set of
vertices belonging to cycles of Cs which are of length at least k.

Lemma 2.2. For any s ≥ 0,

E|V sG(k) \ V sC (k)| ≤ 4sk2

n− 1
(2.1)

Lemma 2.3. Let t0 ∈ N, δ ∈ (0, 1], ε ∈ (0, 1/8) and j ∈ N be such that 2j ≤ εδn. Assume
that the following conditions hold in the transition from ~ωs to ~ωs+1:
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1. there exists c1 > 0 such that for any s, k ∈ N, we have

P(some C ∈ Cs is split into C′, C′′ s.t. min(|C′|, |C′′|) ≤ k | Cs) ≤ c1
k

n
.

2. there exists c2 > 0 such that for any s ∈ N and any two cycles C′, C′′ ∈ Cs we have

P(C′, C′′ are merged | Cs) ≥ c2
|C′||C′′|
n2

.

Then there exist c3, c4 > 0, depending only on c1, c2, such that if

t1 := t0 + d∆te, ∆t = c3δ
−1 n

2j
log2

( n
2j

)
, (2.2)

then

E
(
|V t0C (2j) \ V t1C (εδn)|

∣∣ Ct0)1I{|V t0C (2j)|≥δn} ≤ c4δ
−1ε| log2(εδ)|n. (2.3)

Note that in our case condition (1) is satisfied because of Lemma 2.1 and condition
(2) is trivially satisfied. In notation of [1, Lemma 5.1] this corresponds to taking the
stopping time τ = +∞, i.e. conditions (1) and (2) hold for all times s ∈ N. The lemma
states that if, at some time t0, enough vertices are in reasonably large cycles (size ≥ 2j)
then at some carefully chosen later time most of these vertices will be in cycles of size
of the order n. Here one should think of 2j as approximately n1/4 and of t0 ≥ c0n for
some c0 >

1
2 . Then |V t0G (2j)| ≈ zn by the Erdős–Rényi theorem, hence by Lemma 2.2 also

|V t0C (2j)| ≈ zn. Note that if 2j = n1/4 then ∆t is of the order n3/4 log n� n, thus for any
c > 1

2 and t1 ≥ cn we may select c0 >
1
2 such that t0 = t1 − d∆te ≥ c0n.

The final result of this section paraphrases [21, equation (2.4) in Lemma 2.4]. It
tells us that most of the vertices in V tG (the largest connected component in Gt) belong
to large cycles. The proof is precisely as in [21] as the only appeal to the particular
structure of the cycles is through invoking the previous lemmas, which all hold as in
[21].

Lemma 2.4. Fix c > 1/2, take t ≥ cn, t ∈ N. There is some C2 > 0 such that for any
ε ∈ (0, 1), if n is large enough we have

E
[
|V tG \ V tC(εn)|

]
≤ C2ε log( 1

ε )n. (2.4)

3 Exploration processes

An important tool in proving Theorem 1.1 is the exploration process, which we will
define in this section. The exploration process is sometimes also called the cyclic-time
random walk, see e.g. [13, 14]. It will allow us to uncover the loop containing some
specified point (v0, ϕ0) ∈ Vn×S1 at the same time as we uncover the configuration ω ∈ Ω

itself. We will also define a process which we call the simple exploration process which
is easier to analyse and which may be coupled with the exploration process. In this
section we work with a random ω ∈ Ω sampled from the Poisson measure Pβ for some
fixed β > 1 (the definitions will make sense for all β > 0). Recall that ν ∈ [0, 1) is fixed
throughout.

3.1 Definitions

The exploration process will be denoted X(ω) = (Xt(ω) : t ≥ 0) and takes values in
Vn × S1 × {−1,+1}. Recall that we identify S1 with the unit interval [0, 1) using periodic
boundary conditions. We will write Xt = (vt, ϕt, dt). Let d0 ∈ {−1,+1} be an initial
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Interchange process with reversals

direction and set X0 = (v0, ϕ0, d0), where (v0, ϕ0) ∈ Vn × S1. The process starts by
traversing {v0} × S1 at unit speed in the direction specified by d0, meaning that vt = v0,
ϕt = ϕ0 + d0t and dt = d0. This continues until it either encounters a link of ω, or it
returns to its starting point, i.e. (vt, ϕt) = (v0, ϕ0). If a link is encountered first, say at
time t and with other endpoint in {w} × S1, then the process jumps to {w} × S1 and
proceeds in a direction which depends on whether the link was a cross or a bar. That is,
we set vt = w and ϕt+s = ϕt + d0s and dt+s = d0 if the link was a cross or ϕt+s = ϕt− d0s

and dt+s = −d0 if the link was a bar. We define the process to be right-continuous
(càdlàg). The process proceeds in this way, traversing links and adjusting its direction
accordingly, until it returns to the starting point (v0, ϕ0, d0). We let

τX = τX(v0, ϕ0, d0) := inf {t > 0 : Xt = X0} (3.1)

be the time when this happens. After this time the process is no longer useful to us, but
to be definite we declare that the process continues by repeating itself periodically after
time τX . Note that at time τX , the loop containing (v0, ϕ0) has been fully discovered.

Let us consider those links that, by time τX , have been traversed by X at least
once. Some of them have been traversed only once, others twice (no link can be
traversed more than twice before time τX as this would entail visiting a previously
visited point (vt, ϕt, dt)). We say that a link is discovered at the time of its first traversal,
and backtracked on its second traversal (if traversed twice). Let JXt (v, ϕ) denote the
number of times the exploration X, started at (v, ϕ) and run for time t, has discovered
a link (‘jumped’). Let IXt (v, ϕ) denote the number of times it has traversed some link,
including backtracking. Thus JXt (v, ϕ) ≤ IXt (v, ϕ) ≤ 2JXt (v, ϕ) for all t ≤ τX . Next,
define the history of X as

HX
t := {(v, ϕ) ∈ Vn × S1

∣∣ ∃ s ≤ t s.t. Xs = (v, ϕ, d) for some d ∈ {−1, 1}}. (3.2)

This is the set of points in Vn × S1 visited by X up to time t. Finally, let {Ft}t≥0

denote the natural filtration of the exploration process, namely Ft := σ
(
(Xs)0≤s≤t

)
, and

F̄t :=
⋂
s>t Fs.

When ω is randomly sampled from the Poisson measure Pβ we may, thanks to the
memorylessness of Poisson processes, construct (part of) ω itself simultaneously with X.
This fact is central to our approach. We formulate the construction as a proposition. In
the following result we will be using a Poisson process N on [0,∞) and we will say that
N rings at time t if it has an arrival at that time.

Proposition 3.1 (Construction of the exploration process). Let v0 ∈ Vn, ϕ0 ∈ S1 and
d0 ∈ {−1, 1}. Consider the following independent objects:

• a Poisson process N = (Nt : t ≥ 0) with intensity n β
n−1 ,

• a sequence {vi}i∈N of i.i.d. random variables distributed uniformly on Vn,

• a sequence {ξi}i∈N of i.i.d. random variables taking values ±1 and satisfying P(ξi =

+1) = ν.

When ω has law Pβ, then the law of the exploration X, started at X0 = (v0, ϕ0, d0), may
be constructed as follows:

1. The process starts at X0 := (v0, ϕ0, d0) and initially only ϕt changes, according to
ϕt = ϕ0 + d0t.

2. Whenever N rings, say at time t, we inspect vertex w = vNt . We have two cases:
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(a) If (w,ϕt−) ∈ HX
t− or w = vt− then nothing happens and the process continues on,

i.e. Xt = Xt−.

(b) Otherwise we set Xt = (w,ϕt−, ξNtdt−) and then ϕt evolves according to ϕt+s =

ϕt− + ξNtdt−s.

3. Between successive rings of N the process may backtrack across previously discov-
ered links. More precisely, a backtrack occurs at time t if there exists another time
s < t such that vs 6= vs− and either:

• (vt−, ϕt−) = (vs−, ϕs−), in which case we set Xt = (vs, ϕs, ξNsdt−), or

• (vt−, ϕt−) = (vs, ϕs), in which case we set Xt = (vs−, ϕs−, ξNsdt−).

See Figure 7.

s−
st−

s−
s
t−

Figure 7: Two possibilities for backtracking a cross. Thick, solid lines belong to the
history HX

t−, dashed lines the future trajectory. Left: (vt−, ϕt−) = (vs−, ϕs−). Right:
(vt−, ϕt−) = (vs, ϕs).

The construction of Proposition 3.1 is fairly standard and has been used previously in
for example [1, 13, 14], hence we do not give a proof. Let us however draw attention
to the condition that, when (w,ϕt−) ∈ HX

t− or w = vt−, then the jump proposed by N
is canceled. This means that X cannot jump to a previously visited point (w,ϕ), which
effectively amounts to a reduction of the intensity of jumps (see Lemma 3.5 below).

The main difficulty in analysing X is that it may discover a new link which takes it
to a previously visited copy of S1, i.e. it may jump at time t to a point (w,ϕ) satisfying
({w} × S1) ∩HX

s 6= ∅ for some s < t. We refer to this as jumping to the history. In this
case {w} × S1 has already been partially explored, making X quite difficult to analyse
directly.

To get around this problem we introduce what we call the simple exploration process
Y = (Yt : t ≥ 0), which is easier to analyse and (on time intervals which are not too
long) can be coupled with the exploration process X. Roughly speaking, the idea is that
for Y we replace the vertex set Vn with an augmented vertex set N × Vn, where the
N-coordinate increases on discovering a new link. The interpretation is that each newly
discovered link brings us to a ‘fresh’ circle {(k, v)} × S1.

Below we give a detailed definition. Notice that the wording is very similar to
Proposition 3.1, the main difference being what happens at the jump times of N .

Definition 3.2 (Simple exploration process). Let v0 ∈ Vn, ϕ0 ∈ S1 and d0 ∈ {−1, 1}. We
construct the simple exploration process Yt = (kt, vt, ϕt, dt) as a càdlàg process, using
the following independent objects:

• a Poisson process N = (Nt : t ≥ 0) with intensity n β
n−1 ,

• a sequence {vi}i∈N of i.i.d. random variables distributed uniformly on Vn,

• a sequence {ξi}i∈N of i.i.d. random variables taking values ±1 and satisfying P(ξi =

1) = ν.
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Using these sources of randomness the process is constructed as follows:

1. The process starts at Y0 := (0, v0, ϕ0, d0) and initially only ϕt changes, according to
ϕt = ϕ0 + d0t.

2. Whenever N rings, say at time t, we inspect vertex w = vNt ; we have two cases:

(a) If w = vt− then nothing happens and the process continues on, i.e. Yt = Yt−.

(b) If w 6= vt− we set Yt = (Nt, w, ϕt−, ξNtdt−) and then ϕt evolves according to
ϕt+s = ϕt− + ξNtdt−s.

3. Between successive rings of N the process may backtrack across previously dis-
covered links. Now there is only one possibility for backtracking: a backtrack
occurs at time t if there exists another time s < t such that (ks, vs) 6= (ks−, vs−) and
(kt−, vt−, ϕt−) = (ks, vs, ϕs), and then we set Yt = (ks−, vs−, ϕs−, ξNsdt−).

As we did for X we let
τY := inf {t > 0 : Yt = Y0} (3.3)

be the first time at which the simple exploration process Y arrives back at the starting
point. Note that τY , in contrast to τX , may take the value +∞, see Proposition 3.4. If
τY <∞ we assume that the process Y stops evolution after τY .

For Y we define the history by

HY
t := {(k, v, ϕ) ∈ N× Vn × S1

∣∣∃s ≤ t s.t. Ys = (k, v, ϕ, d) for some d ∈ {−1, 1}}. (3.4)

By slight abuse of terminology, if Y0 = (0, v, ϕ, d) for some d ∈ {−1,+1} then we say that
Y started at (v, ϕ). As for X we denote by J Yt (v, ϕ) (respectively, IYt (v, ϕ)) the number
of times the simple exploration process has discovered (respectively, traversed) a link
when started at (0, v, ϕ) and run for time t. We denote by Y ′ the restriction of Y to
Vn × S1 × {−1,+1}, that is if Yt = (k, v, ϕ, d) then Y ′t = (v, ϕ, d).

The important point which makes Y simpler to analyse than X is that, each time Y
discovers a new link (i.e. N rings and vNt 6= vt−), we set kt to a previously unused value,
namely Nt. This means that Y , by construction, can never jump to its history. Crucially,
it does still backtrack across previously discovered links.

3.2 Coupling with the simple exploration process

The following lemma shows that when ω is randomly sampled from Pβ , one can couple
the exploration process X and the simple exploration process Y so that they evolve in
the same way on a sufficiently short time scale. One should think of T = o(n1/2).

Lemma 3.3 (Coupling with the simple exploration process). Fix T > 0. Let X be the
exploration process and let σ be a stopping time with respect to the filtration {F̄t}t≥0

such that X jumps to a previously unvisited vertex at time σ. Conditionally on F̄σ, there
exists a coupling P of a process X̃ with a process Y such that:

1. The process Y is a simple exploration starting from Y0 = (0, Xσ) = (0, ṽ0, ϕ̃0, d̃0) where
Xσ = (ṽ0, ϕ̃0, d̃0).

2. P
({
X̃t

}
t≥0
∈ · | F̄σ

)
= P

(
{Xt+σ}t≥0 ∈ · | F̄σ

)
.

3. P
(
∀t<τY ∧T X̃t = Y ′t | F̄σ

)
≥ 1− 4βT (JXσ + βT )/n.

If at some time t ≤ τY we have X̃t 6= Y ′t then we consider the coupling as failed at
time t. The history HX̃

t of X̃ is defined as in (3.2).
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Proof. In the following we write simply P(·) for P(· | F̄σ). We will construct
{
X̃t

}
t≥0

using the same sources of randomness as for Y , namely the same N , {vi}i∈N and {ξi}i∈N
as given in Definition 3.2. We write X̃t = (ṽt, ϕ̃t, d̃t).

1. The process X̃ starts at X̃0 := Xσ and initially only ϕ̃t changes, by ϕ̃t = ϕ̃0 + td̃0.

2. Whenever N rings, say at time t, we inspect vertex w = vNt ; we have two cases:

(a) If (w, ϕ̃t−) ∈ HX̃
t− ∪ HX

σ or w = ṽt− then nothing happens and the process
continues on.

(b) Otherwise the process jumps to (w, ϕ̃t−, ξNt d̃t−).

3. Between successive rings of N the process may backtrack as before, using links of
both X and X̃.

It follows from Proposition 3.1 that X̃ and X have the same distribution, giving state-
ments (1) and (2) from the lemma.

For the proof of (3), let

V Xσ := {v ∈ Vn : (v, ϕ) ∈ HX
s for some s < σ, ϕ ∈ S1},

V X̃t := {v ∈ Vn : (v, ϕ) ∈ HX̃
s for some s < t, ϕ ∈ S1}

be the sets of vertices visited by X up to time σ and by X̃ up to time t, respectively. We
define

ρ := inf
{
t ≥ 0 : N rings at time t and vNt ∈ V X̃t ∪ V Xσ

}
.

Until time ρ ∧ τY the processes X̃t and Y ′t are equal, thus

P
(
∀t<τY ∧T X̃t = Y ′t

)
≥ P(ρ ≥ T ).

Each time t when N rings there is a chance that vNt ∈ V X̃t ∪ V Xσ . This has probability at
most the number of previously visited vertices divided by n. Since the number of visited
vertices cannot exceed the number of discovered links by more than 1, we get

P(ρ < T ) ≤ E

[
NT∑
i=1

(JXσ + i)

n

]
=
JXσ
n
E[NT ] +

1

2n
E
[
NT (NT + 1)

]
=
JXσ βT
n− 1

+
βT

n− 1
+ (βT )2 n

2(n− 1)2
,

where in the last equality we used that NT has Poisson distribution with mean n β
n−1T .

Since JXσ ≥ 1 this gives the claimed bound on P
(
∀t≤τY ∧T X̃t = Y ′t

)
.

3.3 Properties of the exploration processes

Next we present some basic properties of the processes X and Y , starting with the
simple exploration Y .

First note that J Yt , the number of links discovered by time t, is a Poisson process
with rate β, stopped at time τY (at which time Y itself terminates). It will be convenient
to extend this process beyond time τY . For this purpose we let N ′t denote a Poisson
process of rate β which agrees with J Yt up to time τY .

Many relevant properties of Y can be understood in terms of the process Z given
by Zt := N ′t − t. For example, if Zt hits −1 then this corresponds to Y returning to its
starting point, that is to say we have that τY = inf{t ≥ 0 : Zt = −1}. To see this, note
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Y0

Yt

−1

Zt

Figure 8: Left: in bold, simple exploration Y up to time t; dashed, the future trajectory
of Y assuming no more links are discovered. Right: corresponding plot of Z, dashed line
giving extrapolation until time τY assuming no more links are discovered.

that N ′t + 1 counts the number of copies of S1 that Y has visited by time t. If Zt = −1

then N ′t + 1 = t, which means that the total time spent equals the number of S1’s visited.
Hence at this time Y has explored the entirety of each copy of S1 it has visited, meaning
that it must have returned to its starting point. See Figure 8

Note that β > 1 implies that Zt → +∞ almost surely. We define a sequence of random
times which we call frontier times `k, as well as processes Z(k) = (Z`k+t − Z`k)t≥0, as
follows. First, we let `0 := 0 and Z(0) := Z. Next, we let `1 be the time when Zt− attains
its global minimum (note that as Zt → +∞ almost surely, this time is almost surely
finite). This is necessarily a jump time of Z (equivalently, of N ′) but it is not a stopping
time. Inductively, `k+1 is the time when Z(k)

t− attains its global minimum. We also write
∆k = `k+1 − `k for the time spent between successive frontier times. See Figure 9 for a
sample trajectory of the process Zt with frontier times marked.

10 20 30 40 50 60

5

10

15

20

Figure 9: A simulation of the process Zt with β = 1.3. The frontier times are marked red.

In terms of the simple exploration Y , the frontier times `k play the following role.
Recall that the jump times of Z are exactly the times when Y discovers a new link. The
frontier times are the times when Y discovers a new link which is never backtracked.

Proposition 3.4 (Survival and increments of the simple exploration). Let β > 1 and write
S = {τY =∞}.

1. We have that P(S) = z, where z is the unique positive solution of 1− z = e−βz.
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2. There exists C, c > 0 such that

P(Sc ∩ {τY ≥ t}) ≤ Ce−ct. (3.5)

3. Conditionally on S, the sequence
{(

∆k, (Z
(k)
t )0≤t<∆k

)}+∞
k=0

is i.i.d.

4. There exists C, c > 0 such that for any k ≥ 0

P(∆k ≥ t | S) ≤ Ce−ct, t ≥ 0. (3.6)

The proof is based on well-known properties of Poisson processes, for completeness
we provide details in Appendix A. The first two parts of the proposition tell us that the
simple exploration either continues indefinitely, or it closes ‘quickly’. Intuitively, the
former scenario parallels the situation when the (true) exploration process X explores a
large cycle. The other two parts tell us that, conditionally on Y ‘surviving’, the frontier
times `k are renewal times, and the renewal intervals ∆k are typically short.

We now turn to discussing some properties of the exploration process X. Recall that
JXt := #{s ≤ t : X discovers a new link at time s}. Let

NX
t := #{v ∈ Vn : (v, ϕ) ∈ HX

t for some ϕ ∈ S1}

denote the total number of vertices visited by X up to time t, and let Ahis
t := {NX

t ≤ n
2 }

denote the event that no more than n/2 vertices have been visited up to time t. Note
that NX

t ≤ JXt + 1 and that JXt ≤ Nt where N is the Poisson process of rate n β
n−1 in

Proposition 3.1. From this and a simple argument using Laplace transform we see that

P((Ahis
t )c) = P(NX

t > n
2 ) ≤ exp

(
− n

3 (log(n−1
3tβ )− 1)

)
. (3.7)

In particular, if t = o(n) then P(Ahis
t ) ≥ 1− e−cn for some c > 0.

By AXt we will denote the set of vertices available to the exploration X at time t by
means of a new jump, i.e. AXt = ∅ if t ≥ τX , otherwise if Xt = (v, ϕ, d) then

AXt := {w ∈ Vn \ {v} : (w,ϕ) /∈ HX
t }.

Recall that a counting process is a nondecreasing, integer valued càdlàg stochastic
process starting at zero and with jumps equal to one. Let J be an Ft-adapted count-
ing process. We will say that a nonnegative process λ is an intensity of J if λ is
Ft-progressively measurable,

∫ t
0
λudu <∞ a.s. for all t, and the process Jt −

∫ t
0
λs ds is

an Ft-martingale.

Lemma 3.5 (Intensity of jumps). The processes JX and NX are counting processes
with intensities λ, µ given respectively by

λt =
β

n− 1
|AXt | and µt =

β

n− 1
(n−NX

t ).

In particular, on the event Ahis
t we have µt ≥ β

2 .

A proof of this rather intuitive statement may be found (in a more general setting) in
[1, Lemma 3.7]. The following lemma also appears in a more general form in [1, Lemma
A.2], we include its proof here for the sake of completeness.

Lemma 3.6. Suppose M is a counting process with intensity λ and let Λt =
∫ t

0
λs ds. Let

σ, τ be stopping times such that σ ≤ τ . Let ` > 0. Then we have

P ({Mτ −Mσ ≤ `/2} ∩ {Λτ − Λσ ≥ `}|Fσ) ≤ e−`/8.
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Proof. Consider any A ∈ Fσ with positive probability and the process M̃t = Mσ+t −Mσ,
which is a counting process with intensity λ̃t = λσ+t with respect to the filtration
F̃t = Fσ+t. Let P̃(·) = P(·|A). We have Λ̃t =

∫ t
0
λ̃sds = Λσ+t − Λσ. Let N be a Poisson

process with intensity 1 such that Nt = MΛt almost surely (see [1, Theorem A.1] and
references there). We get

P̃({Mτ −Mσ ≤ `/2} ∩ {Λτ − Λσ ≥ `}) = P̃({M̃τ−σ ≤ `/2} ∩ {Λ̃τ−σ ≥ `})

≤ P̃(N` ≤ `/2).

Using the form of the Laplace transform of N` and Chebyshev’s inequality we obtain

P̃(N` ≤ `/2) ≤ inf
a≥0

exp
(
(e−a − 1)`+ a`/2

)
≤ inf
a≥0

exp

(
1

2
a2`− a`

2

)
= e−`/8,

where in the second step we have used the elementary inequality e−a − 1 + a ≤ 1
2a

2 valid
for a ≥ 0. Thus we get

P({Mτ −Mσ ≤ `/2} ∩ {Λτ − Λσ ≥ `} |A) ≤ e−`/8,

for arbitrary A ∈ Fσ of positive probability, which implies the lemma.

Corollary 3.7 (Visits to previously unvisited vertices). Let σ be a stopping time with
respect to the filtration of the exploration process X and let ηX(σ) be the first time after
σ when X makes a jump to a previously unvisited vertex. For any t > 0 on the event Ahis

σ

we have

P
(
ηX(σ) ∧ τX − σ ≥ t | Fσ

)
≤ e−t/16

Proof. By definition of ηX(σ), between times σ and ηX(σ) ∧ τX there are no jumps to
previously unvisited vertices. In particular ηX(σ)∧τX−σ ≥ t implies thatNX

σ+t−NX
σ = 0

and that Ahis
σ+t holds. Thus Lemma 3.5 implies, with µt being the intensity of NX

t and

Λt =
∫ t

0
µs ds, that then Λσ+t − Λt ≥ t/2. Applying Lemma 3.6 with Mt = NX

t , τ = σ + t

and ` = t/2 easily gives the desired estimate.

4 Balance

This section contains the main work of the paper. The goal of the section is to prove
that large cycles are ‘balanced’ in the sense that they contain roughly equal numbers
of vertices passed in the directions ↑ and ↓. In fact we show that, with high probability,
in a cycle which is at least bn1/2c long each segment of bn1/2c consecutive vertices is
balanced in this sense. Throughout the section we work with a random ω ∈ Ω sampled
from the Poisson measure Pβ for some fixed β > 1 (recall that ν ∈ [0, 1) is fixed).

We start by introducing some notation. Given ω ∈ Ω, v ∈ Vn and k ∈ N, let us write
Cω(v) = (vd11 , vd22 , . . . , vd`` ) ∈ Cω for the cycle containing v. Without loss of generality we
may assume that v = v1 and that d1 =↑. Under these assumptions, we let

cω(v, k) := {vi ∈ Cω(v) : 1 ≤ i ≤ k ∧ `}

denote the set of the first k vertices of C following v. Note that if the cycle containing v
has length smaller than k then |cω(v, k)| = |Cω(v)| < k. We further let

c↑ω(v, k) := {vi ∈ cω(v, k) : di =↑}, c↓ω(v, k) := {vi ∈ cω(v, k) : di =↓}
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denote those vertices in cω(v, k) which are passed in the same, respectively opposite,
direction as v. Finally we define the balance Bω(v, k) of the segment of length k after v
in the loop, as

Bω(v, k) := |c↑ω(v, k)| − |c↓ω(v, k)|.

The main result of this section is the following proposition, which tells us that
Bω(v, bn1/2c) is typically of much smaller order than n1/2.

Proposition 4.1 (Segments of cycles are balanced). Let β1 > β0 > 1. There exist C, c > 0

such that for all β ∈ [β0, β1] and for any v ∈ Vn, we have

Pβ

({∣∣Bω(v, bn1/2c)
∣∣ ≥ n5/12 log3 n

}
∩
{
|Cω(v)| ≥ bn1/2c

})
≤ Ce−c log2 n.

This says that cycles of length at least bn1/2c are very likely to have balance |B| <
n5/12 log3 n� n1/2. Cycles containing fewer than bn1/2c vertices may possibly be unbal-
anced, but this does not concern us. A key feature of this result is that the upper bound
kills any polynomial in n, making it possible to use quite crude union bounds later in the
proof of Theorem 1.1. Also note that the bound is claimed to be uniform in β ∈ [β0, β1]

for any β1 > β0 > 1. This will allow us to derive a version of the proposition stated above
where we ‘remove’ a deterministic number of links from ω, which will be important for
the coupling with PD( 1

2 ) in Section 5.
To formulate the last claim precisely, recall the notation ~ω for the ordered list of links

of ω, and note that Cω(v), cω(v, k), c↑ω(v, k), c↓ω(v, k) and Bω(v, k) all depend on ~ω only.
Also recall that, for s ≤ |ω|, we write ~ωs = {(e1,m1), . . . , (es,ms)} for the sequence of the
first s links. If Xω is a random variable which only depends on the relative order of links
in ω we write X~ω for its value on any link configuration with the same relative order.

Proposition 4.2. Let β > 1 and ρ ∈ [0, 1). For 1 ≤ s ≤ |ω| write

A(v, s) :=
{
B~ωs(v, bn1/2c) ≥ n5/12 log3 n

}
∩
{
|C~ωs(v)| ≥ bn1/2c

}
.

There exist C, c > 0 such that

Pβ

 ⋃
v∈Vn

⋃
|ω|−nρ≤s≤|ω|

A(v, s)

 ≤ Ce−c log2 n.

The proofs are given at the end of the section, after several preparatory results.

4.1 Winding processes

Recall the notation Xt = (vt, ϕt, dt) and Yt = (kt, vt, ϕt, dt) for the exploration and
simple exploration, in particular that dt ∈ {−1,+1} indicates the direction of motion.
We will use superscripts X and Y on vt, ϕt, dt to distinguish between the two processes.
Define the winding processes

{
LXt
}
t≥0

and
{
LYt
}
t≥0

by

LXt :=

∫ t

0

dXs ds, LYt :=

∫ t

0

dYs ds.

Thus LX increases at rate 1 when the process X travels in the positive direction,
otherwise it decreases at rate 1, and the same is true for LY .

To prove Proposition 4.1 we will first estimate LX , and then transfer these estimates
to B. In order to estimate LX we will use the coupling of X and Y introduced in Lemma
3.3, together with the following estimate on LY :
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Proposition 4.3 (Winding of the simple exploration process). Let β1 > β0 > 1. There
exist C, c > 0 such that for any β ∈ [β0, β1], T > 0 and s ∈ [1, T 1/2] we have

Pβ

(
sup
t≤T
|LYt | ≥ sT 1/2

∣∣S) ≤ C exp(−cs2),

where S = {τY = +∞}.

Proof. Fix β ∈ [β0, β1]. We use Proposition 3.4 and the notation therein, we also write
P(·) = Pβ(· | S). For lighter notation, within this proof let Lt = LYt .

At each frontier time `k the process Z jumps, meaning that Y discovers a new link.
We let `∗0 = 0 and let {`∗k}k≥1 be the subsequence consisting of the times `k at which the
link is marked as a bar (i.e. ξi = −1 in the notation of Definition 3.2). As the choice of
markings is independent of Z, using Proposition 3.4 we conclude that ∆∗k := `∗k+1 − `∗k
form an i.i.d. sequence under P, satisfying

P(∆∗k ≥ s) ≤ C̃e−c̃s, s ≥ 0,

for some C̃, c̃ > 0. Also, the increments L`∗k+1
− L`∗k are independent under P.

Now, the key observation is that we have the equality in distribution

L`∗k+2
− L`∗k+1

(d)
= −

(
L`∗k+1

− L`∗k
)
,

because upon crossing a bar the winding processes changes its orientation. Using these
facts we infer that for any k ∈ {0, 1, . . .}

Qk := L`∗k+2
− L`∗k =

(
L`∗k+2

− L`∗k+1

)
+
(
L`∗k+1

− L`∗k
)

are symmetric random variables with {Q2k}k≥0 being independent. Moreover, by |L`∗k+1
−

L`∗k | ≤ ∆∗k and (4.1) they have exponential tails.

Let us set K = bc1T c, for some c1 > 0 to be chosen later. We consider the cases∑2K
i=0 ∆∗i > T and

∑2K
i=0 ∆∗i ≤ T separately. If

∑2K
i=0 ∆∗i > T then we can cover [0, T ]

with the intervals [`∗2k, `
∗
2k+2) for k ≤ K. As Lt is continuous in t, we can replace the

supremum of |Lt| by maximum. The maximum max0≤t≤T Lt can then be bounded by the
maximum at endpoints `∗2k plus the maximum increment over all the intervals [`∗2k, `

∗
2k+2).

The maximum increment on [`∗2k, `
∗
2k+2) is in turn bounded by the length ∆∗2k + ∆∗2k+1.

We thus get

P

(
max
t≤T
|Lt| ≥ sT 1/2

)
≤ P

(
max
k≤K

∣∣∣ k∑
i=0

Q2i

∣∣∣+ max
k≤K

(
∆∗2k + ∆∗2k+1

)
≥ sT 1/2

)

+ P

(
2K∑
i=0

∆∗i ≤ T

)
.

The first of these two terms can be bounded by applying a union bound and Etemadi’s
inequality [6, Thm. 22.5], giving

P

(
max
k≤K

∣∣∣ k∑
i=0

Q2i

∣∣∣+ max
k≤K

(
∆∗2k + ∆∗2k+1

)
≥ sT 1/2

)

≤ 3 max
k≤K

P

(∣∣∣ k∑
i=0

Q2i

∣∣∣ ≥ 1
6sT

1/2

)
+KP

(
∆∗0 + ∆∗1 ≥ 1

2sT
1/2
)
, (4.1)
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where we have used that ∆∗k are i.i.d. By symmetry of Q2i and Markov’s inequality we
have for any θ > 0 that

P

(∣∣∣ k∑
i=0

Q2i

∣∣∣ ≥ 1
6sT

1/2

)
= 2P

(
k∑
i=0

Q2i ≥ 1
6sT

1/2

)
≤ 2

(
E[eθQ0 ]

)k
exp( 1

6θsT
1/2)

.

For small enough θ the Laplace transform E[eθQ0 ] is finite, since theQi’s have exponential
tails. Using that E[Q0] = 0 we see that there exist θ0, c2 > 0 such that if θ ≤ θ0 then
E[eθQ0 ] ≤ ec2θ2 . Setting θ = sT−1/2/(12c1c2) with c1 chosen large enough so that θ < θ0

we get (using k ≤ K ≤ c1T and s ≤ T 1/2)

P

(∣∣∣ k∑
i=0

Q2i

∣∣∣ ≥ 1
6sT

1/2

)
≤ 2 exp

(
c1c2θ

2T − 1
6θsT

1/2
)
≤ 2 exp(−c3s2),

with c3 = (72c1c2)−1.
For the second term on the right in (4.1) we recall that the ∆∗k’s have exponential

tails. As s ∈ [1, T 1/2], we thus obtain for some C4, c4, C5, c5 > 0

KP
(

∆∗0 + ∆∗1 ≥ 1
2sT

1/2
)
≤ KC4e

−c4sT 1/2

≤ C5e
−c5s2 .

Finally, by standard large deviation considerations for i.i.d. variables we have

P

(
2K∑
i=0

∆∗i ≤ T

)
≤ C6e

−c6K ,

for some C6, c6 > 0, provided we choose c1 large enough so that the mean of the sum
above is larger than T .

This proves the claim for any fixed β ∈ [β0, β1]. The uniformness over such β follows
since the upper bound can be chosen as a continuous function of β.

In order to compare Lwith B we need to keep track of how many times the exploration
passes level 0 ∈ S1. To this end we make the following definitions. Denote by KXt (v, ϕ)

(respectively, KYt (v, ϕ)) the number of times X (respectively, Y ) passes through 0 ∈ S1

when started at (v, ϕ) moving in the positive direction (d0 = +1) and run for time t. We
will write KXt (respectively, KYt ) when the starting point is not ambiguous. Recall the
definition of IXt (v, ϕ) given right after (3.4).

Proposition 4.4 (Winding and the number of visited vertices). For any t > 0 and any
(v, ϕ) ∈ Vn × S1 we have

KXt (v, ϕ) ≤ t+ IXt (v, ϕ) + 1, KYt (v, ϕ) ≤ t+ IYt (v, ϕ) + 1. (4.2)

Moreover, there exists c = c(β) > 0 and t0 = t0(β) such that

Eβ [KYt | S] ≥ ct, for all t ≥ t0, (4.3)

where as usual S = {τY = +∞}.

Proof. The proofs of (4.2) for X and Y are the same. We write Kt and It, omitting X, Y ,
v and ϕ in order to simplify the notation.

Define a sequence of times τ0 := 0 and, for i ≥ 1,

τi := inf {t > τi−1 : ϕt = 0} .
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We first claim that for i ≥ 1 we have

if Iτi+1 − Iτi = 0 then τi+1 − τi = 1. (4.4)

Indeed, at time τi the exploration passed 0 ∈ S1 and if it passes 0 again without traversing
a link this means that it has completed a full lap on one copy of S1. From (4.4) we deduce
that

(τi+1 − τi) + (Iτi+1
− Iτi) ≥ 1, for all i ≥ 1.

Let k be such that t ∈ [τk, τk+1). Then

Kt − 1 = Kτk − 1 = k − 1 ≤
k−1∑
i=0

[
(τi+1 − τi) + (Iτi+1

− Iτi)
]

= τk + Iτk ≤ t+ It,

as claimed.
Now we turn to (4.3). Recall from Proposition 3.4, and the discussion preceding it,

the notation ∆k and Z(k) as well as the notion of frontier times. Let us use the term
return times for the jump times of Z which are not frontier times, and return links for
the corresponding links traversed by Y . Observe that KYt ≥ RYt , where RYt denotes the
number of return links which have been backtracked by Y up to time t. This is because
Y does not visit its own history other than by backtracking, hence between discovering
a return link and backtracking it Y must complete at least one circle.

Let Rk denote the total number of return times of (Zt)`k≤t≤`k+1
. By Proposition 3.4,

conditionally on S the sequence {(∆k, Rk)}k≥1 is a renewal-reward process, and by the
basic renewal-reward theorem [11, Theorem 10.5] it thus follows that

E[KYt | S]

t
≥ E[RYt | S]

t
→ E[R1 | S]

E[∆1 | S]
, as t→∞.

The result (4.3) follows from E[R1 | S] > 0, which is easily checked. For example, it
suffices to check that P(R1 = 1 | S) > 0. Letting σ1, σ2, . . . denote the jump times of Z
and using that P(R1 = 1 | S) = P(`1 = σ2 | S) we get

P(R1 = 1 | S) =
P(σ1 < 1, σ2 − σ1 ∈ (1, 2− σ1), (Yσ2+t − Yσ2

)t≥0 ∈ S)

P(S)

= P(σ1 < 1, σ2 − σ1 ∈ (1, 2− σ1)) = e−2β(eβ − 1− β) > 0.

We now come to the key technical result of the paper, an upper bound on LX when X
explores part of a large cycle. At the same time we also provide a lower bound on KX
since the proof follows a similar structure.

Proposition 4.5 (Winding for the exploration process is small). Let β1 > β0 > 1, and
consider the exploration X started at an arbitrary point (v, ϕ, d). There exist C1, c1 > 0

such that for any β ∈ [β0, β1] we have

Pβ

(
|LXn1/3 |1I{τX≥n1/3} ≥ 3n1/4 log n

)
≤ C1e

−c1 log2 n.

Moreover, we have for some c2 > 0

Pβ

({
KXn1/3 < c2n

1/3
}
∩
{
τX ≥ n1/3

})
≤ C1e

−c1 log2 n.

Before giving the proof we outline the main ideas. We want to use the coupling
of the exploration process X to the simple exploration process Y from Lemma 3.3, as
well as the concentration result for the latter process, Proposition 4.3. To get good
concentration we will decompose [0, n1/3] into many shorter time intervals [ti, ti+1) of
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length approximately n1/6 each. On each [ti, ti+1) we will wait for a ‘good’ coupling with
a simple exploration: first we wait until the exploration X jumps to a new vertex so we
can start a coupling, then we check if the simple exploration survives indefinitely, which
it does with probability z > 0. If so, we can apply Proposition 4.3 in this interval. If not,
then we repeat the procedure, waiting for a jump of X to a new vertex and looking at
the coupled simple exploration. Typically we only need to perform this a small number
of times until we get a coupling with a simple exploration which survives.

Let us make these ideas formal and introduce the setup that will be used in the proof.
Set an := n1/3. We define ti := i ·bn, where i ∈

{
0, 1, . . . , bn1/6c

}
, bn := an/bn1/6c. Writing

m = bn1/6c − 1, we decompose

LXan =

m∑
i=0

(LXti+1
− LXti ).

Fix i ∈ {0, 1, . . . ,m}. Let us first analyse the change of the winding process on one

interval [ti, ti+1). To this end we will define two sequences of times
{
σik
}+∞
k=0

and
{
τ ik
}+∞
k=0

as well as a sequence of simple explorations {Y ik}∞k=1. The σik will form a non-decreasing
sequence, taking values in [ti, ti+1], and will be defined so that, for k ≥ 1 and as long as
σik < ti+1, the process X jumps to a new vertex at time σik. For such k, the process Y ik is
defined to be an independent copy of a simple exploration, coupled with X as in Lemma
3.3, starting at time σik. The possibility σik = ti+1 signifies that we have finished with the
interval [ti, ti+1) and must move on to the next one.

We now define the times σik and τ ik. First we set σi0 := ti, τ
i
0 := 0. Next, for k = 1, 2, . . .

we set

σik := ti+1 ∧ inf
{
s ≥ σik−1 + τ ik−1 : X jumps to a new vertex at time s

}
where τ ik := τY

i
k is the time when Y ik terminates (returns to its starting point). Note that

if σik−1 = ti+1 then σik = σik+1 = . . . = ti+1. In particular, this will occur if τ ik−1 = ∞. In
this case we do not need to define Y ik , Y

i
k+1, . . . Also note that, since the coupling of Y ik

with X entails constructing both processes using the same sources of randomness, we
may work with the τ ik as if they are adapted to the filtration of X, even though they are
defined in terms of Y .

In words, these definitions mean that, firstly, Y i1 is a simple exploration coupled with
X, started at time σi1, the first time in [ti, ti+1) that X jumps to a new vertex. This
coupling is then run either for the remaining time in [ti, ti+1), or until Y i1 returns to its
starting point (after time τ i1). For k ≥ 2, if the simple exploration Y ik−1 has returned to
its starting point, at time σik−1 + τ ik−1 ∈ [ti, ti+1), then we wait until X jumps to a new
vertex again. We call the time when this occurs σik and we begin a new coupling with a
simple exploration, Y ik , from the location of X at this time.

Let

k0 = ki0 := min
{
k ∈ N : τ ik = +∞ or σik+1 = ti+1

}
.

The first possibility, τ ik0 = +∞, means that at attempt number k0 the coupled simple
exploration Y ik0 survives (and is the first one with this property). The other possibility,
that τ ik0 < +∞ but σik0+1 = ti+1, means that after time σk0 the exploration X never
jumps to a new vertex until the end of the interval [ti, ti+1). Included in this possibility is
the case when X closes the loop before jumping again. Intuitively, k0 is the number of
attempts at coupling X with a simple exploration which survives, until we either succeed
or run out of time.

We now turn to the proof of the proposition.
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Proof of Proposition 4.5. Fix β ∈ [β0, β1]. We first show (4.5) for this β. Recall the
definition of the event Ahis

t given above (3.7). First note that it suffices to show that

Pβ

(
Ahis
an ∩

{
|LXan |1I{τX≥an} ≥ 3n1/4 log n

})
(4.5)

satisfies the claimed bound, due to (3.7). Also note that Ahis
an ⊆ A

his
s for s ≤ an.

Consider the interval [ti, ti+1), the stopping times σik, τ
i
k and the variable ki0 from the

preceding discussion. Keeping i fixed for now, we will drop it from the superscript on
σk, τk and k0. We claim that, under P(·|Fti), the random variable k0 is stochastically
dominated by a geometric distribution with parameter z, that is to say,

for all k ≥ 1, P(k0 ≥ k | Fti) ≤ (1− z)k−1. (4.6)

Here z > 0 is the survival probability of a simple exploration, see Proposition 3.4. The
claim is easily established by induction, using

P(k0 ≥ k + 1 | Fti) = P(k0 ≥ k + 1 | Fti , {k0 ≥ k})P(k0 ≥ k | Fti)

and

P(k0 ≥ k + 1 | Fti , {k0 ≥ k}) ≤ P(τk <∞ | Fti , {k0 ≥ k}) = 1− z.

We now show that there exist constants C2, c2 > 0, uniform in n and in i, such that
for all t > 0, on the event Ahis

an ∩ {τ
X ≥ an} we have

P(σk0 − ti ≥ t | Fti) ≤ C2e
−c2t. (4.7)

First we establish that there are C1, c1 > 0 such that for any k ≥ 0 and any t > 0, on
Ahis
an ∩ {τ

X ≥ an} we have

P
(
(σk+1 − σk)1I{k0>k} ≥ t | Fσk

)
= P(k0 > k, σk+1 − σk ≥ t | Fσk) ≤ C1e

−c1t. (4.8)

Indeed, for any k < k0 we have τk <∞, so

P (k0 > k, σk+1 − σk ≥ t | Fσk)

≤ P ({σk+1 − σk ≥ t} ∩ {τk ≤ t/2} | Fσk) + P (τk > t/2, τk < +∞ | Fσk) .

The second term is at most Ce−ct, for some C, c > 0, by (3.5) from Proposition 3.4. To
estimate the first term, note that τk ≤ t/2 together with σk+1 − σk ≥ t implies that
σk+1 − (σk + τk) ≥ t/2, in particular X does not visit previously unexplored vertices for
time at least t/2 after σk + τk. Thus

P ({σk+1 − σk ≥ t} ∩ {τk ≤ t/2} | Fσk) 1IAhis
an

1I{τX≥an}

≤ E
[
P
(
{σk+1 ∧ τX − (σk + τk) ≥ t/2} ∩ Ahis

σk+τk
| Fσk+τk

)
| Fσk

]
. (4.9)

By Corollary 3.7 the probability is at most e−c
′t for some c′ > 0, which together with the

previous estimate proves (4.8).
Now note that

σk0 − ti = σk0 − σ0 =

k0−1∑
j=0

(σj+1 − σj) ,

where by (4.8) each summand, conditionally on all previous terms, has exponential tails.
Since k0, the number of summands, is by (4.6) itself dominated by a geometric random
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variable, one may conclude that the sum itself has exponential tails, as claimed in (4.7).
In more detail, we have for any k > 0 that

P(σk0 − σ0 ≥ t | Fti) ≤ P
( k∑
j=0

(σj+1 − σj)1I{k0>j} ≥ t
∣∣∣Fti)+ P(k0 > k | Fti).

Now for any θ > 0 we have

P
( k∑
j=0

(σj+1 − σj)1I{k0>j} ≥ t
∣∣∣Fti) ≤ e−θtE[ exp

(
θ

k∑
j=0

(σj+1 − σj)1I{k0>j}
) ∣∣∣Fti],

where (using that {k0 > k − 1} ∈ Fσk )

E
[

exp
(
θ

k∑
j=0

(σj+1 − σj)1I{k0>j}
) ∣∣∣Fti]

= E
[

exp
(
θ

k−1∑
j=0

(σj+1 − σj)1I{k0>j}
)
E
[
eθ(σk+1−σk)1I{k0>k} | Fσk

] ∣∣∣Fti].
Here the inner factor may be written as

E
[
eθ(σk+1−σk)1I{k0>k} | Fσk

]
=

∫ ∞
0

P
(
eθ(σk+1−σk)1I{k0>k} > s | Fσk

)
ds.

Using (4.8) we conclude that we may choose θ > 0 (depending on constants c1, C1 in
(4.8)) such that, on Ahis

an ∩ {τ
X ≥ an},

E
[
eθ(σk+1−σk)1I{k0>k} | Fσk

]
≤ e,

say, for all k ≥ 0. It follows by induction that

E
[

exp
(
θ

k∑
j=0

(σj+1 − σj)1I{k0>j}
) ∣∣∣Fti]1IAhis

an
1I{τX≥an} ≤ e

k,

and hence

P(σk0 − σ0 ≥ t | Fti)1IAhis
an

1I{τX≥an} ≤ e
k−θt + P(k0 > k | Fti).

Setting k = b θ2 tc and using (4.6), this gives (4.7).
Recall the notion of a failed coupling from Lemma 3.3. The bound (4.7) tells us that

typically we don’t wait too long for a coupling with a simple exploration process that
survives. If the coupling doesn’t fail, we will be able to transfer estimates of the winding
process from the simple exploration to the process X.

To this end we distinguish three possible scenarios of what can happen during a given
time interval. We say that the interval [ti, ti+1) is good, denoting this event by Gi, if the
following hold:

• τ ik0 = +∞, and

• none of the k0 attempted couplings failed until time T = ti+1 − ti ≤ n1/6.

On the event Gi the coupling started at time σik0 survives and it lasts until time ti+1, in
particular X cannot close its loop before time ti+1 (as this would entail X returning to
some vertex visited before time σik0 and hence Y k0 returning to its starting point, i.e.
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τY
k0
<∞). Thus Gi ⊆ {τX ≥ ti+1}. Next, we say that the interval [ti, ti+1) is terminal if

τ ik0 < +∞ and σik0+1 = ti+1, and we denote this event by Ti. Note that {τX < ti+1} ⊆ Ti.
Finally we let Bi = (Gi ∪ Ti)c, and if this event occurs we say that the interval [ti, ti+1) is
bad. On this event one of the attempted couplings failed.

Let us now estimate the winding process on each of the above events. We have

|LXan |1I{τX≥an} ≤
m∑
i=0

|LXti+1
− LXti |1I{τX≥an}

=

m∑
i=0

|LXti+1
− LXti |

(
1IGi + 1IBi + 1ITi

)
1I{τX≥an}

≤ bn1/6c max
0≤i≤m

|LXti+1
− LXti |1IGi + bn

m∑
i=0

1IBi + bn

m∑
i=0

1ITi1I{τX≥an}, (4.10)

where for the second and third term we used the trivial estimate that |LXti+1
− LXti | ≤

ti+1 − ti = bn.
We will now estimate each of the three terms in (4.10) separately. Let us start with

the first one. We will estimate |LXti+1
− LXti | on the event Gi ∩ Ahis

an . Since LX increases at
rate at most 1, we have the estimate

|LXti+1
− LXti | ≤ σ

i
k0 − ti + |LXti+1

− LXσik0
|1I{σik0<ti+1}. (4.11)

By (4.7), on Ahis
an the first term on the right hand side in (4.11) is at most log2 n with

probability at least 1−C2e
−c2 log2 n. In the second term we may, on Gi, replace LXti+1

−LX
σik0

by LY
ti+1−σik0

, where Y = Y ik0 is the simple exploration started at time σik0 . Now we apply

Proposition 4.3 with s = 1
2 log n and T = bn. As ti+1 − σik0 ≤ ti+1 − ti = bn = n1/3/bn1/6c,

we obtain in particular

P
(
Gi ∩

{
|LYti+1−σik0

| ≥ 1
2b

1/2
n log n

}
| Fσk0

)
≤ Ce−c log2 n.

Thus
P
(
Ahis
an ∩

{
|LXti+1

− LXti |1IGi ≥ b
1/2
n log n

})
≤ C3e

−c3 log2 n,

for some C3, c3 > 0. Furthermore, applying a union bound we obtain that (recalling
m = bn1/6c − 1)

P
(
Ahis
an ∩

{
max

0≤i≤m
|LXti+1

− LXti |1IGi ≥ b
1/2
n log n

})
≤ bn1/6cC3e

−c3 log2 n.

We now move to the second term of (4.10). We need to estimate P(Bi|Fti). To this
end notice that by Lemma 3.3 the probability for any given coupling to fail is bounded
above by

4βbn(JXan + βbn)/n ≤ 4βan(JXan + βan)/n.

Defining D0 :=
{
JXan ≤ 4βan

}
, we have, for any k > 0, that

P(Bi | Fti) ≤ P(k0 ≥ k | Fti) + P({k0 < k} ∩ Bi ∩ D0 | Fti) + P(Dc0 | Fti)

≤ (1− z)k + k
20β2a2

n

n
+ P(Dc0 | Fti).

Recalling that an = n1/3 and choosing k = bn1/12c it follows that, for some C > 0,

P(Bi | Fti) ≤ pn,i := Cn−1/4 + P(Dc0 | Fti). (4.12)
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We claim that, on the event D1 := {JXan ≤ 2βan}, we have for large enough n that
pn,i ≤ 2Cn−1/4 with C from (4.12). Indeed,

P(Dc0 | Fti) ≤ P(JXti > 2βan | Fti) + P(JXan − J
X
ti > 2βan | Fti)

= 1I{JXti > 2βan}+ P(JXan − J
X
ti > 2βan | Fti).

On the right-hand-side, the indicator vanishes on D1, and the probability is at most
C1e

−c1an for some C1, c1 > 0, since JXt is a counting process with intensity bounded
above by β, see Lemma 3.5 and the argument for (3.7). The claim follows.

Thus, employing (4.12), we obtain for large enough n that

P
(∑m

i=0 1IBi ≥ n1/12 log n
)
≤ P

({∑m
i=0 1IBi ≥ n1/12 log n

}
∩ D1

)
+ P(Dc1)

≤ P
({∑m

i=0(1IBi − P(Bi|Fti)) ≥ n1/12 log n−
∑m
i=0 pn,i

}
∩ D1

)
+ P(Dc1)

≤ P
(∑m

i=0(1IBi − P(Bi|Fti)) ≥ 1
2n

1/12 log n
)

+ P(Dc1).

The sum inside the first probability is a martingale, with increments bounded by 1. Thus
by the Azuma inequality (see e.g. [16, Theorem A.10]) we get

P
(∑m

i=0(1IBi − P(Bi|Fti)) ≥ 1
2n

1/12 log n
)
≤ 2 exp

(
−n

1/6 log2 n

8bn1/6c

)
. (4.13)

As before we have that P(Dc1) ≤ e−cn for some c > 0. Taken together, these facts give

P
(∑m

i=0 1IBi ≥ n1/12 log n
)
≤ C4e

−c4 log2 n, (4.14)

for some C4,c4 > 0.
Finally, let us now consider

∑m
i=0 1ITi1I{τX≥an}. Observe that for i ≤ m− 1 the event

Ti ∩
{
τX ≥ an

}
requires that the exploration neither jumps to an unvisited vertex nor

closes the loop for a time period of at least n1/6. By a similar application of Corollary 3.7
as for (4.9) the latter event has probability smaller than C4e

−c4n1/6

, for some C4, c4 > 0.
We thus have

P
(∑m

i=0 1ITi1I{τX≥an} ≥ 2
)
≤ P

(∑m−1
i=0 1ITi1I{τX≥an} ≥ 1

)
≤
m−1∑
i=0

P
(
Ti ∩

{
τX ≥ an

})
≤ C5e

−c5n1/6

,

for some C5, c5 > 0.
From (4.10), (4.1), (4.14) and (4.1) we conclude that for some C6, c6 > 0

P
(
Ahis
an ∩

{
|LXan |1I{τX≥an} ≥ bn

1/6cb1/2n log n+ bnn
1/12 log n+ bn

})
≤ C6e

−c6 log2 n.

Since bn1/6cb1/2n log n + bnn
1/12 log n + bn ≤ 3n1/4 log n, this concludes the proof of (4.5)

for a fixed β ∈ [β0, β1]. The uniformness over such β follows since the upper bound can
be chosen as a continuous function of β.

Now we turn to (4.5). We aim to do a similar decomposition as above, and as before
it suffices to work on the event Ahis

an . For i ∈ {0, 1, . . . ,m}, let Yi be the coupled simple
exploration started at time σik0 , and let Si be the event that Yi survives. On the event Gi
we have in particular that Si occurs, and we can use KXti+1

−KXti ≥ K
Yi
ti+1−σik0

. On Gci we

simply use KXti+1
−KXti ≥ 0. Therefore

KXan =

m∑
i=0

(KXti+1
−KXti ) ≥

m∑
i=0

(KXti+1
−KXti )1IGi ≥

m∑
i=0

KYi
ti+1−σik0

1IGi .
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Hence

P(Ahis
an ∩ {K

X
an < c2an} ∩ {τX ≥ an})

≤ P
(
Ahis
an ∩

{ m∑
i=0

KYi
ti+1−σik0

1IGi < c2an

}
∩ {τX ≥ an}

)

≤ P
( bn1/6c−1∑

i=0

KYi
bn−log2 n

1IGi < c2an

)
+ P({∃i ≤ m : σik0 − ti > log2 n} ∩ Ahis

an ∩ {τ
X ≥ an}).

Using (4.7) we get for some C8, c8 > 0

P({∃i ≤ m : σik0 − ti > log2 n} ∩ Ahis
an ∩ {τ

X ≥ an}) ≤ C8e
−c8 log2 n.

To bound the first probability, we use that

m∑
i=0

KYi
bn−log2 n

1IGi ≥
m∑
i=0

KYi
bn−log2 n

1ISi −
m∑
i=0

KYi
bn−log2 n

(1IBi + 1ITi)

The processes Yi are i.i.d. and by (4.3) from Proposition 4.4 we get

E[KYi
bn−log2 n

1ISi ] ≥ cz(bn − log2 n).

Hence by standard large deviations estimates we get for some C7, c7 > 0

P
( m∑
i=0

KYi
bn−log2 n

1ISi < c2an

)
≤ C7e

−c7 log2 n

provided we pick c2 small enough.
It remains to bound the contributions involving Bi and Ti. Recall from Proposition 4.4

that KYit ≤ t+ 1 + IYit ≤ t+ 1 + 2J Yit , and from the observations preceding (3.7) that the
number of ‘jumps’ J Yit is dominated by a Poisson process with rate β n

n−1 . It follows that,

with probability at least 1 − C8e
−c8 log2 n, we have that KYi

bn−log2 n
≤ 5βbn for all i ≤ m.

Consequently, using also (4.14)

P
( m∑
i=0

KYi
bn−log2 n

1IBi ≥ 5βn1/4 log n
)
≤ P

( m∑
i=0

1IBi ≥ n1/12 log n
)

+ C8e
−c8 log2 n

≤ C9e
−c9 log2 n + C8e

−c8 log2 n.

Finally, for the terms involving Ti we again use that KYi
bn−log2 n

≤ 5βbn for all i ≤ m, with

probability at least 1− C8e
−c8 log2 n, combined with (4.1) to get

P
( m∑
i=0

KYi
bn−log2 n

1ITi1I{τX≥an} ≥ 10βn1/6
)
≤ P

( m∑
i=0

1ITi1I{τX≥an} ≥ 2
)

+ C8e
−c8 log2 n

≤ C10e
−c10 log2 n + C8e

−c8 log2 n.

This establishes (4.5).

4.2 Proofs of Propositions 4.1 and 4.2

Now we turn to the proofs of the main results of Section 4, namely Propositions 4.1
and 4.2, which concern the balance B(v, bn1/2c) in cycles of length at least bn1/2c. We
start with the following corollary of Proposition 4.5, which states that the bounds in
that proposition hold uniformly over all possible starting points (v, ϕ) ∈ Vn × S1 for the
exploration process X. We use the notation LXt (v, ϕ), KXt (v, ϕ) and τX(v, ϕ) when X

starts at (v, ϕ).
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Corollary 4.6. Let β1 > β0 > 1. There exist C, c > 0 such that for all β ∈ [β0, β1] we have

Pβ

(
∃(v,ϕ)∈Vn×S1 : |LXn1/3(v, ϕ)|1I{τX(v,ϕ)≥n1/3} ≥ 3n1/4 log2 n

)
≤ Ce−c log2 n, (4.15)

and, for some c2 > 0,

Pβ

(
∃(v,ϕ)∈Vn×S1 :

{
KXn1/3(v, ϕ) < c2n

1/3
}
∩
{
τX(v, ϕ) ≥ n1/3

})
≤ Ce−c log2 n. (4.16)

In the proof we will use the following notation. For a measurable subset A ⊆ E × S1

and ω ∈ Ω we denote the restriction

ωA := {(e, ϕ,m) ∈ ω : (e, ϕ) ∈ A} .

Also recall that we will often identify S1 with the interval [0, 1).

Proof. We give details for (4.15), the argument for (4.16) is very similar. Write

B(v, ϕ) =
{
|LXn1/3(v, ϕ)|1I{τX(v,ϕ)≥n1/3} ≥ 3n1/4 log2 n

}
.

We fix ε > 0 to be a small enough positive constant (to be specific, ε needs to be
smaller than the constant c1 in the exponent on the right-hand-side of (4.5)). Let
m = beε log2 nc and define the growing sequence of sets Ai := E × [0, β0/β1 + iδ], where
δ = δn := 1

m

(
1− β0

β1

)
and i ∈ {0, 1, . . . ,m}. We will consider the sequence ωAi which we

think of as revealing the configuration ω in increments of size δ. Consider the event

D :=
{
ω : |ωAi\Ai−1

| ≤ 1 for each i ∈ {1, . . . ,m}
}

that each step in the sequence reveals at most one more link. Since |ωAi\Ai−1
| is Poisson

distributed with mean
(
n
2

)
β
n−1δn we have for some C̃, C2, c2 > 0 that

P(Dc) ≤
m∑
i=1

P
(
|ωAi\Ai−1

| ≥ 2
)
≤ C2e

−c2 log2 n. (4.17)

Thus it suffices to show that P(∪(v,ϕ)B(v, ϕ) ∩ D) satisfies the bound (4.15).
Now on D, to determine if there is some (v, ϕ) ∈ Vn × S1 for which B(v, ϕ) holds it

suffices to consider ϕ of the form ϕi = β0/β1 + iδ for 0 ≤ i ≤ m. Indeed, if ϕ is arbitrary,
let i be such that ϕi−1 ≤ ϕ ≤ ϕi. Then (on D) the exploration started at (v, ϕ) agrees
either with that started at (v, ϕi−1) or that started at (v, ϕi) (up to a small time-shift of
size at most δ which we will ignore). Hence, using Proposition 4.5,

P(∪(v,ϕ)B(v, ϕ) ∩ D) ≤
∑
v∈Vn

m∑
i=0

P(B(v, ϕi)) ≤ neε log2 nC1e
−c1 log2 n.

For ε > 0 small enough, this satisfies the claimed bound.

To proceed we will need some notations and observations which will allow us to relate
the winding process, L, to the balance of cycles, B. Let Xs = Xs(v0, ϕ0, d0) denote the
exploration started at (v0, ϕ0) in the direction d0 ∈ {−1,+1}, viewed at time s. Let us
write Xs = (vs, ϕs, ds) and define

BX
t (v0, ϕ0, d0) =

∑
0≤s≤t

ds1I{ϕs=0}.

(Although formally the summation is over an uncountable set, almost surely there is only
a finite number of nonzero terms.) In words, BX

s totals the number of visits of X to level
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ϕ = 0, counted with the sign given by the direction of travel. Note that our previously
defined balance-quantity may be written as

B(v, k) = BX
τk

(v, 0,+1)

where τk is the first time at which X has made k visits to level ϕ = 0.

It is easy to see the following: for any starting point (v0, ϕ0, d0) and any t ≥ 0 we have
that ∣∣|BX

t (v0, ϕ0, d0)| − |LXt (v0, ϕ0, d0)|
∣∣ ≤ 3. (4.18)

Indeed, for t = 0 the two terms are either 1 and 0 (if ϕ0 = 0) or 0 and 0 (if ϕ0 6= 0). As
t increases, |BX

t | stays constant until X passes level ϕ = 0, at which time it changes
by 1. Until this time |LXt | can change by at most 1, since if it changes more then this
necessarily means that X passes level ϕ = 0; hence the difference in (4.18) is certainly
bounded by 2. Between successive visits to ϕ = 0 it remains bounded by 2 for the same
reason. Finally, after the last visit to ϕ = 0 we may have that LXt changes by up to 1
while |BX

t | remains constant. Thus the difference is at most 3.

Proof of Proposition 4.1. Let

An :=
⋂

(v,ϕ)∈Vn×S1

{
|LXn1/3(v, ϕ)|1I{τX(v,ϕ)≥n1/3} ≤ 3n1/4 log2 n

}
and

Bn :=
⋂

(v,ϕ)∈Vn×S1

({
KXn1/3(v, ϕ) ≥ c2n1/3

}
∪
{
τX(v, ϕ) ≤ n1/3

})
,

where c2 is as in (4.5). (To see thatAn and Bn are measurable, note that one gets the same
events if ϕ is restricted to rationals.) By Corollary 4.6 we have P(An∩Bn) ≥ 1−Ce−c log2 n

for some C, c > 0, so it suffices to consider ω ∈ An ∩ Bn.

Suppose v is such that |Cω(v)| ≥ bn1/2c (otherwise there is nothing to prove). For
i ≥ 1, let ti = in1/3 and let i0 := min{i ≥ 1 : KXti (v, 0) ≥ n1/2}. Thus by time ti0 the
exploration (started at (v, 0)) has visited the first bn1/2c vertices in Cω(v) following v.
Since ω ∈ Bn, the contributions to KXt between successive ti are all at least c2n1/3; using
the additivity of KXt we conclude that i0 ≤ c−1

2 n1/6.

Let us write Xti = (vi, ϕi, di). Note that (using (4.18))

|B(v, bn1/2c)| ≤
i0−1∑
i=1

|BX
ti (vi−1, ϕi−1, di−1)|+ ti0 − ti0−1

≤
i0−1∑
i=1

(
|LXti (vi−1, ϕi−1, di−1)|+ 3

)
+ n1/3.

As ω ∈ An we get

|B(v, bn1/2c)| ≤ (i0 − 1)(3n1/4 log2 n+ 3) + n1/3 ≤ n5/12 log3 n,

for n large enough, as required.

Proof of Proposition 4.2. This will follow from Proposition 4.1 using a similar argument
as for Corollary 4.6. As in that argument, we fix some small enough ε > 0 and we use
the same notation m, δ, Ai and D.
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Note that, on D, for each s ≤ |ω| there is some (random) i such that ~ωs = ~ωAi . Hence
the probability in (4.2) is at most

∑
v∈Vn

m∑
i=0

Pβ

({
B~ωAi

(v, bn1/2c) ≥ n5/12 log3 n
}
∩
{
|C~ωAi (v)| ≥ bn1/2c

})
+ P(Dc ∪ {|ω| < nρ}).

We observe that under Pβ the distribution of ~ωAi is the same as the distribution of ~ω
underPβ̄i , with β̄i = β (β0/β1 + iδ) ∈ [β0, β1]. Using Proposition 4.1 and a straightforward
bound on P(Dc ∪ {|ω| < nρ}) we deduce that the probability in (4.2) is at most

neε log2 nCe−c log2 n + C2e
−c2 log2 n.

Choosing ε > 0 small enough concludes the proof.

5 Poisson–Dirichlet coupling

In this section we prove our main result, Theorem 1.1. From the previous sections,
Lemma 2.4 tells us that there are cycles of size of the order n and Propositions 4.1
and 4.2 tell us that these cycles are ‘balanced’. The former lemma is stated in terms
of a sequentially constructed ~ω with a fixed number of links, whereas the latter are
formulated in terms of ω sampled from the Poisson law Pβ, so one of our tasks is to
combine these two descriptions. Another task is to convert the balance-property of
Propositions 4.1 and 4.2 into a quantitative result about the probability of splitting
cycles when a uniformly placed link is added, see Lemma 5.1. Following that, the main
task will be to provide a coupling of a PD(1

2 ) sample with the rescaled cycle sizes. We
begin by introducing some relevant notation and facts, as well as an outline of the proof.
Throughout this section, β > 1 and ν ∈ [0, 1) are fixed.

5.1 Preparation and outline

The coupling with PD( 1
2 ) will involve sequentially appending a small number of

uniformly, independently placed links to a random configuration ω. We will do this as
follows. First, let ω have distribution Pβ. Next, let q ≥ 0 be an integer-valued random
variable which is independent of ω and bounded (as n→∞). Recall that ~ω denotes the
ordered sequence of links in ω and that ~ωs denotes the first s links of ~ω.

To start the coupling, we will consider ~ωs for s = |ω| − q. We construct a sequence ~ω′t
for t ∈ {s, s+1, . . . , s+q}, where ~ω′s = ~ωs and the following ~ω′t are obtained by sequentially
and independently appending in total q uniformly placed links one at a time. Obviously
the final configuration ~ω′s+q then has |ω| = s+ q links, and it agrees in distribution with ~ω.
Letting Ct = C~ω′t denote the cycle structure of ~ω′t, it thus suffices to prove that Theorem
1.1 holds for Cq.

Before proceeding, let us recall the key features of ~ω′s = ~ωs which follow from our
work in the previous sections. Precise statements are deferred to Section 5.3. First,
it is clear that (since β > 1) we can find a constant c > 1

2 such that the number of
links s satisifes s ≥ cn with high probability (converging to 1 as n→∞). On this event
Lemma 2.4 applies to ~ω′s, meaning (roughly speaking) that there are cycles of size of
the order n which together occupy a fraction ≈ zn of all vertices. (Here z is the same
as in Proposition 3.4.) Second, since q is bounded, Proposition 4.2 certainly applies to
~ω′s. Thus (with high probability), in any of the large cycles of ~ω′s, any segment of bn1/2c
consecutive vertices in that cycle has balance |B| < n5/12 log3 n.

Next, let us describe the evolution of Ct, 0 ≤ t ≤ q, in a way which is suitable for the
coupling with PD( 1

2 ). Since PD( 1
2 ) is a probability distribution on ‘continuous’ partitions
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of the interval [0, 1) it is convenient to represent Ct also as a (labelled) partition of [0, 1)

(in the actual proof we will use a different interval but the idea is the same). The mapping
is fairly intuitive so we do not give a completely detailed description. Each vertex v ∈ Vn
is represented as a subinterval I(v) of the form [ in ,

i+1
n ) for 0 ≤ i = i(v) ≤ n − 1, and

this mapping is chosen so that the cycles of Ct become disjoint intervals of the form
[ in ,

j
n ) for 0 ≤ i < j ≤ n − 1, where if u, v are consecutive in a cycle then I(u) and I(v)

are consecutive subintervals of [ in ,
j
n ) (interpreted cyclically). The subintervals I(v) are

labelled using the labels ↑, ↓ consistently with the orientations of the vertices within the
cycles. See Figure 10.

0 1
9

2
9

1
3

4
9

5
9

2
3

7
9

8
9

1

1 3 2 4 5 6 9 8 7

Figure 10: Representation of cycles as subintervals of [0, 1). Solid vetical lines delimit
the cycles and dashed lines the vertices. The cycles here are the same as in Figure 2, i.e.
(1↑, 3↑, 2↓, 4↑), (5↑), (6↑, 9↑, 8↓) and (7↑).

Naturally, this mapping is defined up to (i) cyclic rotations within each cycle, (ii)
overall reversal of all the labels (arrows) in cycles, and (iii) the relative placement of
the intervals [ in ,

j
n ) representing the cycles within [0, 1). Regarding the last item, the

canonical way to order the intervals would be by decreasing length, but we wish to keep
the flexibility of reordering them for the time being.

In this setting the dynamics of uniformly placing links may be constructed using two
independent uniform random variables U,U ′ in [0, 1):

• We first sample the mark m ∈ { , } of the link with probability ν for .

• We then sample U and set the first endpoint of the link to be u if U falls in the interval
I(u).

• Before selecting the other endpoint we (i) move the (interval [ in ,
j
n ) representing the)

cycle containing u to the front of [0, 1), then (ii) cyclically reorder this cycle so that
I(u) = [0, 1

n ).

• Now we select the second endpoint by setting it to be v if U ′ ∈ I(v). It may happen
that I(v) = I(u); since this has probability 1

n we will in practice be able to disregard
this possibility, but to be definite let us say that nothing happens to the cycles in this
case.

Having selected the endpoints of the link as well as its mark, we apply the rules given in
Section 2 for splitting, merging or twisting cycles.

Using this construction, the sequence C1, . . . ,Cq may be obtained starting with C0

and using a sequence {(Ut, U ′t ,mt))}qt=1 of independent random variables with the above
distributions.

We now turn to the task of showing that the probability of splitting a large cycle is
close to 1

2 , in a sense which we will make precise. Let us assume that ~ω′s belongs to the
event ⋂

v∈Vn

(
{|B(v, bn1/2c)| < n5/12 log3 n} ∪ {|C(v)| < bn1/2c}

)
(5.1)

that any cycle of size at least bn1/2c is ‘balanced’. This event holds with high probability
due to Proposition 4.2. Recalling that the cycles C0 form a partition of the vertex set Vn,
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we define a refinement S of this partition into ‘segments’ as follows. For each cycle C ∈ C0

satisfying |C| ≥ bn1/2c we fix a division of C into non-intersecting sets of consecutive
vertices, each of size between bn1/2c and 2bn1/2c. If |C| < bn1/2c then we declare C to be
a segment on its own. On the event in (5.1) we see using the triangle-inequality that
each segment S ∈ S satisfying |S| ≥ bn1/2c has balance |B(S)| < 2n5/12 log3 n, where
B(S) is the difference between the number of ↑ and number of ↓ in S.

As we proceed by adding links, and thereby modify the cycle structure, we keep the
partition S into segments fixed. That is, at all later steps we will ‘remember’ for each
vertex v ∈ Vn which segment S it belonged to at t = 0. After some steps a segment S
need no longer be a consecutive set of vertices within a cycle, for example if a cycle
is split in the middle of S. We say that a segment S is untouched at step t ∈ {1, . . . , q}
if none of the links placed in steps 1, 2, . . . , t − 1 had an endpoint in S, otherwise the
segment is touched. If S is untouched then it is also ‘intact’ in the sense that it is still
consists of consecutive vertices in some cycle, and |B(S)| is unchanged from t = 0.

In the representation of C0 as a collection of marked subintervals of [0, 1), the seg-
ments S become subintervals (of length ≤ 2n−1/2) of the intervals representing the
cycles (possibly we may have to interpret these subintervals cyclically). Recall that we
used a uniform random variable U ′ ∈ [0, 1) to select the second endpoint of a uniformly
placed link. We now modify this construction slightly, and will instead use two uniform
independent U ′, U ′′ ∈ [0, 1). We begin by sampling U ′, and we note which segment S it
falls in (more precisely, which subinterval representing such a segment). If this segment
S is touched then we let v be the vertex selected by U ′ as before and we do not use U ′′.
However, if S is untouched then we do not record the precise location of U ′ within S;
instead we use U ′′ to independently select a uniform location within S and we select the
second endpoint of the link to be v if U ′′ ∈ I(v).

The following result is now straightforward. Intuitively, it tells us that the probability
of splitting a long cycle is very close to 1

2 , moreover the choice of whether or not to split
is almost independent of the location where we propose to split.

Lemma 5.1. Assume that the event in (5.1) holds at t = 0. At step t ≥ 1 (i.e. in the
transition Ct−1 → Ct), let u be the vertex selected by Ut and let C(u) ∈ Ct−1 be the cycle
containing u. Fix the orientation of C(u) so that u has label ↑. Suppose that U ′t selects
a segment S which: (i) is untouched, (ii) is in the cycle C(u), i.e. S ⊆ C(u), and (iii) has
size |S| ≥ bn1/2c. Let α ∈ {↑, ↓} be the label of the vertex v selected by U ′′t . Then (on
the event described) the conditional probability pt = P(α = ↑ | U ′t) that v has the same
orientation as u satisfies

|pt − 1
2 | ≤ n

−1/12 log3 n.

Proof. We have that pt = #(↑ in S)/|S| so

|pt − 1
2 | =

1
2 |B(S)|/|S| ≤ n−1/12 log3 n.

We now give a brief outline of the rest of this section. First, in Section 5.2, we describe
a slight modification of a coupling due to Schramm [21]. The coupling evolves a pair of
partitions of the interval [0, 1) such that, firstly, the marginal dynamics have PD(θ) as an
invariant distribution, and, secondly, the two partitions become ‘close’. Moreover, for
θ = 1

2 these dynamics are very similar to the dynamics of Ct above (Schramm defined the
coupling for θ = 1 but as we will see and as has been noted before [10], the extension to
θ ∈ (0, 1] is completely straightforward). Then, in Section 5.3, we focus on the case θ = 1

2

and show how an adaptation of Schramm’s coupling allows us to couple a PD( 1
2 )-sample

to the ‘discrete’ partition coming from the cycles Ct. This will allow us to prove Theorem
1.1. Lemma 5.1 comes in here and, intuitively speaking, by using the pair (U ′, U ′′) as
described above we “trade accuracy for independence”: U ′ will tell us the exact location
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for splitting in the PD( 1
2 )-distributed partition, whereas in Ct this is decided by U ′′. As

we will see, the locations in the segment S defined by U ′ and U ′′ are close enough to
each other, and pt is close enough to 1

2 , that the two partitions become more and more
similar.

5.2 Schramm’s coupling

Fix any θ ∈ (0, 1], later we will take θ = 1
2 . We will define a sequence

(
(Yt,Zt) : t =

0, 1, . . .
)

of pairs of random partitions of [0, 1) into countably many intervals [a, b), in
such a way that (i) the marginal dynamics are stationary for PD(θ), and (ii) regardless of
starting configuration, Yt and Zt become ‘closer’ in a sense to be defined later.

The subintervals [a, b) of [0, 1) constituting the partitions Yt and Zt will be called
blocks. We will think of the blocks of Yt and Zt as distinguishable, and as before leave
some flexibility about the relative placement of the blocks within [0, 1). By a slight abuse
of notation we will identify a block Yti ⊆ [0, 1) with its length |Yti | ∈ [0, 1].

Some of the blocks of Yt will be matched with blocks of Zt, and this relation is
symmetric (if Yti is matched with Ztj then Ztj is matched with Yti ). Other blocks are
unmatched. Matched pairs of blocks have the same size, and such pairs will be created
in some instances of the process we are about to describe. The total length of all
unmatched blocks will be denoted by R = Rt and the total length of matched blocks
Q = Qt. We place the matched blocks at the end of [0, 1) and the unmatched blocks at
the beginning, and within the matched and unmatched parts we order the blocks by
decreasing size. See Figure 11.

Y

Z

QR

Figure 11: Example of a pair (Y,Z). The matched blocks account for a total Q of the
length, and the unmatched R, where Q + R = 1. The thick vertical line indicates the
border between the matched and unmatched parts.

A step of the coupling is completed with the help of three independent random
variables U , U ′ and W , all uniformly distributed in [0, 1). First U is sampled, and if U
falls in the blocks Yi and Zj of Y and Z, respectively, then we say that these two blocks
of Y and Z are highlighted. Moreover, the highlighted blocks are moved to the front of
[0, 1), see Figures 12 and 13. Then U ′ is sampled and we do the following:

• if (in either Y or Z) we have that U ′ falls in a block different from the highlighted one,
then this block is merged with the highlighted block;

• if U ′ falls in a highlighted block then we propose a split of the highlighted block(s) at
the position U ′;

• in the case of proposing a split, the split is carried out if we have that W ≤ θ.

Thus it is possible to merge blocks in both Y and Z, to merge blocks in one but (propose
a) split in the other, or to (propose a) split in both. In the case when we propose a split
in both Y and Z, note that the same W is used for both, thus either both split or neither.
In this case, if they split then at least two of the newly created blocks are of the exact
same size (see Figure 14), and those blocks are then declared matched and moved to
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the matched part. Before the next step the blocks are sorted into the matched and
unmatched parts and ordered by size within those parts, as before. Figures 14, 15 and
16 show some of the possible scenarios.

Y

Z

U

Y

Z

U

Figure 12: U highlights a block in Y and a block in Z and they are moved to the front.
In this case the highlighted blocks are unmatched.

Y

Z

U

Y

Z

U

Figure 13: Example when the highlighted blocks are matched.

Y

Z

U ′

Y

Z

U ′

Figure 14: Example when a split is carried out in both Y and Z. In this case the
highlighted blocks are already matched and consequently all the formed blocks are
matched.

The following result about the marginal dynamics is due to Tsilevich [24] (for θ = 1)
and Pitman [19] (general θ). Another proof can be found in [10, Theorem 7.1].

Lemma 5.2. If Y0 (respectively, Z0) has distribution PD(θ) then Yt (respectively, Zt) has
distribution PD(θ) for all t ≥ 0.

We will need quantitative results about how the sizes of the largest unmatched blocks
evolve under these dynamics. We will present a sequence of results, Lemmas 5.4 to 5.6,
which culminate in Corollary 5.7. As the proofs of these lemmas are identical or nearly
identical to the corresponding proofs in [21] we omit the details, but give comments
where there are differences in the case θ < 1.

Fix ε > 0 and introduce the following notation. Let Nε(Yt) and Nε(Zt) denote the
number of unmatched blocks of size ≥ ε in Yt and Zt, respectively, and let N t

ε =

Nε(Yt) +Nε(Zt) be the total number of unmatched blocks of size ≥ ε after t steps. Let
σ(ε,Yt) =

∑
i Yti1I{Yti<ε} be the total length of blocks smaller than ε in Yt, and similarly

define σ(ε,Zt). Also let ε = ε+ σ(ε,Y0) + σ(ε,Z0).

Before presenting the lemmas about the coupling, we note the following a-priori
estimates:

Proposition 5.3.
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Y

Z

U ′

Y

Z

U ′

Figure 15: Example when the highlighted blocks are matched but are then merged with
some unmatched blocks. In this case the formed blocks are unmatched.

Y

Z

U ′

Y

Z

U ′

Figure 16: Example when one block is split and one is merged.

1. If for some C > 0 and all ε ∈ (0, 1) we have

E[σ(ε,Y0)] ≤ Cε log( 1
ε ) (5.2)

then for some C ′ > 0 we have E[Nε(Y0)] ≤ C ′ log2( 1
ε ).

2. If Y0 has distribution PD(θ) with θ ∈ (0, 1] then E[σ(ε,Y0)] ≤ ε.

The proof is sketched (for θ = 1) in [21]. For completeness we give details in Appendix
B. In the proof of Theorem 1.1, Y0 will have the PD( 1

2 )-distribution while Z0 will satisfy a
bound of the form (5.2). Thus, in the following sequence of lemmas, one should think of
ε as being of the order ≤ ε log( 1

ε ) as ε→ 0, and N0
ε as of the order ≤ log2( 1

ε ).
In the next few results we will be working conditionally on (Y0,Z0), hence ε and

N0
ε will be treated as constants. We let q be a random time, independent of the chain

((Yt,Zt) : t ≥ 0), and write η = max{P(q = t) : t ≥ 0}.
Let yt(1) and zt(1) denote the largest unmatched blocks in Yt and Zt, respectively. In

the following result, note that Rt − yt(1) ∨ z
t
(1) is small if most of the unmatched length

Rt is covered by the largest unmatched block in either Yt or in Zt. Hence the product
Rt(Rt−yt(1)∨z

t
(1)) is small if either Rt is small (which is what we want), or the unmatched

part contains a large block (which can be handled because such a situation is ‘unstable’).

Lemma 5.4. Conditionally on Y0,Z0,

E
[
Rq(Rq − yq(1) ∨ z

q
(1))
]
≤ η

2
N0
ε + 5ε E[q].

When applying this and the following estimates, the main case will be when q is
uniformly distributed on {0, 1, . . . , dε−1/2e − 1}. Then η is approximately ε1/2 and E[q] is
of the order ε−1/2. If ε and N0

ε are of the order indicated above then the right-hand-side
is small (of the order ≤ ε1/2 log2( 1

ε )).

Proof. The proof is essentially identical to the proof in [21, Lemma 3.1] and uses that
on the event that up to time q no blocks of size ≤ ε are created or merged, N t

ε is non-
increasing for t < q. The only extra case which arises for θ < 1 is when, going from
t to t + 1, two blocks are merged in Y (respectively, Z) but a split is proposed for Z
(respectively, Y) and not accepted. In this case we see that N t+1

ε = N t
ε − 1, hence N t

ε is
still non-increasing.
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Write yt(2) for the second-largest unmatched block in Yt.

Lemma 5.5. For ρ ∈ (0, 1) we have (conditionally on Y0,Z0)

P
(
Rq − (yq(1) + yq(2)) > ρ

)
≤ 26θ−1ρ−4

(
η
2N

0
ε + 5εE[q + 1]

)
.

The lemma says that the two largest unmatched entries together dominate the
unmatched part (if η, q, ε and N0

ε are of the order indicated above, then the right-hand-
side is small as long as, say, ρ ≥ ε1/10).

Proof. This proof is virtually identical to the proof of [21, Lemma 3.2]. We consider
whether the event R = {Rq − zq(1) < ρ/4} occurs or not. In the case when R does not
occur we can apply Lemma 5.4 exactly as in [21]. In the case when R does occur, the
key observation in [21] is that there is good probability that zq(1) splits into two blocks of

size ≥ ρ/4 while two unmatched blocks of Yq merge, allowing us to apply Lemma 5.4 in
the next step instead. The only extra consideration for θ < 1 is that the split must be
accepted, which happens with probability θ, resulting in the factor θ−1 in the statement
of the lemma.

We next bound the ‘average’ probability of having a large unmatched block. Its
corollary, Corollary 5.7, is especially important for us.

Lemma 5.6. Let ε, ρ ∈ (0, 1) and let t > 0 and k be such that t ≥ 2k/ρ. Then (conditionally
on Y0,Z0)

t−1
t−1∑
s=0

P(ys(1) > ρ) ≤ C[k−1ρ−1 + 24kρ−5(N0
ε /t+ εt)], (5.3)

for some constant C.

Proof. The proof is identical to the proof of [21, Lemma 3.3] where we insert the bounds
from Lemmas 5.4 and 5.5 when the bounds from [21, Lemma 3.1] and [21, Lemma 3.2]
are used.

We now make some additional assumptions on (Y0,Z0) and q, which allow us to
obtain a more explicit bound on P(yq(1) ≥ ρ). As usual we work conditionally on (Y0,Z0).

Corollary 5.7. Assume that ε < 1 and that

(ε)1−γ ≤ η ≤ (ε)γ/(N0
ε ∨ 1), for some γ ∈ (0, 1

2 ). (5.4)

Then for some C = C(γ) we have that for all ρ ∈ (0, 1),

P(yq(1) ≥ ρ) ≤ P(q ≥ 1/η) +
C

ρ log(1/ε)
. (5.5)

Proof. The proof is identical to the proof of [21, Corollary 3.4] (in [21] there is an
additional parameter λ which we have set to 1).

Note that if q is uniformly distributed on {0, 1, . . . , dε−1/2e−1} and N0
ε is of the order at

most log2( 1
ε ), as discussed above, then (5.4) holds. Moreover, in this case P(q ≥ 1/η) = 0.

If ε is at most of the order ε log( 1
ε ) as discussed above then the right-hand-side of (5.5)

can be made arbitrarily small by choosing ε small.
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5.3 Proof of Theorem 1.1

We now turn to the proof of our main result. Let ε > 0, to be fixed later. Recall the
set-up of Section 5.1: ω is sampled from Pβ where β > 1, and we consider ~ω′s = ~ωs for
s = |ω| − q. We take q to be uniformly distributed on {0, 1, . . . , dε−1/2e − 1}. Let A0 be the
event that the following conditions hold:

• for some c > 1
2 we have s ≥ cn;

• the event in (5.1) holds for ~ω′s = ~ωs; and

• the random graph G(n, s), which has an edge wherever ~ωs has at least one link, has a
unique giant connected component VG containing between 0.99zn and 1.01zn vertices,
and any other connected component has size at most log2 n. (Here z is the same as in
Proposition 3.4.)

In the following discussion we will assume that A0 holds, as P(Ac0) = o(1) as n → ∞.
Note that the cycles C0 refine the components of G(n, s), hence (on A0) a cycle is either
contained in VG or it has size ≤ log2 n.

We take Y0 to have distribution PD( 1
2 ). Roughly speaking, Z0 will be obtained from

the cycles C0 and we want to use the coupling from Section 5.2 to obtain (Yq,Zq). The
main modification of the coupling is that we use the construction in Lemma 5.1 for
splitting in Z. There are also several minor modifications to take into account. In what
follows we work conditionally on ~ω′0.

We subdivide the cycles of C0 into segments S ∈ S as in Section 5.1. Write m = |VG|.
We let Z0 be a representation of the cycles C0 as intervals as in Section 5.1, but now
as subintervals of [0, nm ) rather than [0, 1). Thus each vertex v is represented by a
subinterval I(v) of the form [ im ,

i+1
m ) where 0 ≤ i = i(v) ≤ n − 1. Note that [0, nm ) has

length roughly 1
z . In keeping with the terminology of the previous subsection, we refer

to the intervals which represent the cycles as blocks. The subintervals I(v) representing
the vertices are labelled using ↑, ↓, as before. Clearly, a cycle of size ≥ bn1/2c in C0 is
represented as a block of size ≥ bn1/2c/m in Z0.

We place the blocks representing the cycles of C0 which lie in the giant component
VG at the start of [0, nm ), i.e. in [0, 1). The blocks representing the remaining cycles are
placed in [1, nm ). Within [0, 1) we will later have matched and unmatched blocks, as in
Section 5.2, and again we place the unmatched blocks first and within the matched and
unmatched parts we order the blocks by decreasing size. See Figure 17.

VG
0 1 n

m

Y

Z · · ·

matchedunmatched

Figure 17: Zt consists of blocks representing the cycles Ct, placed in the interval [0, nm ).
Cycles belonging to VG are placed first, roughly in the interval [0, 1), and are sorted into
those matched with a block of Yt and those not. Matched blocks can differ slightly in
size. Also Zt will after a few steps have an ‘overhang’ since the giant component grows.
The hatched part consists of blocks representing cycles with vertices that are not in VG.

We will define dynamics for (Yt,Zt) such that the marginal dynamics for Yt are as in
Section 5.2 with θ = 1

2 , and the marginal dynamics for Zt are as in Section 5.1. Thus Yt
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will have distribution PD( 1
2 ) for all t, due to Lemma 5.2, and Zt will be a representation

of the cycles Ct as intervals.

In order to be able to define a successful coupling later on, we will need the notion of
a forbidden set F t ⊆ [0, nm ) (for any given time t). This set will arise due to small errors
which accumulate during the process. Initially, for t = 0, we set F 0 = ∅. In later steps,
we define F t as consisting of the following parts:

• First, all segments which have been touched up to time t (or rather, the union of the
I(v) for v belonging to touched segments) in Z are forbidden.

• Second, F t contains an overhang (defined as {s ∈ (1, nm ] : s ∈ I(u) for some u ∈ VG})
which arises because in Z cycles outside the giant component may merge with cycles
inside the giant component, meaning that the giant component grows with time.

• Third, it will be necessary to allow matched blocks, defined shortly, to have slightly
different sizes, rather than the exact same size as in Section 5.2. When the blocks of
Yt and Zt are lined up as in Figure 17, the subset in [0, nm ) where part of a matched
block does not overlap with its partner belongs to the forbidden set F t.

• Also, [0, 1
m ) is forbidden. To understand the meaning of this, recall that once U has

been sampled, the block it highlighted is moved and rotated so that the corresponding
I(u) is moved to [0, 1

m ). Putting this interval in the forbidden set will simply be a way
to enforce that all links have two different endpoints.

Once we have described precisely the transitions in our process we will easily be able to
bound the size |F t| by a very small number, see (5.6).

Let us now define a step of the process. Steps will again be accomplished using
independent uniform random variables U , U ′, U ′′ and W , but now U and U ′ will be
uniformly distributed in [0, nm ) while U ′′ and W are still uniform in [0, 1). For Z we will
also sample the mark m ∈ { , } of the corresponding link in each step. In what follows
we will assume that U and U ′ never fall in the forbidden set. For concreteness, if U or
U ′ fell in the forbidden set we would declare the process failed and stop.

Firstly, if U or U ′ falls outside [0, 1) we perform the corresponding transition in Z,
using the rules from Section 5.1, but do nothing to Y. Let us now assume that U , U ′

both fall in [0, 1). When U and U ′ highlight different blocks these blocks are merged, as
before. For Zt the labels ↑, ↓ must be handled appropriately, taking into account also
the mark m ∈ { , } of the link, as in Section 2. In the case when U ′ falls in a block
highlighted by U (in either Y, Z or both) it has to be decided if a split should be carried
out. There are three cases for how this is decided. First, if a split is proposed in Y only
(Figure 16) then it is carried out if W ≤ 1

2 , so this case is the same as in Section 5.2.
Second, if a split is proposed only in Z then we decide whether to carry it out by looking
at the labels ↑, ↓ in the intervals I(u) and I(v) selected by U and U ′, as well as the mark
m ∈ { , } of the link, and applying the rules of Section 2. In this case we do not need
to use U ′′. However, the third and most important case is when a split is proposed in
both Y and Z. In this case we do the following:

1. In Y we record the exact location of U ′. If we decide to carry out the split in Y, then
it will be done at the location of U ′.

2. In Z we only record the segment S in which U ′ falls;

3. Then we use U ′′ to independently sample a uniform point within S and make the
splitting decision for Z as in Section 5.1.
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It only remains to specify how we decide whether or not to split in Y. Let v be such
that U ′′ ∈ I(v). Assume that the block of Z highlighted by U has size ≥ bn1/2c/m, and
that U , U ′ did not fall in the forbidden set F t. We are then able to apply Lemma 5.1.
Thus the conditional probability pt that I(u) and I(v) have the same label ↑ is within
n−1/12 log3 n of 1

2 . Depending on whether pt is bigger or smaller than 1
2 , and also on the

mark m ∈ { , } of the link, the conditional probability of splitting in Zt is thus either
slightly above or slightly below 1

2 . We wish to ‘maximally couple’ the decision whether
or not to split in Z with the decision in Y, but keeping the splitting probability for Y at
exactly 1

2 . Let us describe this assuming pt ≤ 1
2 , the other case is similar.

• If the mark m = , recall that this means that we split in Z if I(v) has label ↑, i.e. with
probability pt ≤ 1

2 . Our rule for Y is then: split in Y if I(v) has label ↑, but if I(v) has
label ↓ split in Y anyway with probability ( 1

2 − pt)/(1− pt) (independently of all other
choices).

• If the mark m = , this means that we split in Z if I(v) has label ↓, i.e. with probability
1− pt ≥ 1

2 . Our rule for Y is then: do nothing (no split) in Y if I(v) has label ↑, but if
I(v) has label ↓ also do nothing in Y with probability ( 1

2 − pt)/(1− pt) (independently
of all other choices).

It is not hard to check that these rules ensure that the probability of splitting in Y is
exactly 1

2 , independently of the location U ′ of the proposed split. We can also see from
this that the probability of Y and Z making different choices (i.e. one splits and the
other one twists) is |pt − 1

2 | ≤ n
−1/12 log3 n.

If the decision is to split in both Y and Z, the blocks created are declared matched
as in Section 5.2 (if the blocks which split were already matched we get two pairs of
matched blocks, otherwise one pair). Note that U ′ and U ′′ differ by at most 2bn1/2c/m
due to the upper bound on the size of segments S; this will give us a bound on how much
matched blocks can differ in size.

There is one final case in which we need to specify the rules for deciding to split,
which is when a split is proposed in both Y and Z but the block of Z has size < bn1/2c/m.
This is unlikely and we will see that we can assume that this does not occur, but to be
definite let us say that in this case we split in Y if W ≤ 1

2 .
Now we turn to bounding the size of the forbidden set F t. We claim that, for any

t ∈ {0, 1, . . . , q} we have

|F t| ≤ 7ε−1/2n1/2

m
. (5.6)

Indeed, after t steps we have added at most 4tbn1/2c/m due to touched segments, at
most t log2 n/m due to overhang, and at most 2tbn1/2c/m due to the size-difference of
matched blocks. Adding to this 1/m for [0, 1

m ) and recalling that t ≤ q ≤ ε−1/2 we arrive
at (5.6).

Let us say that the coupling (Yq,Zq) was successful, denoting this event by G, if the
following occur for all t ∈ {1, . . . , q}:
• Ut, U ′t do not fall in the forbidden set F t;

• in step t we do not propose to split a block of Z which has size < bn1/2c/m; and

• if at step t it is proposed to split a block in both Y and Z then we either split in both
or in neither.

Using (5.6) and Lemma 5.1 and recalling that q ≤ ε−1/2 we get:

P(Gc) ≤ 2ε−1/2 7ε−1/2n1/2/m

n/m
+ ε−1/2n

1/2/m

n/m
+ ε−1/2n−1/13

≤ 16ε−1n−1/13.

(5.7)
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Here we bounded the probability that we make different decisions for splitting a large
block in Y and in Z by n−1/13, which is valid for large enough n.

We can now put the different pieces together and wrap up the proof of Theorem 1.1.
Having defined (Yq,Zq), let us now order the blocks in both of them by decreasing size,
and let us think of them as two infinite sequences by appending infinitely many 0’s at
the end. Let δ > 0 be arbitrary and write

D =
{
‖Yq −Zq‖∞ > δ

}
.

It suffices to show that P(D) can be made arbitrarily small by choosing ε > 0 small and
n large.

Recall that we have been working on the event A0 defined in the beginning in this
proof. Also recall the quantities σ(ε,Y) and Nε(Y) defined in Section 5.2. We now define
σ(ε,Z) and Nε(Z) similarly but counting only those blocks which intersect [0, 1). Given
this, ε and N0

ε are given as in Section 5.2. By (2.4) in Lemma 2.4 we have for some
C > 0 and any ε > 0 that E[σ(ε,Z0)] ≤ Cε log( 1

ε ). Hence by Proposition 5.3 we also
have E[Nε(Z0)] ≤ C ′ log2( 1

ε ). By the same Proposition, the same bounds also apply to Y0.
Hence E[ε] ≤ 3Cε log( 1

ε ) and E[N0
ε ] ≤ 2C ′ log2( 1

ε ). Defining the events A1 = {ε ≤ ε3/4}
and A2 = {N0

ε ≤ ε−1/4} and using Markov’s inequality, we get

P(A0 ∩ Ac1) ≤ 3Cε1/4 log( 1
ε ), P(A0 ∩ Ac2) ≤ 2C ′ε1/4 log2( 1

ε ).

On G ∩ A0 ∩ A1 ∩ A2, we can apply Corollary 5.7, with γ = 1
5 say, and ρ = δ/2. (We use

ρ = δ/2 rather than δ to account for such things as the size-difference of matched blocks;
thus n should be taken sufficiently large.) This gives, for some C ′′ > 0 and n large

P(D) ≤ P(Ac0) + P(A0 ∩ (Ac1 ∪ Ac2 ∪ Gc)) + P({yq(1) ≥ δ/2} ∩ A0 ∩ A1 ∩ A2 ∩ G)

≤ o(1) + C ′′ε1/4 log2( 1
ε ) +

2C

δ log(ε−3/4)
.

The right-hand-side can be made arbitrarily small by picking ε > 0 small and n large.
(Since G involves the entire process, to be completely rigorous Lemmas 5.4–5.6 and
Corollary 5.7 should be proved on the event G. This can be done by working with the
time min{q, τ} where τ is the first time at which G fails. From (5.7) we see that, with
high probability, τ > q and so the only change is the addition of an o(1) term.)

A Proof of Proposition 3.4

We use the notation from Proposition 3.4, noting that S = {Zt > −1 for all t ≥ 0}.
Also note that z = P(S) > 0 when β > 1, since if z = 0 then P(∃t : Zt = −1) = 1 which
by the Markov property would imply P(lim inft→∞ Zt = −∞) = 1, contradicting the fact
that Zt → +∞ almost surely.

It will be useful to consider the times of record minima mk, which are defined as
follows. Let τ1, τ2, . . . denote the jump times of Z (equivalently, of N ′). First we define
m1 := τ1, and then inductively

mk+1 := min{τj > mk : Zτj− < Zmk−}, where min∅ =∞.

Importantly, the mk are stopping times and they characterize the frontier time `1 by
`1 = max{mk : mk < ∞}, i.e. `1 equals the last record time. The later frontier times
`k may be expressed similarly using the record minima of Z(k). Using that the mk are
stopping times we have for all k ≥ 1 that

P(mk <∞) = (1− z)k−1. (A.1)
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Proof that z = 1− e−βz: Write δ = 1− z = P(∃t : Zt = −1). By conditioning on the first
time when Zt hits −1 we see that P(∃t : Zt = −j) = δj for all j ≥ 1. Since N ′t only takes
integer values it follows δj = P(∃k ≥ 0 : N ′k+j = k). From this and the Markov property
at time 1 we find that

δ =
∑
j≥0

e−β β
j

j! δ
j = e−β(1−δ),

as claimed.

Proof that, given S, the sequence
{(

∆k, (Z
(k)
t )0≤t<∆k

)}+∞
k=0

is i.i.d.: We start by establish-
ing that

Z(k) (d)
=
(
Z | Z ∈ S

)
, for all k ≥ 1. (A.2)

This is reasonable since, for example, after `1 we know that Z does not set a new record
minimum, which is the same as saying that Z(1) does not hit −1. Using induction, (A.2)
follows from these two equalities in law:

Z(1) (d)
=
(
Z | Z ∈ S

)
, and(

Z(1) | Z ∈ S
) (d)

=
(
Z | Z ∈ S

)
.

(A.3)

To prove (A.3), let B be some event. Using the description of `1 in terms of the
stopping times mk we see that

P(Z(1) ∈ B) =
∑
k≥1

P
(
mk <∞,mk+1 =∞, (Zmk+t − Zmk)t≥0 ∈ B

)
=
∑
k≥1

P
(
mk <∞, (Zmk+t − Zmk)t≥0 ∈ B ∩ S

)
=
∑
k≥1

E
[
1I{mk<∞}P

(
(Zmk+t − Zmk)t≥0 ∈ B ∩ S | mk

)]
= P(Z ∈ B ∩ S)

∑
k≥1

P(mk <∞) = P(Z ∈ B ∩ S)
∑
k≥1

(1− z)k−1

= P(Z ∈ B ∩ S)/P(Z ∈ S),

thus Z(1) (d)
= (Z(0) | Z(0) ∈ S).

It will be useful to note the following:

P(`1 ≤ a | Z ∈ S) =
∑
k≥1

P
(
mk ≤ a,mk+1 =∞, Z ∈ S

)
/P(S)

=
∑
k≥1

P
(
mk ≤ a, Zmk− > −1, (Zmk+t − Zmk) ∈ S

)
/P(S)

=
∑
k≥1

P
(
mk ≤ a, Zmk > 0).

In particular, letting a→∞,

1 =
∑
k≥1

P
(
mk <∞, Zmk > 0).

Using this we find that

P(Z(1) ∈ B | Z ∈ S) = P(S)−1
∑
k≥1

P(mk <∞, Zmk > 0, (Zmk+t − Zmk)t≥0 ∈ B ∩ S)

=
P(Z ∈ B ∩ S)

P(S)

∑
k≥1

P
(
mk <∞, Zmk > 0)

= P(Z ∈ B | Z ∈ S).
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Thus
(
Z(1) | Z ∈ S

) (d)
=
(
Z | Z ∈ S

)
.

It remains to prove independence. For this it suffices to show that, for any r ≥ 2 and
events B1, . . . ,Br we have

P((Z
(i)
t )0≤t<∆i ∈ Bi ∀i = 1, . . . , r) =

r∏
i=1

P((Z
(i)
t )0≤t<∆i ∈ Bi).

We give details for the case r = 2, the other cases are similar. Using (A.2) we have

P((Z
(1)
t )0≤t<∆1 ∈ B1, (Z

(2)
t )0≤t<∆2 ∈ B2)

= P((Z
(0)
t )0≤t<∆0

∈ B1, (Z
(1)
t )0≤t<∆1

∈ B2 | Z(0) ∈ S). (A.4)

Note that

P((Z
(0)
t )0≤t<∆0

∈ B | Z(0) ∈ S)

= P(S)−1
∑
k≥1

P
(
mk <∞, Zmk > 0, (Zt)0≤t<mk ∈ B, (Zmk+t − Zmk)t≥0 ∈ S

)
=
∑
k≥1

P
(
mk <∞, Zmk > 0, (Zt)0≤t<mk ∈ B

) (A.5)

The right-hand-side of (A.4) equals

P(S)−1
∑
k≥1

P
(
mk <∞, Zmk > 0,(Zt)0≤t<mk ∈ B1, (Zmk+t − Zmk)t≥0 ∈ S;

(Zmk+t − Zmk)0≤t<`2−`1 ∈ B2

)
.

By conditioning on mk and (Zt)0≤t<mk we find that this equals

P((Z
(0)
t )0≤t<∆0

∈ B2 | Z ∈ S)
∑
k≥1

P(mk <∞, Zmk > 0, (Zt)0≤t<mk ∈ B1),

which by (A.5) and (A.2) equals P((Z
(1)
t )0≤t<∆1

∈ B1)P((Z
(2)
t )0≤t<∆2

∈ B2).

Proof of (3.5) and (3.6). Both will follow from P(`1 ≥ t) ≤ Ce−ct. Indeed, for (3.5) we
have that

P(τY <∞, τY ≥ t) ≤ P(Z`1− ≤ −1, `1 ≥ t) ≤ P(`1 ≥ t),

and for (3.6) we have by what was shown above

P(∆k ≥ t | S) = P(`1 ≥ t | S) ≤ 1

z
P(`1 ≥ t).

We have

P(`1 ≥ t) ≤
∑
k≥btc

P(`1 ∈ [k, k + 1)) ≤
∑
k≥btc

P(Zk < 1) =
∑
k≥btc

P(N ′k < k + 1),

since if `1 ∈ [k, k + 1) then in particular Zt must be < 0 for some t ∈ [k, k + 1) which
requires that Zk < 1. Now N ′k is Po(βk)-distributed, so a simple computation with
Laplace-transforms gives

P(N ′k < k + 1) ≤ eβ exp[−k(β − 1− log β)].

Since β > 1 we have that β − 1− log β > 0, and the bound follows.
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B Proof of Proposition 5.3

Let us write simply Y for Y0. For the first part, let K = dlog2(1/ε)e. We have

K∑
k=0

2kσ(2−k,Y) ≥
∑
i

Yi
K∑
k=0

2k1I{2−K≤Yi<2−k}

=
∑
i

Yi1I{Yi≥ε}
blog2(1/Yi)c∑

k=0

2k

≥
∑
i≥1

Yi1I{Yi≥ε}
1

Yi
= Nε(Y).

Hence using (5.2),

E[Nε(Y)] ≤
K∑
k=0

2kE[σ(2−k,Y)] ≤ C
K∑
k=0

k ≤ C ′K2,

which gives the claim.
Next, if Y is PD(θ)-distributed then a size-biased sample from Y is Beta(1, θ)-distribut-

ed. This means that if we select a random index I in such a way that P(I = i | Y) = |Yi|,
then

E[σ(ε,Y)] = E
[∑

i

1I{|Yi|<ε}|Yi|
]

= P(YI < ε) = 1− (1− ε)θ ≤ ε,

as claimed.
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