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Abstract

It has been recently understood [9, 24, 30] that for a general class of percolation
models on Zd satisfying suitable decoupling inequalities, which includes i.a. Bernoulli
percolation, random interlacements and level sets of the Gaussian free field, large scale
geometry of the unique infinite cluster in strongly percolative regime is qualitatively
the same; in particular, the random walk on the infinite cluster satisfies the quenched
invariance principle, Gaussian heat-kernel bounds and local CLT.

In this paper we consider the random walk loop soup on Zd in dimensions d ≥ 3. An
interesting aspect of this model is that despite its similarity and connections to random
interlacements and the Gaussian free field, it does not fall into the above mentioned
general class of percolation models, since the required decoupling inequalities are
not valid.

We identify weaker (and more natural) decoupling inequalities and prove that (a)
they do hold for the random walk loop soup and (b) all the results about the large
scale geometry of the infinite percolation cluster proved for the above mentioned
class of models hold also for models that satisfy the weaker decoupling inequalities.
Particularly, all these results are new for the vacant set of the random walk loop soup.
(The range of the random walk loop soup has been addressed by Chang [6] by a model
specific approximation method, which does not apply to the vacant set.)

Finally, we prove that the strongly supercritical regime for the vacant set of the
random walk loop soup is non-trivial. It is expected, but open at the moment, that the
strongly supercritical regime coincides with the whole supercritical regime.
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Decoupling inequalities for the random walk loop soup

1 Introduction

Consider the integer lattice Zd with dimension d ≥ 3. Any nearest neighbor path
˙̀ = (x1, . . . , xn) on Zd with xn being a neighbor of x1 is called a (non-trivial discrete)
based loop. Two based loops of length n are equivalent if they differ only by a circular
permutation of their vertices, i.e., (x1, . . . , xn) is equivalent to (xi, . . . , xn, x1, . . . , xi−1)

for all i. Equivalence classes of based loops for this equivalence relation are called loops.
Consider the measure µ̇ on based loops defined by

µ̇( ˙̀) =
1

n

(
1

2d

)n
, ˙̀ = (x1, . . . , xn),

and denote the push-forward of µ̇ on the space of loops by µ. For α > 0, let L α be the
Poisson point process of loops with intensity measure αµ (random walk loop soup).

Poisson ensembles of Markovian loops (loop soups) have been recently actively
researched by probabilists and mathematical physicists partly due to their connections
to the Gaussian free field, the Schramm-Loewner Evolution and the loop erased random
walk, see, e.g., [16, 17, 32, 36, 19, 20, 5, 3, 31]. Although they already appear implicitly
in the work of Symanzik [33] on representations of the φ4 Euclidean field, the first
mathematically rigorous definitions were given by Lawler and Werner [16] in the context
of planar Brownian motion (Brownian loop soup) and by Lawler and Trujillo Ferreras
[15] in discrete setting.

Percolation of loop soups was first considered by Lawler and Werner [16] and Sheffield
and Werner [32], who identified, in particular, the value of the critical intensity for the
planar Brownian loop soup. The existence of percolation phase transition for the random
walk loop soup on Zd and properties of the critical intensity have been investigated in
[18, 19, 7, 21, 6]. Comprehensive analysis of connectivity properties of the random walk
loop soup on Zd in subcritical regime was achieved by Chang and the second author [7]
and in supercritical regime by Chang [6].

One of the main challenges for the study of connectivity properties of the loop soup
is the polynomial decay of correlations (see [7]). Models of percolation exhibiting strong
spatial correlations have been of immense interest in the last decade, including the
random interlacements, the vacant set of random interlacements and the level sets
of the Gaussian free field, see, e.g., [34, 35, 29]. Many of the methods (particularly,
the coarse graining and Peierls-type arguments) developed for Bernoulli percolation
do not apply to these models. The fundamental idea behind the major progress in
understanding these models (which are monotone in their intensity parameters) is
that the effect of correlations can be well dominated with a slight tilt of the intensity
parameter (sprinkling). This idea is formalized in correlation inequalities, known as
decoupling inequalities [34, 35, 29, 11, 22, 23, 1, 28]. A general class of percolation
models, which satisfy a suitable decoupling inequality and contains the three models
mentioned above, was considered in [9, 24, 30], where most of the geometric properties
of the infinite percolation cluster, previously only known to hold for Bernoulli percolation,
were proven. (See Section 6 for a precise formulation of conditions from [9].) An
interesting aspect of the random walk loop soup percolation is that it does not fall
into this general class of models, since the decoupling inequalities assumed there (see
condition P3 in Section 6) are not valid. The main reason is that the error term in the
decoupling inequality P3 gets smaller on larger scales, while the stochastic behavior
of macroscopic loops in the loop soup is scale invariant, see Remark 6.2 for some more
details.

The main goal of this paper is the study of geometric properties of connected compo-
nents of the vacant set of the loop soup L α — the vertices of Zd that do not belong to
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Decoupling inequalities for the random walk loop soup

any of the loops in L α — which we denote by Vα. The vacant set exhibits a non-trivial
percolation phase transition: there exists α∗ ∈ (0,∞) such that

• for α < α∗ there is almost surely a unique infinite connected component in Vα,

• for α > α∗ all the connected components are almost surely finite.

The fact that α∗ < ∞ is elementary, since Vα is stochastically dominated by Bernoulli
site percolation with parameter exp

(
− α

4d2

)
(by restricting L α to loops of length 2), and

the positivity of α∗ follows from Theorem 1.3. The uniqueness of the infinite cluster is
not entirely trivial, since the so-called positive finite energy property fails for Vα, but
still can be proved by a direct adaptation of the standard Burton-Keane argument [4], cf.
Remark 3.5.

Our main focus is on geometric properties of the unique infinite cluster of Vα. As
already mentioned, a unified framework to study infinite clusters of (correlated) percola-
tion models on Zd was proposed in [9], within which various results that were previously
known only for supercritical Bernoulli percolation have been proven. These include i.a.
quenched Gaussian heat kernel bounds, Harnack inequalities, invariance principle and
local CLT for the simple random walk on the infinite cluster [24, 30]. The loop soup
percolation does not fall into this general class of models, since decoupling inequalities
P3 assumed there are not valid, see Remark 6.2. However, Chang [6] was able to prove
all the above mentioned results for the infinite cluster in the range of the loop soup L α

by observing that the properties of the infinite cluster are predominantly determined by
loops with bounded diameter. In a way, the infinite cluster is a small perturbation on top
of the infinite cluster of truncated loops. His analysis relies substantially on the Poisson
point process structure of the loop soup and cannot be adapted to the vacant set, which
is thus considerably more difficult.

Our first result states that the range of L α does satisfy a decoupling inequality, which
is however weaker than the one imposed in [9], see Remarks 6.1(4) and 6.2.

Theorem 1.1 (Decoupling inequalities). Let Rα be the set of vertices visited by loops
from L α (the range of L α) and denote by Eα the expectation with respect to the
distribution of {1x∈Rα}x∈Zd on {0, 1}Zd . There exist constants C, c such that for any
α > 0, δ ∈ (0, 1), integers L, s ≥ 1, x1, x2 ∈ Zd with ‖x1 − x2‖ = sL, and any functions

f1, f2 : {0, 1}Zd → [0, 1] such that fi(ω) only depends on values of ωx with ‖x− xi‖ ≤ L,

1. if f2 is increasing, then

Eα [f1 f2] ≤ Eα [f1] Eα+δ [f2] + C exp
(
α− c

√
δsd−2

)
, (1.1)

2. if f2 is decreasing, then

Eα [f1 f2] ≤ Eα [f1] E(α−δ)+ [f2] + C exp
(
α− c

√
δsd−2

)
. (1.2)

It turns out that the decoupling inequalities of Theorem 1.1 are strong enough to
obtain the same results about the infinite cluster of Vα as those derived for the class
of models from [9]. More precisely, in Section 6, after recalling the assumptions from
[9], we prove that condition P3 on spatial correlations can be relaxed, cf. condition
D in Section 6, without any effect on the conclusions of [9] and of [24, 30] where the
framework of [9] was further used, see Theorem 6.4 and Corollary 6.5. Crucially, even
though the vacant set Vα does not satisfy condition P3, it does satisfy the weaker
condition D by Theorem 1.1 (see Remark 6.1(4)).

Furthermore, let us emphasize that condition D is not only weaker than P3, but
also more natural, since it postulates decorrelation of local events occuring in large
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boxes only when the boxes are far apart. All in all, we believe that Theorem 6.4 and
Corollary 6.5 are of independent importance beyond their application in the present
paper, nevertheless, we postpone their formulation to Section 6 because of a large
amount of necessary notation.

Incidentally, the results of Chang [6] about the geometry of the infinite cluster in the
range of the loop soup can now be directly deduced as a special case of Corollary 6.5
(and Theorem 1.1).

Remark 1.2. It is natural to ask if the error term of decoupling inequalities (1.1) and
(1.2) is optimal. We believe it is not, but do not know a good heuristics. Our proof is
based on a delicate interplay between probabilities of two rare events (excess in the
number of large loop excursions near x1, resp., x2) and it looks so that our result is
optimal for the method, see Remark 4.2. For the application of Theorem 1.1 in this
paper (Theorem 1.4), an error term in the form C exp

(
−c δβ sγ

)
with some β, γ > 0 would

suffice, see Corollary 6.5 and Remark 6.6.

Our next result proves that for small enough values of α, the vacant set Vα contains
with high probabilitity a unique giant cluster in all large enough boxes. In particular, it
implies that the supercritical phase is non-trivial (α∗ > 0).

Theorem 1.3 (Local uniqueness). For any d ≥ 3 there exist α1 > 0, c = c(d) > 0 and
C = C(d) <∞ such that for all 0 ≤ α ≤ α1 and n ≥ 1,

P

[
the infinite connected component of Vα

intersects B(0, n)

]
≥ 1− Ce−nc (1.3)

and

P

[
any two connected subsets of Vα ∩ B(0, n) with
diameter ≥ n

10 are connected in Vα ∩ B(0, 2n)

]
≥ 1− Ce−nc . (1.4)

Properties (1.3) and (1.4) appear as assumption S1 in the framework of [9], see
Section 6. The remaining conditions (ergodicity, monotonicity, continuity) from [9]
are easily verified for Vα, see Remark 6.6. As a result, we can summarize the main
conclusions about the geometry of the infinite cluster of Vα as follows. (This is an
immediate application of Theorem 1.1, Corollary 6.5 and Remark 6.6.)

Theorem 1.4. Let d ≥ 3 and α1 > 0. If (1.3) and (1.4) hold for all α < α1 with constants
c = c(d, α) > 0 and C = C(d, α) <∞, then the unique infinite cluster of Vα satisfies all
the results from [9, 24, 30] for all α < α1, more precisely,

• Theorems 2.3 (chemical distances) and 2.5 (shape theorem) in [9],

• Theorem 1.1 in [24] (quenched invariance principle),

• Theorem 1.13 (Barlow’s ball regularity), Corollary 1.14 (quenched Gaussian heat
kernel bounds, elliptic and parabolic Harnack inequalities), Theorem 1.19
(quenched local CLT), as well as Theorems 1.16–1.18, 1.20 in [30].

We refer the reader to the introduction of [30] for the precise statements of these results.

We strongly believe that properties (1.3) and (1.4) with some c = c(d, α) > 0 and
C = C(d, α) < ∞ hold for all α < α∗. This has been proven to hold for Bernoulli
percolation (for all p > pc, see [12, (7.89)]), the random interlacements (for all u > 0, see
[26]) and for the range of the loop soup (for all α > αc, see [6]), but is still conjectured for
the level sets of the Gaussian free field and for the vacant set of random interlacements.
(Analogues of Theorem 1.3 are proved for the level sets of the Gaussian free field on Zd

in [9] and on transient graphs from a broad class in [8] and for the vacant set of random
interlacements on Zd in [38] (for d ≥ 5) and [10] (for d ≥ 3).)
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Overview of the paper In Section 2 we collect basic definitions and classical results
on random walks. In Section 3 we study the Poisson point process of loops that intersect
two disjoint sets. Such loops can be cut into successive excursions between the two
sets which are distributed as independent random walk bridges conditioned on their
starting and ending points, see Proposition 3.4. In Section 4 we prove Theorem 1.1
and in Section 5 Theorem 1.3. Finally in Section 6, which can be read independently of
all the other sections, we recall the general conditions on percolation models from [9],
formulate a weaker decoupling inequality D and prove in Theorem 6.4 that the condition
P3 from [9] can be substituted by D without any loss in conclusions. The punchline of
Section 6 is Corollary 6.5, which particularly gives Theorem 1.4.

2 Notation and preliminaries

For x ∈ Zd, let ‖x‖ and ‖x‖1 be the `∞-, resp., `1-norm of x and denote by B(x, r) the
`∞ closed ball in Zd of radius r centered in x.

For a set A ⊆ Zd, let ∂intA = {y ∈ A : ‖y′ − y‖1 = 1 for some y′ ∈ Zd \ A} be the
interior boundary of A and ∂extA = {y /∈ A : ‖y′ − y‖1 = 1 for some y′ ∈ A} the exterior
boundary of A.

A function f : {0, 1}Zd → R is called increasing if f(ω) ≤ f(ω′) for any ω, ω′ ∈ {0, 1}Zd

such that ωx ≤ ω′x for all x ∈ Zd. A subset E of {0, 1}Zd is called increasing if its indicator
1E is increasing (1E(ω) = 1 if ω ∈ E and 0 otherwise). A function f , resp., a set E, is

called decreasing if −f , resp., {0, 1}Zd \ E, is increasing.
Let W+ be the set of all infinite nearest neighbor paths on Zd endowed with the

σ-algebra generated by coordinate maps Xn, n ∈ N. Denote by Px the law of a simple
random walk on Zd started at x and by g : Zd ×Zd → R the Green function of the simple
random walk, g(x, y) =

∑∞
n=0 Px[Xn = y]. It is well known, see, e.g., [13, Theorem 1.5.4],

that for any d ≥ 3, there exist cg > 0 and Cg <∞ such that

cg (‖x− y‖+ 1)2−d ≤ g(x, y) ≤ Cg (‖x− y‖+ 1)2−d, x, y ∈ Zd. (2.1)

For A ⊂ Zd and a nearest neighbor path w = (w0, . . . , wN ) on Zd, where N ∈ N0 ∪
{+∞}, let HA(w) = inf{n ≥ 0 : wn ∈ A} be the entrance time in A and H̃A(w) = inf{n ≥
1 : wn ∈ A} the hitting time of A. The equilibrium measure of a finite set A is defined by
eA(x) = Px[H̃A =∞]1A(x). Its total mass is the capacity of A, cap(A) =

∑
x eA(x). The

equilibrium measure of any finite set in dimensions d ≥ 3 is non-zero and we denote by
ẽA the normalized equilibrium measure. The following relation between the entrance
time probability, the Green function and the equilibrium measure is classical, see, e.g.,
[34, (1.8)]:

Px[HA <∞] =
∑
y∈A

g(x, y)eA(y). (2.2)

By taking x = 0 and A = ∂intB(0, n) in (2.2) and using (2.1), one easily gets the bounds
on the capacity of balls:

cc n
d−2 ≤ cap (B(0, n)) = cap (∂intB(0, n)) ≤ Cc nd−2. (2.3)

The following lemma and corollary are also standard. They will be used in the proof of
Theorem 1.1.

Lemma 2.1. There exist constants c = c(d) > 0 and C = C(d) <∞ such that

1. for all n ≥ 1 and x /∈ B(0, n),

c

(
n

‖x‖

)d−2

≤ Px
[
HB(0,n) <∞

]
≤ C

(
n

‖x‖

)d−2

, (2.4)
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2. for all n ≥ 1, m > 2n, A ⊂ B(0, n), x /∈ B(0,m) and y ∈ A,

c ẽA(y) ≤ Px [XHA = y | HA <∞] ≤ C ẽA(y). (2.5)

Proof. The first statement is immediate from (2.1), (2.2) and (2.3). The second follows
from [13, Theorem 2.1.3] and the Harnack principle (see, e.g., [13, Theorem 1.7.6]).

Corollary 2.2. Let L ≥ 1, 2 < r ≤ 1
2s be integers, x1, x2 ∈ Zd with ‖x1 − x2‖ = sL, and

define Si = ∂intB(xi, L) and S′i = ∂intB(xi, rL), i ∈ {1, 2}.
There exist constants c = c(d) > 0 and C = C(d) <∞ such that for all r > C, x ∈ S′1

and y ∈ S2,

cPx [HS2
<∞] ẽS2

(y) ≤ Px
[
HS2

< HS1
, XHS2

= y
]
≤ C Px [HS2

<∞] ẽS2
(y). (2.6)

Proof. Immediate from Lemma 2.1 and the Markov property of random walk.

For A ⊂ Zd, x /∈ A, y ∈ A, consider the law

PAx,y = Px [(X0, . . . , XHA) = · | XHA = y]

of a random walk path (bridge) from x conditioned to enter A at y.
The set of all based loops is denoted by L̇ and all loops by L. For a loop ` ∈ L and

A ⊂ Zd, we write ` ∩A 6= ∅ if some (and hence all) representative from the equivalence
class ` contains at least one vertex in A. If A = {x}, then we instead write x ∈ `. If L is a
subset of L and x ∈ Zd, then we write x ∈ L if there exists ` ∈ L such that x ∈ `.

We denote by π : L̇→ L the canonical projection, i.e., π( ˙̀) is the equivalence class of
˙̀. Consider the measure µ̇ on L̇ defined by

µ̇( ˙̀) =
1

n
Px1

[
(X0, . . . , Xn−1) = ˙̀, Xn = x1

]
=

1

n

(
1

2d

)n
, ˙̀ = (x1, . . . , xn), (2.7)

and denote by µ the push-forward of µ̇ on L by π.
For α > 0 let

• L α be the Poisson point process of loops with intensity measure αµ,

• Nα the field of cumulative local times for the loops in L α,

• Vα = {x ∈ Zd : Nα(x) = 0} the vacant set for L α.

We assume that these processes are defined on a probability space (K,K,P), whose
precise description is irrelevant and also use Pα and Eα to denote the law, resp.,
expectation, of {1x∈Lα}x∈Zd on {0, 1}Zd .

Constants that only depend on the dimension (and in Seciton 6 possibly also on a and
b) are denoted by c and C. Their value may change from line to line and even within
lines.

3 Decomposition of loops in excursions

In this section we study properties of loops that visit two disjoint sets A,B ⊂ Zd. Any
such loop can be cut into alternating excursions from A to B and from B to A, which,
given their starting and ending points, are distributed as independent random walk
bridges. This gives a useful way to sample the Poisson point process of loops that visit A
and B, see Proposition 3.4. Furthermore, the total number of loop excursions is unlikely
to be large if A and B are far apart, see Lemma 3.6.

Let A,B ⊂ Zd be disjoint and consider the set of all loops that visit A and B:

LA,B := {` ∈ L : ` ∩A 6= ∅, ` ∩B 6= ∅} .
We first recall a useful representation of the measure µ on LA,B from [7].
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Definition 3.1. For each ` ∈ L, let L(A,B)(`) be the set of all based loops ˙̀ = (x1, . . . , xn)

from the equivalence class ` such that

• x1 ∈ A,

• there exists i such that xi ∈ B and for all j > i (if exists) xj /∈ (A ∪B).

Note that

• L(A,B)(`) ∩ L(A,B)(`′) = ∅ if ` 6= `′,

• L(A,B)(`) 6= ∅ if and only if ` ∈ LA,B.

Any loop in LA,B can be decomposed into alternating nearest neighbor excursions from
A to B and from B to A. For any ` ∈ LA,B and ˙̀ = (x1, . . . , xn) ∈ L(A,B)(`), we define
the entrance times

φ1( ˙̀) = 1,

ψ1( ˙̀) = inf
{
j > φ1( ˙̀) : xj ∈ B

}
,

φk( ˙̀) = inf
{
j > ψk−1( ˙̀) : xj ∈ A

}
,

ψk( ˙̀) = inf
{
j > φk( ˙̀) : xj ∈ B

}
, k ≥ 1,

(3.1)

with inf{∅} =∞, and let

k( ˙̀) = sup{n ≥ 1 : φn( ˙̀) <∞} <∞.

Note that the value of k( ˙̀) is the same for all ˙̀ ∈ L(A,B)(`), in fact k( ˙̀) = |L(A,B)(`)|,
and we denote it by k(`).

Lemma 3.2. [7, Claim 1] For any loop ` ∈ LA,B,

µ(`) =
|`|
k(`)

∑
˙̀∈L(A,B)(`)

µ̇( ˙̀)

(2.7)
=

1

k(`)

∑
x∈A

Px
[
(X0, . . . , X|`|−1) ∈ L(A,B)(`), X|`| = x

]
,

where |`| is the length of the loop `.

Let L α
A,B be the restriction of L α to LA,B. It is a Poisson point process with intensity

measure α1LA,B µ, which is independent from the restriction of L α to L \ LA,B. We are
interested in the distribution of excursions from A to B of the loops in L α

A,B (parts of
the loop between times φi and ψi). The set of excursions is only determined up to cyclic
permutations, therefore, it is more convenient to work with excursions of based loops.
The following lemma identifies L α

A,B with a projection of a suitable Poisson point process
of based loops. Let

L̇A,B = L(A,B)(LA,B),

i.e., the set of all based loops ˙̀ = (x1, . . . , xn) such that

• x1 ∈ A,

• there exists i such that xi ∈ B and xj /∈ (A ∪B) for all j > i.

(Mind that L̇A,B is not the set of all based loops that intersect A and B, as may be
suggested by notation.)
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Lemma 3.3. Let L̇ α
A,B be a Poisson point process on L̇A,B with intensity measure αµ̇A,B,

where

µ̇A,B( ˙̀) =
1

k( ˙̀)
Px1

[
(X0, . . . , X| ˙̀|−1) = ˙̀, X| ˙̀| = x1

]
, ˙̀ = (x1, . . . , x| ˙̀|) ∈ L̇A,B .

Then π
(
L̇ α
A,B

)
is a Poisson point process on LA,B with intensity measure α1LA,B µ.

In other words, to sample L α
A,B one first samples the Poisson point process L̇ α

A,B of
based loops and then replaces each based loop by its equivalence class.

Proof. This is a direct consequence of Lemma 3.2. Indeed, π
(
L̇ α
A,B

)
is a Poisson point

process with intensity measure

` 7→ α
∑

˙̀∈L(A,B)(`)

µ̇A,B( ˙̀) = αµ(`) , ` ∈ LA,B .

The advantage of based loops in L̇ α
A,B is that their excursions from A to B are

naturally ordered. Of course, the range of all based loops in L̇ α
A,B has the same law as

the range of all loops in L α
A,B.

Next, we decompose the Poisson point process L̇ α
A,B according to the number of

excursions that a based loop makes from A to B. Namely, for j ≥ 1, we denote by L̇ α,j
A,B

the restriction of L̇ α
A,B to L̇jA,B = { ˙̀ ∈ L̇A,B : k( ˙̀) = j}. Then,

• L̇ α,j
A,B, j ≥ 1, are independent Poisson point processes,

• the intensity measure of L̇ α,j
A,B is α1L̇jA,B

µ̇A,B,

• L̇ α
A,B =

∑∞
j=1 L̇ α,j

A,B.

We show in Proposition 3.4 that each loop soup L̇ α,j
A,B can be constructed by sampling

the starting and ending locations of all the excursions from A to B of all the loops in
L̇ α,j
A,B according to a Poisson point process and then joining the endpoints by independent

random walk bridges.

Let j ≥ 1 and recall φi and ψi defined in (3.1). For a loop ˙̀ = (x1, . . . , xn) ∈ L̇jA,B,

denote the starting and ending locations of all the excursions of ˙̀ from A to B by

Φi( ˙̀) = xφi( ˙̀) ∈ A, Ψi( ˙̀) = xψi( ˙̀) ∈ B, 1 ≤ i ≤ j,

the excursions from A to B by

−→
W i( ˙̀) =

(
xφi( ˙̀), . . . , xψi( ˙̀)

)
, 1 ≤ i ≤ j,

and the excursions from B to A by

←−
W i( ˙̀) =

(
xψi( ˙̀), . . . , xφi+1( ˙̀)

)
, 1 ≤ i ≤ j − 1,

←−
W j( ˙̀) =

(
xψj( ˙̀), . . . , xn, x1

)
,
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Decoupling inequalities for the random walk loop soup

A
B

Φ1( ˙̀)

Φ2( ˙̀)

Ψ2( ˙̀)

Ψ1( ˙̀)−→
W 1( ˙̀)

←−
W 1( ˙̀)

−→
W 2( ˙̀)

←−
W 2( ˙̀)

Figure 1: Decomposition of a loop from L̇2
A,B into successive excursions.

see Figure 1 for an illustration; and consider the Poisson point processes (multisets)

Eα,jA,B =
{(

(Φ1( ˙̀),Ψ1( ˙̀)), . . . , (Φj( ˙̀),Ψj( ˙̀))
)
, ˙̀ ∈ L̇ α,j

A,B

}
,

−→E α,jA,B =
{(−→
W 1( ˙̀), . . . ,

−→
W j( ˙̀)

)
, ˙̀ ∈ L̇ α,j

A,B

}
,

←−E α,jA,B =
{(←−
W 1( ˙̀), . . . ,

←−
W j( ˙̀)

)
, ˙̀ ∈ L̇ α,j

A,B

}
.

(3.2)

Proposition 3.4. Let A,B be disjoint subsets of Zd, d ≥ 3. For an infinite path w =

(x0, x1, . . .), consider the sequence of times

τ0(w) = 0,

τ2j+1(w) = inf{k > τ2j(w) : xk ∈ B},
τ2j+2(w) = inf{k > τ2j+1(w) : xk ∈ A}, j ≥ 0 ,

where inf ∅ =∞.
Then, for any α > 0 and integer j ≥ 1,

1. the intensity of Eα,jA,B is

((a1, b1), . . . , (aj , bj)) ∈ (A×B)j 7−→ α

j
Pa1

[
τ2j <∞, Xτ2j = a1,

Xτ2(i−1)
= ai, Xτ2i−1 = bi, 1 ≤ i ≤ j

]
,

2. conditioned on the multiset Eα,jA,B = {(ai1, bi1), . . . , (aij , bij), 1 ≤ i ≤ n}, the Poisson

point processes
−→E α,jA,B and

←−E α,jA,B are independent and sampled as products of bridge

measures PBaik,bik , resp., PAbik,ai(k+1)
,

Thus, the loops from L̇ α
A,B can be sampled in steps: first sample the number and

the starting and ending locations of all excursions of all loops in L̇ α
A,B by sampling

independently Eα,jA,B, j ≥ 1, and then complete all the excursions by sampling independent

random walk bridges from PB·,·, resp., PA·,·.
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Decoupling inequalities for the random walk loop soup

Proof. Let j ≥ 1 and ˙̀ = (x1, . . . , x| ˙̀|) ∈ L̇jA,B. The result is immediate from the following
representation of µ̇A,B:

µ̇A,B( ˙̀) =
1

j
Px1

[
(X0, . . . , X| ˙̀|−1) = ˙̀, X| ˙̀| = x1

]

=
1

j
Px1

 τ2j <∞, Xτ2j = x1, Xτ2(i−1)
= Φi( ˙̀), Xτ2i−1

= Ψi( ˙̀),

(Xτ2(i−1)
, . . . , Xτ2i−1

) =
−→
W i( ˙̀),

(Xτ2i−1
, . . . , Xτ2i) =

←−
W i( ˙̀), 1 ≤ i ≤ j


=

1

j
Px1

[
τ2j <∞, Xτ2j = x1,

Xτ2(i−1)
= Φi( ˙̀), Xτ2i−1 = Ψi( ˙̀), 1 ≤ i ≤ j

]
j∏
i=1

PB
Φi( ˙̀),Ψi( ˙̀)

[−→
W i( ˙̀)

] j∏
i=1

PA
Ψi( ˙̀),Φi+1( ˙̀)

[←−
W i( ˙̀)

]
,

where in the last step we used the Markov property of random walk and set Φj+1 =

Φ1.

Remark 3.5. Proposition 3.4 (applied to A = ∂intB(0, n), B = ∂extB(0, n)) can be used
to adapt to Vα the standard Burton-Keane argument [4] for the uniqueness of the
infinite percolation cluster, even though one of the main requirements, the positive
finite energy property, is not satisfied by Vα. (The positive finite energy property states
that P [0 ∈ Vα | σ (1x∈Vα , x 6= 0)] > 0 almost surely, which is obviously not the case here,
since, for instance, if all the vertices of B(0, 2) \ {0} are vacant except for one neighbor
of the origin, then the origin cannot be vacant, as every loop visits at least 2 vertices.)
See, e.g., [37, Theorem 1.1], where the Burton-Keane argument is adapted to prove the
uniqueness of the infinite percolation cluster in the vacant set of random interlacements,
which also does not satisfy the positive finite energy property.

We end this section with a large deviation bound on the total number of excursions
from A to B in all loops from L α

A,B.

Lemma 3.6. Let A,B be (disjoint) subsets of Zd such that

sup
y∈B

Py[HA <∞] ≤ 1

2e
. (3.3)

Let ZαA,B be the total number of excursions from A to B of all the loops from L α. Then,

P[ZαA,B ≥ k] ≤ exp (α− k) .

Proof. Let Zα,jA,B be the number of loops in L̇ α,j
A,B. By Proposition 3.4(1), Zα,jA,B are

independent Poisson random variables with intensities

λj =
α

j

∑
x∈A

Px
[
τ2j <∞, Xτ2j = x

]
≤ α

j
sup
z∈A

Pz [τ2j <∞]
(∗)
≤ α

j

(
sup
z∈A

Pz [τ2 <∞]

)j
(∗∗)
≤ α

j

(
sup
y∈B

Py [HA <∞]

)j (3.3)
≤ α

j

(
1

2e

)j
, (3.4)

where in (∗) we used the strong Markov property at times τ2i, 1 ≤ i < j, and in (∗∗) at

time τ1. Furthermore, by Lemma 3.3, ZαA,B
d
=
∑∞
j=1 j Z

α,j
A,B. Thus,

E
[
exp

(
ZαA,B

)]
= E

exp

 ∞∑
j=1

j Zα,jA,B

 =

∞∏
j=1

E
[
exp

(
j Zα,jA,B

)]

=

∞∏
j=1

exp
(
λj
(
ej − 1

)) (3.4)
≤ eα,

and the result follows from the exponential Chebyshev inequality.
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Decoupling inequalities for the random walk loop soup

4 Proof of Theorem 1.1

The proofs of (1.1) and (1.2) are very similar and we only provide here the proof of
(1.1).

We begin with an outline of the proof. We decompose the loops from L α that intersect
S1 = ∂intB(x1, L) and S′1 = ∂intB(x1, rL) (with a fixed large r ∈ (2, s/2]) into inner (from
S1 to S′1) and outer (from S′1 to S1) excursions. By Proposition 3.4, given their starting
and ending locations, the inner and outer excursions are independent random walk
bridges. By the locality of f1 and f2 and disjointness of B(x1, rL) and B(x2, L), the inner
excursions contribute only to the value of f1 and the outer only to the value of f2. By
Lemma 3.6 the total number of the outer excursions is bounded by k with probability
≤ eα−k. For each outer excursion, its range in B(x2, L) is stochastically dominated
by the range of a random walk loop soup with intensity δ

k on an event of probability
≥ 1 − exp

(
δ
k s

2(d−2)
)

(see Lemma 4.1). Since f2 is monotone and depends only on the
configuration in B(x2, L), the stochastic domination implies the desired inequality for
expectations. Optimization over k gives (for k =

√
δsd−2) the desired error term.

We proceed with the details of the proof. Without loss of generality, we may assume
that s ≥ s0 = s0(d). Let L ≥ 1 and take 2 < r ≤ s/2 sufficiently large (the ultimate choice
of r depends only on the dimension). Let x1, x2 ∈ Zd with ‖x1 − x2‖ = sL and define

Bi = B(xi, L), B′i = B(xi, rL), Si = ∂intBi, S′i = ∂intB
′
i.

Let f1, f2 : {0, 1}Zd → [0, 1] such that fi only depends on coordinates of ω ∈ {0, 1}Zd in Bi
and assume that f2 is increasing.

Let Z = ZαS′1,S1
be the total number of excursions from S′1 to S1 in L α and E =

{(Xi,Yi) : 1 ≤ i ≤ Z} the multiset of starting and ending positions of all the excursions
(i.e., all the pairs from Eα,jS′1,S1

, j ≥ 1). By Proposition 3.4, conditioned on E , the excursions
are distributed as independent random walk bridges started at Xi and conditioned to hit
S1 at Yi.

Let k ≥ 1 (to be specified later) and consider the event

G1 = {Z ≤ k}.

By the locality of f1 and f2, f1 only depends on the loops from L α that are contained in
B′1 and on the excursions of the loops intersecting both S1 and S′1 that start on S1 and end
on S′1, and f2 is independent of all these loops and excursions given E by Proposition 3.4
and the definition of Poisson point process. Thus,

Eα [f1 f2] ≤ Eα [f11G1
Eα [f2 | E ]] + Pα[Gc1]. (4.1)

We will now bound Eα [f2 | E ]. For each k-tuple {(x̃i, ỹi) ∈ S′1 × S1, 1 ≤ i ≤ k}, denote by

Eα;{(x̃i,ỹi)}ki=1
the expectation with respect to the distribution of {1x∈R̃}x∈Zd on {0, 1}Zd ,

where R̃ is the range of

• the loops from L α that do not intersect S1 and

• independent k-tuple of independent random walk bridges with the ith bridge
starting at x̃i and conditioned to hit S1 at ỹi.

By the monotonicity of f2,

Eα [f2 | E ] ≤ max
{(x̃i,ỹi)∈S′1×S1}k

i=1

Eα;{(x̃i,ỹi)}ki=1
[f2] on G1.

It now suffices to analyse separately the influence of each bridge on the configuration
in B2. We will prove the following lemma, which easily gives the main result.
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Decoupling inequalities for the random walk loop soup

x1 x2

S1 S2

S ′1 S ′2
sL

rL
L

x

y

Figure 2: The range in B2 of a random walk bridge started at x and conditioned to hit S1

at y is denoted by Rx,y.

Lemma 4.1. For x ∈ S′1 and y ∈ S1, let Rx,y be the range in B2 of a random walk bridge
started at x and conditioned to hit S1 at y, see Figure 2. For δ′ ∈ (0, 1), let R be the
range in B2 of the loops from the loop soup L δ′ .

Then for each r ≥ r0 = r0(d) there exists a coupling (Rx,y,R) of Rx,y and R such that

P
[
Rx,y ⊆ R

]
≥ 1− Cs2(2−d) exp

[
−c δ′ s2(d−2)

]
,

where C = C(d, r) and c = c(d, r).

We first complete the proof of the theorem using the lemma. By taking δ′ = δ
k in

Lemma 4.1, it is immediate that

Eα;{(x̃i,ỹi)}ki=1
[f2] ≤ Eα+δ [f2] + Cks2(2−d) exp

[
−c δk s2(d−2)

]
.

We choose k =
√
δsd−2, so that Cks2(2−d) exp

[
−c δk s2(d−2)

]
≤ C exp[α− c

√
δsd−2], and it

remains to show that with this choice of k, also Pα[Gc1] ≤ C exp[α−c
√
δsd−2]. This follows

from Lemma 3.6. Indeed, by (2.4), supx∈S′1 Px [HS1 <∞] ≤ Cr2−d < 1
2e for r sufficiently

large. Thus, by Lemma 3.6, Pα[Gc1] ≤ exp[α− k] = exp[α−
√
δsd−2].

This completes the proof of Theorem 1.1 subject to Lemma 4.1.

4.1 Proof of Lemma 4.1

Fix x ∈ S′1 and y ∈ S1. By (2.4), (2.5) and (2.6), the probability that a random walk
bridge started at x and conditioned to hit S1 in y visits B2 is bounded by

c
( r
s2

)d−2

≤ PS1
x,y[HB2 <∞] ≤ C

( r
s2

)d−2

,

which is small if s ≥ s0(d) (sufficiently large). In particular,

PS1
x,y[HB2

<∞] ≤ 1− exp
[
−2PS1

x,y[HB2
<∞]

]
.

Thus, if we denote by R̃x,y the range in B2 of the Poisson point process η of bridges

with intensity λ = 2PS1
x,y, then Rx,y is stochastically dominated by R̃x,y, and it suffices to

compare R̃x,y to R.
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Every bridge visits B2 by means of excursions that start on S2 and end on S′2. Let ηm
be the restriction of η to the bridges that make exactly m excursions from S2 to S′2. By
properties of Poisson point processes, ηm are independent Poisson point processes and

η =

∞∑
m=0

ηm.

Furthermore, each ηm induces a Poisson point process σm on m-tuples of excursions
from S2 to S′2, see Figure 3. To describe its intensity measure, let S be the set of all
finite nearest neighbor paths starting on S2 and ending on their first entrance to S′2. For
w1, . . . , wm ∈ S, wi = (wi(0), . . . , wi(ki)), let

Γm(w1, . . . , wm) =

m∏
i=1

Pwi(0)[(X0, . . . , Xki) = wi]

m−1∏
i=1

Pwi(ki)
[
HS2 < HS1 , XHS2

= wi+1(0)
]

be the probability that the excursions from S2 to S′2 made by a simple random walk
started at w1(0) before it ever visits S1 are precisely w1, . . . , wm. Note that Γm is a
measure on Sm. Then, the intensity measure of σm is

λm(w1, . . . , wm) = 2
1

Px
[
XHS1

= y
] Px

[
HS2

< HS1
, XHS2

= w1(0)
]

Γm(w1, . . . , wm) Pwm(km)

[
HS1

< HS2
, XHS1

= y
]
.

By (2.4), (2.5) and (2.6), if s and r are sufficiently large, then

c
( r
s2

)d−2

ẽS2
(w1(0)) Γm(w1, . . . , wm) ≤ λm(w1, . . . , wm)

≤ C
( r
s2

)d−2

ẽS2
(w1(0)) Γm(w1, . . . , wm). (4.2)

We would like to compare λm with the intensity measure of the Poisson point process
of m-tuples of excursions from S2 to S′2 induced by the Poisson point process L δ′

S2,S′2
of

loops that visit S2 and S′2. A slight problem is that these loop excursions are only defined
up to a cyclic permutation. To avoid this issue, we use Lemma 3.3, which states that
the Poisson point process L δ′

S2,S′2
can be constructed by (a) sampling the Poisson point

process η′ of based loops with intensity measure

˙̀ 7→ δ′
1

k( ˙̀)
Px0

[
Xi = xi, 0 ≤ i ≤ | ˙̀|

]
1L̇S2,S′2

( ˙̀), ˙̀ = (x0, . . . , x| ˙̀|),

and (b) “forgetting” the location of the root. In particular, the ranges in B2 of loops from
L δ′ that visit both S2 and S′2 and that of loops from η′ have the same distribution. The
excursions of loops in η′ are naturally ordered. Let η′m be the restriction of η′ to the
loops that make exactly m excursions, then η′m are independent Poisson point processes
and η′ =

∑∞
m=1 η

′
m. Furthermore, η′m induces a Poisson point process σ′m on m-tuples of

excursions (see Figure 3) with intensity measure

λ′m(w1, . . . , wm) = δ′
1

m
Γ′m(w1, . . . , wm) Pwm(km)

[
XHS2

= w1(0)
]
,

where

Γ′m(w1, . . . , wm) =

m∏
i=1

Pwi(0) [(X0, . . . , Xki) = wi]

m−1∏
i=1

Pwi(ki)
[
XHS2

= wi+1(0)
]
.
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x2

S2

S′2

to S1 and S′1
x2

S2

S′2

Figure 3: On the left, a 5-tuple of excursions from S2 to S′2 induced by a random walk
bridge from η5, on the right, by a random walk loop from η′5.

In particular, by Lemma 2.1,

c r2−d δ′
1

m
ẽS2

(w1(0))Γ′m(w1, . . . , wm) ≤ λ′m(w1, . . . , wm)

≤ C r2−d δ′
1

m
ẽS2

(w1(0))Γ′m(w1, . . . , wm). (4.3)

It is immediate that Γm ≤ Γ′m. Thus, by (4.2) and (4.3), λm ≤ λ′m if

m ≤ c
(s
r

)2(d−2)

δ′, (4.4)

which implies that for these m’s, σm is stochastically dominated by σ′m. In particular, if

σm = 0 for all m > c
(
s
r

)2(d−2)
δ′, then

∑∞
m=1 σm is stochastically dominated by

∑∞
m=1 σ

′
m.

Let G2 be the event that σm = 0 for all m > c
(
s
r

)2(d−2)
δ′. It follows that there exists

a coupling (Rx,y,R) of Rx,y and R such that

P
[
Rx,y ⊆ R

]
≥ P[G2].

Finally, for each m, using (4.2) and Lemma 2.1,

P[σm 6= 0] ≤ λm[Sm] ≤ C
( r
s2

)d−2 (
C r2−d)m−1

.

Thus, by choosing r sufficiently large (depending only on the dimension),

P[Gc2] ≤ Cs2(2−d) exp
[
−cδ′ s2(d−2)

]
,

which completes the proof of the lemma.

Remark 4.2. [Some comments on the proof of Theorem 1.1] The following observations
suggest that the error term of (1.1) and (1.2) could not be improved with our method.

1. The estimate (4.1) may at first look rather crude. It seems better to consider events
Fk = {Z = k} and write

Eα [f1 f2] =

∞∑
k=0

Eα [f11Fk E
α [f2 | E ]] .

However, using Lemma 4.1 to bound Eα [f2 | E ] and the exact asymptotics of Pα[Fk],
one would get the error term in the form

∑∞
k=1 exp

(
−ck − c δk s2(d−2)

)
, which is pre-

cisely of the order exp(−c
√
δ sd−2).
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2. In the comparison of intensity measures λm and λ′m in the proof of Lemma 4.1 we
use the trivial bound Γm ≤ Γ′m, which allows to conclude that λm ≤ λ′m only for m
satisfying (4.4). By taking into account the information that the random walk bridge
does not return to S1 between the excursions wi, one can show that for every m,

Γm ≤
(

1− c
( r
s2

)d−2
)m−1

Γ′m.

This gives no improvement to the trivial bound for the ms of the order
(
s
r

)2(d−2)
δ′,

although it does imply λm ≤ λ′m for all large enough m.

Incidentally, using this better comparison of Γm and Γ′m one obtains that λm ≤
c r2−d δ′ λ′m for every m. In particular, if δ′ ≥ C rd−2, then the range of the random
walk bridge in B2 is stochastically dominated by the range of the loop soup L δ′ (with
probability 1).

Remark 4.3. The arguments of the proof of Theorem 1.1 apply also to loop soups of
random walks with general bounded jump distributions considered in [14] as well as to
the Brownian loop soup defined in [16], leading to analogous decoupling inequalities for
these models.

5 Proof of Theorem 1.3

The overall idea of the proof is similar to that of [10], where a result analogous
to Theorem 1.3 is proven for the vacant set of random interlacements, although the
implementations are quite different. As in [10] we partition the lattice Zd into good
and bad boxes. Each good box has a vacant “frame” (see Definition 5.1) and uniformly
bounded cumulative occupation local times for L α. In Proposition 5.4 and Corollary 5.5
we prove that the set of good boxes typically contains an infinite connected component,
whose complement consists only of small holes. When it is the case, any vacant path of
big diameter will pass through a large number of good boxes. However, each time the
path enters a good box, there is a uniformly positive probability that it locally connects
to the frame of the good box, as proved in Lemma 5.6, which makes the existence of long
isolated vacant paths unlikely.

Let us indicate the key differences of our approach from that in [10]. The existence
of a ubiquitous infinite cluster of good boxes is proven in [10] using in an essential
way a strong version of decoupling inequalities for random interlacements (see [10,
Theorem 7.2]). Because of an explicit and very specific dependence of the error term
on the intensity of random interlacements and relevant scales (see [10, (7.5)]), these
decoupling inequalities imply a qualitative bound on the probabilities of cascading
events under the assumption that a box of size L0 is unlikely to be bad for the random
interlacements with intensity L2−d

0 for large L0 (see [10, Lemma 2.2]), which is verified
in [10, Lemma 3.5]. The ubiquity of good boxes then follows easily from [10, Lemma 2.2],
see [10, Lemma 3.6].

There are several issues in adapting this approach to our setting. The decoupling
inequalities (1.1) and (1.2) are weaker than the ones in [10, Theorem 7.2] (e.g., the
latter imply the decoupling inequalities P3, which are not available for the loop soup,
cf. Remark 6.2). Still, they do give an analogue of [10, Lemma 2.2] under a stronger
assumption that large boxes are unlikely to be bad for the loop soup with a fixed
intensity (see Theorem 6.4). This assumption cannot be true for the loop soup though,
predominantly because of the positive density of small loops.

Instead of trying to solve these issues (which, even if successful, would only give (1.3)
and (1.4) with probability ≥ 1− C exp(−(log n)1+ε), since the scales Ln in Theorem 6.4
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grow faster than exponentially), we develop an approach that does not rely on decoupling
inequalities. We use an idea from [38] adapted to our setting to bound the probability
that a suitably spread out family of boxes consists only of bad ones (see Lemma 5.9)
directly using the decomposition of loops into excursions (Proposition 3.4) and the large
deviation bound on the number of excursions (Lemma 3.6). This approach may be of
independent interest, since it could potentially apply to models, for which decoupling
inequalities are not available or have not been developed yet, such as, e.g., the voter
percolation [27].

Fix an integer R ≥ 1, let L0 = 2R+ 1 and consider the lattice

G0 = L0Z
d

with edges between any `1 nearest neighbor vertices of G0. If x′, y′ ∈ G0 are neighbors,

we write x′
G0∼ y′. For n ∈ N and x′ ∈ G0, let BG0

(x′, n) = {y′ ∈ G0 : ‖x′− y′‖ ≤ L0n} and
SG0

(x′, n) = {y′ ∈ G0 : ‖x′ − y′‖ = L0n} be the `∞ ball, resp., sphere, of radius n in G0

centered at x′.
For x′ ∈ G0, define

Q(x′) = B(x′, R).

Then, {Q(x′), x′ ∈ G0} is a partition of Zd into disjoint hypercubes.

Definition 5.1. Let � be the subset of Q(0) that consists of all vertices having at least
two of their coordinates in the set {−R,−R+ 1,−R+ 2, R− 2, R− 1, R} and define

�(x′) = x′ + �, x′ ∈ G0.

(For d = 3, �(x′) is just the `∞ 2-neighborhood of the edges of the cube Q(x′).)

Note that

• the set � is connected in Zd,

• for any x′1
G0∼ x′2 ∈ G0, the set �(x′1) ∪�(x′2) is connected in Zd,

Any function n : Zd → N0 = {0, 1, . . .} gives a decomposition of G0 into good and bad
vertices:

Definition 5.2. Let n : Zd → N0. Vertex x′ ∈ G0 is R-good for n if

(1) n(x) = 0 for all x ∈ �(x′),

(2)
∑
x∈∂intQ(x′) n(x) ≤ Rd−1.

Otherwise, x′ is R-bad for n.

Remark 5.3. In our applications,
∑
x∈∂intQ(x′) n(x) will correspond to the number of

times a finite collection of independent random walks visit ∂intQ(x′), cf. (5.12). Thus,
Rd−1 in Definition 5.2(2) could be replaced by any f(R)� R.

We write

G(n) = {x′ ∈ G0 : x′ is R-good for n},
B(n) = {x′ ∈ G0 : x′ is R-bad for n}.

The choice of α1 > 0 in Theorem 1.3 is made in the following proposition, which is
proven in Section 5.1. Recall that Nα denotes the field of local times of the loop soup
L α.
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Proposition 5.4. For any d ≥ 3, there exist R ≥ 1, α1 > 0, c > 0 and C < ∞ such that
for all α ≤ α1 and N ≥ 1,

P [0 is ∗-connected to SG0(0, N) in B(Nα)] ≤ C exp (−N c) . (5.1)

(Sets X,Y ⊂ G0 are ∗-connected in Z ⊂ G0 if there exist z0, . . . , zn ∈ Z such that z0 ∈ X,
zn ∈ Y and ‖zi − zi−1‖ = L0 for all 1 ≤ i ≤ n.)

Proposition 5.4 easily implies the existence of (a) unique infinite component Gα∞ in
G(Nα) and (b) ubiquitous connected component GαN in G(Nα) ∩ BG0(0, N):

Corollary 5.5. Fix R ≥ 1 and α1 > 0 as in Proposition 5.4. There exist c′ = c′(d) > 0,
and C ′ = C ′(d) <∞ such that for all α ≤ α1 and N ≥ 1,

(a) there exists a unique infinite connected (in G0) component Gα∞ of G(Nα) and

P [Gα∞ ∩ BG0(0, N) 6= ∅] ≥ 1− C ′ exp
(
−N c′

)
, (5.2)

(b) if GαN denotes a unique connected component of G(Nα) ∩ BG0
(0, N) such that any

nearest neighbor path in G0 from any x′ ∈ BG0
(0, b 2

3Nc) to SG0
(x′, b 1

30Nc) intersects

GαN at least
√
N times, or the empty set if such component does not exist, then

P [GαN 6= ∅] ≥ 1− C ′ exp
(
−N c′

)
. (5.3)

Proof of Corollary 5.5. The proof is essentially the same as the proof of [10, Corol-
lary 3.7], where the role of Proposition 5.4 is played by [10, Lemma 3.6]. We omit the
details.

Proof of Theorem 1.3. The first statement (1.3) follows immediately from (5.2), since
the set

⋃
x′∈Gα∞ �(x′) is an infinite connected subset of the vacant set Vα. To prove (1.4),

by the union bound, it suffices to show that for each x ∈ B(0, L0b 2
3Nc),

P

[
x is connected to Zd \ B(x, L0b 1

25Nc) in Vα,

but not to
⋃
x′∈GαN �(x′) in Vα ∩ B(0, L0N +R)

]
≤ C ′′ exp

(
−N c′′

)
. (5.4)

(To link (5.4) to (1.4), one can take N = b 2n−R
L0
c, then L0b 2

3Nc ≥ n and L0b 1
25Nc ≤ 1

10n

for all large enough n.)
The main idea of the proof of (5.4) is to explore the connected component of x in Vα

progressively in boxes Q(x′), x′ ∈ G0. If the ubiquitous component GαN of good vetices is
not empty, then the cluster of x will encounter at least

√
N boxes centered at vertices

from GαN . Each time the encounter happens, excluding possibly the very first box, the
explored part of the cluster of x connects locally to the set

⋃
x′∈GαN �(x′) with probability

at least γ uniformly over all possible realizations of good boxes and the explored history.
This will lead to the upper bound (1− γ)

√
N−1.

The lower bound on the conditional probability of the local connectedness to⋃
x′∈GαN �(x′) after each step of exploration follows from Lemma 5.6 below. For R ≥ 1

and α > 0, denote by
ΣG = σ

(
1x′∈G(Nα), x

′ ∈ G0

)
the σ-algebra generated by all the good boxes for Nα. (Note that GαN is ΣG-measurable.)
For any x′ ∈ G0, denote by

Ax′ = σ (1z∈Vα , z /∈ Q(x′))

the σ-algebra generated by the vacant set Vα (equivalently, by the range) of the loop
soup L α outside of the box Q(x′).
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x′0
x

x′0
x

Ak

x′k+1

yk+1

Figure 4: Exploration algorithm.

Lemma 5.6. Let d ≥ 3, R ≥ 1 and α > 0. There exists γ = γ(d,R, α) > 0 such that for all
α ∈ (0, α], x′ ∈ G0 and y ∈ ∂extQ(x′),

P
[
y is connected to �(x′) in Vα ∩ ({y} ∪Q(x′))

∣∣∣ΣG , Ax′] ≥ γ 1y∈Vα,x′∈G(Nα), P-a.s.

(5.5)

We postpone the proof of Lemma 5.6 to Section 5.2 and now complete the proof of
Theorem 1.3 using the lemma.

Fix x ∈ B(0, L0b 2
3Nc). We now define the algorithm for the exploration of the

connected component of x in Vα which progressively reveals Vα in boxes Q(x′), x′ ∈ G0.
Assume that the vertices of Zd are ordered lexicographically.

• Let x′0 ∈ G0 be the unique vertex such that x ∈ Q(x′0) and define A0 = Q(x′0).
(Necessarily, x′0 ∈ BG0(0, b 2

3Nc).)

• Let k ≥ 0 and assume that x′k and Ak are determined. We stop the algorithm if

(a) x′k ∈ SG0
(x′0, b 1

30Nc) or (b) x is not connected to ∂intAk in Vα,

and define τ = k, yl = yk, x′l = x′k, Al = Ak, for all l > k.

Else, we define

– yk+1 ∈ ∂intAk as the smallest vertex such that x is connected to yk+1 in Vα∩Ak,

– x′k+1 ∈ G0 \ {x′0, . . . , x′k} as the smallest vertex such that yk+1 ∈ ∂extQ(x′k+1),

– Ak+1 = Ak ∪Q(x′k+1).

(See Figure 4 for an illustration.)

The algorithm always stops in a finite time (which we denote by τ ), and if x is connected to
Zd \B(x, L0b 1

25Nc) in Vα, then the algorithm stops exactly on “reaching” SG0
(x′0, b 1

30Nc).
Consider the sigma-algebras

Ak = σ (Ak, Vα ∩Ak) and Zk = σ (σ(GαN ),Ak) , k ≥ 0.

Note that the random elements yi, x′i, Ai, for 1 ≤ i ≤ k, are Ak−1-measurable, since by
revealing the shape of Ak−1 and the state of Vα in Ak−1, one can reconstruct the steps
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1, . . . , k − 1 of the algorithm uniquely and also uniquely determine yk, x′k and Ak. Same
reasoning gives that the event {τ ≥ k} belongs to Ak−1.

Consider the events

Ek = {τ ≥ k, x′k ∈ GαN , yk is connected to �(x′k) in Vα ∩ ({yk} ∪Q(x′k))} , k ≥ 1.

Then Ek ∈ Zk, {τ ≥ k, x′k ∈ GαN} ∈ Zk−1, and

P
[
Ek

∣∣∣Zk−1

]
≥ γ 1τ≥k, x′k∈GαN , P-a.s., (5.6)

with γ as in Lemma 5.6 (for α = α1). Indeed, to see that (5.6) holds, fix k ≥ 1 and for any
admissible G, A and V , define the event F (G,A, V ) = {GαN = G, Ak−1 = A, Vα ∩Ak−1 =

V }. Note that if F (G,A, V ) occurs, then x′k = x′ and yk = y for some x′ and y, which are
uniquely determined by A and V . Thus,

P [Ek, F (G,A, V )] = P [Ek, F (G,A, V ), x′k = x′, yk = y]

= E
[
P
[
Ek, F (G,A, V ), x′k = x′, yk = y

∣∣∣ΣG , Ax′]]
= E

[
F (G,A, V ), x′k = x′, yk = y, τ ≥ k, x′k ∈ GαN ,

P
[
y is connected to �(x′) in Vα ∩ ({y} ∪Q(x′))

∣∣∣ΣG , Ax′] ]
(5.5)
≥ γ P

[
F (G,A, V ), x′k = x′, yk = y, τ ≥ k, x′k ∈ GαN

]
= γ P

[
F (G,A, V ), τ ≥ k, x′k ∈ GαN

]
, which proves (5.6).

We can now complete the proof of (5.4). Let

τ1 = inf{k ≥ 1 : x′k ∈ GαN}
τi = inf{k > τi−1 : x′k ∈ GαN}, for i ≥ 2.

Note that {τi = k} ∈ Zk−1 for all i and k. Let M = b
√
Nc − 1. Then, the probability on

the left hand side of (5.4) is bounded from above by

≤ P [GαN = ∅] + P

[
M⋂
i=1

Ecτi , τM ≤ τ
]

= P [GαN = ∅] +
∞∑
k=1

P

[
M⋂
i=1

Ecτi , τM = k ≤ τ
]

= P [GαN = ∅] +

∞∑
k=1

E

[
M−1⋂
i=1

Ecτi , τM = k ≤ τ, x′k ∈ GαN , P
[
Eck

∣∣∣Zk−1

]]
(5.6)
≤ P [GαN = ∅] + (1− γ)

∞∑
k=1

P

[
M−1⋂
i=1

Ecτi , τM = k ≤ τ, x′k ∈ GαN

]

≤ P [GαN = ∅] + (1− γ)P

[
M−1⋂
i=1

Ecτi , τM−1 ≤ τ
]

≤ . . . ≤ P [GαN = ∅] + (1− γ)M .

An application of (5.3) completes the proof of (5.4) and thus of (1.4), subject to Proposi-
tion 5.4 and Lemma 5.6.

5.1 Proof of Proposition 5.4

The proof uses a multiscale analysis and embedding of dyadic trees. Its main idea is
similar to the proof of [38, Theorem 3.2] about random interlacements, although we use
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embeddings of dyadic trees as in [35, 25] instead of skeletons as in [38]. After defining
the embeddings and proving some of their relevant properties (detailed proofs of various
results about such embeddings can be found in [25]) we prove in Lemma 5.9 that an
embedding into the set B(Nα) of bad vertices is very unlikely. Since the connection
event in (5.1) implies that such an embedding must exist (within a not too big class of
embeddings), it must be very unlikely too.

We proceed with the details. Recall that L0 = 2R + 1. Let l ≥ 1 be an integer and
consider the sequence of geometrically growing scales Ln = L0 l

n, n ≥ 0, and respective
lattices Gn = LnZ

d.
For n ≥ 0, we denote by Tn =

⋃n
k=0{1, 2}k the dyadic tree of depth n and write

T(k) = {1, 2}k for the collection of elements of the tree at depth k. Let Λn be the set of
embeddings T : Tn → Zd such that

• T (∅) = 0,

• for all 1 ≤ k ≤ n and m ∈ T(k), T (m) ∈ Gn−k,

• for all 0 ≤ k ≤ n− 1, m ∈ T(k) and i ∈ {1, 2},

‖T (mi)− T (m)‖ = i Ln−k. (5.7)

(Here mi ∈ T(k+1) is a descendant of m.)

Lemma 5.7. For all n ≥ 1, L0 ≥ 1, l ≥ 1,

1. |Λn| ≤
(
(2d (2l + 1)d−1) (2d (4l + 1)d−1)

)2n−1 ≤
(
(2d)2 (4l)2(d−1)

)2n−1
,

2. for all T ∈ Λn, k ≥ 0 and m ∈ T(n),∣∣∣∣{m′ ∈ T(n) : ‖T (m′)− T (m)‖ ≤ l − 5

l − 1
Lk+1

}∣∣∣∣ ≤ 2k.

Proof of Lemma 5.7. Statement 1 follows easily by induction on n.
For Statement 2, it suffices to consider 0 ≤ k ≤ n − 1 and l ≥ 6. Take a ∈ T(n−k−1)

and b′, b′′ ∈ {1, 2}k. Then for the elements a1b′, a2b′′ ∈ T(n),

‖T (a1b′)− T (a2b′′)‖

≥ ‖T (a1)− T (a2)‖ − ‖T (a1b′)− T (a1)‖ − ‖T (a2b′′)− T (a2)‖
(5.7)
≥ Lk+1 − 2 (2Lk + 2Lk−1 + . . .+ 2L0) > Lk+1 − 4Lk

l

l − 1
=
l − 5

l − 1
Lk+1.

Thus, any m,m′ ∈ T(n) with ‖T (m′) − T (m)‖ ≤ l−5
l−1 Lk+1 can only differ in the last k

digits, i.e., there exist a ∈ T(n−k), b, b
′ ∈ {1, 2}k such that m = ab and m′ = ab′. Since for

any m there are at most 2k such m′, the result follows.

For x′ ∈ G0, define

Cx′ = ∂intB(x′, L0), Dx′ = ∂intB(x′, 1
4L1)

and for T ∈ Λn, consider

CT =
⋃

x′∈T (T(n))

Cx′ , DT =
⋃

x′∈T (T(n))

Dx′ .

By Lemma 5.7, if l ≥ 10, then the sets Dx′ in the above union are pairwise disjoint.
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Lemma 5.8. There exists C5.8 = C5.8(d) such that for all n ≥ 1, T ∈ Λn and l ≥ C5.8,

sup
y∈DT

Py [HCT <∞] ≤ 1

2e
.

Proof of Lemma 5.8. Let n ≥ 1, T ∈ Λn and y ∈ DT .
Denote by Sk the set of all x′ ∈ T (T(n)) with 1

5Lk ≤ ‖x′−y‖ ≤ 1
5Lk+1. By Lemma 5.7(2),

if l ≥ 10, then |Sk| ≤ 2k. Also, S0 = ∅. Using (2.4), we get

Py [HCT <∞] ≤
∞∑
k=1

∑
x′∈Sk

Py
[
HCx′ <∞

]
≤
∞∑
k=1

|Sk|C Ld−2
0 L2−d

k ≤ C
∞∑
k=1

(2l2−d)k ≤ 1

2e
,

for all l sufficiently large.

The next lemma is the main ingredient for the proof of Proposition 5.4.

Lemma 5.9. Let d ≥ 3. For any K ≥ 1, there exist R0 = R0(K) and α0 = α0(K,R) > 0

such that for all R ≥ R0, α ≤ α0, l ≥ C5.8, n ≥ 1 and T ∈ Λn,

P
[
T (T(n)) ⊆ B(Nα)

]
≤ exp (−K 2n) .

Proof of Lemma 5.9. Let n ≥ 1 and T ∈ Λn. Take l ≥ C5.8, α ≤ 1 and M = K + 2.
Recall that for two disjoint sets A,B, ZαA,B denotes the number of excursions of all

loops from L α from A to B. Then,

P
[
T (T(n)) ⊆ B(Nα)

]
≤ P

[
ZαCT ,DT ≥M 2n

]
+ P

[
ZαCT ,DT ≤M 2n, T (T(n)) ⊂ B(Nα)

]
. (5.8)

By the choice of l, Lemma 5.8 and Lemma 3.6,

P
[
ZαCT ,DT ≥M 2n

]
≤ exp (α−M2n) ≤ 1

2
exp (−K 2n) , (5.9)

where in the second inequality we used α ≤ 1 and M = K + 2.
To bound the second term in (5.8), recall that by the choice of l, the sets Dx′ ,

x′ ∈ T (T(n)), are pairwise disjoint. Thus,

ZαCT ,DT =
∑

x∈T (T(n))

ZαCx′ ,Dx′ .

In particular, if ZαCT ,DT ≤M 2n, then there exists a subset S of T (T(n)) with cardinality
2n−1 such that ZαCx′ ,Dx′ ≤ 2M for all x′ ∈ S. As the number of possible subsets of T (T(n))

with cardinality 2n−1 is at most 22n , we obtain that

P
[
ZαCT ,DT ≤M 2n, T (T(n)) ⊂ B(Nα)

]
≤ 22n sup

S
P
[
ZαCx′ ,Dx′ ≤ 2M and x′ ∈ B(Nα) for all x′ ∈ S

]
,

where the supremum is over all subsets S of T (T(n)) with cardinality 2n−1.
The event that x′ is R-bad only depends on the restriction of Nα to Q(x′). Thus, if we

denote by Nα
x′ the total local time of all loops from L α that intersect Q(x′) but not Dx′ ,

then for all z ∈ Q(x′), Nα(z) is the sum of Nα
x′(z) and the total number of visits to z of all

the excursions of L α from Cx′ to Dx′ . Note that

• Nα
x′ , x

′ ∈ S, are independent,
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• the excursions of L α from Cx′ to Dx′ , conditioned on their starting and ending lo-
cations, are distributed as independent random walk bridges (see Proposition 3.4),

• the event that x′ is R-bad for n : Zd → N is increasing in n.

Thus, if we denote by N ′ the total local time of 2M random walk excursions from C0 to
D0, then

P
[
ZαCx′ ,Dx′ ≤ 2M and x′ ∈ B(Nα) for all x′ ∈ S

]
≤
(

max
(yi,zi)2Mi=1

P⊗
2M⊗
i=1

PD0
yi,zi [0 is R-bad for (Nα +N ′)]

)2n−1

≤

P
 ∑
z∈Q(0)

Nα(z) ≥ 1

+ max
(yi,zi)2Mi=1

2M⊗
i=1

PD0
yi,zi [0 is R-bad for N ′]

2n−1

,

where the maximum is over all 2M -tuples of pairs (yi, zi) ∈ C0 ×D0—the starting and
ending locations of excursions from C0 to D0.

It remains to prove that for a suitable choice of α and R,

P

 ∑
z∈Q(0)

Nα(z) ≥ 1

 ≤ 1

16
exp (−2K) (5.10)

and

max
(yi,zi)2Mi=1

2M⊗
i=1

PD0
yi,zi [0 is R-bad for N ′] ≤ 1

16
exp (−2K) . (5.11)

Indeed, if (5.10) and (5.11) hold, then the second summand in (5.8) is bounded from
above by

22n
(

1

8
exp (−2K)

)2n−1

≤ 1

2
exp (−K2n)

and, combined with (5.9), this gives the result.

We begin with (5.11). Let (yi, zi)
2M
i=1 be the 2M -tuple for which the maximum is

attained. By the definition of R-bad vertex, the probability in (5.11) is bounded from
above by

2M∑
i=1

PD0
yi,zi [H� <∞] +

2M∑
i=1

PD0
yi,zi

∑
n

∑
x∈∂intQ(0)

1Xn=x >
1

2M
Rd−1

 , (5.12)

which can be estimated using standard results for random walks and the fact that for
any d ≥ 3, there exists C <∞ such that

cap(�) ≤ C Rd−2

logR
, R ≥ 2 , (cf. [10, Lemma 3.2]). (5.13)

Indeed, by (5.13), (2.2), (2.1) and the Harnack principle, the first sum is bounded from
above by CM

logR . By the Markov inequality, (2.1) and the Harnack principle, the second

sum is bounded from above by CM2R2−d. Thus, if R ≥ R0 = R0(K), then (5.11) holds.

It remains to show that for α ≤ α0 = α0(K,R), (5.10) holds, but this is immediate,
since by properties of L α, the probability in (5.10) is bounded from above by CRdα.
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Proof of Proposition 5.4. First note that it suffices to prove that for some R ≥ 1, l ≥ 1

and α > 0,

P [B(0, Ln) is ∗-connected to ∂intB(0, 2Ln) in B(Nα)] ≤ 2−2n (5.14)

for all n ≥ 1. Indeed, let N ≥ 1 and choose n so that 2Ln ≤ L0N ≤ 2Ln+1. Then,
the event in (5.1) implies the event in (5.14) and N ≤ 2Ln+1

L0
= 2ln+1 ≤ 2Cn for some

C = C(l).

Claim (5.14) easily follows from Lemma 5.9 and the observation that the event in
(5.14) implies the existence of an embedding T ∈ Λn such that the images of all leaves
T(n) are R-bad for Nα (see, e.g., [35, (3.24)] or [25, Lemma 3.3]). Namely,

P [B(0, Ln) is ∗-connected to ∂intB(0, 2Ln) in B(Nα)]

≤ P
[
there exists T ∈ Λn such that T (T(n)) ⊂ B(Nα)

]
L.5.7(1)

≤
(

(2d)2 (4l)2(d−1)
)2n−1

sup
T ∈Λn

P
[
T (T(n)) ⊂ B(Nα)

]
.

Let l ≥ C5.8 and choose K = K(l) so that(
(2d)2 (4l)2(d−1)

)2n−1

exp (−K2n) ≤ 2−2n .

Finally, choose R = R0(K) and α = α0(R,K) > 0 as in Lemma 5.9. Then, by Lemma 5.9,

sup
T ∈Λn

P
[
T (T(n)) ⊂ B(Nα)

]
≤ exp (−K2n) ,

and (5.14) follows for this choice of l, R and α.

5.2 Proof of Lemma 5.6

We begin with an outline of the proof. For x′ ∈ G0, we decompose all the loops from
the loop soup L α that visit A = ∂intQ(x′) and B = ∂extQ(x′) into inner (from A to B)
and outer (from B to A) excursions. By Proposition 3.4, given their starting and ending
locations, the inner and outer excursions are independent random walk bridges. In
view of independence, the conditional probability in (5.5) with respect to the σ-algebras
generated by all good boxes and all the vacant set in the complement of Q(x′) can be
substituted by the conditional probability with respect to only the starting and ending
locations of the inner excursions and the event that x′ is good, cf. (5.15) and (5.16).
Now, by Definition 5.2(2) of the good box (see also Remark 5.3) the total number of
inner excursions is bounded from above by Rd−1. Since all of them are distributed as
independent random walk bridges, one can prescribe their values as simple paths inside
of Q(x′) in such a way that a given point y ∈ ∂extQ(x′) is connected to �(x′) by a nearest
neighbor path in Q(x′) which is avoided by all the bridges, see (5.21) and below. Since
the number of bridges is bounded and each is realized as a simple path in Q(x′), the price
of such a local surgery is uniformly positive. Furthermore, with positive probability there
are no loops of L α that are entirely contained in Q(x′), thus the constructed nearest
neighbor path from y to �(x′) in Q(x′) is in fact a path in the vacant set Vα. Finally, such
a surgery keeps x′ good.

We proceed with the details of the proof. Let x′ ∈ G0 and y ∈ ∂extQ(x′). Define

A = ∂intQ(x′), B = ∂extQ(x′),
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and recall from (3.2) the definition of Poisson point processes Eα,jA,B,
−→E α,jA,B, and

←−E α,jA,B,
j ≥ 1, of pairs of loop entrance points in A and B, inner and outer bridges, respectively.
Define sigma-algebras

E = σ
(
Eα,jA,B , j ≥ 1

)
,
−→E = σ

(−→E α,jA,B , j ≥ 1
)
,
←−E = σ

(←−E α,jA,B , j ≥ 1
)
,

and the sigma-algebra Fext generated by the loops from L α that do not intersect Q(x′).
Let x be the unique neighbor of y in ∂intQ(x′) and consider the event D that x is

connected to �(x′) in Vα ∩Q(x′). Then,

{y is connected to �(x′) in Vα ∩ ({y} ∪Q(x′))} = D ∩ {y ∈ Vα}.
Finally, let E(x̌, y̌) be the event that none of the loop excursions from A to B starts at
x and none of them ends at y, namely, for all the pairs of points in Eα,jA,B, j ≥ 1, the first
point is not x and the second is not y. Note that {y ∈ Vα} ⊆ E(x̌, y̌).

To prove (5.5) it suffices to show that

P
[
D
∣∣∣σ(1x′∈G(Nα)),

←−E , Fext

]
≥ γ 1E(x̌,y̌),x′∈G(Nα), P-a.s. (5.15)

Indeed,

P
[
y is connected to �(x′) in Vα ∩ ({y} ∪Q(x′)), x′ ∈ G(Nα)

∣∣∣ΣG , Ax′]
= P

[
D, y ∈ Vα, x′ ∈ G(Nα)

∣∣∣ΣG , Ax′]
= E

[
P
[
D, y ∈ Vα, x′ ∈ G(Nα)

∣∣∣σ(1x′∈G(Nα)),
←−E , Fext

] ∣∣∣ΣG , Ax′]
= 1y∈Vα,x′∈G(Nα)E

[
P
[
D
∣∣∣σ(1x′∈G(Nα)),

←−E , Fext

] ∣∣∣ΣG , Ax′]
(5.15)
≥ γ 1y∈Vα,x′∈G(Nα)E

[
1E(x̌,y̌),x′∈G(Nα)

∣∣∣ΣG , Ax′]
≥ γ 1y∈Vα,x′∈G(Nα), which gives (5.5).

By the definition of Poisson point process, the sigma-algebras Fext and σ(E ,−→E ,←−E )

are independent. Furthermore, by Proposition 3.4, the sigma-algebras
−→E and

←−E are
conditionally independent given E . Thus,

P
[
D
∣∣∣σ(1x′∈G(Nα)),

←−E , Fext

]
= P

[
D
∣∣∣σ(1x′∈G(Nα)), E

]
, P-a.s. (5.16)

Indeed, by Dynkin’s π-λ lemma, it suffices to show that for any admissible e, ←−e , and
F ∈ Fext,

P
[
D, x′ ∈ G(Nα), {Eα,jA,B}j≥1 = e, {←−E α,jA,B}j≥1 =←−e , F

]
= E

[
x′ ∈ G(Nα), {Eα,jA,B}j≥1 = e, {←−E α,jA,B}j≥1 =←−e , F, P

[
D
∣∣∣σ(1x′∈G(Nα)), E

]]
,

which is immediate, since by the (conditional) independence of sigma-algebras,

P
[
D, x′ ∈ G(Nα), {Eα,jA,B}j≥1 = e, {←−E α,jA,B}j≥1 =←−e , F

]
= P

[
D, x′ ∈ G(Nα), {Eα,jA,B}j≥1 = e

]
P
[
{←−E α,jA,B}j≥1 =←−e , F

∣∣∣ {Eα,jA,B}j≥1 = e
]

= E
[
x′ ∈ G(Nα), {Eα,jA,B}j≥1 = e, P

[
D
∣∣∣σ(1x′∈G(Nα)), E

]]
P
[
{←−E α,jA,B}j≥1 =←−e , F

∣∣∣ {Eα,jA,B}j≥1 = e
]

= E
[
x′ ∈ G(Nα), {Eα,jA,B}j≥1 = e, {←−E α,jA,B}j≥1 =←−e , F, P

[
D
∣∣∣σ(1x′∈G(Nα)), E

]]
,
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for all compatible e and←−e .

Thus, by (5.15) and (5.16), it suffices to prove that

P
[
D
∣∣∣σ(1x′∈G(Nα)), E

]
≥ γ 1E(x̌,y̌),x′∈G(Nα), P-a.s.,

in other words, that for all e such that {{Eα,jA,B}j≥1 = e} ⊆ E(x̌, y̌),

P
[
D, x′ ∈ G(Nα), {Eα,jA,B}j≥1 = e

]
≥ γ P

[
x′ ∈ G(Nα), {Eα,jA,B}j≥1 = e

]
. (5.17)

In particular, we may and will assume from now on that

x /∈ �(x′),

since otherwise the claim is trivial.

In fact, we will show a stronger statement. Let Fint,∅ be the event that the set of loops
from L α contained in Q(x′) is empty, then

P
[
D, x′ ∈ G(Nα), {Eα,jA,B}j≥1 = e, Fint,∅

]
≥ γ P

[
{Eα,jA,B}j≥1 = e

]
(5.18)

for all e as in (5.17) and satisfying additionally {{Eα,jA,B}j≥1 = e} ∩ {x′ ∈ G(Nα)} 6= ∅.
(This basically means that none of the loop excursions can start from �(x′) or end in a
neighbor of �(x′) and that the total number of excursions does not exceed 1

2R
d−1, cf.

Definition 5.2.)

Let
−→N α be the field of cumulative occupation local times in Q(x′) of all the excursions

from {−→E α,jA,B}j≥1, that is, for z ∈ Q(x′),
−→N α(z) is the total number of times z is visited by

the bridges {−→E α,jA,B}j≥1. Also, let
−→V α = {z ∈ Q(x′) :

−→N α(z) = 0}. Note that

{D, x′ ∈ G(Nα), Fint,∅} = {x is connected to �(x′) in
−→V α, x′ ∈ G(

−→N α)} ∩ Fint,∅,

and the two events on the right are independent. Since the number of loops from L α

contained in Q(x′) is a Poisson random variable with parameter αc, for c = c(R),

P[Fint,∅] = e−αc ≥ e−αc > 0,

and to finish the proof of (5.18) it suffices to show that for all e as before and some
γ1 = γ1(d,R) > 0,

P
[
x is connected to �(x′) in

−→V α, x′ ∈ G(
−→N α), {Eα,jA,B}j≥1 = e

]
≥ γ1P

[
{Eα,jA,B}j≥1 = e

]
,

or, equivalently, that

P
[
x is connected to �(x′) in

−→V α, x′ ∈ G(
−→N α)

∣∣∣ {Eα,jA,B}j≥1 = e
]
≥ γ1. (5.19)

Let e = {(xi, yi) ∈ A× B, 1 ≤ i ≤ N} be a multiset of all starting and ending locations
of all the excursions of loops from L α from A to B, which satisfies all the above
assumptions on e. By Proposition 3.4, the law of the excursions {−→E α,jA,B}j≥1, conditioned

on {Eα,jA,B}j≥1 = e, is the law of independent random walk bridges from xi conditioned to

enter B in yi, that is
⊗N

i=1 PBxi,yi .

Let {Xi}Ni=1 be a family of independent random walk bridges distributed according to⊗N
i=1 PBxi,yi . Let

−→N be the field of cumulative occupation local times in Q(x′) of all the
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x′

Π
y
x

yi, y
′
i, yi

xixi

Q

ρi

Figure 5: On the left, the “tunnel” Π, which connects x to �(x′) inside of Q(x′). On
the right, a simple path ρi between xi and yi inside the connected set Q = Q(x′) \
(∂intQ(x′) ∪�(x′) ∪Π). The simple path ρi, defined as (xi, ρi, y

′
i, yi), visits the boundary

∂intQ(x′) exactly 2 times, namely, at xi and y′i.

bridges Xi, that is, for z ∈ Q(x′),
−→N (z) is the total number of times z is visited by the

bridges Xi. Also, let
−→V = {z ∈ Q(x′) :

−→N (z) = 0}. Then, (5.19) is equivalent to

N⊗
i=1

PBxi,yi

[
x is connected to �(x′) in

−→V , x′ ∈ G(
−→N )
]
≥ γ1, (5.20)

for any choice of {(xi, yi) ∈ A × B, 1 ≤ i ≤ N} such that N ≤ 1
2R

d−1 and for all i,
xi /∈ {x} ∪�(x′) and yi /∈ {y} ∪ ∂ext�(x′).

We prove that there exist N simple (deterministic) paths ρi from xi to yi, such that

(a)
⊗N

i=1 PBxi,yi [Xi = ρi, 1 ≤ i ≤ N ] ≥ γ1 and

(b) event {Xi = ρi, 1 ≤ i ≤ N} implies the event inside probability in (5.20).
(5.21)

Once the existence of such paths ρi is shown, (5.20) is immediate.

Recall that we assume x /∈ �(x′). Thus, precisely one of the coordinates, say coordi-
nate i, of the vector x− x′ is −R or R, and the other coordinates take values between
−R+ 3 and R− 3. Let j be the first coordinate which is not equal to i and denote by es
the sth coordinate unit vector. We define the set Π in Q(x′) as

{x, x+ ei, x+ 2ei} ∪ ({x+ 2ei + tej : t ≥ 0} ∩Q(x′))

if the ith coordinate of x− x′ equals −R, and as

{x, x− ei, x− 2ei} ∪ ({x− 2ei + tej : t ≥ 0} ∩Q(x′))

if the ith coordinate of x− x′ equals R, see Figure 5. Note that for R ≥ 4,

• Π ∩�(x′) 6= ∅,

• Q = Q(x′) \ (∂intQ(x′) ∪�(x′) ∪Π) is a connected subset of Q(x′),

• every z ∈ ∂intQ(x′) \ (�(x′) ∪ {x}) has a neighbor in Q.
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Coming back to the random walk bridges, for each xi and yi, let xi be the unique neighbor
of xi in Q (note that xi ∈ ∂intQ(x′)\(�(x′) ∪ {x}) by assumptions), y′i the unique neighbor
of yi in Q(x′) (note that y′i ∈ ∂intQ(x′) \ (�(x′) ∪ {x})) and yi the unique neighbor of y′i in
Q. Let ρi be an arbitrary simple path from xi to yi in Q, see Figure 5.

We define ρi as the path (xi, ρi, y
′
i, yi). Then, each ρi is a simple path from xi to yi that

avoids Π, visits ∂intQ(x′) exactly twice and stops on entering B (at yi). Thus,

• for each i, PBxi,yi [Xi = ρi] ≥ (2d)−|ρi| ≥ (2d)−|Q(x′)| = c(d,R) and

• the total number of visits of all ρi to ∂intQ(x′) is not bigger than Rd−1.

In other words, the collection of paths ρi satisfies the desired properties (5.21).
This way, the proof of (5.20) (hence of Lemma 5.6) is complete.

6 General approach to correlated percolation models

For d ≥ 2, let Ω = {0, 1}Zd and S = S(ω) = {x ∈ Zd : ω(x) = 1} the subgraph of Zd

induced by ω ∈ Ω. Let F be the sigma-algebra on Ω generated by the coordinate maps
Ψx, x ∈ Zd, and let Pu, u ∈ (a, b), be a family of probability measures on (Ω,F), for some
(fixed) 0 < a < b <∞.

Under general assumptions on the family {Pu}u∈(a,b) introduced in [9] it has been
proven that for each u ∈ (a, b), the random set S contains a unique infinite connected
component S∞, which on large scales “looks like Zd”, for instance, for Pu-almost every
ω ∈ Ω, balls in S∞ have asymptotic deterministic shape [9], the simple random walk on
S∞ converges to a Brownian motion with a deterministic positive diffusion constant [24],
its transition probabilities satisfy quenched Gaussian heat kernel bounds and the local
CLT, etc. [30]. These assumptions on {Pu}u∈(a,b) are the following.

P1 (Ergodicity) For each u ∈ (a, b), every lattice shift is measure preserving and
ergodic on (Ω,F ,Pu).

P2 (Monotonicity) For any a < u < u′ < b and increasing event G ∈ F , Pu[G] ≤ Pu′ [G].

P3 (Decoupling) There exist RP, LP < ∞ and εP, χP > 0 such that for any integers
L ≥ LP and R ≥ RP, if a < û < u < b satisfy u ≥ (1 +R−χP) û, x1, x2 ∈ Zd
satisfy ‖x1 − x2‖ ≥ RL, A1, A2 ∈ σ(Ψy, y ∈ B(xi, 10L)) are increasing events and
B1, B2 ∈ σ(Ψy, y ∈ B(xi, 10L)) are decreasing, then

Pû [A1 ∩A2] ≤ Pu [A1] · Pu [A2] + exp
(
−e(logL)εP

)
,

and

Pu [B1 ∩B2] ≤ Pû [B1] · Pû [B2] + exp
(
−e(logL)εP

)
.

S1 (Local uniqueness) For each u ∈ (a, b), there exist ∆S > 0 and RS <∞ so that for
all R ≥ RS,

Pu [S∞ ∩ B(0, R) 6= ∅ ] ≥ 1− exp
(
−(logR)1+∆S

)
,

and

Pu
[

any two connected subsets of S ∩ B(0, R) with
diameter ≥ R

10 are connected in S ∩ B(0, 2R)

]
≥ 1− exp

(
−(logR)1+∆S

)
.

S2 (Continuity) Function η(u) = Pu [0 ∈ S∞] is positive and continuous on (a, b).
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While properties P1 and S1 are rather natural and have been extensively used in
the analysis of supercritical percolation models, conditions P2, P3 and S2 represent
the novelty of this framework and serve as a substitute to independence. (In fact, P2
easily follows from P3 and is stated separately only for convenience.) They provide a
connection between the measures Pu with different values of the parameter and serve
only to prove the likeliness of certain patterns in S∞, cf. [30, Remark 1.9(1)]. More
precisely, if an increasing, resp. decreasing, (seed ) event is unlikely with respect to
measure Pu+δ, resp. Pu−δ, then by applying P3 recursively, one concludes that a family
of 2n translates of the event sufficiently spread out on Zd in a certain hierarchical manner
(cascading events) occur with probability ≤ 2−2n with respect to measure Pu, cf. [9,
Theorem 4.1]. Then, one uses S2 to show that the probabilities of suitable seed events
(cf. [9, Section 5]) with respect to measures Pu+δ, resp. Pu−δ, and Pu are close for
small enough δ, cf. [9, Lemmas 5.2 and 5.4]. In other words, one starts with a suitable
increasing, resp. decreasing, seed event unlikely with respect to Pu, concludes that
it is also unlikely with respect to Pu+δ, resp. Pu−δ, for small δ > 0, and obtains that
sufficiently spread out translates of the seed event are unlikely with respect to Pu, but
now with an explicit bound on the probability. All the other arguments in [9], as well as
in [24, 30], do not require comparison of probability laws with different parameters and
go through for each fixed u if Pu satisfies P1 and S1.

In this section we prove in Theorem 6.4 that the result of [9, Theorem 4.1] holds
for families of probability measures Pu that satisfy condition D, which is weaker than
P3. As P3 is only used in [9, 24, 30] to derive [9, Theorem 4.1], all the results about
geometric properties of S∞ proved in [9, 24, 30] hold for families of probability measures
Pu that satisfy P1, P2, D, S1, S2, see Corollary 6.5. This weakening is crucial in the
study of the vacant set of the random walk loop soup, since it satisfies D, but not P3 (see
Remarks 6.1(4) and 6.2).

The family of probability measures Pu, u ∈ (a, b), satisfies condition D if

D There exist constants C, c and β, γ, ζ > 0 such that for all L, s ≥ 1, x1, x2 ∈ Rd with
‖x1 − x2‖ = sL and a < u < u′ < b,

(a) if Ai ∈ σ(Ψy : y ∈ B(xi, L)) are increasing events, then

Pu [A1 ∩A2] ≤ Pu′ [A1] Pu
′
[A2]+C exp

(
−c min

{
(u′ − u)β sγ , e(logL)ζ

})
, (6.1)

(b) if Bi ∈ σ(Ψy : y ∈ B(xi, L)) are decreasing events, then

Pu
′
[B1 ∩B2] ≤ Pu [B1] Pu [B2] + C exp

(
−c min

{
(u′ − u)β sγ , e(logL)ζ

})
. (6.2)

Remark 6.1. 1. Note that inequalities (6.1) and (6.2) are always valid if (u′−u)β sγ ≤ 1,
thus condition D would not change if one additionally assumes that u′ − u ≥ s−

γ
β .

Now it is immedate that D implies P3 (take s = R, εP = ζ, χP = γ
β ).

2. If inequalities (6.1) and (6.2) hold only for u′ − u ≥ s−χ for some 0 < χ < γ
β , then they

hold for all u < u′ with (β, γ, ζ) replaced by (β′ = β, γ′ = βχ, ζ ′ = ζ).

3. In applications one uses D to prove certain behavior of S∞ under Pu for a fixed u (see
discussion before the definition of D), thus one only needs D for u′s in a vicinity of
u. In other words, one can assume that b − a < 1. If so, inequalities (6.1) and (6.2)
get weaker by enlarging β or diminishing γ. Thus, the reader should think of γ being
small and β large. Incidentally, D is satisfied by the random interlacements and the
level sets of the Gaussian free field with γ = d− 2 and β = 2, see, e.g., [23, 22].
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4. By Theorem 1.1, condition D is satisfied by the range of the loop soup L α with
γ = d− 2 and β = 1

2 (and any ζ > 0).

5. The key differences between D and P3 are that

(a) in models with polynomially decaying correlations (such as random interlacements,
the Gaussian free field and the random walk loop soup), condition D holds automat-
ically if s ≤ ε(logL)

1
γ ; this way it is more natural than P3, since it only postulates

decorrelation of local events occuring in large boxes when the boxes are far apart
in comparison to their size,

(b) the error term in P3 improves by passing to higher scales L, while the one in D is
essentially invariant under rescaling of L.

Remark 6.2. The observations in Remark 6.1(5) are crucial for why P3 is not a valid
condition for the loop soup percolation. Indeed, the range of the loop soup in disjoint
boxes is correlated because of big loops that visit both boxes. If the boxes and the
distance between them have the same scale (of order L, resp., RL with a large but
fixed R), then the stochastic behavior of the macroscopic loops visiting these boxes is
essentially independent of the scale L. (Note that the loop soup on 1

LZ
d converges for

large L to the Brownian loop soup, see, e.g., [31].) Using this observation, Chang proved
in [6] that condition P3 does not hold for events

A1 = {number of loop excursions from ∂intB(x1, L) to ∂intB(x1, 2L) is at least N},
A2 = {number of loop excursions from ∂intB(x2, L) to ∂intB(x2, 2L) is at least cRN},

where cR = cR2(2−d). Indeed, on [6, page 3182] Chang proves that Pα[A2|A1] ∼ 1

and Pα[A1] ∼ cα ρ
N Nα−1 as N → ∞ (unformly in L). As a result, Pα[A1 ∩ A2] �

Pα(1+δ)[A1]Pα(1+δ)[A2] ≥ c(N) > 0 as N →∞ (uniformly in L).
In general, events defined by the range of the loop soup are quite different from

those defined by loop excursions, so the above argument does not disprove P3 for the
loop soup. (Mind though that existing proofs of decoupling inequalities for random
interlacements (and the one of Theorem 1.1) use decompositions into excursions and do
apply to events A1, A2, thus if P3 were true for the loop soup, it would be at least hard to
verify.) However, if d ≥ 5 and α > 0 small enough then for all large L, the event that there
are at least 2N vertex disjoint paths in the range from ∂intB(x, L) to ∂intB(x, 2L) (later
called crossings) is essentially equivalent to the event that there are at least N inner loop
excursions from ∂intB(x, L) to ∂intB(x, 2L) and N outer excursions from ∂intB(x, 2L) to
∂intB(x, L). (The argument below works for any α < α], where α] is the critical threshold
for the finiteness of the expected size of the cluster of the origin, see [7, (2)].) More
precisely, using the same ideas as in [7, Section 5] one shows that with high probability
as L→∞, each crossing from ∂intB(x, L) to ∂intB(x, 2L) is built from a chain of at most
C logL loops, from which exactly one loop has diameter of order L and all the others are
of diameter at most L1−2ε. This implies that every crossing uses an inner or an outer loop
excursion between ∂intB(x, L+ L1−ε) and ∂intB(x, 2L− L1−ε). In dimensions d ≥ 5 with
high probability as L→∞, each excursion is a chain of small sausages linked through
cut points, which allows to show that each such excursion contributes to exactly one
crossing. Thus, if the number of crossings from ∂intB(x, L) to ∂intB(x, 2L) is at least 2N

(a fixed large number), then with high probability as L→∞, the number of inner and
outer loop excursions between ∂intB(x, L+ L1−ε) and ∂intB(x, 2L− L1−ε) is at least 2N .
Vice versa, if the number of excursions between ∂intB(x, L−L1−ε) and ∂intB(x, 2L+L1−ε)
is at least 2N , then with high probability as L→∞, the excursions do not intersect each
other in B(x, 2L) \ B(x, L), which implies that the number of crossings from ∂intB(x, L)

to ∂intB(x, 2L) is at least 2N . Using this correspondence between crossings and loop
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excursions and the above argument of Chang, it is easy to conclude that P3 does not
hold for the events {number of crossings in the range from ∂intB(x1, L) to ∂intB(x1, 2L)

is at least 2N} and {number of crossings in the range from ∂intB(x2, L) to ∂intB(x2, 2L)

is at least 2cRN}. We leave the details of this argument to the reader.
Although the above reasoning only serves to disprove P3 for the loop soup L α in

dimensions d ≥ 5 and small α, it is (together with the result of Chang) a good enough
evidence that P3 is not a valid condition to study the loop soup. Furthermore, in addition
to Remark 6.1(5), the argument demonstrates that condition D is weaker than P3. Since
by Theorem 6.4 condition P3 can be replaced by D in all its known applications, it is not
that interesting to try proving if P3 fails in the remaining cases.

Remark 6.3. It is easy to see that the measures Pu that satisfy D(a) or D(b) are stochas-
tically monotone, i.e., satisfy P2. The condition is particularly interesting for ζ ∈ (0, 1),

since in this case e(logL)ζ = o(Lp) for any p > 0. Furthermore, if ζ > 1
2 , then the error

term in (6.1) and (6.2) can be replaced by C exp
(
−c min

{
(u′−u)β sγ , (u′−u)ρ e(logL)ζ

})
with an arbitrary ρ > 0 (see Remark 6.7).

6.1 Cascading events

Let lk, rk, Lk, k ≥ 0 be sequences of positive integers such that

Lk = lk−1 · Lk−1, k ≥ 1.

Consider renormalized lattices

Gk = LkZ
d = {Lkx : x ∈ Zd}, k ≥ 0,

and define
Λx,k = Gk−1 ∩ (x+ [0, Lk)d), k ≥ 1, x ∈ Gk. (6.3)

(Note that |Λx,k| = (lk−1)d.)
For L0 ≥ 1 and x ∈ G0, any event Gx = Gx,0 ∈ σ(Ψy, y ∈ x+ [−L0, 3L0)d) is called a

seed event. (For simplicity, we omit from notation the dependence of seed events on L0.)
The family of seed events (Gx : L0 ≥ 1, x ∈ G0) is denoted by G.

For k ≥ 1 and x ∈ Gk, we recursively define the events

Gx,k =
⋃

x1, x2 ∈ Λx,k
‖x1 − x2‖ > rk−1 Lk−1

Gx1,k−1 ∩Gx2,k−1 . (6.4)

The main result of this section is the following theorem, which states that the result
of [9, Theorem 4.1] holds if the family of probability measures Pu satisfies assumption D.
Its proof is given in Section 6.2.

Theorem 6.4. Let θ > 1 such that (θ + 1)ζ > 1 and consider the scales

l0, r0, L0 ≥ 1, lk = l0 4bk
θc, rk = r0 2bk

θc, Lk = lk−1Lk−1, k ≥ 1. (6.5)

Let Pu, u ∈ (a, b), be a family of probability measures on (Ω,F). Let G be a family of
seed events such that for some u′ ∈ (a, b),

lim inf
L0→∞

sup
x∈G0

Pu
′ [
Gx
]

= 0. (6.6)

(a) If all Gx are increasing and the family Pu satisfies D(a), then for any u ∈ (a, u′),

there exists C = C(u, u′) such that for all l0 ≥ 1, r0 ≥ C(1 + log l0)
2
γ and some

L0 ≥ 1,
sup
x∈Gk

Pu
[
Gx,k

]
≤ 2−2k , k ≥ 0. (6.7)
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(b) If all Gx are decreasing and the family Pu satisfies D(b), then for any u ∈ (u′, b),

there exists C = C(u, u′) such that for all l0 ≥ 1, r0 ≥ C(1 + log l0)
2
γ and some

L0 ≥ 1, (6.7) holds.

Furthermore, if the limit (as L0 → ∞) in (6.6) exists (and equals 0), then there exists
C ′(u, u′, l0, G) such that the statements (a) and (b) hold for all L0 ≥ C ′.

To study geometric properties of the unique infinite percolation cluster S∞ as in
[9, 24, 30], one needs to impose further conditions on the scales lk, rk, namely, that for
all k ≥ 0, rk divides lk, lk > 16rk and

∑∞
k=0

rk
lk

is sufficiently small, see, e.g., below [30,

(37)]. This can be easily achieved, for instance, by taking in (6.5) l0 = r2
0 and r0 large

enough. We briefly summarize the main consequences of Theorem 6.4:

Corollary 6.5. Assume that a family of probability measures Pu, u ∈ (a, b), satisfies
assumptions P1, P2, D, S1, S2. Then all the results on geometry of S∞ from [9, 24, 30]
hold for all u ∈ (a, b), more precisely,

• Theorems 2.3 (chemical distances) and 2.5 (shape theorem) in [9],

• Theorem 1.1 in [24] (quenched invariance principle),

• Theorem 1.13 (Barlow’s ball regularity), Corollary 1.14 (quenched Gaussian heat
kernel bounds, elliptic and parabolic Harnack inequalities), Theorem 1.19
(quenched local CLT), as well as Theorems 1.16–1.18, 1.20 in [30].

We refer the reader to the introduction of [30] for the precise statements of these results
and relevant discussion.

Remark 6.6. By Remark 6.1(4), the vacant set Vα of random walk loop soup satisfies
condition D for all α > 0. Theorem 1.3 proves that Vα satisfies condition S1 for
small enough positive α. (It is believed that S1 holds for all α < α∗, see text below
Theorem 1.4.) Condition P1 holds for Vα due to [7, Proposition 3.2]. Condition P2
follows from D, but also directly follows from the definition of Vα. Condition S2 holds
for Vα for all α < α∗ by standard arguments of van den Berg and Keane [2] — the
probability that 0 is in an infinite cluster of Vα is left-continuous for all α, since it can
be expressed as a decreasing limit of non-increasing continuous functions, and it is
right-continuous for all α < α∗, by the uniqueness of the infinite cluster of Vα, see also
[37, Corollary 1.2], where the argument of van den Berg and Keane is adapted to the
vacant set of random interlacements. (Although the infinite cluster of Vα is unique for
all α < α∗ by an adaptation of the classical Burton-Keane argument, see Remark 3.5, the
uniqueness is immediate for α that satisfy S1 by the Borel-Cantelli lemma.) Thus, the
conclusions of Corollary 6.5 hold for Vα, which is the statement of Theorem 1.4.

6.2 Proof of Theorem 6.4

The proofs of (a) and (b) are essentially the same, we only prove (a).

Let Gx, x ∈ G0 be increasing events and the family Pu satisfy D(a). We assume
further that for some u′ ∈ (a, b),

lim
L0→∞

sup
x∈G0

Pu
′ [
Gx
]

= 0 (6.8)

and prove that for any u ∈ (a, u′), there exist C = C(u, u′) and C ′ = C ′(u, u′, l0, G), such

that (6.7) holds for all l0 ≥ 1, r0 ≥ C(1 + log l0)
2
γ and L0 ≥ C ′. It will be seen from the

proof how (a) follows if (6.8) is replaced by (6.6), see the note below (6.13).

Let u ∈ (a, u′). Fix β, γ, ζ > 0, for which D(a) holds and define χ = γ
2β > 0 and ξ = γ

2 .
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By the choice of rk in (6.5), there exists C1 = C1(u, u′) such that for all r0 ≥ C1,

∞∑
k=0

r−χk ≤ u′ − u. (6.9)

Let
u0 = u′, uk+1 = uk − r−χk , k ≥ 0. (6.10)

By (6.9), uk ≥ u for all k ≥ 0.
Consider the sequence

∆0 = 1 +

∞∑
i=0

log2(2l2di )

2i+1
, ∆k+1 = ∆k −

log2(2l2dk )

2k+1
, k ≥ 0. (6.11)

Note that ∆k ≥ 1 for all k ≥ 0. Since the events Gx, x ∈ G0, are increasing, the events
Gx,k, x ∈ Gk, are also increasing for all k ≥ 0. Thus, to prove (6.7) it suffices to show
that

sup
x∈Gk

Puk
[
Gx,k

]
≤ 2−∆k 2k , k ≥ 0. (6.12)

We prove (6.12) by induction on k.

Base of induction: By the definition of lk in (6.5), ∆0 = ∆0(l0). Thus, if (6.8) holds,
then for any l0, there exists C ′1 = C ′1(u, u′, l0, G) such that

sup
x∈G0

Pu0
[
Gx,0

]
≤ 2−∆0 (6.13)

holds for all L0 ≥ C ′1. (If only the weaker (6.6) is assumed, then the existence of
(arbitrarily large) L0 for which (6.13) holds follows.)

Induction step: Assume that (6.12) holds for some k ≥ 0 and prove that it also holds
for k + 1. Here we will use the definition of events Gx,k+1 and the assumption D(a).
Recall that for all x ∈ G0, Gx ∈ σ(Ψy, y ∈ x+ [−L0, 3L0)d). Thus, by (6.4), for all x ∈ Gk,
Gx,k ∈ σ(Ψy, y ∈ x+ [−L0, Lk + 2L0)d); furthermore, events Gx,k are increasing. Hence,
for each x ∈ Gk+1,

Puk+1
[
Gx,k+1

] (6.4)
≤

∑
x1,x2∈Λx,k+1 : ‖x1−x2‖>rk Lk

Puk+1
[
Gx1,k ∩Gx2,k

]
(6.1),(6.10)
≤ |Λx,k+1|2

(
sup
x∈Gk

Puk
[
Gx,k

]2
+ C exp

(
−c min

{
r−χβk rγk , e

(logLk)ζ
}))

(6.3),(6.12)
≤ l2dk

(
2−∆k2k+1

+ C exp
(
−c min

{
rξk, e

(logLk)ζ
}))

. (6.14)

To bound (6.14) from above, note that for some C, if

min
{
rξk, e

(logLk)ζ
}
≥ C ∆0 2k+1

(
≥ C ∆k 2k+1

)
, (6.15)

then (6.14) is bounded from above by

2 l2dk 2−∆k2k+1 (6.11)
= 2−∆k+1 2k+1

.

By the definition of rk in (6.5) and ∆0 in (6.11) and using that θ > 1, the inequality
rξk ≥ C ∆0 2k+1 holds for all k ≥ 0 if for some C2, rξ0 ≥ C2 (1+log l0). Also, by the definition

of Lk in (6.5) and this time using that (θ + 1)ζ > 1, the inequality e(logLk)ζ ≥ C ∆0 2k+1

holds for all k ≥ 0 if L0 ≥ C ′2 for some C ′2 = C ′2(l0).
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Thus, we proved that there exist constants C = C(u, u′) and C ′ = C ′(u, u′, l0, G), such

that (6.12) holds for all l0 ≥ 1, r0 ≥ C(1 + log l0)
1
ξ and L0 ≥ C ′. (If (6.6) is assumed

instead of (6.8), then (6.12) holds for all l0 ≥ 1, r0 ≥ C(1 + log l0)
1
ξ and any L0 ≥ C ′2 for

which (6.13) holds.)

Remark 6.7. If ζ > 1
2 , we can choose θ > 1 in the statement of Theorem 6.4 such that

(θ + 1)ζ > θ. In this case, for any given ρ > 0, the inequality r−ρχk e(logLk)ζ ≥ C ∆0 2k+1

holds for all k ≥ 0 if r0 ≥ C and L0 ≥ C ′(l0). From the estimate (6.15) it follows that for
such choice of ζ, θ and ρ, Theorem 6.4 holds even if the error terms in D are replaced by

C exp
(
−c min

{
(u′ − u)β sγ , (u′ − u)ρ e(logL)ζ

})
.
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