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Abstract

Take a continuous-time Galton-Watson tree and pick k distinct particles uniformly from
those alive at a time T . What does their genealogical tree look like? The case k = 2

has been studied by several authors, and the near-critical asymptotics for general k
appear in Harris, Johnston and Roberts (2018) [9]. Here we give the full picture.
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1 Introduction

Let L be a random variable taking values in {0, 1, 2, . . .}. Consider a continuous-time
Galton-Watson tree starting with one initial particle, branching at rate 1, and with
offspring distributed like L.

Let Nt be the number of particles alive at time t, and write f(s) := E[sL] and
Ft(s) := E[sNt ] for the generating functions associated with the process. Let T > 0, and
on the event {NT ≥ k} pick k distinct particles U1, . . . , Uk uniformly from those alive at
time T . For each earlier time t ∈ [0, T ], define the equivalence relation ∼t on {1, . . . , k}
by

i ∼t j ⇐⇒ Ui and Uj share a common ancestor alive at time t.

We let πk,L,Tt denote the random partition of {1, . . . , k} corresponding to this equiva-
lence relation. The process (πk,L,Tt )t∈[0,T ], defined on the event {NT ≥ k}, is a right-
continuous partition-valued stochastic process characterising the entire genealogical
tree of U1, . . . , Uk.

Our goal is to describe the law of (πk,L,Tt )t∈[0,T ] conditioned on the event {NT ≥ k},
with a view towards the asymptotic regime T →∞. We find that as T →∞, there are
marked differences in the qualitative behaviour of (πk,L,Tt )t∈[0,T ] depending on the mean
number of offspring

m := f ′(1).
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The genealogy of Galton-Watson trees

Before we state our results in full generality in Section 3, we give an impression of the
structure we expect to encounter by exploring the special case k = 2, which features as
the focus of a chapter in the recent book [3], and on which the majority of the related
literature concentrates.

2 The case k = 2

The case k = 2 amounts to choosing two particles uniformly from those alive at
a time T from a tree with offspring distributed like L, and studying the time τL,T in
[0, T ] at which they last shared a common ancestor. In terms of the partition process
(π2,L,T
t )t∈[0,T ], τ

L,T is the time at which the single block {{1, 2}} splits into the pair of
singletons {{1}, {2}}.

The following characterisation of the law of τL,T (which we will generalise later) was
first given by Lambert [14].

Lemma 2.1 (Lambert [14], Corollary 1). On {NT ≥ 2}, pick two distinct particles uni-
formly from those alive at time T . Let τL,T ∈ [0, T ] be the time at which they last shared
a common ancestor. Then

P
(
τL,T ∈ [t, T ], NT ≥ 2

)
=

∫ 1

0

(1− s)
F ′′T−t(s)

F ′T−t(s)
F ′T (s)ds, (2.1)

where Ft(s) = E[sNt ].

Although Lambert’s result gives a powerful implicit characterisation of the distribu-
tion of τL,T , it is difficult to infer qualitative properties of this random variable directly
from (2.1). When T →∞ however, it is possible to gain a more intuitive insight. Unsur-
prisingly, different qualitative behaviours arise depending on whether the underlying
Galton-Watson tree is supercritical, critical, or subcritical. These cases correspond to
m > 1, m = 1, and m < 1 respectively (where m = f ′(1)).

In the remainder of this section we will exploit classical limit theory of Galton-Watson
trees in conjunction with (2.1) to show that conditioned on {NT ≥ 2}, we have the
following limiting behaviour in τL,T as T →∞:

• When the tree is supercritical, τL,T remains near the beginning of the interval
[0, T ]. That is, we have the convergence in distribution

τL,T
D−→ τ̄L

as T →∞, where τ̄L is a [0,∞)-valued random variable depending on the law of L.

• When the tree is critical, τL,T grows linearly in T . That is, we have the convergence
in distribution

τL,T /T
D−→ τ̄ crit

as T → ∞, where τ̄ crit is a [0, 1]-valued random variable universal in all critical
offspring distributions with finite variance.

• When the tree is subcritical, τL,T remains near the end of the interval [0, T ]. That
is, we have the convergence in distribution

T − τL,T D−→ ν̄L

as T →∞, where ν̄L is a [0,∞)-valued random variable depending on the law of L.

In all three cases we are able to obtain integral formulas for the law of the limit variables.
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2.1 The case k = 2, supercritical

First we consider the supercritical case m > 1. Bühler [5] first observed that when
two particles are chosen uniformly from a supercritical tree at a large time, their most
recent common ancestor was a member of one of the first generations in tree. More
recently, Athreya [1] showed that conditioned on {NT ≥ 2}, τL,T converges in distribution
to a [0,∞)-valued random variable τ̄L as T →∞.

Without too much concern at this stage for technical details, we now outline how it is
possible to use limit theory for supercritical trees in conjunction with Lambert’s formula
(2.1) to obtain a formula for the law of the limit variable τ̄L.

When the tree is supercritical and the Kesten-Stigum condition E[L log+ L] < ∞
holds, the non-negative and unit-mean martingale Wt := Nte

−(m−1)t converges to a
well behaved limit W∞ [12]. This suggests that at a large time T , the population
size is of order e(m−1)T , and it would be useful to study the scaling s = e−ve

−(m−1)t

in
the generating function Ft(s). Indeed, if we let ϕ(v) := E[e−vW∞ ] denote the Laplace
transform of the martingale limit W∞, in Lemma 6.1 we will show that

lim
T→∞

e−k(m−1)TF
(k)
T−t(e

−ve−(m−1)T

) = (−1)ke−k(m−1)tϕ(k)(ve−(m−1)t), k ≥ 0, (2.2)

where F (k)
t (s) := ∂k

∂sk
Ft(s). Assuming for now we can take the limit inside the integral,

with the change of variable s = e−ve
−(m−1)T

in (2.1), using (2.2) in the final equality below
we obtain

P(τ̄L > t, survival) := lim
T→∞

P
(
τL,T ∈ [t, T ], NT ≥ 2

)
= lim
T→∞

∫ 1

0

(1− s)
F ′′T−t(s)

F ′T−t(s)
F ′T (s)ds

=

∫ ∞
0

ve−(m−1)tϕ
′′(ve−(m−1)t)

ϕ′(ve−(m−1)t)
ϕ′(v)dv. (2.3)

The formula (2.3) appears to be new, and corresponds to the special case k = 2 of our
main result for supercritical trees, Theorem 3.5.

2.2 The case k = 2, critical

We now move onto the critical case m = 1, which has received a lot of attention from
different authors [2, 6, 9, 17, 18]. Under the second moment assumption f ′′(1) < ∞,
Zubkov [18] found that conditioned on {NT ≥ 2}, τL,T /T converges in distribution to a
[0, 1]-valued random variable τ̄Crit as T →∞.

Like in the supercritical case, it is possible to use limit theory for critical trees
in conjunction with (2.1) to obtain the law of τ̄Crit. Namely, the Kolmogorov-Yaglom
exponential limit law [4, III.7] states that for critical trees with finite variance

lim
T→∞

TP(NT > 0) =
1

c
, lim

T→∞
P

(
NT
cT

> x

∣∣∣∣∣NT > 0

)
= e−x, (2.4)

where c := f ′′(1)/2. In Lemma 6.2, we use the exponential limit law (2.4) to show that
for k ≥ 1 and a ∈ (0, 1]

lim
T→∞

T−k+1F
(k)
aT

(
e−

θ
cT

)
= (ac)

k−1 k!

(1 + aθ)k+1
. (2.5)

For u ∈ [0, 1], set t = uT and take the change of variable s = exp
(
− θ
cT

)
in (2.1). Assuming
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we can take the limit inside the integral, using (2.5) in the third equality below we obtain

P(τ̄Crit ∈ [u, 1]) := lim
T→∞

P
(
τL,T /T ∈ [u, 1] | NT ≥ 2

)
= lim
T→∞

1

P(NT ≥ 2)

∫ 1

0

(1− s)
F ′′(1−u)T (s)

F ′(1−u)T (s)
F ′T (s)ds

=

∫ ∞
0

2(1− u)

(1 + (1− u)θ)

θ

(1 + θ)2
dθ

=
2(1− u)

u2

(
log

(
1

1− u

)
− u
)
. (2.6)

Various formulas for the law of τ̄Crit have appeared in the literature. Durrett [6] gave
(2.6) in terms of a power series, Athreya [2] gave an expression in terms of sums of
exponential random variables, and O’Connell [17] (and more recently, Harris, Johnston
and Roberts [9]) obtained (2.6) as written in the more general near-critical setting. We
refer the reader to [9, Section 3] for further discussion.

2.3 The case k = 2, subcritical

Finally, we look at the subcritical case m < 1. On the overwhelmingly rare event
that a subcritical tree manages to survive until a large time T , the law of the number of
particles alive conditioned on survival converges to a quasi-stationary limit [4, Section
III.7]. By this, we mean that there exist non-negative numbers {cj : j ≥ 1} satisfying∑
j≥1 cj = 1 such that

lim
T→∞

P(NT = j|NT > 0) = cj . (2.7)

Lambert showed in [14] (and also Athreya in [2]) that conditioned on {NT ≥ 2}, the
difference υL,T := T − τL,T converges in distribution to a [0,∞)-valued random variable
ῡL as T → ∞. Lambert also gave an implicit formula for the distribution of the limit
variable ῡL, which Le [15] inverted to obtain

P(ῡL < t) =
1

1− c1

∫ 1

0

(1− s)F
′′
t (s)

F ′t (s)
C ′(s)ds, (2.8)

where C(s) :=
∑
j≥1 cjs

j is the generating function of the quasi-stationary limit. By
replacing t with T − t in (2.1), and using the fact (due to (2.7)) that

lim
T→∞

F ′T (s)

P(NT ≥ 2)
= lim
T→∞

P(NT ≥ 1)

P(NT ≥ 2)
E[NT s

NT−1|NT ≥ 1] =
1

1− c1
C ′(s), (2.9)

it is straightforward to sketch a proof of (2.8).

3 Main results

3.1 Overview of results

Let us now give a brief overview of our main results, which will be stated formally
in the sequel. Our results for general k run analagously to Section 2 – first we provide
integral formulas for the law of (πk,L,Tt )t∈[0,T ] for fixed (finite) T , then we study the
T →∞ asymptotics of these integrals in the supercritical, critical, and subcritical cases.

The fixed-T results, Theorem 3.1, Theorem 3.2, and Theorem 3.4, characterise the
law of (πk,L,Tt )t∈[0,T ] in three different ways, first in terms of its finite dimensional
distributions, second in terms of its random splitting times, and third as a mixture of
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Markov processes. In all cases, explicit formulas are obtained, each in the form of an
integral equation involving various generating functions associated with the process.

For instance, the case n = 1 of Theorem 3.1 gives the one-dimensional distributions
of (πk,L,Tt )t∈[0,T ]. Namely, for any partiton γ of {1, . . . , k},

P(πk,L,Tt = γ,NT ≥ k) =

∫ 1

0

(1− s)k−1

(k − 1)!
F
|γ|
t (FT−t(s))

∏
Γ∈γ

F
|Γ|
T−t(s)ds,

where F jt denotes the jth derivative of Ft(s) with respect to s.
We are able to understand the combinatorial nature of the products in these integral

formulas by relating them to the Faà di Bruno formula [10], which states that for k-times
differentiable f and g,

(f ◦ g)k =
∑
γ∈Πk

(
f |γ| ◦ g

) ∏
Γ∈γ

g|Γ|, (3.1)

where Πk is the set of partitions of {1, . . . , k}, |γ| is the number of blocks of a partition
γ and |Γ| are the block sizes, and hj denotes the jth derivative of h. It transpires that
there is a class of Markov processes whose finite dimensional distributions may be given
in terms of a generalisation of the Faà di Bruno for the semigroup (Ft(s))t≥0. Theorem
3.4 states that (πk,L,Tt )t∈[0,T ] is a random mixture of these processes.

We then send the picking time T → ∞, and study the asymptotic behaviour of
the process (πk,L,Tt )t∈[0,T ]. As in the case k = 2 discussed in Section 2, we will see

analogous differences in the asymptotic behaviour of (πk,L,Tt )t∈[0,T ] depending on the
mean m := f ′(1) of the offspring distribution. Under certain conditions, and in each case
conditioned on {NT ≥ k}, we have the following as T →∞:

• In the supercritical case m > 1, Theorem 3.5 states that we have the distributional
convergence

(πk,L,Tt )t∈[0,T ] → (π̄k,Lt )t∈[0,∞), (3.2)

for a limit process (π̄k,Lt )t∈[0,∞) depending on the law of L. We will characterise

the law of the limit process (π̄k,Lt )t∈[0,∞) in terms of integral formulas involving the
Laplace transform of the martingale limit.

• In the critical casem = 1, Theorem 3.6 states that there exists a universal stochastic
process (π̄k,critt )t∈[0,1] such that

(πk,L,TtT )t∈[0,1] → (π̄k,critt )t∈[0,1],

for every critical offspring distribution with finite variance. This result is not
new, and was covered in detail (and in greater generality) in Harris, Johnston and
Roberts [9].

• In the subcritical case m < 1, conditioned on survival until a large time T , the
common ancestors of a sample of k particles chosen at T existed near the end of
the time interval [0, T ]. Here it makes more sense to consider (ρk,L,Tt )t∈[0,T ] – the

right-continuous modification of (πk,L,TT−t )t∈[0,T ]. Our subcritical result, Theorem 3.7,
states that

(ρk,L,Tt )t∈[0,T ] → (ρ̄k,Lt )t∈[0,∞), (3.3)

for a limit process (ρ̄k,Lt )t∈[0,∞) depending on the law of L. We will characterise

the law of the limit process (ρ̄k,Lt )t∈[0,∞) in terms of integral formula involving the
generating function of the quasi-stationary limit.
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Finally, we consider the relationships between the processes (πk,L,Tt )t∈[0,T ] for dif-
ferent values of k. Theorem 3.8 states that conditioned on the event {NT ≥ k + j},
the process obtained by projecting (πk+j,L,T )t∈[0,T ] onto {1, . . . , k} has the same law as

(πk,L,Tt )t∈[0,T ]. Corollary 3.9 states that the limiting processes (π̄k,Lt )t≥0 and (π̄k,critt )t∈[0,1]

appearing in Theorem 3.5 and Theorem 3.6 also satisfy a projectivity property.

3.2 Definitions

Before stating the main results in full, we need to introduce some more notation
and definitions. We start by giving a brief formal description of the continuous time
Galton-Watson tree. Let L be a {0, 1, 2, . . .}-valued random variable and let f(s) := E[sL]

be its generating function. Under the probability measure P, we start at time 0 with
one particle which we call ∅. The particle ∅ lives for a unit-mean and exponentially
distributed length of time τ∅ until it dies, and is replaced by a random number of
offspring with labels 1, 2, . . . , L∅, where L∅ is distributed like L and is independent of
τ∅. These offspring then independently repeat this behaviour. That is, for each u born
at some time, u lives a length of time τu distributed like τ∅ and at death is replaced by
offspring with labels u1, u2, . . . , uLu, where Lu is distributed like L. Here, τu and Lu are
independent of each other and of the past. We write Nt for the set of particles alive at
time t, Nt = |Nt| for the number alive at t, and let Ft(s) := E[sNt ]. We remark that Ft(s)
enjoys the semigroup property Ft1 ◦ Ft2 = Ft1+t2 .

For u 6= v, we write u < v if u is an ancestor of v (or equivalently, v is a descendent
of u) and u ≤ v if u < v or u = v. Throughout we will use the terminology ancestor and
descendent weakly, so that u is both an ancestor and a descendent of itself.

A partition γ of a non-empty set A is a collection of disjoint non-empty subsets of A,
or blocks, whose union is A. We write |γ| for the number of blocks in γ, and for a block
Γ ∈ γ, we write |Γ| for the number of elements in Γ. We write ΠA for the collection of
partitions of A, and write Πk := Π{1,...,k}. If B is a non-empty subset of A, and α is a
partition of A, we write αB (or α|B when there are other superscripts present) for the
projection of α onto B:

αB := {A′ ∩B non-empty : A′ ∈ α}.

When projecting a partition α onto the set {1, . . . , k}, we will write αk (or α|k) in place of
α{1,...,k}.

For partitions α, β, we say α can break into β, written α ≺ β (or β � α), if each
block of α is a union of blocks in β. For example,

{
{1, 2, 4}, {3}

}
≺
{
{1}, {2, 4}, {3}

}
. An

n-chain (or just chain) of partitions is a sequence of partitions γ = (γ1, . . . , γn) with
the property that γi ≺ γi+1 for every i. Let ΠA

n denote the set of n-chains of partitions

of A, and for k ≥ 1 write Πk
n := Π

{1,...,k}
n . Using the conventions γ0 =

{
{1, . . . , k}

}
and

γn+1 =
{
{1}, {2}, . . . , {k}

}
, for each 0 ≤ i ≤ n, every block Γ ∈ γi is the union of bi(Γ) ≥ 1

blocks of γi+1. Ordering blocks by their least element, we call the doubly indexed array
(bi(Γ) : 0 ≤ i ≤ n,Γ ∈ γi) the fragmentation numbers associated with the chain γ, and
(bi(Γ) : Γ ∈ γi) the fragmentation numbers at the level i.

We will also use the terminology chain for sequence of partitions satisfying γi � γi+1.
Adopting the convention γ0 = {{1}, . . . , {k}} and γn+1 = {{1, . . . , k}}, for each 0 ≤ i ≤ n,
each block Γ ∈ γi is the union of mi(Γ) blocks of γi−1. We call the array (mi(Γ) : i ≤
n,Γ ∈ γi) the merger numbers.

A mesh (ti)i≤n of a time interval [0, T ] is a collection of times 0 < t1 < . . . < tn < T .
Given a mesh (ti)i≤n, we set ∆ti := ti+1 − ti (employing the convention t0 = 0, tn+1 = T ).

Whenever h is a function, hj or hj(s) will refer to the j th-derivative of the function
(and h(s)j for the j th exponent). In particular, we will write F jt (s) for the j th-derivative of
Ft(s) with respect to s.
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Recall that under P we have a continuous-time Galton-Watson tree starting with
one initial particle, branching at rate 1 and with offspring numbers distributed like L.
Additionally under P, and on the event {NT ≥ k}, pick k distinct particles U1, . . . , Uk
uniformly from those alive at time T . For each time t ∈ [0, T ], we define the equivalence
relation i ∼t j if and only if Ui and Uj share a common ancestor alive at time t. We
let πk,L,Tt denote the random partition of {1, . . . , k} corresponding to this equivalence
relation. The resulting process (πk,L,Tt )t∈[0,T ], defined on the event {NT ≥ k}, is a
right-continuous partition-valued stochastic process satisfying

πk,L,T0 =
{
{1, 2, . . . ., k}

}
, πk,L,TT =

{
{1}, {2}, . . . , {k}

}
.

Furthermore, (πk,L,Tt )t∈[0,T ] is a fragmentation process, in the sense that blocks break as
time passes:

t1 < t2 =⇒ πk,L,Tt1 ≺ πk,L,Tt2 .

Let (ρk,L,Tt )t∈[0,T ] be the right-continuous modification of (πk,L,TT−t )t∈[0,T ]. Then the

stochastic process (ρk,L,Tt )t∈[0,T ] is a coalescent process, in the sense that blocks merge
together as time passes:

t1 < t2 =⇒ ρk,L,Tt1 � ρk,L,Tt2 .

We call the discontinuities τ1 < . . . < τn of (πk,L,Tt )t∈[0,T ] split times, since these times
correspond to a block splitting into two or more blocks.

The event {(πk,L,Tt )t∈[0,T ] is binary} refers to the event that at every split time, a
block splits into exactly two blocks. Note that

{(πk,L,Tt )t∈[0,T ] is binary} = {(πk,L,Tt )t∈[0,T ] has k − 1 split times}.

When the offspring generating function is of the form f(s) = α + γs+ βs2, no particle
in the tree has more than two offspring upon death, and we call the underlying Galton-
Watson tree a birth-death process. It follows from that when the underlying tree is a
birth-death process

P
(

(πk,L,Tt )t∈[0,T ] is binary
∣∣ NT ≥ k) = 1.

Whenever the tree is not a birth-death process, there is a positive probability that before
time T some particle in the underlying Galton-Watson tree is replaced by three or more
offspring upon death, and hence

P
(

(πk,L,Tt )t∈[0,T ] is binary
∣∣ NT ≥ k) < 1

for every k ≥ 3.

3.3 Hypotheses

We need to ensure that there actually are at least k particles alive at time T with
positive probability, and that we can choose uniformly from them. To be more precise,
we must ensure that both P(NT ≥ k) > 0, and P(NT < ∞) = 1. The inequality
P(NT ≥ k) > 0 is guaranteed to hold by virtue of our first hypothesis, which states that

f ′′(1) > 0. (3.4)
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In addition to (3.4), we insist that the following non-explosion hypothesis holds:∫ 1

1−ε

ds

|f(s)− s|
=∞, ∀ε ∈ (0, 1). (3.5)

This condition (3.5) is equivalent to our second requirement that P(Nt <∞) = 1 for t,
and holds whenever f ′(1) < ∞ [8, Chapter II, Theorem 9.1]. We emphasize that both
hypotheses (3.4) and (3.5) are in force in the remainder of this paper.

We are now ready to state our main results, which we split into three sections. The
results in Section 3.4 concern fixed and finite T . The results in Section 3.5 concern
the asymptotic regime in which T is sent to∞. The results in Section 3.6 concern the
projectivity of the partition processes.

3.4 Fixed-T results

The results in this section describe the law of the process (πk,L,Tt )t∈[0,T ] for fixed
times T in terms of the generating functions Ft(s) = E[sNt ] and f(s) = E[sL].

Our first fixed-T result, Theorem 3.1, is a generalisation of Lambert’s equation (2.1),
giving the finite dimensional distributions of the stochastic process (πk,L,Tt )t∈[0,T ].

Theorem 3.1. For any mesh (ti)i≤n, and any chain of partitions γ = (γ1, . . . , γn) of
{1, . . . , k},

P(πk,L,Tt1 = γ1, . . . , π
k,L,T
tn = γn, NT ≥ k) =

∫ 1

0

(1− s)k−1

(k − 1)!

n∏
i=0

∏
Γ∈γi

F
bi(Γ)
∆ti

(
FT−ti+1

(s)
)
ds,

(3.6)

where ∆ti = ti+1 − ti.
Our next result, Theorem 3.2, characterises the law of (πk,L,Tt )t∈[0,T ] in terms of

its split times. To this end, let η = (η0, . . . , ηn) be a chain of partitions such that
η0 = {{1, . . . , k}}, ηn = {{1}, . . . , {k}}. We say η is maximal if ηi is obtained from ηi−1 by
breaking precisely one block of ηi−1 into qi ≥ 2 blocks in ηi.

Roughly speaking, given a maximal chain η = (η0, . . . , ηn), the following theorem
gives the joint density of the n times that the process ‘jumps’ from the value ηi−1 to ηi,
characterising the joint law of the split times of (πk,L,Tt )t∈[0,T ].

Theorem 3.2. Let η = (η0, . . . , ηn) be a maximal chain, and let a1 < b1 < a2 < b2 <

. . . an < bn. Then

P(πk,L,Tai = ηi−1, π
k,L,T
bi

= ηi ∀ i = 1, . . . , n, NT ≥ k) (3.7)

=

∫ b1

a1

. . .

∫ bn

an

du1 . . . dun

∫ 1

0

(1− s)k−1

(k − 1)!
F ′T (s)

n∏
i=1

fqi(FT−ui(s))F
′
T−ui(s)

qi−1ds, (3.8)

where qi = 1 + |ηi| − |ηi−1|.
The following lemma is a generalisation of the Faà di Bruno formula (3.1), shedding

light on the products occuring in the integral in (3.6).

Lemma 3.3. Let g0, . . . , gn be k-times differentiable. Then

(g0 ◦ g1 ◦ . . . ◦ gn)k =
∑
γ∈Πkn

n∏
i=0

∏
Γ∈γi

g
bi(Γ)
i ◦ gi+1 ◦ . . . ◦ gn. (3.9)

In particular, for any semigroup (Ft)t≥0 of k-times differentiable functions, and any mesh
(ti)i≤n of [0, T ], we have

F kT (s) =
∑
γ∈Πkn

n∏
i=0

∏
Γ∈γi

F
bi(Γ)
∆ti

(
FT−ti+1

(s)
)
. (3.10)
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The identity (3.10) is used to interpret (πk,L,Tt )t∈[0,T ] as a mixture of Markov processes
as follows.

Recall that if B is a subset of A and α is a partition of A, αB is the projection of
α onto B. We say a Πk-valued (time-inhomogeneous) Markov fragmentation process
(π̃t)t∈[0,T ] has the independent blocks property if given {π̃t0 = γ}, the stochastic pro-
cesses

{
(π̃Γ
t )t∈[t0,T ] : Γ ∈ γ

}
are conditionally independent. Any such process under a

law P is characterised by the quantities

P(πΓ
t2 = δ|πt1 = γ),

where t1 < t2 < T , γ is a partition of {1, . . . , k}, Γ is a block of γ, and δ is a partition of
the block Γ.

In Section 5.3 we show using (3.10) that there exists a Markov process (π̃t)t∈[0,T ]

starting from π̃0 = {{1, . . . , k}} under a probability law Rk,L,Ts with the independent
blocks property and transition density

Rk,L,Ts (π̃Γ
t2 = δ|π̃t1 = γ) :=

F
|δ|
t2−t1(FT−t2(s))

∏
∆∈δ F

|∆|
T−t2(s)

F
|Γ|
T−t1(s)

, t2 ≥ t1. (3.11)

Our final fixed-T result, Theorem 3.4, states that the process (πk,L,Tt )t∈[0,T ] can be
constructed as a random mixture mk,L,T of processes with laws given by {Rk,L,Ts : s ∈
[0, 1]}, where the mixture measure is given by

mk,L,T (ds) :=
(1− s)k−1F kT (s)

(k − 1)!P(NT ≥ k)
. (3.12)

Theorem 3.4. The conditional law of (πk,L,Tt )t∈[0,T ] on the event {NT ≥ k} is given by

P(πk,L,Tt1 = γ1, . . . , π
k,L,T
tn = γn | NT ≥ k) =

∫ 1

0

mk,L,T (ds)Rk,L,Ts (π̃t1 = γ1, . . . , π̃tn = γn).

In particular, mk,L,T (ds) is a probability measure and (πk,L,Tt )t∈[0,T ] is a mixture of
Markov processes with the independent blocks property.

3.5 Asymptotic-T results

We now move on to results concerning the asymptotic behaviour of (πk,L,Tt )t∈[0,T ] as
T → ∞. Below we say a collection of partition-valued stochastic processes {(πTt )t≥0 :

T > 0} converge in distribution to a stochastic process (π̄t)t≥0 as T → ∞ if the finite
dimensional distributions converge:

lim
T→∞

P(πTt1 = γ1, . . . , π
T
tn = γn) = P(π̄t1 = γ1, . . . , π̄tn = γn).

First we will consider the supercritical case m > 1. Given the stochastic process
(πk,L,Tt )t∈[0,T ] defined on [0, T ], we define its extension (πk,L,Tt )t≥0 to all of [0,∞) by
setting

πk,L,Tt =
{
{1}, . . . , {k}

}
whenever t > T .

Theorem 3.5. Let m > 1 and E[L log+ L] < ∞. Then as T → ∞, conditioned on

{NT ≥ k} the process (πk,L,Tt )t≥0 converges in distribution to a stochastic process
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(π̄k,Lt )t≥0 with finite dimensional distributions given by

P(π̄k,Lt1 = γ1, . . . , π̄
k,L
tn = γn)

=
(−1)ke−k(m−1)tn

1− ϕ(∞)

∫ ∞
0

vk−1

(k − 1)!

n−1∏
i=0

∏
Γ∈γi

F
bi(Γ)
∆ti

(
ϕ(e−(m−1)ti+1v)

) ∏
Γ∈γn

ϕ|Γ|(e−(m−1)tnv)dv,

(3.13)

where ϕ(v) := E[e−vW∞ ] is the Laplace transform of the martingale limit W∞ :=

limT→∞NT e
−(m−1)T .

Next we consider the critical case m = 1.

Theorem 3.6. There exists a universal stochastic process (π̄k,critt )t∈[0,1] such that for any

tree with m = 1 and f ′′(1) < ∞, the process (πk,L,TTt )t∈[0,1] conditioned on {NT ≥ k}
converges in distribution to (π̄k,critt )t∈[0,1] as T → ∞. Moreover, the finite dimensional

distributions of (π̄k,critt )t∈[0,1] are given by

P(π̄k,critt1 = γ1, . . . , π̄
k,crit
tn = γn)

=

n∏
i=0

∏
Γ∈γi

bi(Γ)!

∫ ∞
0

θk−1

(k − 1)!

n∏
i=0

(∆ti)
|γi+1|−|γi|

(
1 + (1− ti+1)θ

1 + (1− ti)θ

)|γi+1|

dθ. (3.14)

Theorem 3.6 has already appeared (albeit from a different perspective) in Harris, John-
ston and Roberts [9], who show that the genealogical tree corresponding to (π̄k,critt )t∈[0,1]

is binary, and the k − 1 split times of (π̄k,critt )t∈[0,1] have joint probability density function

P (u1, . . . , uk−1) = k

∫ ∞
0

θk−1

(1 + θ)2

k−1∏
i=1

1

(1 + θ(1− ui))2
dθ. (3.15)

It is possible to derive (3.15) from our formula (3.14) by letting t2i−1 = ui, t2i = ui + hi
for i = 1, . . . , k − 1, and sending every hi ↓ 0. The resulting discrepancy by a factor
k!(k−1)!

2k
is a matter of counting tree topologies: there are k!(k−1)!

2k
ranked binary trees

with k labelled leaves and (k − 1) ranked internal nodes [16].

Finally, we look at the subcritical case m < 1. Recall that (ρk,L,Tt )t∈[0,T ] is the right-

continuous modification of (πk,L,TT−t )t∈[0,T ]. We define the extension (ρk,L,Tt )t≥0 to all of
[0,∞) by setting

ρk,L,Tt :=
{
{1, . . . , k}

}
whenever t > T .

Theorem 3.7. Let m < 1 and E[L log+ L] < ∞. Then as T → ∞, conditioned on

{NT ≥ k}, the process (ρk,L,Tt )t≥0 converges in distribution to a stochastic process
(ρ̄k,Lt )t≥0 with finite dimensional distributions given by

P(ρ̄k,Lt1 = γ1, . . . , ρ̄
k,L
tn = γn)

=
e−(m−1)tn

1−
∑k−1
j=1 cj

∫ 1

0

(1− s)k−1

(k − 1)!
C |γn|(Ftn(s))

n∏
i=1

∏
Γ∈γi

F
mj(Γ)
∆tj−1

(Ftj−1
(s)) ds, (3.16)

where cj := limT→∞P(NT = j|NT > 0) and C(s) :=
∑
j≥1 cjs

j .

EJP 24 (2019), paper 94.
Page 10/35

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP355
http://www.imstat.org/ejp/


The genealogy of Galton-Watson trees

3.6 Projectivity

Let k and j be positive integers. Recall that for γ ∈ Πk+j , γ|k ∈ Πk is the projection
of γ onto {1, . . . , k}. Writing (πkt )t∈[0,T ] := (πk,L,Tt )t∈[0,T ] for the remainder of this sec-
tion, it is natural to expect from the definition of (πkt )t∈[0,T ] that the projected process(
πk+j
t

∣∣k)
t∈[0,T ]

is closely related to (πkt )t∈[0,T ] – a property we call projectivity. The

following generalisation of Theorem 3.1 clarifies this connection.

Theorem 3.8. On the event {NT ≥ k + j}, the processes
(
πk+j
t

∣∣k)
t∈[0,T ]

and (πkt )t∈[0,T ]

are identical in law, and have finite dimensional distributions given by

P(πkt1 = γ1, . . . , π
k
tn = γn, NT ≥ k + j)

=

∫ 1

0

(1− s)k+j−1

(k + j − 1)!

∂j

∂sj

 n∏
i=0

∏
Γ∈γi

F
bi(Γ)
∆ti

(
FT−ti+1

(s)
) ds. (3.17)

Theorem 3.8 has two immediate corollaries. The first of these, Corollary 3.9, states
that when the underlying Galton-Watson tree is either supercritical or critical, the
discrepancy in the conditioning disappears in the limit.

Corollary 3.9. Let (π̄k,Lt )t≥0 be defined as in Theorem 3.5, and let (πk,critt )t∈[0,1] be

defined as in Theorem 3.6. Then the processes
(
π̄k+j,L
t |k

)
t≥0

and (π̄k,Lt )t≥0 are identical

in law, and the processes
(
π̄k+j,crit
t

∣∣k)
t∈[0,1]

and (π̄k,critt )t∈[0,1] are identical in law.

Proof. In both the supercritical and critical cases, the proof is a consequence of Theorem
3.8 and the fact that

lim
T→∞

P(NT ≥ k + j | NT ≥ k) = 1. (3.18)

See [4, Chapter III] for details on (3.18).

We emphasise that no exact analogue of Corollary 3.9 holds in the subcritical case,
since due to (2.7) we have

lim
T→∞

P(NT ≥ k + j | NT ≥ k) =

∑
i≥k+j cj∑
i≥k cj

< 1.

The second corollary of Theorem 3.8 gives the finite dimensional distributions of
(πkt )t∈[0,T ] on the event {NT = k + j}.
Corollary 3.10. For any j ≥ 0,

P(πkt1 = γ1, . . . , π
k
tn = γn, NT = k + j) =

1

(k + j)!

∂j

∂sj


n∏
i=0

∏
Γ∈γi

F
bi(Γ)
∆ti

(FT−ti+1(s))


∣∣∣∣∣
s=0

.

Proof. Let S(k, j) denote the integral in (3.17). Then

P(πkt1 = γ1, . . . , π
k
tn = γn, NT = k + j) = S(k, j)− S(k, j + 1).

Now integrate by parts.
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3.7 Further discussion of related literature

In [7], Grosjean and Huillet examined the genealogical structure of discrete-time
Galton-Watson trees, providing the following extension of Lambert’s equation (2.1). On
the event {NT ≥ k}, let τk,L,T be the time at which k distinct particles chosen uniformly
at time T last shared a common ancestor. Then [7, Proposition 2.2] states that

P(τk,L,T > t,NT ≥ k) =

∫ 1

0

(1− s)k−1

(k − 1)!

F ′T (s)

F ′T−t(s)
F kT−t(s)ds. (3.19)

Note by the semigroup property Ft1(Ft2(s)) = Ft1+t2(s) that F ′t (FT−t(s)) =
F ′T (s)
F ′T−t(s)

,

and also that by definition {τk,L,T > t} =
{
πk,L,Tt = {{1, . . . , k}}

}
. Combining these two

facts, we see that (3.19) corresponds to the special case n = 1, γ1 = {{1, . . . , k}} of
Theorem 3.1.

In [15], Le studied the coalescent structure of continuous-time Galton-Watson trees
starting with x ≥ 1 individuals. (We remark that when x > 1, the random initial
partition πk,L,T0 of (πk,L,Tt )t∈[0,T ] may have more than one block.) Le gave an implicit

representation for the split times τ1 < . . . < τk−1 of (πk,L,Tt )t∈[0,T ] on the joint event

A :=
{
πk,L,T0 = {{1, . . . , k}}, (πk,L,Tt )t∈[0,T ] is binary

}
.

Namely, in a tree starting with x ≥ 1 individuals, [15, Theorem 4.2] states that

Ex[N
(k)
T sNT−k, τi ∈ dti ∀ i, A,NT ≥ k]

=
k!(k − 1)!

2k−1
xF ′T (s)FT (s)x−1

k−1∏
i=1

F ′T−ti(s)f
′′(FT−ti(s))dti, (3.20)

for any 0 < t1 < . . . < tk−1 < T , where n(k) := n(n− 1) . . . (n− k + 1).
We can relate (3.20) to a special case of Theorem 3.2 by calling upon an inversion

formula we prove below, Lemma 4.6, which states that when N is a {0, 1, . . .}-valued
random variable and X is a non-negative random variable on some probability space,
then ∫ 1

0

(1− s)k−1E[N (k)sN−k X]

(k − 1)!
ds = E[X1N≥k]. (3.21)

Without too much concern for technicalities surrounding whether X := 1 {τi ∈ dti ∀ i, A}
constitutes a well-defined random variable, by applying (3.21) to Le’s formula (3.20) we
obtain

Px(τi ∈ dti ∀ i, A,NT ≥ k)

=
k!

2k−1

∫ 1

0

(1− s)k−1xF ′T (s)FT (s)x−1
k−1∏
i=1

F ′T−ti(s)f
′′(FT−ti(s))ds. (3.22)

Setting x = 1 in (3.22), and accounting for a topological factor of k!(k−1)!
2k−1 (counting the

number of binary trees with k labelled leaves and k − 1 ranked internal nodes [16]),
(3.22) corresponds the special case of Theorem 3.2 obtained by setting

(q1, . . . , qn) = (2, 2, . . . , 2︸ ︷︷ ︸
k − 1 times

).

Finally, let us discuss Harris, Johnston and Roberts [9], who looked at the genealogical
structure of Galton-Watson trees in two cases. First they considered the genealogy of
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birth-death processes for fixed times T , and thereafter they studied the genealogy of
trees under the near-critical scaling limit

f ′(1) = 1 + µ/T + o(1/T ), f ′′(1) = σ2 + o(1), T →∞. (3.23)

In the birth-death case where f(s) = α+ βs2, the process (πk,L,Tt )t∈[0,T ] is binary, and [9,
Proposition 20] states that conditioned on {NT ≥ k}, the joint density of the k − 1 split
times of (πk,L,Tt )t∈[0,T ] is given by

P (t1, . . . , tk−1)

=
k!(βe(β−α)T − α)k(β − α)2k−1

(e(β−α)T − 1)k−1e(β−α)T

∫ 1

0

(1− s)k−1
k−1∏
j=0

e(β−α)(T−tj)

(β(1− s)e(β−α)(T−tj) + βs− α)2
ds,

(3.24)

whenever α 6= β (with a similar formula holding when α = β). It is possible to obtain
(3.24) from Theorem 3.2 of the present paper by setting n = k−1, (c1, . . . , cn) = (2, . . . , 2),
and using the fact that

Ft(s) =
α(1− s)e(β−α)t + βs− α
β(1− s)e(β−α)t + βs− α

, (3.25)

where (3.25) can be derived using Kolmogorov’s forward equation (see for instance, [4,
Chapter III, Section 5]).

As for the near-critical scaling limit (3.23), [9, Theorem 3] states that conditioned
on {NT ≥ k}, the process (πk,L,TTt )t∈[0,1] converges in distribution to a binary process

(πk,crit,µt )t∈[0,1]. (We have translated this result into our notation – the process we study
in Theorem 3.6 of the present paper corresponds to the special case µ = 0.) Moreover,
according to [9, Section 2.3], the k − 1 split times of the process (πk,crit,µt )t∈[0,1] have
probability density function

fk(t1, . . . , tk−1) =



k(rµ)k−1(1− e−rµ)

∫ ∞
0

θk−1
k−1∏
i=0

erµ(1−ti)

(1 + θ(erµ(1−ti) − 1))2
dθ if µ > 0

k

∫ ∞
0

θk−1
k−1∏
i=0

1

(1 + θ(1− ti))2
dθ if µ = 0

k(−1)k(rµ)k−1(1− e−rµ)

∫ ∞
0

θk−1
k−1∏
i=0

erµ(1−ti)

(1− θ(erµ(1−ti) − 1))2
dθ if µ < 0,

with the convention t0 = 0. Harris et al also look at the topology of (πk,crit,µt )t∈[0,1],
showing the tree drawn out is topologically equivalent to Kingman’s coalescent [13].

The results in [9] are obtained using multiple spines, a collection of stochastic
processes (

(ξ1
t )t≥0, . . . , (ξ

k
t )t≥0

)
that ‘flow’ through the tree forward in time, and introduced a change of measure Qk,T on
these spines that biases their behaviour such a way that the spines (ξ1

T , . . . , ξ
k
T ) represent

a uniform sample of k distinct particles at time T .
When the underlying Galton-Watson tree is a birth-death process (respectively, a

near-critical tree), the subtree traced out by the spines under this change of measure
Qk,T is binary (respectively, asymptotically binary), and hence the law of this subtree
has a tractable expression in terms of its k − 1 split times. A side effect of the change of
measure Qk,T is that it distorts the law of the underlying Galton-Watson tree, and the
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main challenge in [9] was the inversion of this change of measure using a variant of
Campbell’s formula.

We were inspired in part by [9], and there is some contentual overlap in Section 4 of
the present paper and [9, Section 4], which we now discuss. The methodology used in
[9] is reliant on the fact that the tree traced out by the spines is binary (or equivalently
(πk,L,Tt )t∈[0,T ] is binary), and hence has a law easily expressed in terms of the split times.
Though we also use multiple spines in working towards our main result, Theorem 3.1,
our method differs in order to encompass non-binary spine trees. Here the spines are
indexed by the natural numbers, and the changes of measure are based on a more
general class of Radon-Nikodym derivatives associated with partitions α of finite subsets
A of N. The resulting changes of measure Qα,T encourages the spines in the set A to
flow through the tree in such away that:

• Spines ξiT and ξjT are following the same particle at time T ⇐⇒ i and j are in the
same block of α.

• The carriers of spines at time T represent a uniform sample of |α| distinct particles
at time T .

Moreover, in inverting the changes of measure, rather than using Campbell’s formula
as in [9], we use a more concise (but arguably less natural) inversion formula – Lemma
4.6 – based around the beta integral. In summary, though our approach in Section 4 to
proving Theorem 3.1 is perhaps less intuitive, it works in the more general non-binary
setting, and in fewer pages.

Having proved Theorem 3.1, our methods for deriving the remainder of our fixed-T
results, built on generalisations of Faà di Bruno’s formula, are altogether different from
those used in [9]. Our asymptotic-T results are consequences of Theorem 3.1, and
though the critical case has already appeared in [9], the results in the supercritical and
subcritical cases are new.

3.8 Organisation of the paper

The rest of the paper is structured as follows. In Section 4 we introduce multiple
spines and a collection of changes of measure, ultimately leading to a proof of Theorem
3.1 under a moment assumption. In Section 5, we lift this moment assumption, proving
the fixed-T results of Section 3.4 in full generality, and we also prove the projectivity
result Theorem 3.8. In Section 6, we give proofs of the asymptotic results of Section 3.5.

4 Spines partitions and changes of measure

In this section we introduce spines, our tool for calculating the distributions of
genealogical trees associated with uniformly chosen particles. For each n ∈ N, we
associate a line of descent (ξnt )t≥0 that flows through a continuous-time Galton-Watson
tree forward in time, choosing uniformly a branch to follow next at branching points. We
call this line of descent (ξnt )t≥0 the n-spine. The idea of this section is to create a change
of measure under which the first k spines (ξ1

t , . . . , ξ
k
t ) flow through a tree forward in time

in such a way that the subtree they trace out is equal in law to (πk,L,Tt )t∈[0,T ].
In order to avoid confusion about different measures, throughout Section 4 we write

P[·] rather than E[·] for the expectation operator associated with P. Moreover, through
this section we will assume that P[Nk

t ] < ∞ for all t. In Section 5.2 we show this
assumption can be lifted, and the results we derive continue to hold.

Section 4 of the present paper initially runs in parallel to [9, Section 4], in some cases
generalising the results that hold there for a specific partition to any partition of a finite
subset of N. More specifically, Lemma 4.2 of the present paper is lifted directly from [9,
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Lemma 13], and the derivation of the following equation, (4.7), replicates the derivation
of [9, Equation (10)]. We also mention that the special cases α = {{1}, {2}, . . . , {k}} of
both Lemma 4.1 and Lemma 4.3 of the present paper appear as [9, Lemma 6] and [9,
Lemma 14] respectively.

4.1 Spines indexed by N

Suppose under a measure P we have continuous-time Galton-Watson tree with off-
spring distribution L. Recall we write Nt for the set of particles alive at time t, and
Nt = |Nt|. For technical reasons, we append a cemetery state ∆ to the statespace, and
write N̂t = Nt ∪∆.

Additionally under P, for each n ∈ N, there is a right-continuous stochastic process
(ξnt )t≥0 called the n-spine defined as follows.

• At each time t ≥ 0, the n-spine takes values in N̂t – that is ξnt ∈ N̂t. If u ∈ Nt and
ξnt = u, we say that the n-spine is following u, and that u is carrying the n-spine.

• If a particle carrying the n-spine just before time t dies at time t and is replaced by
p ≥ 1 particles v1, . . . , vp, then the n-spine chooses uniformly among the p offspring
a particle to follow next. If the particle carrying the n-spine dies at a time t and
is replaced by no offspring, we send the n-spine to the cemetery state ∆ for the
remainder of time. That is, ξnr = ∆ for all r ≥ t.

• The n-spines don’t affect the behaviour of the particles they are following. That is,
if a particle u is carrying the n-spine at time t, then this particle still branches at
rate 1 and has offspring distributed like L.

• The set of n-spines {(ξnt )t≥0 : n ∈ N} are independent of one another – that is, if
a particle carrying some spines dies and is replaced by p offspring, each of these
spines chooses uniformly an offspring to follow next, independently of the others.

So in essence, under P the n-spines are simply a set of labels that flow forward in time
through a continuous-time Galton-Watson tree without affecting the law of the underlying
tree.

Time 0 Time t

3458. . .

123456789. . .

12679..
17..

29..

6..

1..

7..

Figure 1: The spines flow through the tree forward in time.

4.2 The spine partition change of measure Qα,T

For any set S and k ≥ 0, let S(k) be the set of distinct k-tuples from S, and for n ≥ 0,
write

n(k) =

{
n(n− 1)(n− 2) . . . (n− k + 1) if n ≥ k
0 otherwise.

Note that |S(k)| = |S|(k). Let F∅
t be the σ-algebra containing all the information about

the underlying continuous-time Galton-Watson tree up until time t, but without any
knowledge of which particles the spines are following. For a subset A of N, we call the
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set of processes {(ξAt )t≥0 : a ∈ A} the A-spines. Let (FAt )t≥0 be the filtration containing
all the information about the underlying tree and the carriers of A-spines until time t:

FAt = σ
(
F∅
t ; (ξas )s∈[0,t], a ∈ A

)
.

We note that our notation is consistent with taking A to be the empty set ∅. Furthermore,
if B ⊂ A, then FBt ⊂ FAt for each t, and in particular, F∅

t ⊂ FAt .
We now examine the probabilities, conditional on F∅

T -knowledge, that a given spine
is following a given particle in NT . For a particle in u ∈ NT , let Q(u) be the product of
offspring sizes of ancestors of u:

Q(u) =
∏
v<u

Lv.

Note that for the a-spine to be following particle u ∈ NT , for each strict ancestor v of u,
the a-spine must have chosen the ‘correct’ offspring of the Lv offspring of v to continue
following. Hence

P(ξaT = u|F∅
T ) = Q(u)−1. (4.1)

Since the spines behave independently of one another, the probability that the A-spines
are following a list (ua : a ∈ A) of (possibly non-distinct) members of Nt is

P
(
∩a∈A {ξat = ua}

∣∣F∅
t

)
=
∏
a∈A

Q(ua)−1. (4.2)

We emphasise that since in general, the quantities Q(u)−1 in (4.1) vary for different
u ∈ NT , under P the spines are more likely to be following some particles than others.

Define the (FAt )t≥0-adapted, (ΠA ∪ {∆})-valued process (θAt )t≥0 as follows. If there
is an element a of A such that ξat = ∆, set θAt = ∆. Otherwise, (that is, if every spine
in A is following a living particle at time t) let θAt be the partition of A defined by the
equivalence relation

a ∼t b ⇐⇒ Spines a and b are following the same particle at time t, i.e. ξat = ξbt ∈ Nt.

For the remainder of Section 4, fix a finite subset A of N and fix a partition α of A into k
blocks. Define

ζ̂α,t = 1{θAt = α}
∏
a∈A

Q(ξat ). (4.3)

The following lemma gives the P-conditional expectation of ζ̂α,t given F∅
t .

Lemma 4.1. For any t ≥ 0, P[ζ̂α,t|F∅
t ] = N

(k)
t .

Proof. Note that if α = {A1, . . . , Ak}, we can decompose the event {θAt = α} into the
disjoint union

{θAt = α} =
⋃

(u1,...,uk)∈N (k)
T

∩ki=1 ∩a∈Ai {ξat = ui}.

It follows that

P[ζ̂α,t|F∅
t ] = P

[
1{θAt = α}

∏
a∈A

Q(ξat )

∣∣∣∣F∅
t

]

= P

[ ∑
u∈N (k)

t

k∏
i=1

∏
a∈Ai

1{ξat = ui}Q(ξat )

∣∣∣∣F∅
t

]

=
∑

u∈N (k)
t

P

[ k∏
i=1

∏
a∈Ai

1{ξat = ui}Q(ui)

∣∣∣∣F∅
t

]
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since Nt ∈ F∅
t . Now since the spines are independent,

P

[ k∏
i=1

∏
a∈Ai

1{ξat = ui}Q(ui)

∣∣∣∣F∅
t

]
=

k∏
i=1

∏
a∈Ai

P

[
1{ξat = ui}Q(ui)

∣∣∣∣F∅
t

]
.

Now, Q(ui) ∈ F∅
t , so for every a, i,

P

[
1{ξat = ui}Q(ui)

∣∣∣∣F∅
t

]
= Q(ui)P(ξat = ui|F∅

t ) = 1

by (4.1), and hence

P

[ k∏
i=1

∏
a∈Ai

1{ξat = ui}Q(ui)

∣∣∣∣F∅
t

]
=

k∏
i=1

∏
a∈Ai

1 = 1. (4.4)

Finally,
P[ζ̂α,t|F∅

t ] =
∑

u∈N (k)
t

1 = |N (k)
t | = N

(k)
t .

Now let T be a fixed time. By the previous lemma P[ζ̂α,T ] = P[P[ζ̂α,T |F∅
T ]] = P[N

(k)
T ],

so the random variable

ζα,T =
ζ̂α,t

P[N
(k)
T ]

has unit mean, and we can define a new probability measure Qα,T on FAT by setting

dQα,T

dP

∣∣∣∣
FAT

= ζα,T . (4.5)

Moreover, by Lemma 4.1 we have

dQα,T

dP

∣∣∣∣
F∅
T

= P[ζα,T |F∅
T ] =

N
(k)
T

P[N
(k)
T ]

=: Zk,T . (4.6)

4.3 Uniformity properties of Qα,T

The goal of this section is to prove that under Qα,T , conditional on F∅
T , the particles

the A-spines are following at the time T are equally likely to be any k-tuple alive. We then
exploit this property to relate the spine process (θAt )t∈[0,T ] to the process (πk,L,Tt )t∈[0,T ]

associated with choosing k particles uniformly from those alive at time T .
The following result, giving a relationship between projections and changes of mea-

sure, is lifted directly from Harris, Johnston and Roberts [9, Lemma 13].

Lemma 4.2. Suppose that Q and P are probability measures on the σ-algebra F̃ , and
that F is a sub-σ-algebra of F̃ . If

dQ

dP

∣∣∣∣
F̃

= ζ and
dQ

dP

∣∣∣∣
F

= Z,

then for any non-negative F̃ -measurable X,

ZQ[X|F ] = P[ζX|F ] P-almost surely.

Proof. For any S ∈ F ,

P[ZQ[X|F ]S] = Q[Q[X|F ]S] = Q[XS] = P[ζXS].

Since ZQ[X|F ] is F -measurable, it therefore satisfies the definition of conditional expec-
tation of ζX with respect to F under P.
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Working in parallel with the derivation of [9, Equation (10)], by applying Lemma
4.2 using (4.5) and (4.6), with F̃ = FAT , and F = F∅

T , we find that for any non-negative
FAT -measurable random variable X, on the event {Zk,T > 0},

Qα,T [X|F∅
T ] =

1

Zk,T
P[Xζα,T |F∅

T ]. (4.7)

Note ζα,T is supported on {θAT = α}, and hence Qα,T (θAT = α) = 1. In particular, since α
partitions A into k blocks, under Qα,T there must be at least k distinct particles alive at
time T for the spines to follow, and hence

Qα,T (NT ≥ k) = 1.

In summary, Qα,T -almost surely the A-spines at time T are distributed across k different
particles in NT and induce the partition α of A at time T . The following lemma tells us
that given knowledge of the tree but not the spines, under Qα,T the k-tuple of carriers of
A-spines are equally likely to be any k-tuple alive.

Lemma 4.3. The Qα,T -conditional probability given F∅
T that the A-spines are following

a particular k-tuple (u1, . . . , uk) ∈ N (k)
T equals 1/N

(k)
T . That is

Qα,T
(
∩ki=1 ∩a∈Ai{ξat = ui}

∣∣∣F∅
T

)
=

1

N
(k)
T

.

Proof. Note that if NT ≥ k then Zk,T > 0. Then by (4.7), for any u ∈ N (k)
T ,

Qα,T
(
∩ki=1 ∩a∈Ai{ξat = ui}

∣∣∣∣F∅
T

)
=

1

Zk,T
P

[
ζα,T1{∩ki=1 ∩a∈Ai {ξat = ui}}

∣∣∣∣F∅
T

]
=
P[N

(k)
T ]

N
(k)
T

1

P[N
(k)
T ]

P

[ k∏
i=1

∏
a∈Ai

1{ξat = ui}Q(ui)

∣∣∣∣F∅
t

]
=

1

N
(k)
T

,

where the third equality follows from (4.4).

Given u = (u1, . . . , uk) ∈ N (k)
T , for each t ∈ [0, T ], let π(u)t be the partition of {1, . . . , k}

defined by setting

i and j are in the same block of π(u)t ⇐⇒ ui and uj share a common time-t ancestor.

Let (πk,L,Tt )t∈[0,T ] be the partition process associated with picking k distinct particles
U1, . . . , Uk uniformly from those alive at time T (as defined in the introduction). It follows
from the definition of (πk,L,Tt )t∈[0,T ] that

1NT≥kP(πk,L,Tt1 = γ1, . . . , π
k,L,T
tn = γn|F∅

T )

=
1NT≥k

N
(k)
T

∑
u∈N (k)

T

1 {π(u)t1 = γ1, . . . , π(u)tn = γn} . (4.8)

We use the notation Qk,T for the change of measure Q{{1},...,{k}},T associated with
partitioning {1, . . . , k} into singletons, and similarly we write θkt := θ

{1,...,k}
t . The following

corollary is the main idea of this section, relating the genealogical process (πk,L,Tt )t∈[0,T ]

to the spine process (θkt )t∈[0,T ].
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Corollary 4.4. We have the identity

1NT≥kP(πk,L,Tt1 = γ1, . . . , π
k,L,T
tn = γn|F∅

T ) = 1NT≥kQ
k,T
(
θkt1 = γ1, . . . , θ

k
tn = γn|F∅

T

)
.

Proof. Let u = (u1, . . . , uk) ∈ N (k)
T . Note that on the event {(ξ1

T , . . . , ξ
k
T ) = (u1, . . . , uk)}

(written {ξ(k)
T = u} below) the processes (θkt )t∈[0,T ] and (π(u)t)t∈[0,T ] are identical. Using

this fact in the second equality below, we have

1NT≥kQ
k,T
(
θkt1 = γ1, . . . , θ

k
tn = γn|F∅

T

)
= 1NT≥kQ

k,T

 ∑
u∈N (k)

T

1{ξ(k)
T = u}1

{
θkt1 = γ1, . . . , θ

k
tn = γn

} ∣∣∣F∅
T


= 1NT≥kQ

k,T

 ∑
u∈N (k)

T

1{ξ(k)
T = u}1 {π(u)t1 = γ1, . . . , π(u)tn = γn}

∣∣∣F∅
T

 .
Using the property that NT is F∅

T is measurable in the first equality below, and Lemma
4.3 in the second, we yield

= 1NT≥k
∑

u∈N (k)
T

1 {π(u)t1 = γ1, . . . , π(u)tn = γn}Qk,T
[
1{ξ(k)

T = u}
∣∣∣F∅
T

]
=
1NT≥k

N
(k)
T

∑
u∈N (k)

T

1 {π(u)t1 = γ1, . . . , π(u)tn = γn} .

By (4.8), this proves the result.

4.4 The joint law of NT and (θAt )t∈[0,T ] under Qα,T

The following theorem gives the joint law of the process (θAt )t∈[0,T ] and NT .

Theorem 4.5. Let γ = (γ1, . . . , γn) be a chain of partitions of A such that γn ≺ α. Then

Qα,T (sNT , θAt1 = γ1, . . . , θ
A
tn = γn) =

sk

P[N
(k)
T ]

n∏
i=0

∏
Γ∈γi

F
bi(Γ)
∆ti

(FT−ti+1
(s)), (4.9)

where (bi(Γ) : i = 0, 1, . . . , n) are the fragmentation numbers associated with the partition
sequence (γ0, γ1, . . . , γn, γn+1) obtained by setting γ0 := {A} and γn+1 := α.

Proof. We proceed by induction. The case n = 0 follows immediately from (4.6), since

Qα,T (sNT ) = P

[
N

(k)
T

P[N
(k)
T ]

sNT

]
=

sk

P[N
(k)
T ]

F kT (s).

Now we consider the general case n ≥ 0. Using the definition (4.5) in the first equality
below and the tower property in the second,

Qα,T (sNT , θAt1 = γ1, . . . , θ
A
tn = γn)

=
1

P[N
(k)
T ]

P

[
1{θAT = α}

∏
a∈A

Q(ξaT ) 1{θAt1 = γ1, . . . , θ
A
tn = γn}sNT

]

=
1

P[N
(k)
T ]

P

[
P

[
1{θAT = α}

∏
a∈A

Q(ξaT ) 1{θAt1 = γ1, . . . , θ
A
tn = γn}sNT

∣∣∣FAtn
]]

=
1

P[N
(k)
T ]

P [H(γ, s)tn ] ,
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where

H(γ, s)tn =

(∏
a∈A

Q(ξatn)

)
1{θAt1 = γ1, . . . , θ

A
tn = γn}P

[∏
a∈A

Q(ξaT )

Q(ξatn)
1{θAT = α}sNT

∣∣∣FAtn
]
.

Note that on the event {θAtn = γn}, the set {ξatn : a ∈ Γ} is a singleton for each block Γ of
γn. In particular, on {θAtn = γn}, we can decompose NT into the disjoint union

NT =

 ⋃
Γ∈γn

NΓ
tn,T

 ∪ {u ∈ NT : @a ∈ A : ξatn ≤ u
}
,

where NΓ
tn,T

is the set of time-T particles descended from the single element of {ξatn :

a ∈ Γ} of Ntn . Let NΓ
tn,T

be the size of NΓ
tn,T

and let N̂tn,T be the size of the set{
u ∈ NT : @a ∈ A : ξatn ≤ u

}
. Then

H(γ, s)tn =

(∏
a∈A

Q(ξatn)

)
1{θAt1 = γ1, . . . , θ

A
tn = γn}P

[∏
a∈A

Q(ξaT )

Q(ξatn)
1{θAT = α}sNT

∣∣∣FAtn
]

= ζ̂γn,tn1{θAt1 = γ1, . . . , θ
A
tn−1

= γn−1}

× P

sN̂tn,T ∏
Γ∈γn

∏
a∈A

Q(ξaT )

Q(ξatn)
1{θΓ

T = αΓ}sN
Γ
tn,T

∣∣∣∣∣FAtn
 (4.10)

Now on the event {θAtn = γn}, since the spines in different blocks of Γ are following
different particles from tn onwards, the random variables{∏

a∈A

Q(ξaT )

Q(ξatn)
1{θΓ

T = αΓ}sN
Γ
tn,T : Γ ∈ γn

}
are conditionally independent of each other, of N̂tn,T , and of FAtn , and are distributed like

copies of ζ̂αΓ,T−tns
NT−tn . In particular, using Lemma 4.1 in the second equality below

we have

P

 ∏
Γ∈γn

∏
a∈A

Q(ξaT )

Q(ξatn)
1{θΓ

T = αΓ}sN
Γ
tn,T

∣∣∣∣∣FAtn
 =

∏
Γ∈γn

P
[
ζ̂αΓ,T−tns

NT−tn

]
=
∏

Γ∈γn

P
[
N

(|αΓ|)
T−tn s

NT−tn

]
=
∏

Γ∈γn

s|α
Γ|F
|αΓ|
T−tn(s). (4.11)

Moreover, since on the event {θAtn = γn} there are Ntn − |γn| particles not carrying an
A-spine at time tn,

P[sN̂tn,T |FAtn ] = FT−tn(s)Ntn−|γn|. (4.12)

Finally, writing s̃ := FT−tn(s), and then using (4.5) in the first equality below and the
inductive hypothesis in the second, we have

P
[
ζ̂γn,tn1{θAt1 = γ1, . . . , θ

A
tn−1

= γn−1}s̃Nt−|γn|
]

= P[N
(|γn|)
tn ]Qγn,tn

[
1{θAt1 = γ1, . . . , θ

A
tn−1

= γn−1}s̃Nt−|γn|
]

=

n−1∏
i=0

∏
Γ∈γi

F
bi(Γ)
∆ti

(Ftn−ti+1(s̃)). (4.13)
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Combining (4.11), (4.12) and (4.13), by taking expectations of (4.10) we obtain

P[H(γ, s)tn ] = s
∑

Γ∈γn |α
Γ|
n−1∏
i=0

∏
Γ∈γi

F
bi(Γ)
∆ti

(Ftn−ti+1(s̃))
∏

Γ∈γn

F
|αΓ|
T−tn(s).

Note that |αΓ| = bn(Γ), and in particular,
∑

Γ∈γn |α
Γ| = k. Finally, by using the semigroup

property Ftn−ti+1
(s̃) = FT−ti+1

(s), (4.9) follows.

4.5 Inverting the change of measure

Lemma 4.6. Under a probability measure P, letN be a {0, 1, . . .}-valued random variable
and let X be a [0,∞)-valued random variable. Then∫ 1

0

(1− s)k−1

(k − 1)!
P[X N (k)sN−k]ds = P[X1N≥k]. (4.14)

Proof. Recall from the definition of the beta function that

(x− 1)!(y − 1)!

(x+ y − 1)!
=

∫ 1

0

sx−1(1− s)y−1ds.

It follows that for n ≥ k we have the identity

1

n(k)
=

(n− k)!

n!
=

1

(k − 1)!

∫ 1

0

(1− s)k−1sn−kds. (4.15)

By interchanging the order of expectation and integration we may write∫ 1

0

(1− s)k−1

(k − 1)!
P[X N (k)sN−k]ds = P

[
X1N≥kN

(k) 1

(k − 1)!

∫ 1

0

(1− s)k−1sN−kds

]
= P[X1N≥k].

We are now ready to wrap things together to prove Theorem 3.1 under the assumption
P[N

(k)
t ] <∞ for all t. Namely for any partition chain γi and mesh (ti)i≤n we now show

that

P(πk,L,Tt1 = γ1, . . . , π
k,L,T
tn = γn, NT ≥ k) =

∫ 1

0

(1− s)k−1

(k − 1)!

n∏
i=0

∏
Γ∈γi

F
bi(Γ)
∆ti

(
FT−ti+1

(s)
)
ds.

(4.16)

Proof of Theorem 3.1 under kth-moment assumption. By Lemma 4.6

P(πk,L,Tt1 = γ1, . . . , π
k,L,T
tn = γn, NT ≥ k)

=

∫ 1

0

(1− s)k−1

(k − 1)!
P
[
1
{
πk,L,Tt1 = γ1, . . . , π

k,L,T
tn = γn

}
N

(k)
T sNT−k

]
ds. (4.17)

Recall that Qk,T is the change of measure associated with the partition {{1}, . . . , {k}}.
Under the assumption P[N

(k)
T ] <∞, using (4.6) in the first equality below and Corollary

4.4 in the second, we have

P
[
1
{
πk,L,Tt1 = γ1, . . . , π

k,L,T
tn = γn

}
N

(k)
T sNT−k

]
= P[N

(k)
T ]Qk,T

[
sNT−kP

(
πk,L,Tt1 = γ1, . . . , π

k,L,T
tn = γn

∣∣∣F∅
T

)]
= P[N

(k)
T ]Qk,T

[
sNT−k1

{
θkt1 = γ1, . . . , θ

k
tn = γn

}]
. (4.18)

EJP 24 (2019), paper 94.
Page 21/35

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP355
http://www.imstat.org/ejp/


The genealogy of Galton-Watson trees

Finally, by Theorem 4.5

P[N
(k)
T ]Qk,T

[
sNT−k1

{
θkt1 = γ1, . . . , θ

k
tn = γn

}]
=

n∏
i=0

∏
Γ∈γi

F
bi(Γ)
∆ti

(
FT−ti+1

(s)
)
. (4.19)

Combining (4.17), (4.18) and (4.19) yields Theorem 3.1 under the assumption P[N
(k)
t ] <

∞ for all t.

5 Proofs of fixed-T results

In the sequel, we will return to writing E for the expectation associated with the
probability measure P. In Section 5.1 we prove a generalisation of the Faà di Bruno
formula for semigroups (Ft)t≥0, which will be used in Section 5.2 to lift the E[N

(k)
t ] <∞

assumption from Theorem 3.1.

5.1 Generalisations of the Faà di Bruno formula

In this section we prove several generalisations of the Faà di Bruno formula

(f ◦ g)k =
∑
γ∈Πk

(
f |γ| ◦ g

)∏
Γ∈γ

g|Γ|. (5.1)

Recall that for γ ∈ Πk+j , γ|k ∈ Πk is its projection onto {1, . . . , k}. Given a chain
γ = (γ1, . . . , γn) ∈ Πk+j

n , let γ|k ∈ Πk
n be the chain defined by projecting γi onto {1, . . . , k}

for each i = 1, . . . , n. That is, (γ|k)i := γi|k for each i.

Finally, we recall that hj or hj(s) will refer to the j th derivative of a function j. (We
write h(s)j for the j th exponent).

Lemma 5.1. For each chain γ = (γ1, . . . , γn) ∈ Πk
n, n∏

i=0

∏
Γ∈γi

g
bi(Γ)
i ◦ gi+1 ◦ . . . ◦ gn

j

=
∑

η∈Πk+j
n :η|k=γ

n∏
i=0

∏
H∈ηi

g
bi(H)
i ◦ gi+1 ◦ . . . ◦ gn. (5.2)

Proof. First we prove the case j = 1. By the Leibniz rule, n∏
i=0

∏
Γ∈γi

g
bi(Γ)
i ◦ gi+1 ◦ . . . ◦ gn

1

=
∑

0≤i≤n,Γ∈γi

g
bi(Γ)+1
i ◦ gi+1 ◦ . . . ◦ gn

n∏
l=i+1

g1
l ◦ gl+1 ◦ . . . ◦ gn

×
∏

0≤p≤n,Γ̃∈γp:(p,Γ̃)6=(i,Γ)

gbp(Γ̃)
p ◦ gp+1 ◦ . . . ◦ gn. (5.3)

We now define a bijection

η : {(i,Γ) : 0 ≤ i ≤ n,Γ ∈ γi} → {ζ ∈ Πk+1
n : ζ|k = γ}

as follows. Let ηj := η(i,Γ)j be the jth partition in the chain η(i,Γ). Then

• for each j ≤ i, ηj is formed from γj by joining {k + 1} to the block containing Γ.

• for each j ≥ i+ 1, ηj is formed from γj by adding the singleton set {k + 1} to γj .
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The map (i,Γ) 7→ η(i,Γ) is clearly injective. Furthermore to see that it is surjective, for
any chain ζ ∈ Πk+1

n such that ζ|k = γ, let i be the largest 0 ≤ j ≤ n such that k + 1 is
contained in a non-singleton block Γ ∪ {k + 1} of ζj . Then ζ = η(i,Γ).

Now consider the fragmentation numbers of the partition η = η(i,Γ). The fragmenta-
tion numbers of η and γ are identical at the levels p = 0, 1, . . . , i− 1. The fragmentation
numbers (bi(H) : H ∈ ηi) at the level i of η = η(i,Γ) are given by replacing the entry bi(Γ)

with bi(Γ) + 1. Finally, for p = i+ 1, . . . , n, the fragmentation numbers (bp(H) : H ∈ ηp) of
η at the level p are obtained by adding an entry 1 to the end of the array (bp(Γ) : Γ ∈ γp).

It follows that

n∏
j=0

∏
H∈η(i,Γ)j

g
bj(H)
j ◦ gj+1 ◦ . . . ◦ gn

= g
bi(Γ)+1
i ◦ gi+1 ◦ . . . ◦ gn

n∏
l=i+1

g1
l ◦ gl+1 ◦ . . . ◦ gn

×
∏

0≤p≤n,Γ̃∈γp:(p,Γ̃)6=(i,Γ)

gbp(Γ̃)
p ◦ gp+1 ◦ . . . ◦ gn. (5.4)

Using (5.4) in the first equality below, and the fact that η is a bijection in the second, we
have ∑

0≤i≤n,Γ∈γi

g
bi(Γ)+1
i ◦ gi+1 ◦ . . . ◦ gn

n∏
l=i+1

g1
l ◦ gl+1 ◦ . . . ◦ gn

×
∏

0≤p≤n,Γ̃∈γp:(p,Γ̃)6=(i,Γ)

gbp(Γ̃)
p ◦ gp+1 ◦ . . . ◦ gn

=
∑

0≤i≤n,Γ∈γi

n∏
j=0

∏
H∈η(i,Γ)j

g
bj(H)
j ◦ gj+1 ◦ . . . ◦ gn

=
∑

ζ∈Πk+1
n :ζ|k=γ

n∏
j=0

∏
Z∈ζj

g
bj(Z)
j ◦ gj+1 ◦ . . . ◦ gn,

proving the result for j = 1.
Now we prove the general case j ≥ 1 by induction. Suppose the result holds for all

j′ ≤ j. Then by the inductive hypothesis we have n∏
i=0

∏
Γ∈γi

g
bi(Γ)
i ◦ gi+1 ◦ . . . ◦ gn

j+1

=
∑

η∈Πk+j
n :η|k=γ

 n∏
i=0

∏
H∈ηi

g
bi(H)
i ◦ gi+1 ◦ . . . ◦ gn

1

.

(5.5)

Using the case j = 1 for each term in the sum on the right-hand-side of (5.5), we obtain n∏
i=0

∏
Γ∈γi

g
bi(Γ)
i ◦ gi+1 ◦ . . . ◦ gn

j+1

=
∑

η∈Πk+j
n :η|k=γ

∑
θ∈Πk+j+1

n :θ|k+j=η

n∏
i=0

∏
Θ∈θi

g
bi(Θ)
i ◦ gi+1 ◦ . . . ◦ gn. (5.6)

Noting we have the disjoint union

∪η∈Πk+j
n :η|k=γ{θ ∈ Πk+j+1

n : θ|k+j = η} = {θ ∈ Πk+j+1
n : θ|k = γ}, (5.7)
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it follows from using (5.7) in (5.6) that n∏
i=0

∏
Γ∈γi

g
bi(Γ)
i ◦ gi+1 ◦ . . . ◦ gn

j+1

=
∑

θ∈Πk+j+1
n :θ|k=γ

n∏
i=0

∏
Θ∈θi

g
bi(Θ)
i ◦ gi+1 ◦ . . . ◦ gn.

This proves the result holds for j + 1, and hence by induction, (5.2) holds for every
j ≥ 1.

Lemma 5.2. Let g0, . . . , gn be k-times differentiable. Then

(g0 ◦ g1 ◦ . . . ◦ gn)k =
∑
γ∈Πkn

n∏
i=0

∏
Γ∈γi

g
bi(Γ)
i ◦ gi+1 ◦ . . . ◦ gn. (5.8)

Furthermore, for any semigroup (Ft)t≥0 of k-times differentiable functions, and any mesh
(ti)i≤n of [0, T ], we have

F kT =
∑
γ∈Πkn

n∏
i=0

∏
Γ∈γi

F
bi(Γ)
∆ti

◦ FT−ti+1
. (5.9)

In particular, for every s ∈ [0, 1] and every chain γ in Πk
n

F kT (s) ≥
n∏
i=0

∏
Γ∈γi

F
bi(Γ)
∆ti

(
FT−ti+1(s)

)
≥ 0. (5.10)

Proof. To see that (5.8) is true for k = 1, we note that Π1
n contains the single chain

γ∗ = (γ1, . . . , γn) where γi = {{1}} for each i, the breakage number of the single block
{1} in each partition is simply 1, and the result holds by comparison with the chain rule.
For general k, by using the case k = 1 to obtain the first equality below and (5.2) to
obtain the second, we have

(g0 ◦ . . . ◦ gn)
k

=

 n∏
i=0

∏
Γ∈γ∗i

g
bi(Γ)
i ◦ gi+1 ◦ . . . ◦ gn

k−1

=
∑

η∈Πkn:η|1=γ∗

n∏
i=0

∏
H∈ηi

g
bi(H)
i ◦ gi+1 ◦ . . . ◦ gn

=
∑
η∈Πkn

n∏
i=0

∏
H∈ηi

g
bi(H)
i ◦ gi+1 ◦ . . . ◦ gn,

where the final equality holds from the fact that every chain η in Πk
n satisfies η|1 = γ∗.

Now we prove (5.9). If 0 ≤ t1 ≤ . . . ≤ tn ≤ T is a mesh of [0, T ], and (Ft)t≥0 is a
semigroup, then we obtain (5.9) by setting gi := F∆ti , and noting

gi+1 ◦ . . . ◦ gn = F∆ti+1
◦ . . . ◦ F∆tn = F∆ti+1+...+∆tn = FT−ti+1

.

Finally, to prove (5.10), note that for every s ∈ [0, 1], Ft(s) ∈ [0, 1], and for every j ≥ 1,
F jt (s) ≥ 0. It follows that for all j ≥ 1, and s ∈ [0, 1], F jt1(Ft2(s)) ≥ 0 for all t1, t2 ≥ 0. This
shows that the summands in (5.9) are non-negative, and (5.10) follows.
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5.2 Proof of Theorem 3.1 without moment assumption

In this section we prove that we can relax the assumption that E[N
(k)
t ] <∞ for each

t and Theorem 3.1 continues to hold. In order to use a coupling argument in lifting this
condition, first we require the following result.

Given a Galton-Watson tree, we call (Nt)t≥0 the process associated with the tree,
where Nt is the number of particles in the tree at time t.

Lemma 5.3. Let N̄t = |
⋃
s∈[0,t]Ns| be the number of particles who have ever lived up

until time t. Then, provided the non-explosion hypothesis (3.5) holds, P(N̄t <∞) = 1.

Proof. Suppose we have a continuous-time Galton-Watson process N := (Nt)t≥0 with
offspring generating function f(s) = E[sL] = p0 +p1s+s2g(s) satisfying the non-explosion
hypothesis. Couple N with another process M := (Mt)t≥0 with generating function
f∗(s) = (p0 + p1 + g(s))s2 as follows. Every time an particle in the process N has 0 or
1 children, the corresponding particle in the process M has 2 children. Writing M̄t for
the number who have ever lived until t in the M -process, clearly P(N̄t ≤ M̄t) = 1, and it
is straightforward to verify that f∗(s) also satisfies the non-explosion hypothesis, and
hence Mt is almost surely finite.

Consider in the process M that every particle is replaced by at least two particles
upon death, and hence there were at most 1

2Mt parents of particles alive at time t.
A similar argument says that there can have been at most 1

4Mt grandparents, and
so forth. It follows that the we can bound above the number who have ever lived:
M̄t ≤

∑
i≥0 2−iMt = 2Mt.

Since 2Mt ≥ M̄t ≥ N̄t, the latter quantity is almost surely finite.

The following lemma, a variant of the dominated convergence theorem, will be used
in the proofs of Theorem 3.1, Theorem 3.5 and Theorem 3.7.

Lemma 5.4. Let g, (gn), and h, (hn) be measurable functions on a probability space
(Ω,A, µ), with |gn| ≤ hn for all n, and such that gn → g, hn → h, and µhn → µh. Then
µgn → µg.

Proof. See [11, Theorem 1.21].

We are now ready to prove that Theorem 3.1 holds for every offspring distribution
with generating function satisfying hypotheses (3.4) and (3.5).

Proof of Theorem 3.1. Our proof idea as follows. To calculate the distribution of the
process (πk,L,Tt )t∈[0,T ], first calculate (πk,L,Tn,t )t∈[0,T ] from a tree where offspring sizes are
bounded by n. Any such tree clearly satisfies E[Lk] < ∞, and therefore ([4, Section

III.6]) E[N
(k)
t ] < ∞ for every t and the formula (4.16) applies. Then we send n → ∞,

showing the formula (4.16) converge suitably.

Let L be a random variable, and let TreeT be the continuous-time Galton-Watson tree
run until time T and (Nt)t∈[0,T ] be the corresponding process for the number of particles
alive. We couple the tree TreeT with a tree with bounded branching as follows. Let
Treen,T be the tree with offspring distribution L1L≤n taken by replacing any birth of
size greater than n TreeT with a birth of size zero, and let (Nn,t)t∈[0,T ] be the associated
process for the number of particles alive.

By Lemma 5.3, P(N̄t <∞) = 1, and thus P(N̄t ≤ n) ↑ 1 as n→∞. Note that {N̄t ≤ n}
ensures {Treen,T = TreeT }, since if at most n particles have ever lived, no particle ever
had more than n offspring. It follows that P(Treen,T = TreeT ) ↑ 1 as n→∞. In particular,
Nn,t → Nt almost surely and hence P(Nn,T ≥ k)→ P(NT ≥ k).
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If we pick k particles from Treen,T and call the partition process (πk,L,Tn,t )t∈[0,T ], it

follows that (πk,L,Tn,t )t∈[0,T ] converges in distribution to (πk,L,Tt )t∈[0,T ] as n→∞, since the
partition processes correspond to subtrees of the trees Treen,T and TreeT respectively.

It remains to check that for a process (Nn,t)t≥0 with offspring distributed like L1L≤n
and generating function Fn,t(s), that as n ↑ ∞,∫ 1

0

(1− s)k−1

(k − 1)!P(Nn,T ≥ k)

n∏
i=0

∏
Γ∈γi

F
bi(Γ)
n,∆ti

(
Fn,T−ti+1

(s)
)
ds (5.11)

→
∫ 1

0

(1− s)k−1

(k − 1)!P(NT ≥ k)

n∏
i=0

∏
Γ∈γi

F
bi(Γ)
∆ti

(
FT−ti+1

(s)
)
ds. (5.12)

First, let us establish that for all (j, t, s), that as n→∞ F jn,t(s)→ F jt (s). Now Nn,t ↑ Nt
almost surely. If s = 1, F jn,t(1) = E[N

(j)
n,t ] ↑ E[N

(j)
t ] = F jt (1) by the monotone convergence

theorem. If s < 1, then the function n 7→ n(j)sn−j is bounded for n ∈ {0, 1, 2, . . .}, and

hence F jn,t(s) = E[N
(j)
n,ts

Nn,t−j ] → E[N
(j)
t sNt−j ] = F jt (s) by the bounded convergence

theorem.
To see the convergence of (5.11) to (5.12), by (5.10) we have the domination relation

H(s) :=
(1− s)k−1F kT (s)

(k − 1)!P(NT ≥ k)
≥

(1− s)k−1
∏n
i=0

∏
Γ∈γi F

bi(Γ)
∆ti

(
FT−ti+1

(s)
)

(k − 1)!P(NT ≥ k)
=: G(s) ≥ 0.

(5.13)

Similarly,

Hn(s) :=
(1− s)k−1F kn,T (s)

(k − 1)!P(Nn,T ≥ k)
(5.14)

≥ Gn(s) :=
(1− s)k−1

∏n
i=0

∏
Γ∈γi F

bi(Γ)
n,∆ti

(
Fn,T−ti+1(s)

)
(k − 1)!P(Nn,T ≥ k)

≥ 0. (5.15)

By our assumption P(NT ≥ k) > 0, and hence by setting X = 1, N = NT in Lemma
4.6, for every n,

∫ 1

0
Hn(s)ds = 1 =

∫ 1

0
H(s)ds. Trivially,

∫ 1

0
Hn(s)ds →

∫ 1

0
H(s)ds. So

Gn(s)→ G(s) pointwise, Hn(s)→ H(s) pointwise,
∫ 1

0
Hn(s)ds→

∫ 1

0
H(s)ds, and Hn(s) ≥

Gn(s) ≥ 0. It follows by Lemma 5.4 that
∫ 1

0
Gn(s)ds→

∫ 1

0
G(s)ds.

5.3 Proof of Theorem 3.4

In this section we will prove Theorem 3.4, which states that (πk,L,Tt )t∈[0,T ] has a
representation in terms of a mixture of Markov processes.

Proof of Theorem 3.4. In light of Theorem 3.1 we may write

P(πk,L,Tt1 = γ1, . . . , π
k,L,T
tn = γn | NT ≥ k) =

∫ 1

0

mk,L,T (ds)Rt1,...,tn(ds),

where

Rk,L,Tt1,...,tn(s,γ) :=

∏n
i=0

∏
Γ∈γi F

bi(Γ)
∆ti

(
FT−ti+1

(s)
)

F kT (s)
, (5.16)

and

mk,L,T (ds) :=
(1− s)k−1F kT (s)

(k − 1)!P(NT ≥ k)
ds. (5.17)
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First of all, we remark that setting X = 1 and N = NT in Lemma 4.6 establishes
that mk,L,T (ds) is a probability measure on [0, 1]. Furthermore, Rk,L,Tt1,...,tn(s, ·) is also a

probability measure on Πk
n. To see this, note that by (5.10) that Rk,L,Tt1,...,tn(s,γ) ≥ 0 for all

γ ∈ Πk
n and using (5.9) it follows that∑

γ∈Πkn

Rk,L,Tt1,...,tn(s,γ) = 1.

It remains to show that Rk,L,Tt1,...,tn(s, ·) are the finite dimensional distributions of a Markov
process (π̃t)t∈[0,T ] satisfying the independent blocks property and with transition density
given by (3.11).

Now suppose γ := (γ1, . . . , γn) and γ′ := (γ1, . . . , γn, γn+1, . . . , γn+m) are partition
chains, and t1 < . . . < tn+m are times, then

Rk,L,Tt1,...,tn+m
(s,γ′)

Rk,L,Tt1,...,tn(s,γ)
=

∏m
i=n

∏
Γ∈γi F

bi(Γ)
∆ti

FT−ti+1
(s)∏

Γ∈γn F
|Γ|
T−tn(s)

=
∏

Γ∈γn

∏m
i=n

∏
Γ′∈γΓ

i
F
bi(Γ

′)
∆ti

FT−ti+1
(s)

F
|Γ|
T−tn(s)

. (5.18)

Since this expression only depends on (γ1, . . . , γn) through the partition γn, Rk,L,Tt1,...,tn(s, ·)
are the finite dimensional distributions of a Markov process. Additionally, since this
expression factorises over Γ ∈ γn, this Markov process satisfies the independent blocks
property.

Finally, we need to show the transition density of (π̃t)t∈[0,T ] is given by (3.11). Given
{π̃t = γ} and a block Γ ∈ γ, we want to obtain the conditional probability that {πΓ

t′ = δ}
for a later time t < t′ < T . To this end note that by setting m = n + 1 in (5.18), and
letting δ be a partition of Γ ∈ γn, we see that this conditional probability is equal to

F
|δ|
tn+1−tn(FT−tn+1

(s))
∏

∆∈δ F
|∆|
T−tn+1

(s)

F
|Γ|
T−tn(s)

,

establishing (3.11).

5.4 Proof of the split time representation, Theorem 3.2

Proof of Theorem 3.2. Let u1 < . . . < un be times in [0, T ] and let h1, . . . , hn be small
positive reals. First we consider the small-(hi) asymptotics of the quantity

Rk,L,Ts (π̃ui = ηi−1, π̃ui+hi = ηi, ∀i = 1, . . . , n).

For i = 1, . . . , n, let γ = (γ1, . . . , γ2n) be given by γ2i−1 = ηi−1 and γ2i = ηi, and let
t2i−1 = ui and t2i = ui + hi. Then

Rk,L,Ts (π̃ui = ηi−1, π̃ui+hi = ηi, ∀i = 1, . . . , n) = Rk,L,Tt1,...,t2n(s, γ).

Letting u0 = 0, h0 = 0, un+1 = T , using (5.16), we have

Rk,L,Tt1,...,t2n(s,γ) =
1

F kT (s)

n∏
i=0

F ′ui+1−(ui+hi)
(FT−ui+1

(s))|ηi|

×
n∏
i=1

F qihi (FT−(ui+hi)(s))F
′
hi(FT−(ui+hi)(s))

|ηi|−1. (5.19)
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It is straightforward to verify by the definition of Ft(s) that for small h,

F jh(s) = hf j(s) + o(h), j ≥ 2, F ′h(s) = 1 + o(1). (5.20)

Using (5.20) we obtain

lim
hi↓0

1

h1 . . . hn
Rk,L,Tt1,...,t2n(s,γ) =

∏n
i=0 F

′
ui+1−ui(FT−ui+1

(s))|ηi|
∏n
i=1 f

qi(FT−ui(s))

F kT (s)
.

Finally, note by the semigroup identity that F ′t (FT−t(s)) = F ′T (s)/F ′T−t(s), and that
|ηi| − |ηi−1| = qi − 1, and hence

n∏
i=0

F ′∆ui(FT−ui+1(s))|ηi| = F ′T (s)

n∏
i=1

F ′T−ui(s)
qi−1,

and hence

lim
hi↓0

1

h1 . . . hn
Rk,L,Tt1,...,t2n(s,γ) =

F ′T (s)
∏n
i=1 f

qi(FT−ui(s))F
′
T−ui(s)

qi−1

F kT (s)
.

It follows that for any collection of time intervals [a1, b1], . . . , [an, bn] such that bi < ai+1,

Rk,L,Ts (π̃ai = ηi−1, π̃bi = ηi ∀ i = 1, . . . , n)

=

∫ b1

a1

. . .

∫ bn

an

du1 . . . dun
F ′T (s)

∏n
i=1 f

qi(FT−ui(s))F
′
T−ui(s)

qi−1

F kT (s)
. (5.21)

Now by Theorem 3.4, conditional on the event {NT ≥ k}, the process (πk,L,Tt )t∈[0,T ] has

law
∫ 1

0
mk,L,T (ds)Rk,L,Ts . Using this fact in conjunction with (5.21) (and Fubini’s theorem

in the final equality) we have

P(πk,L,Tai = ηi−1, π
k,L,T
bi

= ηi ∀ i = 1, . . . , n | NT ≥ k)

=

∫ 1

0

mk,L,T (ds)

∫ b1

a1

. . .

∫ bn

an

du1 . . . dun
F ′T (s)

∏n
i=1 f

qi(FT−ui(s))F
′
T−ui(s)

qi−1

F kT (s)

=

∫ b1

a1

. . .

∫ bn

an

du1 . . . dun

∫ 1

0

(1− s)k−1

(k − 1)!P(NT ≥ k)
F ′T (s)

n∏
i=1

fqi(FT−ui(s))F
′
T−ui(s)

qi−1ds.

5.5 Proof of the projective extension, Theorem 3.8

In this section we will use the abbreviation (πkt )t∈[0,T ] := (πk,L,Tt )t∈[0,T ].

Proof of Theorem 3.8. If on the event {NT ≥ k + j}, k + j distinct particles U1, . . . , Uk+j

are chosen uniformly from those alive at time T , then the first k of them U1, . . . , Uk
represent a uniformly chosen sample of k-distinct particles. It follows by definition that

on the event {NT ≥ k + j} that
(
πk+j
t

∣∣k)
t∈[0,T ]

and (πkt )t∈[0,T ] are identical in law.

It remains to compute the law of the stochastic process
(
πk+j
t

∣∣k)
t∈[0,T ]

. Note we can

write

P(πk+j
t1 |

k = γ1, . . . , π
k+j
tn |

k = γn, NT ≥ k + j)

=
∑

η∈Πk+j
n :η|k=γ

P(πk+j
t1 = η1, . . . , π

k+j
tn = ηn, NT ≥ k + j)

=
∑

η∈Πk+j
n :η|k=γ

∫ 1

0

(1− s)k+j−1

(k + j − 1)!

n∏
i=0

∏
H∈ηi

F
bi(H)
∆ti

(
FT−ti+1

(s)
)
ds

=

∫ 1

0

(1− s)k+j−1

(k + j − 1)!

∑
η∈Πk+j

n :η|k=γ

n∏
i=0

∏
H∈ηi

F
bi(H)
∆ti

(
FT−ti+1(s)

)
ds.
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Setting gi := F∆ti in Lemma 5.2, we have

∑
η∈Πk+j

n :η|k=γ

n∏
i=0

∏
H∈ηi

F
bi(H)
∆ti

(
FT−ti+1

(s)
)
ds =

∂j

∂sj

 n∏
i=0

∏
Γ∈γi

F
bi(Γ)
∆ti

(
FT−ti+1

(s)
) ,

and the result follows.

6 Proofs of asymptotic-T results

6.1 Supercritical asymptotics

When m = E[L] > 1 and the Kesten-Stigum condition E[L log+ L] < ∞ holds, the
unit-mean and non-negative martingale Wt := Nte

−(m−1)t converges to almost-surely to
a non-degenerate limit W := W∞, with the properties that E[W ] = 1 and

{W > 0} = {Nt > 0 ∀ t} almost surely. (6.1)

Defining ϕ : [0,∞)→ [0, 1] by ϕ(v) := E[e−vW ], we note that by Fubini’s theorem,

E[W ke−vW ] = (−1)kϕk(v). (6.2)

The following lemma gives us the scaling limit of the generating function derivatives
under the change of variable s = e−ve

−(m−1)T

.

Lemma 6.1. For every v > 0, t ≥ 0, and non-negative integer k,

lim
T→∞

e−k(m−1)TF kT−t(e
−ve−(m−1)T

) = (−1)ke−k(m−1)tϕk(ve−(m−1)t).

Proof. Write

e−k(m−1)TF kT−t(e
−ve−(m−1)T

) = e−k(m−1)TE
[
N

(k)
T−te

−ve−(m−1)TNT−t
]

= e−k(m−1)tE[hTv,t(WT−t)],

where hTv,t(x) =
(∏k−1

i=0 (x− ie−(m−1)(T−t))
)

exp
(
−ve−(m−1)t(x− ke−(m−1)(T−t))

)
. Note

that as T →∞, hTv,t(x) converges uniformly on [0,∞) to

hv,t(x) := xke−ve
−(m−1)tx.

Since WT−t →W almost surely as T →∞, it follows that hTv,t(WT−t) converges almost
surely to hv,t(W ). Since hTv,T (x) are bounded as T varies, it follows by the bounded
convergence theorem that

E[hTv,t(WT−t)]→ E[hv,t(W )] = (−1)kϕk(ve−(m−1)t).

We are now ready to prove our main result for supercritical trees.

Proof of Theorem 3.5. By Theorem 3.1,

P(πk,L,Tt1 = γ1, . . . , π
k,L,T
tn = γn | NT ≥ k) (6.3)

=
1

P(NT ≥ k)

∫ 1

0

(1− s)k−1

(k − 1)!

n∏
i=0

∏
Γ∈γi

F
bi(Γ)
∆ti

(
FT−ti+1

(s)
)
ds. (6.4)

For a fixed mesh (ti)i≤n, the only interval [ti, ti+1] that grows with T is the final one
[tn, T ], and hence it is convenient to write

=
1

P(NT ≥ k)

∫ 1

0

(1− s)k−1

(k − 1)!

n−1∏
i=0

∏
Γ∈γi

F
bi(Γ)
∆ti

(
FT−ti+1(s)

) ∏
Γ∈γn

F
|Γ|
T−tn(s)ds, (6.5)
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where we note bn(Γ) = |Γ| by definition. Applying the change of variable s = e−ve
−(m−1)T

,
we can write

P(πk,L,Tt1 = γ1, . . . , π
k,L,T
tn = γn | NT ≥ k) =

∫ ∞
0

GT (v)dv, (6.6)

where

GT (v) := e−(m−1)T e−e
−(m−1)T v (1− e−e−(m−1)T v)k−1

(k − 1)!P(NT ≥ k)

n−1∏
i=0

∏
Γ∈γi

F
bi(Γ)
∆ti

(
FT−ti+1

(e−e
−(m−1)T v)

)
×
∏

Γ∈γn

F
|Γ|
T−tn(e−e

−(m−1)T v).

Note by (6.1) that P(NT ≥ k)→ 1− ϕ(∞), and by using Lemma 6.1 it can then be seen
that as T →∞, GT (v) converges pointwise to

G(v) :=
e−k(m−1)tnvk−1

(k − 1)!(1− ϕ(∞))

n−1∏
i=0

∏
Γ∈γi

F
bi(Γ)
∆ti

(
ϕ(e−(m−1)tiv)

) ∏
Γ∈γn

(−1)|Γ|ϕ|Γ|(e−(m−1)tnv).

It remains to establish that
∫∞

0
GT (v)dv →

∫∞
0
G(v)dv, which we prove using the domi-

nated convergence theorem, Lemma 5.4. To this end, let

HT (v) := e−(m−1)T e−ve
−(m−1)T (1− e−e−(m−1)T v)k−1

(k − 1)!P(NT ≥ k)
F kT (e−e

−(m−1)T v).

Setting s = e−e
−(m−1)T v in (5.10), we see that 0 ≤ GT (v) ≤ HT (v). Furthermore, HT (v)

converges pointwise to

H(v) :=
(−1)kvk−1ϕk(v)

(k − 1)!(1− ϕ(∞))
. (6.7)

Finally, we note that for each T , by changing variable s = e−e
−(m−1)T v and then setting

X = 1 in Lemma 4.6, it can be seen that HT (v)dv is a probability measure. We now show
that H(v)dv is also a probability measure. Using (6.2) in the first equality below and
Fubini’s theorem in the second,∫ ∞

0

H(v)dv =
1

(k − 1)!(1− ϕ(∞))

∫ ∞
0

vk−1E[W ke−vW ]dv

=
1

(k − 1)!(1− ϕ(∞))
E [p(W )] ,

where by the definition of the gamma integral, p(w) := 1w>0

∫∞
0

(vw)ke−vw dvv = (k −
1)!1w>0. Using P(W > 0) = 1− ϕ(∞), we obtain∫ ∞

0

H(v)dv =
1

(k − 1)!(1− ϕ(∞))
E [(k − 1)!1W>0] = 1. (6.8)

So HT (v) ≥ GT (v) ≥ 0, H(v) ≥ G(v), HT (v) converge pointwise to H(v) and we trivially
have

∫∞
0
HT (v)dv = 1 →

∫ 1

0
H(v)dv = 1. It follows by Lemma 5.4 that

∫∞
0
GT (v)dv →∫∞

0
G(v)dv.
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6.2 Critical asymptotics

Recall from Section 2 the Kolmogorov-Yaglom exponential limit law [4, III.7], which
states that when f ′(1) = 1

lim
T→∞

TP(NT > 0) =
1

c
, lim

T→∞
P

(
NT
cT

> x

∣∣∣∣∣NT > 0

)
= e−x, (6.9)

where c := f ′′(1)/2.
The following lemma gives us the scaled asymptotics of Ft(s) when f ′(1) = 1 and

c = f ′′(1)/2 <∞.

Lemma 6.2. For any θ ∈ [0,∞), and a > 0, b ≥ 0, j ≥ 1,

lim
T→∞

(cT )−(j−1)F jaT (FbT (exp(−θ/cT ))) = aj−1j!

(
1 + θb

1 + θ(a+ b)

)j+1

.

Proof. Throughout this proof, Z will refer to a standard exponential random variable,
and we note

E[Zje−φZ ] =
j!

(1 + φ)j+1
.

By (6.9), conditioned on {NbT > 0}, the random variable NbT /cT converges in distribu-
tion to bZ as T →∞. Now since x 7→ e−θx is bounded for x ≥ 0, it follows that for any
b > 0 we have

lim
T→∞

T (1− FbT (exp(−θ/cT ))) = lim
T→∞

T (1− E[exp(−θNbT /cT )])

= lim
T→∞

TP(NbT > 0)
(

1− E[exp(−θNbT /cT )|NbT > 0]
)

=
1

cb
(1− E[e−θbZ ]),

where Z is a standard exponential, and hence

lim
T→∞

T (1− FbT (exp(−θ/cT ))) =
1

c

θ

1 + θb
. (6.10)

Note that (6.10) is also true for b = 0, since F0(s) = s. It follows that for any b ≥ 0,

lim
T→∞

FbT (exp(−θ/cT ))cT = exp

(
− θ

1 + θb

)
.

Moreover, conditional on {NaT > 0},

N
(j)
aT

(caT )j
FbT (exp(−θ/cT ))NaT−j =

N
(j)
aT

(caT )j
FbT (exp(−θ/cT ))caT×(NaT /caT−j/caT )

converges in distribution to Zj exp
(
− θ

1+θbaZ
)

. It follows that

lim
T→∞

(cT )−(j−1)F jaT (FbT (exp(−θ/cT )))

= aj−1 lim
T→∞

(caT )P(NaT > 0) lim
T→∞

E

[
N

(j)
aT

(caT )j
FbT (exp(−θ/cT ))NaT−j

∣∣∣NaT > 0

]

= aj−1E

[
Zj exp

(
− θ

1 + θb
aZ

)]
= aj−1j!

(
1 + θb

1 + θ(a+ b)

)j+1

,

as required.
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We now prove our main result for critical trees.

Proof of Theorem 3.6. Let f ′(1) = 1, c = f ′′(1)/2 < ∞. Then by (3.6), for elements
t1 < . . . < tn of [0, 1],

P(πk,L,TTt1
= γ1, . . . , π

k,L,T
Ttn

= γn|NT ≥ k)

=
1

P(NT ≥ k)

∫ 1

0

(1− s)k−1

(k − 1)!

n∏
i=0

∏
Γ∈γi

F
bi(Γ)
T∆ti

(
FT (1−ti+1)(s)

)
ds.

Taking the change of variable s = e−θ/cT , we may write

P(πk,L,TTt1
= γ1, . . . , π

k,L,T
Ttn

= γn|NT ≥ k) =

∫ ∞
0

GT (θ)dθ,

where

GT (θ) :=
e−θ/cT

cTP(NT ≥ k)

(cT )k−1(1− e−θ/cT )k−1

(k − 1)!

1

(cT )k−1

×
n∏
i=0

∏
Γ∈γi

F
bi(Γ)
T (∆ti)

(
FT (1−ti+1)(e

−θ/cT )
)
.

Now note that given any chain of partitions (γ1, . . . , γn), we have by the definition of the
fragmentation numbers bi(Γ),∑

Γ∈γi

(bi(Γ)− 1) = |γi+1| − |γi|,

and in particular,
∑n
i=0

∑
Γ∈γi bi(Γ) = k−1. Using these facts in conjunction with Lemma

6.2 we have for every θ,

GT (θ)→ G(θ) :=

n∏
i=0

∏
Γ∈γi

bi(Γ)!
θk−1

(k − 1)!

n∏
i=0

(∆ti)
|γi+1|−|γi|

(
1 + (1− ti+1)θ

1 + (1− ti)θ

)|γi+1|

.

It remains to show that
∫∞

0
GT (θ)dθ →

∫∞
0
G(θ)dθ. To this end, define

HT (θ) :=
e−θ/cT

cTP(NT ≥ k)

(cT )k−1(1− e−θ/cT )k−1

(k − 1)!

1

(cT )k−1
F kT (e−θ/cT ).

Setting s = e−θ/cT in (5.10) we see that HT (θ) ≥ GT (θ) ≥ 0. We also note that by Lemma
6.2 that HT (θ) converges pointwise to

H(θ) :=
kθk−1

(1 + θ)k+1
.

Furthermore, by taking the change of variable s = e−θ/cT and using Lemma 4.6, it can
be seen each HT (θ)dθ is a probability measure on [0,∞). It is also straightforward to
verify that H(θ)dθ is also a probability measure on [0,∞).

In particular, we trivially have
∫∞

0
HT (θ)dθ →

∫∞
0
H(θ)dθ, and it follows from Lemma

5.4 that
∫∞

0
GT (θ)dθ →

∫∞
0
G(θ)dθ.
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6.3 Subcritical asymptotics

Finally, we prove our main result in the subcritical case. This proof is more straight-
forward than the supercritical and critical cases since on survival until a large time T ,
there are only a constant order of particles alive at time T , and as a result, no scaling is
needed in the generating functions.

Recall that when m < 1, there exist non-negative numbers {cj : j ≥ 1} satisfying∑
j≥1 cj = 1 such that

lim
T→∞

P(NT = j|NT > 0) = cj . (6.11)

We set C(s) :=
∑
j≥1 cjs

j , and note that according to [4, I.11] that C ′(1) < ∞ ⇐⇒
E[L log+ L] <∞.

Lemma 6.3. Suppose f ′(1) < 1 and E[L log+ L] <∞. Then for all l ≥ 1,

lim
T→∞

F lT−t(Ft(s))

P(NT ≥ k)
=

e−(m−1)t

1−
∑k−1
j=1 cj

Cl(Ft(s)). (6.12)

Proof. First note that

lim
T→∞

e−(m−1)TP(NT > 0) = lim
T→∞

e−(m−1)T E[NT ]

E[NT |NT > 0]
=

1

C ′(1)
.

Now write

lim
T→∞

F lT−t(Ft(s))

P(NT ≥ k)
= lim
T→∞

P(NT > 0)

P(NT ≥ k)
lim
T→∞

P(NT−t > 0)

P(NT > 0)
lim
T→∞

F lT−t(Ft(s))

P(NT−t > 0)
,

and use the definition (6.11).

We now prove our main result for subcritical trees.

Proof of Theorem 3.7. By replacing ti with T − tn−i+1 in Theorem 3.1, we have the
following formula for the finite dimensional distributions of (ρk,L,Tt )t∈[0,T ]:

P(ρk,L,Tt1 = γ1, . . . , ρ
k,L,T
tn = γn|NT ≥ k)

=
1

P(NT ≥ k)

∫ 1

0

(1− s)k−1

(k − 1)!

n+1∏
i=1

∏
Γ∈γi

F
mi(Γ)
∆t−1

(Fti−1
(s))ds, (6.13)

where γ1 � . . . � γn is a chain with merger numbers (mi(Γ)).
Note that mn+1({1, . . . , k}) = |γn|. Now for fixed (ti)i≤n, as we send T →∞ the only

time interval [ti, ti+1] in (6.13) that grows with T is [tn, T ]. For this reason it is useful to
write

=

∫ 1

0

(1− s)k−1

(k − 1)!

n∏
i=1

∏
Γ∈γi

F
mi(Γ)
∆ti−1

(Fti−1(s))
F
|γn|
T−tn (Ftn(s))

P(NT ≥ k)
ds =:

∫ 1

0

GT (s)ds.

By (6.12), for each s ∈ [0, 1],

GT (s)→ G(s) :=
e−(m−1)tn

1−
∑k−1
j=1 cj

(1− s)k−1

(k − 1)!

n∏
i=1

∏
Γ∈γi

F
mi(Γ)
∆ti−1

(Fti−1(s))C |γn|(Ftn(s)).
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It remains to establish that
∫ 1

0
GT (s)ds→

∫ 1

0
G(s)ds. To this end, define

HT (s) :=
(1− s)k−1F kT (s)

(k − 1)!P(NT ≥ k)

By replacing ti with T − tn+1−i and γi with γn+1−i (and noting mi(Γ) = bn−i(Γ)) in (5.10),
we obtain

HT (s) ≥ GT (s) ≥ 0.

Furthermore, by applying (6.12) with t = 0 and l = k, we see that HT (s) converges
pointwise to

H(s) :=
(1− s)k−1

(k − 1)!(1−
∑k−1
j=1 cj)

Ck(s).

Finally, by Theorem 3.4, HT (s)ds = mk,L,T (ds) is a probability measure on [0, 1], and
furthermore, by Lemma 4.6, so is H(s)ds. We trivially have

∫ 1

0
HT (s)ds→

∫ 1

0
H(s)ds, and

hence by Lemma 5.4,
∫ 1

0
GT (s)ds→

∫ 1

0
G(s)ds.
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