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Abstract

We study the Wiener–Hopf factorization for Lévy processes Xt with completely mono-
tone jumps. Extending previous results of L.C.G. Rogers, we prove that the space-time
Wiener–Hopf factors are complete Bernstein functions of both the spatial and the
temporal variable. As a corollary, we prove complete monotonicity of: (a) the tail of
the distribution function of the supremum of Xt up to an independent exponential
time; (b) the Laplace transform of the supremum of Xt up to a fixed time T , as a
function of T . The proof involves a detailed analysis of the holomorphic extension
of the characteristic exponent f(ξ) of Xt, including a peculiar structure of the curve
along which f(ξ) takes real values.
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1 Introduction

This is the first in a series of papers, where we study a class of one-dimensional Lévy
processes Xt with completely monotone jumps, introduced by L.C.G. Rogers in [70].
The main objective of this article is to provide a detailed description of characteristic
(Lévy–Khintchine) exponents f of these Lévy processes and their Wiener–Hopf factors
κ+(τ, ξ), κ−(τ, ξ). In particular, we extend the result of [70], which asserts that κ+(τ, ξ)

and κ−(τ, ξ) are complete Bernstein functions of ξ (or, equivalently, that the ladder height
processes associated with Xt have completely monotone jumps). Our main result states
that κ+(τ, ξ) and κ−(τ, ξ) are additionally complete Bernstein functions of τ (that is, also
the ladder time processes have completely monotone jumps). In fact, we prove an even
stronger statement.

*Work supported by the Polish National Science Centre (NCN) grant no. 2015/19/B/ST1/01457.
†Wrocław University of Science and Technology, Poland. E-mail: mateusz.kwasnicki@pwr.edu.pl

http://www.imstat.org/ejp/
https://doi.org/10.1214/19-EJP300
http://arXiv.org/abs/1811.06617
mailto:mateusz.kwasnicki@pwr.edu.pl


Fluctuation theory for Lévy processes with completely monotone jumps

Theorem 1.1. Suppose that Xt is a one-dimensional Lévy process with completely
monotone jumps, possibly killed at a uniform rate. Let κ+(τ, ξ) and κ−(τ, ξ) denote
its space-time Wiener–Hopf factors, that is, the characteristic (Laplace) exponents of
bi-variate ladder processes associated to Xt. Then κ+(τ, ξ) and κ−(τ, ξ) are complete
Bernstein functions of both ξ (for each fixed τ ≥ 0) and τ (for each fixed ξ ≥ 0).
Furthermore, if 0 ≤ τ1 ≤ τ2 and 0 ≤ ξ1 ≤ ξ2, then

κ+(τ1, ξ)

κ+(τ2, ξ)
,

κ−(τ1, ξ)

κ−(τ2, ξ)
,

κ+(τ, ξ1)

κ+(τ, ξ2)
,

κ−(τ, ξ1)

κ−(τ, ξ2)
(1.1)

are complete Bernstein functions of ξ and τ , respectively. Finally, if ξ1, ξ2 ≥ 0, then

κ+(τ, ξ1)κ−(τ, ξ2) (1.2)

is a complete Bernstein function of τ .

A simple application of Theorem 1.1 is given in Corollary 2.1. When Xt is a compound
Poisson process, the expression (1.2) can be given two meanings, and both lead to a
complete Bernstein function of τ ; see Section 6 for further details.

A brief introduction to fluctuation theory for Lévy processes, which includes the basic
expressions for κ+(τ, ξ) and κ−(τ, ξ), is given in Section 2. The notions of Lévy processes
with completely monotone jumps and complete Bernstein functions are discussed in
Section 3. Theorem 1.1 is proved in Section 6, after a number of intermediate results in
Sections 4 and 5. One lengthy and technical proof is moved to Section 7.

Characteristic exponents f of Lévy processes described in Theorem 1.1 form a class
of holomorphic functions with remarkable properties, for which we propose the name
Rogers functions. We show that f is in this class if and only if f extends to a function
holomorphic in the right complex half-plane H = {ξ ∈ C : Re ξ > 0}, and Re(f(ξ)/ξ) ≥ 0

for all ξ ∈ H. We also give various equivalent definitions of the class of Rogers function,
provide integral representations for their Wiener–Hopf factors, and describe highly
regular structure of the set Γf = {ξ ∈ H : f(ξ) ∈ (0,∞)}, which we call the spine of f .

The results of this paper will be applied in a number of forthcoming works. We will
use them in the study of hitting times of points for Xt, in the spirit of [56] and [33], which
cover the symmetric case. The Wiener–Hopf formulae of the present paper will be the
key ingredient in the derivation of integral expressions for the distribution of the running
supremum of Xt and for the transition density of Xt killed upon leaving a half-line; this
will extend the results of [54] and [59], which deal with symmetric processes, as well
as [48], where asymmetric strictly stable Lévy processes are studied. In the symmetric
case, the harmonic extension technique for the generator of Xt was discussed in [61];
a similar description in the asymmetric setting is expected. Characteristic (Laplace)
exponents of bi-variate ladder processes of Xt form an interesting class of bi-variate
complete Bernstein functions, which deserves a separate study. Finally, for a large
class of processes Xt discussed in Theorem 1.1, the distribution of Xt turns out to
be bell-shaped, and conversely, all known bell-shaped distributions are of that form;
see [57].

The Wiener–Hopf factorisation for Lévy processes is currently a very active field
of study. Stable Lévy processes, which are prime examples of Lévy processes with
completely monotone jumps, have been studied in this context since the pioneering
work of Darling [16]; other classical references are [7, 17, 31]. For a sample of recent
works on that subject, see [5, 14, 20, 23, 24, 32, 45, 46, 50, 51, 52, 63, 68]. Related
fluctuation identities for more general classes of Lévy processes are provided, for
example, in [19, 21, 30, 44, 47, 53, 62]; see also the references therein. Our work is
also related to recent progress in the theory of non-self-adjoint operators related to Lévy
processes, studied in [48, 65, 66, 67, 68].
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Fluctuation theory for Lévy processes with completely monotone jumps

Over the last decade, fluctuation theory stimulated the study of potential and spectral
theory for symmetric Lévy processes (and in particular those with completely monotone
jumps); see, e.g., [8, 9, 10, 11, 13, 15, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 42, 54, 55,
56, 73] and the references therein. There are, however, very few papers where similar
problems are studied for asymmetric processes, see [28, 29, 41, 64, 76]. The results
of the present article may therefore stimulate the development of potential theory and
spectral theory for asymmetric Lévy processes.

A preliminary version of this article, which contained less general results and used
different methods, appeared as an unpublished paper [58].

We conclude the introduction with a number of notational remarks. For clarity,
we often write, for example, Xt for the process t 7→ Xt, or κ+(τ, ξ) for the function
(τ, ξ) 7→ κ+(τ, ξ). We write µ(−ds) for the mirror image of a measure µ(ds), that is, for
the measure E 7→ µ(−E). The interior of a set E ⊆ C is denoted by IntE, while its
closure by ClE. The right complex half-plane {ξ ∈ C : Re ξ > 0} is denoted by H, while
D stands for the unit disk {ξ ∈ C : |ξ| < 1} in the complex plane.

We generally use symbols x, y for spatial variables, t, s for temporal variables, ξ, η for
Fourier variables corresponding to x, y, and τ, σ for Laplace variables corresponding to
t, s. We also use r, s, t, z as auxiliary variables, for example in integrals. Symbols a, b, c
denote constants or parameters.

The notion of a Rogers function f(ξ) and its domain Df is introduced in Section 3.1.
If f is a Rogers function, the notation Γf , Zf , ζf (r) and λf (r) is introduced in Section 4.1,
while the symbols Γ?f , D+

f and D−f are defined in Section 4.2.

2 Essentials of fluctuation theory for Lévy processes

2.1 Lévy processes

Throughout this work we assume that Xt is a one-dimensional Lévy process. In
other words, Xt is a real-valued stochastic process with independent and stationary
increments, càdlàg paths, and initial value X0 = 0. We allow Xt to be killed at a uniform
rate, that is, the probability of Xt being alive at time t is equal to e−ct for some c ≥ 0.

We denote by f(ξ) the characteristic (Lévy–Khintchine) exponent of Xt, that is,

E exp(iξXt) = exp(−tf(ξ)) (2.1)

for t ≥ 0 and ξ ∈ R. By the Lévy–Khintchine formula,

f(ξ) = aξ2 − ibξ + c+

∫
R\{0}

(1− eiξx + iξ(1− e−|x|) signx)ν(dx), (2.2)

where a ≥ 0 is the Gaussian coefficient, b ∈ R is the drift, c ≥ 0 is the rate at which Xt

is killed and ν(dx) is the Lévy measure, a non-negative Borel measure on R \ {0} such
that

∫
R\{0}min{1, x2}ν(dx) <∞; ν(dx) describes the intensity of jumps of Xt. If ν(dx) is

absolutely continuous, we denote its density function again by the same symbol ν(x).
A Lévy process Xt is a compound Poisson process if the paths of Xt are piece-wise

constant with probability one. This is the case if and only if a = 0, ν is a finite measure
and b =

∫
R\{0}(1− e

−|x|) signx ν(dx).
For a general discussion of Lévy processes, we refer to [1, 3, 6, 49, 72].

2.2 Fluctuation theory

Fluctuation theory studies the properties of the supremum and the infimum function-
als of a Lévy process Xt, which are defined by

Xt = sup{Xs : s ∈ [0, t]}, Xt = inf{Xs : s ∈ [0, t]},
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Fluctuation theory for Lévy processes with completely monotone jumps

as well as times at which these extremal values are attained, denoted by

T t = inf{s ∈ [0, t] : Xs = Xt}, T t = inf{s ∈ [0, t] : Xs = Xt}.

It is known that the sets in the definition of T t and T t almost surely contain only one
element s, unless Xt is a compound Poisson process.

The suprema and infima of Lévy processes are intimately connected with the ascend-
ing and descending ladder processes: bi-variate Lévy processes with non-decreasing
coordinates, whose range is almost surely equal to {(Xt, T t) : t ∈ [0,∞)} and {(−Xt, T t) :

t ∈ [0,∞)}, respectively. The characteristic (Laplace) exponents of the ladder processes
are denoted by κ+(τ, ξ) and κ−(τ, ξ).

For a detailed introduction to the fluctuation theory of Lévy processes, we refer
to [3, 6, 18, 22, 49, 72]. Here we limit our attention to the results that are used in this
work.

2.3 Complete monotonicity results

The tri-variate Laplace transforms of random vectors (T s, Xs) and (T s, Xs) have the
following description in terms of κ+(τ, ξ) and κ−(τ, ξ): if τ, σ ≥ 0 and Re ξ ≥ 0, then

E exp(−ξXS − τTS) =
κ+(σ, 0)

κ+(τ + σ, ξ)
,

E exp(ξXS − τTS) =
κ−(σ, 0)

κ−(τ + σ, ξ)
,

(2.3)

where S is independent from the process Xt and exponentially distributed with intensity
σ = (ES)−1. The above formulae are known as Pecherskii–Rogozin identities, established
in [69, 71]; see also [22, 43]. Thus, as an almost straightforward consequence of
Theorem 1.1, we obtain the following result. We stress that complete monotonicity of
P(XS > x) already follows from [70].

Corollary 2.1. Suppose that Xt is a one-dimensional Lévy process with completely
monotone jumps, possibly killed at a uniform rate. Let S be an exponentially distributed
random variable independent from the process Xt. Then for all ξ > 0,

P(XS > x), P(TS > s) and E exp(−ξXt) (2.4)

are completely monotone functions on (0,∞) of x, s and t, respectively. If Xt converges
almost surely to −∞, then additionally P(X∞ > x) and P(T∞ > s) are completely
monotone functions on (0,∞) of x and s, respectively. Similar statements hold for Xt

and T t.

Proof. In the following argument we use well-known properties of complete Bernstein,
Stieltjes and completely monotone functions that are discussed in Section 3.2.

Suppose that S is exponentially distributed with intensity σ. The Laplace transforms
of the expressions given in (2.4) are then∫ ∞

0

e−ξxP(XS > x)dx =
1−E exp(−ξXS)

ξ
=

1

ξ

(
1− κ+(σ, 0)

κ+(σ, ξ)

)
,∫ ∞

0

e−τsP(TS > s)ds =
1−E exp(−τTS)

τ
=

1

τ

(
1− κ+(σ, 0)

κ+(τ + σ, 0)

)
,∫ ∞

0

e−σtE exp(−ξXt)dt =
E exp(−ξXS)

σ
=

κ+(σ, 0)

σκ+(σ, ξ)
,

where τ, ξ, σ > 0.
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By Theorem 1.1, κ+(σ, ξ)/κ+(σ, 0) is a complete Bernstein function of ξ. Therefore,
κ+(σ, 0)/κ+(σ, ξ) is a Stieltjes function of ξ. This function is equal to 1 at ξ = 0, and
therefore 1− κ+(σ, 0)/κ+(σ, ξ) is again a complete Bernstein function of ξ. We conclude
that ξ−1(1− κ+(σ, 0)/κ+(σ, ξ)) is a Stieltjes function of ξ, and consequently P(XS > x) is
a completely monotone function of x.

Similarly, P(TS > s) is a completely monotone function of s, and an even shorter
argument proves that E exp(−ξXt) is a completely monotone function of t.

2.4 Fristedt–Pecherski–Rogozin formulae

There are essentially two types of expressions available for κ+(τ, ξ) and κ−(τ, ξ). The
Fristedt–Pecherski–Rogozin formulae state that if τ ≥ 0 and Re ξ ≥ 0, then

κ+(τ, ξ) = exp

(∫ ∞
0

∫
(0,∞)

e−t − e−τt−ξx

t
P(Xt ∈ dx)dt

)
,

κ−(τ, ξ) = exp

(∫ ∞
0

∫
(−∞,0)

e−t − e−τt+ξx

t
P(Xt ∈ dx)dt

)
;

(2.5)

see [22, 69, 71]. We will take these identities as definitions of κ+(τ, ξ) and κ−(τ, ξ). It is
also convenient to introduce an additional function

κ◦(τ) = exp

(∫ ∞
0

e−t − e−τt

t
P(Xt = 0)dt

)
, (2.6)

which is equal to 1 for all τ > 0 unless Xt is a compound Poisson process. A more analytic
approach leads to the Baxter–Donsker formulae, first obtained in [4], and discussed later
in this section.

As a simple consequence of (2.5), we have the Wiener–Hopf factorisation

τ + f(ξ) = (1 + f(0))κ◦(τ)κ+(τ,−iξ)κ−(τ, iξ) (2.7)

whenever τ ≥ 0 and ξ ∈ R; indeed,

κ◦(τ)κ+(τ,−iξ)κ−(τ, iξ) = exp

(∫ ∞
0

∫
R

e−t − e−τt+iξx

t
P(Xt ∈ dx)dt

)
= exp

(∫ ∞
0

e−t(1+f(0)) − e−t(τ+f(ξ))

t
dt

)
= exp

(
log

τ + f(ξ)

1 + f(0)

)
,

where the first equality follows from (2.5) and (2.6), the second one is an application
of (2.1), and the third one follows from Frullani’s integral.

We remark that some authors decide to exclude compound Poisson processes from
their considerations, some incorporate κ◦(τ) into κ+(τ, ξ) or κ−(τ, ξ) instead. Since the
former approach is not completely general, while the latter one breaks the symmetry
between the Wiener–Hopf factors, we decide to keep κ◦(τ) in the notation, following, for
example, [74, 75].

2.5 Baxter–Donsker formulae

The expressions for κ+(τ, ξ) and κ−(τ, ξ) discussed below are similar to those obtained
by Baxter and Donsker in [4]. We derive them from (2.5), although in fact the article [4]
predated the works of Pecherski–Rogozin and Fristedt. They correspond directly to the
meaning of the term Wiener–Hopf factorisation in analysis, and they can also be proved
by solving a Riemann–Hilbert problem for log(τ + f(ξ)) with a fixed τ > 0.

Suppose that τ1, τ2 > 0 and Re ξ1,Re ξ2 > 0. By (2.5), we have

κ+(τ1, ξ1)κ+(τ2, ξ2)

κ+(τ1, ξ2)κ+(τ2, ξ1)
= exp

(∫ ∞
0

∫
(0,∞)

(e−τ2t − e−τ1t)(e−ξ1x − e−ξ2x)

t
P(Xt ∈ dx)dt

)
.
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Observe that

(e−ξ1x − e−ξ2x)1(0,∞)(x) =
1

2π

∫ ∞
−∞

eixz
(

1

ξ1 + iz
− 1

ξ2 + iz

)
dz,

and that (ξ1 + iz)−1− (ξ2 + iz)−1 is absolutely integrable over z ∈ R. By Fubini’s theorem,
for t > 0 we have∫

(0,∞)

(e−ξ1x − e−ξ2x)P(Xt ∈ dx) =
1

2π

∫
R

∫ ∞
−∞

eixz
(

1

ξ1 + iz
− 1

ξ2 + iz

)
dzP(Xt ∈ dx)

=
1

2π

∫ ∞
−∞

e−tf(z)

(
1

ξ1 + iz
− 1

ξ2 + iz

)
dz.

Furthermore, for z ∈ R, by Frullani’s integral,∫ ∞
0

e−τ2t − e−τ1t

t
e−tf(z)dt = log

τ1 + f(z)

τ2 + f(z)
.

By combining the above results, we obtain a variant of the Baxter–Donsker formula:

κ+(τ1, ξ1)κ+(τ2, ξ2)

κ+(τ1, ξ2)κ+(τ2, ξ1)
= exp

(
1

2π

∫ ∞
−∞

(
1

ξ1 + iz
− 1

ξ2 + iz

)
log

τ1 + f(z)

τ2 + f(z)
dz

)
. (2.8)

This can be simplified in the following way: by (2.5) and dominated convergence theorem,

lim
τ→∞

κ+(τ, ξ1)

κ+(τ, ξ2)
= 1 and lim

ξ→∞

κ+(τ1, ξ)

κ+(τ2, ξ)
= 1. (2.9)

Using the first of the above identities and (2.8), we easily find that

κ+(τ, ξ1)

κ+(τ, ξ2)
= exp

(
1

2π

∫ ∞
−∞

(
1

ξ1 + iz
− 1

ξ2 + iz

)
log(τ + f(z)) dz

)
, (2.10)

Indeed, the integral of (ξ1 + iz)−1 − (ξ2 + iz)−1 over R is 0, so we may replace τ2 +

f(z) in (2.8) by 1 + f(z)/τ2. Passing to the limit as τ2 → ∞ and applying dominated
convergence theorem, we obtain (2.10) with τ = τ1. We remark that if f(ξ)/ξ is integrable
in the neighbourhood of 0, then we may pass to the limit as ξ2 → 0+ in (2.10) to get the
expression found in [4]; however, the more general form (2.10) is more convenient for
our needs.

The corresponding expression for κ−(τ, ξ) reads

κ−(τ, ξ1)

κ−(τ, ξ2)
= exp

(
1

2π

∫ ∞
−∞

(
1

ξ1 − iz
− 1

ξ2 − iz

)
log(τ + f(z)) dz

)
. (2.11)

In a similar manner, using the identity

1{0}(x) + e−ξ1x1(0,∞)(x) + e−ξ2x1(−∞,0)(x) =
1

2π

∫ ∞
−∞

eixz
(

1

ξ1 + iz
+

1

ξ2 − iz

)
dz,

we find that

κ+(τ1, ξ1)κ−(τ1, ξ2)

κ+(τ2, ξ1)κ−(τ2, ξ2)
= exp

(
1

2π

∫ ∞
−∞

(
1

ξ1 + iz
+

1

ξ2 − iz

)
log

τ1 + f(z)

τ2 + f(z)
dz

)
,

and by setting τ1 = τ and considering the limit as τ2 →∞, we obtain

κ◦(τ)κ+(τ, ξ1)κ−(τ, ξ2)

=
1

1 + f(0)
exp

(
1

2π

∫ ∞
−∞

(
1

ξ1 + iz
+

1

ξ2 − iz

)
log(τ + f(z))dz

)
;

(2.12)

we omit the details and refer to the proof of Proposition 5.3 for an analogous argument.
These are the main expressions that we will work with.
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2.6 Main idea of the proof

Our goal is to mimic the argument used in [60], which can be summarised as follows.
Suppose that Xt is symmetric, so that f(ξ) is real-valued for ξ ∈ R, and assume addi-
tionally that f(ξ) is an increasing and differentiable function of ξ on (0,∞). In this case,
integrating by parts in (2.10), we obtain

κ+(τ, ξ1)

κ+(τ, ξ2)
= exp

(
1

2πi

∫ ∞
−∞

f ′(z)

τ + f(z)
log

ξ1 + iz

ξ2 + iz
dz

)
= exp

(
1

π

∫ ∞
0

f ′(z)

τ + f(z)
Arg

ξ1 + iz

ξ2 + iz
dz

)
= exp

(
1

π

∫ f(∞−)

f(0+)

1

τ + r
Arg

ξ1 + if−1(r)

ξ2 + if−1(r)
dr

)
,

where f−1(r) denotes inverse function of f(ξ) on (0,∞). It is well-known that the right-
hand side defines a complete Bernstein function of τ if 0 ≤ ξ1 ≤ ξ2, and the essential
part of Theorem 1.1 follows in the symmetric case.

The above approach does not work for asymmetric processes, because then f(ξ)

takes complex values. For this reason, we restrict our attention to processes with
completely monotone jumps, discussed in detail in the next section. In this case f(ξ) has
a holomorphic extension to C \ iR, and there is a unique line Γf along which f(ξ) takes
real values. Our strategy is to deform the contour of integration in (2.10) to Γf and only
then integrate by parts.

Implementation of the above plan requires a detailed study of the class of characteris-
tic exponents of Lévy processes with completely monotone jumps: the Rogers functions.
Definitions and basic properties of Rogers functions are studied in the next section.
Section 4 contains a detailed analysis of the spine Γf of a Rogers function f , while
Section 5 provides various expressions for the Wiener–Hopf factors of a Rogers function.
Our main result, Theorem 1.1, is proved in Section 6. Finally, Section 7 contains a rather
technical proof of one of the intermediate results in Section 4.

3 Lévy processes with completely monotone jumps and Rogers
functions

Some of the properties discussed below are not used in the proof of Theorem 1.1.
However, we gather them here to facilitate referencing in forthcoming works.

3.1 Definition of Rogers functions

Recall that a function ν(x) on (0,∞) is said to be completely monotone if we have
(−1)nν(n)(x) ≥ 0 for all x > 0 and n = 0, 1, 2, . . . By Bernstein’s theorem, ν(x) is com-
pletely monotone on (0,∞) if and only if it is the Laplace transform of a non-negative
Borel measure on [0,∞), known as the Bernstein measure of ν(x). The following class of
Lévy processes appears to have been first studied by Rogers in [70].

Definition 3.1. A Lévy process Xt has completely monotone jumps if the Lévy measure
ν(dx) of Xt is absolutely continuous with respect to the Lebesgue measure, and there is
a density function ν(x) such that ν(x) and ν(−x) are completely monotone functions of x
on (0,∞).

We propose the name Rogers functions for the class of characteristic exponents
of Lévy processes with completely monotone jumps, possibly killed at a uniform rate.
Among numerous equivalent characterisations of this class, we take the following one as
the definition.
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Fluctuation theory for Lévy processes with completely monotone jumps

Definition 3.2. A function f(ξ) holomorphic in the right complex half-plane H = {ξ ∈
C : Re ξ > 0} is a Rogers function if Re(f(ξ)/ξ) ≥ 0 for all ξ ∈ H.

Recall that a Nevanlinna–Pick function is a holomorphic function in the upper complex
half-plane {ξ ∈ C : Im ξ > 0} which takes values in the closed upper complex half-plane
{ξ ∈ C : Im ξ ≥ 0}. Let us say that f is a Nevanlinna–Pick function in H if f is a
holomorphic function in H and Re f(ξ) ≥ 0 for all ξ ∈ H (so that, formally, if(−iξ) is a
Nevanlinna–Pick function). With this definition, f(ξ) is a Rogers function if and only
if f(ξ)/ξ is a Nevanlinna–Pick function in H. Despite this close relation between the
classes of Rogers and Nevanlinna–Pick functions, we believe the former one deserves
a separate name. The reasons are twofold: key properties of Rogers functions needed
in the proof of our main theorem are not shared by Nevanlinna–Pick functions, and the
proposed new name allows for more compact statements of our results.

The following theorem provides four equivalent definitions of a Rogers function. Its
proof is a mixture of standard arguments from the theory of complete Bernstein and
Stieltjes functions (as in [73] or [54]) and the argument given in [70] (see formulae (14)–
(18) therein).

Theorem 3.3. Suppose that f(ξ) is a continuous function on R, satisfying f(−ξ) = f(ξ)

for all ξ ∈ R. The following conditions are equivalent:

(a) f(ξ) extends to a Rogers function;

(b) f(ξ) is the characteristic exponent of a Lévy process with completely monotone
jumps, possibly killed at a uniform rate;

(c) we have

f(ξ) = aξ2 − ibξ + c+
1

π

∫
R\{0}

(
ξ

ξ + is
+
iξ sign s

1 + |s|

)
µ(ds)

|s| (3.1)

for all ξ ∈ R, where a ≥ 0, b ∈ R, c ≥ 0 and µ(ds) is a Borel measure on R \ {0}
such that

∫
R\{0} |s|

−3 min{1, s2}µ(ds) <∞;

(d) either f(ξ) = 0 for all ξ ∈ R or

f(ξ) = c exp

(
1

π

∫ ∞
−∞

(
ξ

ξ + is
− 1

1 + |s|

)
ϕ(s)

|s|
ds

)
(3.2)

for all ξ ∈ R, where c > 0 and ϕ(s) is a Borel function on R with values in [0, π].

Remark 3.4. (a) In Theorem 3.3(a), f extends to a holomorphic function in C \ iR,
satisfying f(−ξ) = f(ξ). Further extensions are sometimes given by (3.1) or (3.2).
In particular, formula (3.2) defines a holomorphic function on the set

Df = C \ (−i ess suppϕ), (3.3)

where ess suppϕ denotes the essential support of ϕ. We call Df the domain of f ,
and we keep the notation Df throughout the article. Note that if s ∈ R \ ess suppϕ,
then f(−is) is a positive real number, and also formula (3.1) extends to Df .

We always identify the function f (defined originally on R, or even on (0,∞)) and
its holomorphic extension given by (3.2) to the set Df . We remark that this is the
maximal holomorphic extension of f which takes values in C \ (−∞, 0]. However,
f may extend to a holomorphic function in an even larger set. For example, if
f(ξ) = ξ2, then ϕ(s) = π for almost all s ∈ R and Df = C \ iR, despite the fact that
f extends to an entire function.
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(b) In Theorem 3.3(b), f(ξ) has the representation (2.2), where ν(dx) has a density
function ν(x) with respect to the Lebesgue measure, and ν(x) and ν(−x) are
completely monotone functions of x on (0,∞).

(c) The measures 1(0,∞)(s)µ(ds) and 1(0,∞)(s)µ(−ds) in Theorem 3.3(c) are Bernstein
measures of the completely monotone functions ν(x) and ν(−x) mentioned above.
Furthermore, the constants a, b and c in (3.1) agree with those in (2.2).

(d) The correspondence between Rogers functions f(ξ) and quadruplets (a, b, c, µ)

satisfying the conditions of Theorem 3.3(c) (or (a, b, c, ν) as in Theorem 3.3(b)) is a
bijection. Similarly, every non-zero Rogers function f corresponds to a unique pair
(c, ϕ) as in Theorem 3.3(d), if we agree to identify functions ϕ that are equal almost
everywhere.

(e) In Theorem 3.3(c) we may equivalently write, for a fixed r > 0,

f(ξ) = aξ2 − ib̃ξ + c+
1

π

∫
R\{0}

(
ξ

ξ + is
+

iξs

r2 + s2

)
µ(ds)

|s| (3.4)

for the same a, c and µ(ds), and some b̃ ∈ R.

(f) The constants a, b, c in Theorem 3.3(c) and b̃ above are given by

a = lim
ξ→∞

f(ξ)

ξ2
, b = lim

ξ→∞

− Im f(ξ)

ξ
, c = lim

ξ→0+
f(ξ), b̃ = Im f(r) . (3.5)

The measure µ(ds) satisfies

πcδ0(ds) +
µ(ds)

|s|
= lim
t→0+

(
Re

f(t− is)
t− is

ds

)
, (3.6)

with the vague limit of measures in the right-hand side.

(g) If f(ξ) is not identically zero, then, for almost every s ∈ R, −ϕ(s) sign s in Theo-
rem 3.3(d) is the non-tangential limit of Arg f(ξ) at ξ = −is. In particular,

−ϕ(s) sign s = lim
t→0+

Arg f(t− is) = lim
ε→0+

Arg f(|s|e−i(π/2−ε) sign s) (3.7)

for almost all s ∈ R.

(h) Formula (3.1) will be referred to as Stieltjes representation of f(ξ), while (3.2) will
be called the exponential representation of f(ξ).

Proof of Theorem 3.3. Suppose that condition (b) holds. By Bernstein’s theorem, there
is a unique non-negative Borel measure µ(ds) on R \ {0} such that for x > 0, ν(x) and
ν(−x) are the Laplace transforms of 1(0,∞)(s)µ(ds) and 1(0,∞)(s)µ(−ds), respectively. It
is easy to see that the integrability condition

∫∞
−∞min{1, x2}ν(x)dx <∞ translates into∫

R\{0} |s|
−3 min{1, s2}µ(ds) <∞, and furthermore (3.1) is equivalent to (2.2). This proves

condition (c). A very similar argument proves the converse, and thus conditions (b)
and (c) are equivalent.

It is immediate to check that formula (3.1) defines a Rogers function. Conversely,
if f(ξ) is a Rogers function, then Re(f(ξ)/ξ) is a non-negative harmonic function in H.
Thus, by Herglotz’s theorem, with ξ = x+ iy and x > 0, y ∈ R, we have

Re
f(ξ)

ξ
= ax+

1

π

∫
R

x

x2 + (y + s)2
µ̃(ds) = aRe ξ +

1

π

∫
R

Re
1

ξ + is
µ̃(ds)
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for some a ≥ 0 and some non-negative Borel measure µ̃(ds) on R which satisfies∫
R

min{1, s−2}µ̃(ds) <∞. It follows that for some b ∈ R,

f(ξ)

ξ
= aξ − ib+

1

π

∫
R

(
1

ξ + is
+
i sign s

1 + |s|

)
µ̃(ds).

This implies (3.1), with µ(ds) = |s|µ̃(ds) and c = 1
π µ̃({0}), and so conditions (a) and (c)

are equivalent. Additionally, Herglotz’s theorem asserts that

µ̃(ds) = lim
t→0+

Re
f(t− is)
t− is

ds,

which leads to (3.6). Formulae (3.5) follow easily by the dominated convergence theorem.
Finally, it is equally simple to see that formula (3.2) defines a Rogers function.

Conversely, if f(ξ) is a Rogers function and f(ξ) is not identically equal to zero, then
Arg f(ξ) is a bounded harmonic function in H, which takes values in [−π, π]. By Poisson’s
representation theorem, with ξ = x+ iy and x > 0, y ∈ R, we have

Arg f(ξ) =
1

π

∫
R

x

x2 + (y + s)2
φ̃(s)ds =

1

π

∫ ∞
−∞

Im
1

ξ + is
ϕ̃(s)ds

for a Borel function ϕ̃(s) on R with values in [−π, π]. As in the previous part of the proof,
it follows that for some b ∈ R,

log f(ξ) = b+
1

π

∫
R

(
i

ξ + is
− sign s

1 + |s|

)
ϕ̃(s)ds

= b− 1

π

∫
R

(
ξ

ξ + is
− 1

1 + |s|

)
ϕ̃(s)

s
ds,

which is equivalent to (3.2) with c = eb and ϕ(s) = −ϕ̃(s) sign s. Furthermore,

ϕ̃(s) = lim
t→0+

Arg f(t− is) = −π
2

sign s+ lim
t→0+

Arg
f(t− is)
t− is

for almost all s ∈ R. Since Arg(f(ξ)/ξ) ∈ [−π2 ,
π
2 ], we conclude that ϕ̃(s) ∈ [−π, 0] for

s > 0 and ϕ̃(s) ∈ [0, π] for s > 0. Equivalence of conditions (a) and (d) follows, and the
proof is complete.

Suppose that f(ξ) is a Rogers function. Then Re(f(ξ)/ξ) is non-negative and harmonic
in H, and hence it is either everywhere positive or identically equal to 0. In the former
case, f(ξ) is said to be non-degenerate; otherwise, f(ξ) = −ibξ for some b ∈ R, and f(ξ)

is said to be degenerate. In particular, either f(ξ) 6= 0 for all ξ ∈ H, in which case we
say that f(ξ) is non-zero, or f(ξ) is identically zero in H. A non-zero Rogers function
corresponds to a non-constant Lévy process (with completely monotone jumps), while a
non-degenerate Rogers function is the characteristic exponent of a non-deterministic
Lévy process.

We introduce two additional classes of Rogers functions. A Rogers function is said to
be bounded if it is a bounded function on (0,∞); note that a bounded Rogers function
typically fails to be a bounded function on H. Furthermore, a Rogers function f(ξ) is said
to be symmetric if f(ξ) = f(ξ) for ξ ∈ H (or, equivalently, f(ξ) is real-valued for ξ > 0).
Bounded and symmetric Rogers functions correspond to compound Poisson processes
and symmetric Lévy processes, respectively.

Noteworthy, if the measure µ in Theorem 3.3(b) is purely atomic, with atoms forming
a discrete subset of R, then f is meromorphic, and it is the characteristic exponent of a
meromorphic Lévy process, studied in detail in [47].
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3.2 Complete Bernstein and Stieltjes functions

Recall that a function f(ξ) holomorphic in C\(−∞, 0] is a complete Bernstein function
if and only if f(ξ) ∈ [0,∞) for ξ > 0 and Im f(ξ) ≥ 0 when Im ξ > 0. Similarly, a function
f(ξ) holomorphic in C \ (−∞, 0] is a Stieltjes function if and only if f(ξ) ∈ [0,∞) for ξ > 0

and Im f(ξ) ≤ 0 when Im ξ > 0. In this section we recall some standard properties of
these classes of functions.

Theorem 3.5 (see [73, Chapter 6]). Let f(ξ) be a non-negative function on (0,∞). The
following conditions are equivalent:

(a) f(ξ) extends to a complete Bernstein function;

(b) f(ξ) is the characteristic (Laplace) exponent of a non-negative Lévy process with
completely monotone jumps, possibly killed at a uniform rate; that is,

f(ξ) = bξ + c+

∫ ∞
0

(1− e−ξx)ν(x)dx (3.8)

for all ξ > 0, where b, c ≥ 0 and ν(x) is a completely monotone function on (0,∞)

such that
∫∞

0
min{1, x}ν(x)dx <∞;

(c) we have

f(ξ) = bξ + c+
1

π

∫
(0,∞)

ξ

ξ + s

µ(ds)

s
(3.9)

for all ξ > 0, where b, c ≥ 0 and µ(ds) is a non-negative Borel measure on (0,∞)

such that
∫

(0,∞)
s−2 min{1, s}µ(ds) <∞;

(d) either f(ξ) = 0 for all ξ > 0 or

f(ξ) = c exp

(
1

π

∫ ∞
0

(
ξ

ξ + s
− 1

1 + s

)
ϕ(s)

s
ds

)
(3.10)

for all ξ > 0, where c > 0 and ϕ(s) is a Borel function on (0,∞) with values in [0, π].

Theorem 3.6 (see [73, Chapter 2 and Theorem 6.2]). Let f(ξ) be a non-negative function
on (0,∞). The following conditions are equivalent:

(a) f(ξ) extends to a Stieltjes function;

(b) f(ξ) is, up to addition by a non-negative constant, the Laplace transform of a
completely monotone function on (0,∞); that is,

f(ξ) = c+

∫ ∞
0

e−ξxν(x)dx (3.11)

for all ξ > 0, where c ≥ 0 and ν(x) is a completely monotone function on (0,∞),
locally integrable near 0;

(c) we have

f(ξ) =
b

ξ
+ c+

1

π

∫
(0,∞)

1

ξ + s
µ(ds) (3.12)

for all ξ > 0, where b, c ≥ 0 and µ(ds) is a non-negative Borel measure on (0,∞)

such that
∫

(0,∞)
min{1, s−1}µ(ds) <∞;
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(d) either f(ξ) = 0 for all ξ > 0 or

f(ξ) = c exp

(
1

π

∫ ∞
0

(
1

ξ + s
− 1

1 + s

)
ϕ(s)ds

)
(3.13)

for all ξ > 0, where c > 0 and ϕ(s) is a Borel function on (0,∞) with values in [0, π].

Remark 3.7. An analogue of Remark 3.4 applies to Theorems 3.5 and 3.6. In particular,
as it was the case with Rogers functions, we always identify a complete Bernstein
function f(ξ) with its holomorphic extension to Df = C \ (− ess suppϕ), given by the
exponential representation (3.10).

Proposition 3.8 ([73, Proposition 7.1 and Theorem 7.3]). For a non-zero function f(ξ)

holomorphic in C \ (−∞, 0], the following conditions are equivalent: f(ξ) is a complete
Bernstein function; f(ξ)/ξ is a Stieltjes functions; 1/f(ξ) is a Stieltjes function; ξ/f(ξ) is
a complete Bernstein function.

Proposition 3.9 (see [73, Theorem 6.2] and Proposition 3.8). A non-zero function f(ξ)

holomorphic in C \ (−∞, 0] is a complete Bernstein function if and only if 0 ≤ Arg f(ξ) ≤
Arg ξ whenever Im ξ > 0. A non-zero function f(ξ) holomorphic in C\(−∞, 0] is a Stieltjes
function if and only if 0 ≥ Arg f(ξ) ≥ −Arg ξ whenever Im ξ > 0.

Proposition 3.10 (see Theorems 3.5 and 3.6). If f(ξ) is a complete Bernstein function,
C > 0 and f(ξ) ≤ C for all ξ ∈ (0,∞), then C − f(ξ) is a Stieltjes function. Conversely,
if f(ξ) is a Stieltjes function, C > 0 and f(ξ) ≤ C for all ξ ∈ (0,∞), then C − f(ξ) is a
complete Bernstein function.

3.3 Basic properties of Rogers functions

The following three results are direct consequences of the definition of a Rogers
function, and we omit their proofs.

Proposition 3.11. A non-zero function f(ξ) holomorphic in H is a Rogers function if
and only if −π2 + Arg ξ ≤ Arg f(ξ) ≤ π

2 + Arg ξ for all ξ ∈ H.

Proposition 3.12. For all Rogers functions f(ξ) and g(ξ):

(a) ξ2f(1/ξ) is a Rogers function;

(b) ξ2/f(ξ) and 1/f(1/ξ) are Rogers functions if f(ξ) is non-zero;

(c) ξ1−αf(ξα) is a Rogers function if α ∈ [−1, 1];

(d) g(ξ)f(ξ/g(ξ)) is a Rogers function if g(ξ) is non-zero;

(e) (f(ξ))α(g(ξ))1−α is a Rogers function if α ∈ [0, 1];

(f) ((f(ξ))α + (g(ξ))α)1/α is a Rogers function if α ∈ [−1, 1] \ {0} and f(ξ) and g(ξ) are
non-zero;

(g) af(bξ) + c is a Rogers function if a, b, c ≥ 0.

Proposition 3.13. If f(ξ) is a Rogers function and g(ξ) is a complete Bernstein function,
then g(f(ξ)) is a Rogers function.

Proposition 3.14. If f(ξ) is a Rogers function, then the limit f(0+) = limξ→0+ f(ξ)

exists. More precisely, if f(ξ) has Stieltjes representation (3.1), then f(0+) = c, and if
f(ξ) has the exponential representation (3.2), then

f(0+) = c exp

(
− 1

π

∫ ∞
0

1

1 + |s|
ϕ(s)

|s|
ds

)
, (3.14)
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where we understand that exp(−∞) = 0. Similarly, f(∞−) = limξ→∞ f(ξ) exists, and if
f(ξ) has the exponential representation (3.2), then

f(∞−) = c exp

(
1

π

∫ ∞
0

|s|
1 + |s|

ϕ(s)

|s|
ds

)
, (3.15)

where we understand that exp(∞) =∞

Proof. With the notation of (3.1), we have

f(0+) = lim
ξ→0+

Re

(
aξ2 − ibξ + c+

1

π

∫
R\{0}

(
ξ

ξ + is
+
iξ sign s

1 + |s|

)
µ(ds)

|s|

)
= c+

1

π
lim
ξ→0+

∫
R\{0}

ξ2

ξ2 + s2

µ(ds)

|s|
= c

by the dominated convergence theorem. Existence of f(∞−) follows now by the above
argument applied to the Rogers function g(ξ) = 1/f(1/ξ) (if f(ξ) is non-zero).

With the notation of (3.2), for ξ > 0 we have in a similar way

|f(ξ)| = c exp

(
1

π

∫ ∞
−∞

(
ξ2

ξ2 + s2
− 1

1 + |s|

)
ϕ(s)

|s|
ds

)
.

Formula (3.14) is obtained by passing to the limit as ξ → 0+ and using monotone
convergence theorem. Formula (3.15) is obtained in a similar way by considering the
limit as ξ →∞.

One easily checks that a Rogers function f(ξ) is bounded if and only if

f(ξ) = c+
1

π

∫
R\{0}

ξ

ξ + is

µ(ds)

|s| (3.16)

for ξ ∈ H, where c ≥ 0 and |s|−1µ(ds) is a finite measure. In this case f(∞−) =

limξ→∞ f(ξ) = c+
∫
R\{0} |s|

−1µ(ds) is a finite non-negative number.

Proposition 3.15. If f(ξ) is a bounded Rogers function and A ≥ f(∞−), then A− f(1/ξ)

is a (bounded) Rogers function of ξ.

Proof. By (3.16),

A− f(1/ξ) = A− c− 1

π

∫
R\{0}

1

1 + iξs

µ(ds)

|s|

=

(
A− c− 1

π

∫
R\{0}

µ(ds)

|s|

)
+

1

π

∫
R\{0}

iξs

1 + iξs

µ(ds)

|s|

= (A− f(∞−)) +
1

π

∫
R\{0}

iξs

1 + iξs

µ(ds)

|s|
.

Let µ̃(dt) be the push-forward of µ(ds) by the substitution s = −1/t. We obtain

A− f(1/ξ) = (A− f(∞−)) +
1

π

∫
R\{0}

ξ

ξ + it

µ̃(dt)

|t|
.

By (3.16), this proves our claim.
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Remark 3.16. With the notation of the Stieltjes representation (3.9) in Theorem 3.3, a
sequence fn(ξ) of Rogers functions converges locally uniformly in H to a finite limit f(ξ)

if and only if the corresponding coefficients bn converge to b, and the corresponding mea-
sures |s|−3 min{1, s2}µn(ds) + 1

π cnδ0(ds) + 1
πanδ∞(ds) converge to |s|−3 min{1, s2}µ(ds) +

1
π cδ0(ds) + 1

πaδ∞(ds) vaguely on R ∪ {∞}, the one-point compactification of R. In this
case the limit f(ξ) is clearly again a Rogers function. This property is an immediate
consequence of the corresponding result for Nevanlinna–Pick functions fn(ξ)/ξ; see [2,
Section 2]. Alternatively, it can be deduced from a similar characterisation of conver-
gence of positive harmonic functions Re(fn(ξ)/ξ).

If a seqence of Rogers functions fn converges point-wise in H, then it automatically
converges locally uniformly (and thus the limit is again a Rogers function). We claim that
it is in fact sufficient to assume point-wise convergence on an arbitrary infinite set S ⊆ H
with an accumulation point in H. Indeed, in this case the sequence fn(ξ) can only have
one partial limit f(ξ) in the topology of locally uniform convergence on H, and as it is
discussed in [2], convergence of fn(ξ) at any single point already asserts boundedness of
the corresponding sequence of measures |s|−3 min{1, s2}µn(ds) + 1

π cnδ0(ds) + 1
πanδ∞(ds).

Therefore, every subsequence of fn(ξ) necessarily contains a further subsequence which
converges locally uniformly to f(ξ), which is equivalent to our claim.

Another equivalent condition for convergence of a sequence fn(ξ) of Rogers functions
is given in terms of the exponential representation (3.10) in Theorem 3.3: the corre-
sponding coefficients cn must converge to c, and the corresponding measures ϕn(s)ds

must converge to ϕ(s)ds vaguely on R. This again follows from a similar property of
Nevanlinna–Pick functions fn(ξ)/ξ proved in [2, Section 2], or from an analogous result
for bounded harmonic functions Arg fn(ξ).

For further discussion, we refer to [2]; see also [73] and the references therein.

3.4 Estimates of Rogers functions

The following simple estimate of a Rogers function follows from the Stieltjes repre-
sentation (3.4). A more refined result given in Proposition 3.18 uses the exponential
representation (3.2).

Proposition 3.17. If f(ξ) is a Rogers function and r > 0, then

1√
2

|ξ|2

r2 + |ξ|2

(
Re ξ

|ξ|

)
|f(r)| ≤ |f(ξ)| ≤

√
2
r2 + |ξ|2

r2

(
|ξ|

Re ξ

)
|f(r)| (3.17)

for ξ ∈ H.

Proof. Suppose that f(ξ) has Stieltjes representation (3.4). Let s ∈ R and ξ ∈ H. Since
|r2 + iξs|2 ≤ (r2 + |ξ|2)(r2 + s2), we have∣∣∣∣ ξ

ξ + is
+

iξs

r2 + s2

∣∣∣∣ =
|ξ||r2 + iξs|
|ξ + is|(r2 + s2)

≤
|ξ|
√
r2 + |ξ|2

|ξ + is|
√
r2 + s2

.

Let ξ = x+ iy with x > 0, y ∈ R. By a simple calculation,

(x2 + (y + s)2)(r2 + x2 + y2)− (r2 + s2)x2 = (x2 + y(y + s))2 + (y + s)2 ≥ 0,

so that

|ξ + is|2 = x2 + (y + s)2 ≥ (r2 + s2)x2

r2 + |ξ|2
.

It follows that ∣∣∣∣ ξ

ξ + is
+

iξs

r2 + s2

∣∣∣∣ ≤ |ξ|(r2 + |ξ|2)

x(r2 + s2)
.
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Finally, a|ξ|2 + |b̃||ξ|+ c ≤ r−2(r2 + |ξ|2)(ar2 + b̃r + c). Therefore, we obtain

|f(ξ)| ≤ |ξ|(r
2 + |ξ|2)

r2x

(
ar2 + |b̃|r + c+

1

π

∫
R\{0}

r2

r2 + s2

µ(ds)

|s|

)
.

On the other hand,

r

r + is
+

irs

r2 + s2
=

r2

r2 + s2
,

so that

Re f(r) + | Im f(r)| = ar2 + |b̃|r + c+
1

π

∫
R\{0}

r2

r2 + s2

µ(ds)

|s|
.

Since Re f(r) + | Im f(r)| ≤
√

2|f(r)|, the upper bound for |f(ξ)| follows. The lower bound
for |f(ξ)| is a consequence of the upper bound for the Rogers function ξ2/f(ξ) (if f(ξ) is
non-zero).

Suppose that f(ξ) is a non-zero Rogers function with exponential representation (3.2).
The derivative of the integrand in (3.2) with respect to ξ is equal to iϕ(s) sign s/(ξ + is)2

and it is bounded by an absolutely integrable function of s whenever ξ is restricted to a
compact subset of Df . It follows that the expression for log f(ξ) can be differentiated
under the integral sign. Thus,

f ′(ξ)

f(ξ)
= (log f)′(ξ) =

1

π

∫ ∞
−∞

i sign s

(ξ + is)2
ϕ(s)ds (3.18)

for all ξ ∈ Df . Since the integral of |ξ + is|−2 over s ∈ R is equal to π/Re ξ, we have∣∣∣∣f ′(ξ)f(ξ)

∣∣∣∣ ≤ π

Re ξ
(3.19)

for ξ ∈ H. We will need the following improvement of the above estimate.

Proposition 3.18. If f is a non-zero Rogers function, ξ ∈ Df and f(ξ) ∈ (0,∞), then∣∣∣∣f ′(ξ)f(ξ)

∣∣∣∣ ≤ π

|ξ|
, (3.20)

and, for some c > 0,

| log f(ξ)| ≤ | log c|+
√

2π
1 + |ξ|√
|ξ|

. (3.21)

More precisely, c is the constant in the exponential representation (3.2) of f(ξ), and with
the notation of (3.2), we have

1

π

∫ ∞
−∞

∣∣∣∣ 1

ξ + is
− 1

1 + |s|

∣∣∣∣ϕ(s)

|s|
ds ≤

√
2π

1 + |ξ|√
|ξ|

. (3.22)

Proof. Since f(−ξ) = f(ξ), with no loss of generality we may assume that Re ξ ≥ 0. Let
ξ = reiα, where r = |ξ| > 0 and α = Arg ξ ∈ [−π2 ,

π
2 ]. Then |ξ + is|2 = r2 + 2rs sinα + s2

and

Im
ξ

ξ + is
=

Im(|ξ|2 − iξs)
|ξ + is|2

= − rs cosα

r2 + 2rs sinα+ s2
.
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Using the above identity, the exponential representation (3.2) and the identity Arg f(ξ) =

Im log f(ξ), we obtain

Arg f(reiα) =
r cosα

π

∫ ∞
−∞

−s
r2 + 2rs sinα+ s2

ϕ(s)

|s|
ds. (3.23)

However, f(reiα) ∈ (0,∞), that is, Arg f(reiα) = 0. Therefore,

0 =
πArg f(ξ)

r cosα
=

∫ ∞
−∞

−s
r2 + 2rs sinα+ s2

ϕ(s)

|s|
ds

=

∫ 0

−∞

1

r2 + 2rs sinα+ s2
ϕ(s)ds−

∫ ∞
0

1

r2 + 2rs sinα+ s2
ϕ(s)ds.

It follows that the two integrals in the right-hand side are equal. Our goal is to estimate
their sum: by (3.18), we have

|f ′(ξ)|
f(ξ)

≤ 1

π

∫ ∞
−∞

1

|ξ + is|2
ϕ(s)ds =

1

π

∫ ∞
−∞

1

r2 + 2rs sinα+ s2
ϕ(s)ds.

Since the integrals over (0,∞) and (−∞, 0) are equal, it suffices to estimate one of them.
Suppose that α ≥ 0. Since 0 ≤ ϕ(s) ≤ π for all s ∈ R, we have∫ ∞

0

1

r2 + 2rs sinα+ s2
ϕ(s)ds ≤ π

∫ ∞
0

1

r2 + 2rs sinα+ s2
ds =

π(π2 − α)

r cosα
≤ π2

2r
.

It follows that

|f ′(ξ)|
f(ξ)

≤
∫ ∞
−∞

1

r2 + 2rs sinα+ s2
ϕ(s)ds = 2

∫ ∞
0

1

r2 + 2rs sinα+ s2
ϕ(s)ds ≤ π2

r
.

A similar argument, involving an estimate of the integral over s ∈ (−∞, 0), leads to the
same bound for α < 0, and the proof of (3.20) is complete.

Formula (3.21) is a direct consequence of the exponential representation (3.2)
and (3.22). Denote the integral in the left-hand side of (3.22) by I. Observe that

I =
1

π

∫ ∞
−∞

|ξ − i sign s|
|ξ + is|(1 + |s|)

ϕ(s) ds.

Clearly, |ξ − i sign s| ≤ 1 + |ξ|. By Cauchy–Schwarz inequality, we find that

I ≤ 1 + |ξ|
π

(∫ ∞
−∞

1

|ξ + is|2
ϕ(s) ds

)1/2(∫ ∞
−∞

1

(1 + |s|)2
ϕ(s) ds

)1/2

.

Since 0 ≤ ϕ(s) ≤ π for all s ∈ R, the latter integral does not exceed 2π. The former one
is bounded by π2/|ξ| by the first part of the proof, and (3.22) follows.

4 Real values of Rogers functions

4.1 Spine of a Rogers function

The curve (or, more generally, the system of curves) along which a Rogers function
takes positive real values plays a key role in our development.

Definition 4.1. Suppose that f(ξ) is a non-constant Rogers function. We define the
spine of f by

Γf = {ζ ∈ H : f(ζ) ∈ (0,∞)}. (4.1)

The orientation of each connected component of the spine is chosen in such a way that
positive values of Im f lie on the left-hand side of Γf .
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Since f(ξ) does not take values in (−∞, 0], the spine is the nodal line of the harmonic
function Im f . The following two theorems are main results of this section.

Theorem 4.2. Let f(ξ) be a non-constant Rogers function. There is a unique continuous
complex-valued function ζf (r) on (0,∞) such that the following assertions hold:

(a) We have |ζf (r)| = r and Arg ζf (r) ∈ [−π2 ,
π
2 ] for all r > 0.

(b) If ξ ∈ H and r = |ξ|, then

sign Im f(ξ) = sign(Arg ξ −Arg ζf (r)).

(c) The spine Γf is the union of pairwise disjoint simple real-analytic curves, which
begin and end at the imaginary axis or at infinity. Furthermore, Γf has parameteri-
sation

Γf = {ζf (r) : r ∈ Zf}, (4.2)

where

Zf = {r ∈ (0,∞) : Arg ζf (r) ∈ (−π2 ,
π
2 )}. (4.3)

(d) For every r > 0, the spine Γf restricted to the annular region r ≤ |ξ| ≤ 2r is a
system of rectifiable curves of total length at most Cr, where one can take C = 300.
Furthermore, if ζf (r) = reiϑ(r) for r ∈ Zf , then

|r(rϑ′(r))′| ≤ 9((rϑ′(r))2 + 1)

cosϑ(r)
(4.4)

for r ∈ Zf .

Theorem 4.3. Suppose that f(ξ) is a non-constant Rogers function.

(a) For every r ∈ (0,∞) \ ∂Zf we have ζf (r) ∈ Df .

(b) The function λf (r), defined for r ∈ (0,∞) \ ∂Zf by

λf (r) = f(ζf (r)), (4.5)

extends in a unique way to a continuous, strictly increasing function of r ∈ (0,∞),
and λ′f (r) > 0 for every r ∈ (0,∞) \ ∂Zf .

(c) We have λ(0+) = f(0+), and λ(∞−) = f(∞−).

We denote the extension of λf (r) described in the above result by the same symbol.
The notation Γf , Zf , ζf (r) and λf (r) is kept throughout the paper. Whenever there is only
one Rogers function involved, we omit the subscript f (also in Df ), except in statements
of results.

Spines of a sample of Rogers functions are shown in Figure 1.

Proof of Theorem 4.2. Suppose that f has the exponential representation (3.2), so that

Arg f(ξ) = Im log f(ξ) =
1

π

∫ ∞
−∞

Im
ξ

ξ + is

ϕ(s)

|s|
ds

for ξ ∈ H. We use polar coordinates: we write ξ = reiα with r = |ξ| > 0 and α = Arg ξ ∈
(−π2 ,

π
2 ). Recall that by (3.23),

Arg f(reiα) =
r cosα

π

∫ ∞
−∞

−s
r2 + 2rs sinα+ s2

ϕ(s)

|s|
ds.

For every r > 0 and s ∈ R \ {0}, the integrand is a strictly increasing function of
α ∈ (−π2 ,

π
2 ). Since f is non-constant, ϕ is positive on a set of positive Lebesgue measure.
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Figure 1: Plot of the spine Γf for eight Rogers functions f(ξ):
(a) f(ξ) = 1

2ξ
2 − iξ (Brownian motion with drift);

(b) f(ξ) = 2(−iξ)1/2 + (iξ)1/2 (strictly stable process);
(c) f(ξ) = (−iξ + 1)1/2 + 3(iξ + 19)1/2 (asymmetric tempered stable process);
(d) f(ξ) = 8(−iξ)1/5 + (iξ)4/5 (mixed stable process);

(e) f(ξ) = ξ2

iξ+2 ;

(f) f(ξ) = −iξ
−iξ+2

iξ
iξ+0.5 (iξ + 14);

(g) f(ξ) = −iξ+0.5
−iξ+1

iξ
iξ+0.05

iξ+1.25
iξ+1.26 (iξ + 30);

(h) f(ξ) = −iξ+0.5
−iξ+1

iξ
iξ+0.06

iξ+0.95
iξ+0.97 (iξ + 30).

It follows that Arg f(reiα)/ cosα is strictly increasing in α ∈ (−π2 ,
π
2 ).

In particular, there is a unique ϑ(r) ∈ [−π2 ,
π
2 ] such that Arg f(reiα) < 0 if α < ϑ(r)

and Arg f(reiα) > 0 if α > ϑ(r). It is easy to see that ϑ(r) is a continuous function of
r > 0. We set ζ(r) = reiϑ(r). Parts (a) and (b) of the theorem follow.

Let Z be the set of those r > 0 for which ϑ(r) ∈ (−π2 ,
π
2 ). By part (b), the spine of

f(ξ) satisfies (4.2), that is, Γ = {ζ(r) : r ∈ Z}. Since Γ is the nodal line of the harmonic
function Im f(ξ), it is a union of (at most countably many) simple real-analytic curves.
These curves necessarily begin and end at the imaginary axis or converge to infinity,
and part (b) asserts that they do not intersect each other. This completes the proof of
part (c).

The proof of item (d) is rather long and technical, and it is deferred to Section 7.

Proof of Theorem 4.3. Suppose that f(ξ) has exponential representation (3.2). Clearly,
ζ(r) ∈ H ⊆ D for r ∈ Z. Observe that (0,∞) \ ∂Z = Z ∪ Int((0,∞) \ Z), where Int

denotes the interior of a set. Therefore, in order to prove part (a), it remains to show
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that ζ(r) ∈ D for every r ∈ Int((0,∞) \ Z).

Whenever s /∈ Z, we have either ζ(s) = is or ζ(s) = −is. Let r ∈ Int((0,∞) \ Z), and
suppose that ζ(r) = ir. By the definition of r and continuity of ζ(s), we have ζ(s) = is for
s in some neighbourhood of r. From (3.7) it follows that for almost all s > 0, the number
ϕ(−s) ∈ [0, π] is the limit of Arg f(sei(π/2−ε)) as ε → 0+. However, if ζ(s) = is, then
Arg f(sei(π/2−ε)) ≤ 0, and consequently ϕ(−s) ≤ 0 for almost all s in a neighbourhood
of r. We have thus proved that ϕ(−s) = 0 for almost all s in some neighbourhood of r,
and so ζ(r) = ir ∈ D. Similar argument shows that if r ∈ Int((0,∞) \ Z) and ζ(r) = −ir,
then ζ(r) ∈ D. Part (a) is proved, and it follows that λ(r) = f(ζ(r)) is well-defined for
r ∈ (0,∞) \ ∂Z.

We need the following observation. Suppose that g(ξ) is a holomorphic function in
the unit disk D and Im g(ξ) is a bounded, positive function on D. Then, by Poisson’s
representation theorem, Im g(ξ) has a non-tangential limit h(ξ) for almost every ξ ∈ ∂D,
and Im g(ξ) is given by the Poisson integral of h. Therefore, −Re g(ξ) is the conjugate
Poisson integral of h. It follows that Re g(ξ) extends to a continuous function on (ClD) \
ess supph. Furthermore, if this extension is denoted by the same symbol, then on every
interval (α1, α2) such h(eiα) = 0 for almost all α ∈ (α1, α2), the function Re g(eiα) is
continuous and has positive derivative.

Consider a connected component U of the set {ξ ∈ H : Im f(ξ) > 0}. From Theo-
rem 4.2 it follows that U is simply connected, and the boundary of U is a Jordan curve
on the Riemann sphere C ∪ {∞}, which consists of the curve {ζ(r) : r ∈ (r1, r2)} and the
interval [ir1, ir2] for some (r1, r2) ⊆ (0,∞). By Carathéodory’s theorem, the Riemann map
Φ between U and D extends to a homeomorphism of the boundaries of these domains
(as subsets of the Riemann sphere). We apply the property discussed in the previous
paragraph to g(ξ) = log f(Φ−1(ξ)).

We already know that the limit of Im log f(ξ) = Arg f(ξ) is equal to zero everywhere
on {ζ(r) : r ∈ (r1, r2)}: this is obvious at ζ(r) for r ∈ (r1, r2) ∩ Z, and at ζ(r) = −ir for
r ∈ (r1, r2) \ Z it is a consequence of the inequality 0 ≤ Arg f(ξ) ≤ π

2 + Arg ξ for ξ ∈ U . It
follows that Re log f(ξ) extends from U to a continous function on U ∪ {ζ(r) : r ∈ (r1, r2)}.
Furthermore, if this extension is denoted again by the same symbol, then Re log f(ζ(r))

is strictly increasing in r ∈ (r1, r2), because Φ(ζ(r)) follows an arc of ∂D in a counter-
clockwise direction. We conclude that λ(r) extends to a strictly increasing, continuous
function on (r1, r2).

A similar argument applies to every connected component U of the set {ξ ∈ H :

Im f(ξ) < 0}. In this case − Im f(ξ) > 0 for ξ ∈ U , and Φ(ζ(r)) follows an arc of ∂D in a
clockwise fashion, so again λ(r) extends to a strictly increasing continuous function on
the appropriate interval (r1, r2).

Observe that the intervals (r1, r2) corresponding to connected components U of
{ξ ∈ H : Im f(ξ) > 0} and {ξ ∈ H : Im f(ξ) < 0} fully cover (0,∞). This proves that
λ(r) extends to a strictly increasing continuous function on (0,∞). Uniqueness of this
extension follows from density of (0,∞) \ ∂Z in (0,∞).

To complete the proof of part (b), it remains to show that λ′(r) 6= 0 for r ∈ (0,∞) \ ∂Z.
This follows from the properties of the Riemann map. Indeed, suppose that r ∈ (0,∞)\∂Z
and that U is a connected component of {ξ ∈ H : Im f(ξ) > 0} or {ξ ∈ H : Im f(ξ) < 0}
such that ζ(r) ∈ ∂U . Then the boundary of U is smooth in a neighbourhood of ζ(r). Thus,
the Riemann map Φ is differentiable at ζ(r), and Φ′(ζ(r)) 6= 0. Since we already know
that g′(Φ(ζ(r))) 6= 0, we conclude that (log f)′(ζ(r)) = g′(Φ(ζ(r)))Φ′(ζ(r)) 6= 0, that is,
λ′(r) = λ(r)(log λ)′(r) = λ(r)(log f)′(ζ(r))ζ ′(r) 6= 0, as desired.

To prove part (c), observe first that g(ξ) = f(ξ) − f(0+) is a Rogers function, and
0 ≤ λg(r) = λf (r)−f(0+) for r > 0. Therefore, λf (0+) ≥ f(0+). On the other hand, if f(ξ)

has the exponential representation (3.2), then for all r ∈ Z we have Im log f(ζ(r)) = 0,
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and therefore

log λ(r) = Re log f(ζ(r))− Im ζ(r)

Re ζ(r)
Im log f(ζ(r))

= log c+
1

π

∫ ∞
−∞

(
Re

(
ζ(r)

ζ(r) + is
− 1

1 + |s|

)
− Im ζ(r)

Re ζ(r)
Im

ζ(r)

ζ(r) + is

)
ϕ(s)

|s|
ds

)
.

An explicit calculation leads to (we omit the details)

log λ(r) = log c+
1

π

∫ ∞
−∞

(
1− s2

|ζ(r) + is|2
− 1

1 + |s|

)
ϕ(s)

|s|
ds.

By Fatou’s lemma, we have

lim inf
r→0+

∫ 1

−1

s2

|ζ(r) + is|2
ϕ(s)

|s|
ds ≥

∫ 1

−1

ϕ(s)

|s|
ds,

while dominated convergence theorem implies that

lim
r→0+

∫
R\(−1,1)

(
s2

|ζ(r) + is|2
− 1

)
ϕ(s)

|s|
ds = 0.

Therefore, if 0 ∈ ClZ, we obtain

log λ(0+) ≤ log c− 1

π

∫ ∞
−∞

1

1 + |s|
ϕ(s)

|s|
ds = log f(0+),

as desired; here we understand that log 0 = −∞. If 0 /∈ ClZ, then there is ε > 0 such
that either ζ(r) = ir and ϕ(−r) = 0 for r ∈ (0, ε), or ζ(r) = −ir and ϕ(r) = 0 for r ∈ (0, ε).
Both cases are very similar, so we discuss only the former one. We have then

log λ(0+) = log c+
1

π
lim
r→0+

∫
R\(−ε,0)

((
r

r + s
− 1

1 + |s|

))
ϕ(s)

|s|
ds

)
.

The desired equality log λ(0+) = log f(0+) follows by an application of the monotone
convergence theorem for the integral over r ∈ (0,∞) and the dominated convergence
theorem for the integral over r ∈ (−∞,−ε].

The proof of the other identity, λ(∞−) = f(∞−), is very similar, and we omit the
details.

4.2 Symmetrised spine of a Rogers function

If f(ξ) is a Rogers function, then we denote by Γ?f the union of Γf , all endpoints of

Γf , and the mirror image −Γf of Γf with respect to the imaginary axis. We also extend
the definition of ζf (r) to all r ∈ R so that ζf (0) = 0 and ζf (−r) = −ζf (r). The orientation
of −Γf is chosen in such a way that ζf (r), r ∈ −Z, is its parameterisation. Thus, Γ?f
consists of at most one unbounded simple curve and at most countably many simple
closed curves, and any two of them can only touch on the imaginary axis.

The system of curves Γ?f naturally divides the complex plane into two open sets, D+
f

and D−f : the set D+
f is on the left, and D−f is on the right when traveling along Γ?f . More

precisely, if ζf (r) = reiϑ(r) with ϑ(r) ∈ [−π2 ,
π
2 ] for r > 0 and ϑ(0) = 0, then

D+
f = Int{reiα ∈ C : r ≥ 0, α ∈ [ϑ(r), π − ϑ(r)]},

D−f = Int{reiα ∈ C : r ≥ 0, α ∈ [−π − ϑ(r), ϑ(r)]},

where Int denotes the interior of a set.
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Figure 2: Plot of the symmetrised spine Γ?f (thick purple line) and the open sets D+
f

(purple) and D−f (white) for the eight Rogers functions introduced in Figure 1.

We remark that D+
f ∩ (C \ iR) is the set of those ξ ∈ C \ iR for which Im f(ξ) > 0,

and D−f ∩ (C \ iR) is the set of ξ ∈ C \ iR for which Im f(ξ) < 0. Furthermore, for r > 0,

ir ∈ D+
f if and only if ζf (r) 6= ir; similarly, −ir ∈ D−f if and only if ζf (r) 6= −ir. On the

other hand, for r > 0, −ir ∈ D+
f if and only if ζf (s) = −is for s in a neighbourhood of r,

and ir ∈ D−f if and only if ζf (s) = is for s in a neighbourhood of r.

Note that the closure of Γ?f is the boundary of both D+
f and D−f . However, in general

Γ?f need not be a closed set: its closure may contain additional points on the imaginary
axis.

The notation Γ?f , D+
f and D−f is kept throughout the paper. The sets D+

f and D−f for
sample Rogers functions are depicted in Figure 2.

5 Wiener–Hopf factorisation

5.1 Wiener–Hopf factorisation theorem

The proof that the Wiener–Hopf factors of a Rogers function are complete Bernstein
functions was essentially given in [70], where it is shown that f is a Rogers function if
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and only if f(ξ) + 1 = f+(−iξ)f−(iξ) for some complete Bernstein functions f+(ξ) and
f−(ξ). The following statement is a minor modification. For completeness, we provide a
simplified version of the proof from [70].

Theorem 5.1 (see [70, Theorem 2]). A function f(ξ) holomorphic in H is a non-zero
Rogers function if and only if it admits a Wiener–Hopf factorisation

f(ξ) = f+(−iξ)f−(iξ) (5.1)

for some non-zero complete Bernstein functions f+(ξ), f−(ξ) and for all ξ ∈ H, or, equiv-
alently, ξ ∈ Df . The factors f+(ξ) and f−(ξ) are defined uniquely, up to multiplication by
a positive constant.

Proof. Suppose that f(ξ) is a non-zero Rogers function with exponential representa-
tion (3.2), and define

f+(ξ) = c+ exp

(
1

π

∫ ∞
0

(
ξ

ξ + s
− 1

1 + s

)
ϕ(s)

s
ds

)
,

f−(ξ) = c− exp

(
1

π

∫ ∞
0

(
ξ

ξ + s
− 1

1 + s

)
ϕ(−s)
s

ds

)
,

(5.2)

where c+, c− > 0 satisfy c+c− = c. The desired factorisation (5.1) for ξ ∈ H follows di-
rectly from (3.2), and by Theorem 3.5(c), f+(ξ) and f−(ξ) are indeed complete Bernstein
functions of ξ. Extension to ξ ∈ Df is immediate.

Conversely, if f+(ξ) and f−(ξ) are complete Bernstein functions with exponential
representation (5.2), then f(ξ) = f+(−iξ)f−(iξ) is given by (3.2), and therefore it is a
Rogers function.

Finally, to prove uniqueness of the Wiener–Hopf factors, recall that the pair (f+, f−)

corresponds in a one-to-one way to the triple (c+, c−, ϕ), while f corresponds in a one-to-
one way to the pair (c, ϕ); here we identify functions ϕ(s) equal almost everywhere.

Note that the Wiener–Hopf factors f+(ξ), f−(ξ), defined by (5.2), extend to holomor-
phic functions in C\((− ess suppϕ)∩(−∞, 0]) and C\((ess suppϕ)∩(−∞, 0]), respectively.
The constants c+ and c− do not play an essential role and we do not specify their values.
Note, however, that the quantities f+(ξ1)/f+(ξ2), f−(ξ1)/f−(ξ2) and f+(ξ1)f−(ξ2) do not
depend on the choice of c+ and c−.

Closed-form expressions for the Wiener–Hopf factors are rarely available. Below we
list two most important examples.

Example 5.2. (a) The Wiener–Hopf factors for the characteristic exponent f(ξ) =
1
2ξ

2 − ibξ of the Brownian motion with drift are given by

f+(ξ) = c+ξ, f−(ξ) = c−(ξ + 2b)

if b ≥ 0, and by

f+(ξ) = c+(ξ − 2b), f−(ξ) = c−ξ

if b ≤ 0, where c+c− = 1
2 .

(b) When f(ξ) = cξα for ξ > 0 and f(ξ) = c(−ξ)α for ξ < 0, with α ∈ (0, 2] and
|Arg c| ≤ π

2 min{α, 2 − α}, then f(ξ) is the characteristic exponent of a strictly
stable process. The Wiener–Hopf factors are given by

f+(ξ) = c+ξ
α%, f−(ξ) = c−ξ

α(1−%).

Here c+c− = |c| and % = 1
2 −

1
απ Arg c is the positivity parameter of the correspond-

ing strictly stable Lévy process Xt: we have % = P(Xt > 0) for every t > 0.
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5.2 Baxter–Donsker formulae

Recall that every Rogers function f is automatically extended from H to C \ iR in
such a way that f(−ξ) = f(ξ) for ξ ∈ C \ iR. This extension is again given by the
Stieltjes representation (3.1) and, for a non-zero Rogers function f , by the exponential
representation (3.2).

We begin with a Baxter–Donsker-type expression, similar to the one found in [4].
A simpler proof of this result can be given, which uses Cauchy’s integral formula.
However, we choose a more technical argument involving Fubini’s theorem, in order to
illustrate the key idea of the proof of Theorem 5.5.

Proposition 5.3. If f(ξ) is a non-constant Rogers function, then

exp

(
1

2πi

∫ ∞
−∞

(
1

z − ξ1
− 1

z − ξ2

)
log f(z)dz

)

=


f+(−iξ1)/f+(−iξ2) if Im ξ1, Im ξ2 > 0,

f−(iξ2)/f−(iξ1) if Im ξ1, Im ξ2 < 0,

f+(−iξ1)f−(−iξ2) if Im ξ1 > 0, Im ξ2 < 0.

(5.3)

Proof. Let the Rogers function f(ξ) and its Wiener–Hopf factors f+(ξ), f−(ξ) have
exponential representations (3.2) and (5.2), respectively. Suppose that Im ξ1, Im ξ2 > 0.
By (5.2), we have

log
f+(−iξ1)

f+(−iξ2)
=

1

π

∫ ∞
0

(
−iξ1
−iξ1 + s

− −iξ2
−iξ2 + s

)
ϕ(s)

s
ds.

On the other hand, let I denote the logarithm of the left-hand side of (5.3). Using (3.2),
we find that

I =
1

2πi

∫ ∞
−∞

(
1

z − ξ1
− 1

z − ξ2

)(
log c+

1

π

∫ ∞
−∞

(
z

z + is
− 1

1 + |s|

)
ϕ(s)

|s|
ds

)
dz. (5.4)

The integral of (z − ξ1)−1 − (z − ξ2)−1 over z ∈ R is absolutely convergent and equal to
zero by Cauchy’s integral formula; we omit the details. It follows that

I =
1

2π2i

∫ ∞
−∞

∫ ∞
−∞

(
1

z − ξ1
− 1

z − ξ2

)(
z

z + is
− 1

1 + |s|

)
ϕ(s)

|s|
dsdz.

The integrand in the right-hand side is an absolutely integrable function:∣∣∣∣( 1

z − ξ1
− 1

z − ξ2

)(
z

z + is
− 1

1 + |s|

)
ϕ(s)

|s|

∣∣∣∣
=

|ξ1 − ξ2|
|z − ξ1||z − ξ2|

|s||z − i sign s|
|z + is|(1 + |s|)

ϕ(s)

|s|

≤ C(ξ1, ξ2)
1

(1 + |z|)2

1 + |z|
(|z|+ |s|)(1 + |s|)

≤ C(ξ1, ξ2)
1

(1 + |z|)
√
|z|

1

(1 + |s|)
√
|s|

(5.5)

for some positive number C(ξ1, ξ2). Therefore, by Fubini’s theorem,

I =
1

π

∫ ∞
−∞

(
1

2πi

∫ ∞
−∞

(
1

z − ξ1
− 1

z − ξ2

)(
z

z + is
− 1

1 + |s|

)
dz

)
ϕ(s)

|s|
ds.
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The inner integral can be evaluated explicitly by the residue theorem: the integrand is a
meromorphic function in the lower complex half-plane, which decays faster than |z|−1 as
|z| → ∞. If s > 0, it has one pole, located at z = −is, with residue(

1

ξ1 + is
− 1

ξ2 + is

)
(−is) = − s

−iξ1 + s
+

s

−iξ2 + s
=

−iξ1
−iξ1 + s

− −iξ2
−iξ2 + s

;

for s < 0, there are no poles. We conclude that

I =
1

π

∫ ∞
0

(
−iξ1
−iξ1 + s

− −iξ2
−iξ2 + s

)
ϕ(s)

|s|
ds,

and the first part of (5.3) follows. The second one is proved in a very similar way.
The proof of the third part requires some modifications. Suppose that Im ξ1 > 0 and

Im ξ2 < 0. In this case the logarithm of the left-hand side of (5.3) is again given by (5.4),
but the integral of (z − ξ1)−1 − (z − ξ2)−1 over z ∈ R is absolutely convergent and equal
to 2πi rather than 0; again we omit the details. It follows that

I = log c+
1

2π2i

∫ ∞
−∞

∫ ∞
−∞

(
1

z − ξ1
− 1

z − ξ2

)(
z

z + is
− 1

1 + |s|

)
ϕ(s)

|s|
dsdz.

As before, we may use Fubini’s theorem, and we obtain

I = log c+
1

π

∫ ∞
−∞

(
1

2πi

∫ ∞
−∞

(
1

z − ξ1
− 1

z − ξ2

)(
z

z + is
− 1

1 + |s|

)
dz

)
ϕ(s)

|s|
ds.

Again, the inner integral can be evaluated explicitly by the residue theorem. If s > 0,
the integrand is a meromorphic function in the upper complex half-plane, which decays
faster than |z|−1 as |z| → ∞. It has a single pole, located at z = ξ1, with residue
ξ1/(ξ1 + is) − 1/(1 + |s|). On the other hand, if s < 0, the integrand is a meromorphic
function in the lower complex half-plane, which decays faster than |z|−1 as |z| → ∞. It
has a single pole, located at z = ξ2, with residue −ξ2/(ξ2 + is) + 1/(1 + |s|). Therefore,

I = log c+
1

π

∫ ∞
−∞

(
ξ1

ξ1 + is
1(0,∞)(s) +

ξ2
ξ2 + is

1(−∞,0)(s)−
1

1 + |s|

)
ϕ(s)

|s|
ds.

By the definition (5.2) of Wiener–Hopf factors f+(−iξ1), f−(iξ2), we conclude that
I = log f+(−iξ1) + log f−(iξ2), and the third part of formula (5.3) follows.

5.3 Contour deformation in Baxter–Donsker formulae

The contour of integration in the expression given in Proposition 5.3 need not be R:
it can be deformed to a more general one. For our purposes it is important to replace
it by the symmetrised spine Γ?f . In this case it is in fact easier to repeat the proof of
Proposition 5.3 rather than deform the contour of integration. Before we state the result,
however, we need a technical lemma.

Lemma 5.4. Suppose that f(ξ) is a non-degenerate Rogers function and ξ1, ξ2 ∈ D+
f ∪D

−
f .

Then

1

2πi

∫
Γ?f

(
1

z − ξ1
− 1

z − ξ2

)
dz = 1D+

f
(ξ1)− 1D+

f
(ξ2). (5.6)

Proof. For simplicity, we omit the subscript f . The integral is absolutely convergent by
Theorem 4.2(d) and the fact that the integrand is bounded on Γ? by C(ξ1, ξ2)(1 + |z|)−2

for some C(ξ1, ξ2) that depends continuously on ξ1, ξ2 ∈ D+ ∪ D−. By the dominated
convergence theorem, the integral is a continuous function of ξ1, ξ2 ∈ D+ ∪ D−, and
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therefore it is sufficient to prove the result when ξ1, ξ2 do not lie on the imaginary axis,
that is, ξ1, ξ2 ∈ (D+ ∪D−) \ iR. Denote the left-hand side of (5.6) by I. We claim that

I =
1

2πi

∫ ∞
−∞

(
1

ζ(r)− ξ1
− 1

ζ(r)− ξ2

)
ζ ′(r)dr.

Indeed, the curve parameterised by ζ(r), r ∈ R, consists of Γ?f and a part of the imaginary
axis, which is added twice, each time with an opposite orientation, and thus it does not
contribute to the integral.

We write, as usual, ζ(r) = reiϑ(r) and ζ(−r) = −re−iϑ(r) for r > 0, where ϑ(r) ∈
[−π2 ,

π
2 ]. For p ∈ (0, 1) we define a deformed contour

ζp(r) = reipϑ(r), ζp(−r) = −re−ipϑ(r)

when r > 0, and ζp(0) = 0. The function ζp(r), r ∈ R, is a parameterisation of a simple
curve Γ?p, that divides the complex plane into two sets, D+

p and D−p , namely,

D+
p = {reiα : r > 0, α ∈ (pϑ(r), π − pϑ(r))},

D−p = {reiα : r > 0, α ∈ (−π − pϑ(r), pϑ(r))}.

Since ξ1, ξ2 do not lie on the imaginary axis, there is ε > 0 such that if p ∈ [1 − ε, 1),
then 1D+

p
(ξ1) = 1Dp(ξ1) and 1D+

p
(ξ2) = 1Dp(ξ2). Furthermore, one easily finds that

|ζ ′p(r)| ≤ |ζ ′(r)|. Thus, by the dominated convergence theorem,

I = lim
p→1−

(
1

2πi

∫ ∞
−∞

(
1

ζp(r)− ξ1
− 1

ζp(r)− ξ2

)
ζ ′p(r)dr

)
= lim
p→1−

(
1

2πi

∫
Γ?p

(
1

z − ξ1
− 1

z − ξ2

)
dz

)
;

(5.7)

indeed, the integrand is bounded by C(ξ1, ξ2)(1 + |z|)−2 uniformly with respect to p ∈
[1− ε, 1). In order to complete the proof, we only need to show that for p ∈ [1− ε, 1) the
expression under the limit in (5.7) is equal to 1D+(ξ1)− 1D+(ξ2).

Since Γ?p is a simple curve, the following standard argument applies. Fix R >

max{|ξ1|, |ξ2|} and let D(R) be the disk {z ∈ C : |z| < R}. Then ∂(D+
p ∩D(R)) is a simple

closed rectifiable curve, which consists of Γ?p∩D(R) and an arc of the circle ∂D(R). If the
orientation of ∂(D+

p ∩D(R)) agrees with that of Γ?p, we obtain, by the residue theorem,

1

2πi

∫
∂(D+

p ∩D(R))

(
1

z − ξ1
− 1

z − ξ2

)
dz = 1D+

p ∩D(R)(ξ1)− 1D+
p ∩D(R)(ξ2)

= 1D+
p

(ξ1)− 1D+
p

(ξ2) = 1D+(ξ1)− 1D+(ξ2).

The integral over Γ?p ∩ D(R) converges to the integral over Γ?p as R → ∞ (by the
dominated convergence theorem: the latter integral is absolutely integrable). Since the
integrand decays faster than |z|−1 as |z| → ∞, the integral over the arc of the circle
∂D(R) converges to zero as R → ∞. Thus, the expression under the limit in (5.7) is
indeed equal to 1D+(ξ1)− 1D+(ξ2), and the proof is complete.

Theorem 5.5. If f(ξ) is a non-degenerate Rogers function and ξ1, ξ2 ∈ D+
f ∪D

−
f , then

exp

(
1

2πi

∫
Γ?f

(
1

z − ξ1
− 1

z − ξ2

)
log f(z)dz

)

=


f+(−iξ1)/f+(−iξ2) if ξ1, ξ2 ∈ D+

f ,

f−(iξ2)/f−(iξ1) if ξ1, ξ2 ∈ D−f ,

f+(−iξ1)f−(−iξ2) if ξ1 ∈ D+
f , ξ2 ∈ D−f .

(5.8)
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Proof. The proof is very similar to that of Proposition 5.3: if Γf is contained in the region
{ξ ∈ C : |Arg ξ| < π

2 − ε} for some ε > 0, then essentially no changes are required. In the
general case, however, technical problems arise, and so we provide full details.

For simplicity, we drop the subscript f from the notation. Let I denote the logarithm
of the left-hand side of (5.8), and suppose that ξ1, ξ2 ∈ D+. Using the exponential
representation (3.2), we find that

I =
1

2πi

∫
Γ?

(
1

z − ξ1
− 1

z − ξ2

)(
log c+

1

π

∫ ∞
−∞

(
z

z + is
− 1

1 + |s|

)
ϕ(s)

|s|

)
dz.

By Lemma 5.4, we have

1

2πi

∫
Γ?

(
1

z − ξ1
− 1

z − ξ2

)
dz = 0.

It follows that

I =
1

2πi

∫
Γ?

(
1

π

∫ ∞
−∞

(
1

z − ξ1
− 1

z − ξ2

)(
z

z + is
− 1

1 + |s|

)
ϕ(s)

|s|
ds

)
dz.

An analogue of the estimate (5.5) of the integrand is found using Proposition 3.18: we
have ∫

Γ?

∫ ∞
−∞

∣∣∣∣( 1

z − ξ1
− 1

z − ξ2

)(
z

z + is
− 1

1 + |s|

)
ϕ(s)

|s|

∣∣∣∣dsdz
≤
√

2π

∫
Γ?

|ξ1 − ξ2|
|z − ξ1||z − ξ2|

1 + |z|√
|z|

dz ≤ C(ξ1, ξ2)

∫
Γ?

1

(1 + |z|)
√
|z|

dz <∞.

This allows us to apply Fubini’s theorem in the expression for I. We obtain that

I =
1

π

∫ ∞
−∞

(
1

2πi

∫
Γ?

(
1

z − ξ1
− 1

z − ξ2

)(
z

z + is
− 1

1 + |s|

)
dz

)
ϕ(s)

|s|
ds. (5.9)

Simplification of the above expression requires a few steps. If −is ∈ D−f ∪D
+
f , the inner

integral in (5.9) can be evaluated explicitly: we have(
1

z − ξ1
− 1

z − ξ2

)(
z

z + is
− 1

1 + |s|

)
=

(
−iξ1
−iξ1 + s

− 1

1 + |s|

)(
1

z − ξ1
− 1

z + is

)
−
(
−iξ2
−iξ2 + s

− 1

1 + |s|

)(
1

z − ξ2
− 1

z + is

)
,

and so, by Lemma 5.4,

1

2πi

∫
Γ?

(
1

z − ξ1
− 1

z − ξ2

)(
z

z + is
− 1

1 + |s|

)
dz

=

(
−iξ1
−iξ1 + s

− 1

1 + |s|

)
(1D+(ξ1)− 1D+(−is))

−
(
−iξ2
−iξ2 + s

− 1

1 + |s|

)
(1D+(ξ2)− 1D+(−is))

=

(
−iξ1
−iξ1 + s

− −iξ2
−iξ2 + s

)
(1− 1D+(−is))

(in the last equality we used the fact that ξ1, ξ2 ∈ D+).
As it was observed in the proof of Theorem 4.3, for every s < 0 such that −is /∈ D+

we have ζ(−s) = −is, and consequently ϕ(s) = 0 for almost all s < 0 such that −is /∈ D+.
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On the other hand, if s < 0 and −is ∈ D+, then we have already found that the inner
integral in (5.9) is zero. Therefore,

I =
1

π

∫ ∞
0

(
1

2πi

∫
Γ?

(
1

z − ξ1
− 1

z − ξ2

)(
z

z + is
− 1

1 + |s|

)
dz

)
ϕ(s)

|s|
ds.

In a similar way, ϕ(s) = 0 for almost all s > 0 such that −is /∈ D−. On the other hand, if
−is ∈ D−, then we already evaluated the inner integral. We conclude that

I =
1

π

∫ ∞
0

(
−iξ1
−iξ1 + s

− −iξ2
−iξ2 + s

)
(1− 1D+(−is))1D−(−is) ϕ(s)

|s|
ds

=
1

π

∫ ∞
0

(
−iξ1
−iξ1 + s

− −iξ2
−iξ2 + s

)
ϕ(s)

|s|
ds.

Combined with (5.2), this leads to the first part of (5.8). The proof of the secod part is
very similar, and we omit the details.

The proof of the last part of formula (5.8) is also alike, but here some of the necessary
modifications are not as straightforward, and we discuss them below. By Lemma 5.4, if
ξ1 ∈ D+ and ξ2 ∈ D−, then

1

2πi

∫
Γ?

(
1

z − ξ1
− 1

z − ξ2

)
dz = 1.

Therefore, the logarithm I of the left-hand side of (5.8) is given by

I = log c+
1

2πi

∫
Γ?

(
1

π

∫ ∞
−∞

(
1

z − ξ1
− 1

z − ξ2

)(
z

z + is
− 1

1 + |s|

)
ϕ(s)

|s|
ds

)
dz.

Fubini’s theorem is applicable by the same argument as in the previous case. After
changing the order of integration, the inner integral is simplified using the identity(

1

z − ξ1
− 1

z − ξ2

)(
z

z + is
− 1

1 + |s|

)
=

(
−iξ1
−iξ1 + s

− 1

1 + |s|

)(
1

z − ξ1
− 1

z + is

)
−
(

iξ2
iξ2 − s

− 1

1 + |s|

)(
1

z − ξ2
− 1

z + is

)
,

which, by Lemma 5.4, leads to

1

2πi

∫
Γ?

(
1

z − ξ1
− 1

z − ξ2

)(
z

z + is
− 1

1 + |s|

)
dz

=

(
−iξ1
−iξ1 + s

− 1

1 + |s|

)
(1− 1D+(−is))−

(
iξ2

iξ2 − s
− 1

1 + |s|

)
(0− 1D+(−is))

when −is ∈ D+ ∪D−. Arguing as in the first part of the proof, we eventually find that

I =
1

π

∫ ∞
0

(
−iξ1
−iξ1 + s

− 1

1 + |s|

)
ϕ(s)

|s|
ds+

1

π

∫ 0

−∞

(
iξ2

iξ2 − s
− 1

1 + |s|

)
ϕ(s)

|s|
ds,

which, combined with (5.2), gives the desired result stated in the third part of (5.8).

Recall that Γ?f is parameterised by ζf (r), r ∈ (−Zf ) ∪ Zf , and ζf (−r) = −ζf (r) for
r > 0. We use the notation λf (r) = f(ζf (r)). The following corollary of Theorem 5.5 is
almost immediate.
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Corollary 5.6. If f(ξ) is a non-degenerate Rogers function, ξ1, ξ2 ∈ iR∩ (D+
f ∪D

−
f ), then

exp

(
1

π

∫
Zf

Im

(
ζ ′f (r)

ζf (r)− ξ1
−

ζ ′f (r)

ζf (r)− ξ2

)
log λf (r)dr

)

=


f+(−iξ1)/f+(−iξ2) if ξ1, ξ2 ∈ D+

f ,

f−(iξ2)/f−(iξ1) if ξ1, ξ2 ∈ D−f ,

f+(−iξ1)f−(−iξ2) if ξ1 ∈ D+
f , ξ2 ∈ D−f .

(5.10)

Proof. Substituting z = ζf (r) in (5.8), we obtain

f+(−iξ1)

f+(−iξ2)
= exp

(
1

2πi

∫
(−Zf )∪Zf

(
ζ ′f (r)

ζf (r)− ξ1
−

ζ ′f (r)

ζf (r)− ξ2

)
log λf (r)dr

)
.

In order to prove formula (5.10), it suffices to observe that λf (−r) = λf (r), ζ ′f (−r) = ζ ′f (r)

and ζf (−r)− ξ1 = −(ζf (r)− ξ1).

Our final result in this section is obtained from the above corollary by integration by
parts. Recall that λf (r) is a strictly increasing continuous function of r ∈ (0,∞) such
that λf (r) = f(ζf (r)) for r ∈ (0,∞) \ ∂Zf .

Theorem 5.7. If f is a non-zero Rogers function and ξ1, ξ2 ∈ (0, i∞), then

f+(−iξ1)

f+(−iξ2)
= exp

(
− 1

π

∫ ∞
0

(
Arg(ζf (r)− ξ1)−Arg(ζf (r)− ξ2)

)dλf (r)

λf (r)

)
, (5.11)

where the integral is an (absolutely convergent) Riemann–Stieltjes integral. Similarly,

f−(iξ1)

f−(iξ2)
= exp

(
1

π

∫ ∞
0

(
Arg(ζf (r)− ξ1)−Arg(ζf (r)− ξ2)

)dλf (r)

λf (r)

)
(5.12)

when ξ1, ξ2 ∈ (−i∞, 0). Finally, if R > 0, ξ1 ∈ (0, i∞) and ξ2 ∈ (−i∞, 0), then

f+(−iξ1)f−(iξ2) = λf (R) exp

(
− 1

π

∫ ∞
0

(
Arg(ζf (r)− ξ1)−Arg(ζf (r)− ξ2)

+ π1(0,R)(r)
)dλf (r)

λf (r)

)
.

(5.13)

When f(0+) > 0, then one can additionally set R = 0 in (5.13), with the convention that
in this case λf (R) = f(0+).

Proof. As usual, we drop subscript f from the notation. The assertion clearly holds
true for degenerate Rogers functions, so we only consider the case when f(ξ) is non-
degenerate. Suppose that ξ1, ξ2 ∈ (0, i∞) ∩ (D+ ∪D−) and Im ξ1 < Im ξ2. Our starting
point is the integral in (5.8), and we will deduce (5.11) by integration by parts.

For r ∈ (0,∞) we define

g(r) = Arg(ζ(r)− ξ1)−Arg(ζ(r)− ξ2),

except possibly at r = |ξ1| and r = |ξ2|. More precisely, if ξ1 ∈ D−, then ζ(r) = ir for r
in a neighbourhood of |ξ1|, and so g(r) = 0 for r in some left neighbourhood of |ξ1|, and
g(r) = π for r in some right neighbourhood of |ξ1|. Similarly, if ξ2 ∈ D−, then g(r) = π for
r in some left neighbourhood of |ξ2|, and g(r) = 0 in some right neighbourhood of |ξ2|.
Except possibly for these two jump discontinuities, g(r) is continuous on (0,∞). We need
two more properties of g(r).
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The number g(r) is the measure of the angle at ζ(r) in the triangle with vertices ξ1,
ξ2 and ζ(r). By elementary geometry, one easily finds that 0 ≤ g(r) ≤ π, and

0 ≤ g(r) ≤ C(ξ1, ξ2) min{r, r−1} (5.14)

for some constant C(ξ1, ξ2); we omit the details.
Note that Arg(z − ξ1) − Arg(z − ξ2) is a continuously differentiable function of z ∈

(ClH) \ {ξ1, ξ2}, and ζ(r) is a locally absolutely continuous function. Therefore, the
composition g(r) of these two functions is locally absolutely continuous, except possibly
at r = |ξ1| (if ξ1 ∈ D−) and r = |ξ2| (if ξ2 ∈ D−). Since Arg z = Im log z, for r ∈ Z we have

g′(r) = Im
(
log(ζ(r)− ξ1)− log(ζ(r)− ξ2)

)′
= Im

(
ζ ′(r)

ζ(r)− ξ1
− ζ ′(r)

ζ(r)− ξ2

)
. (5.15)

Furthermore, g(r) ∈ {0, π} for all r ∈ (0,∞) \Z, and so if r is a density point of (0,∞) \Z
and g′(r) exists, then g′(r) = 0. Therefore, g′(r) = 0 for almost all r ∈ (0,∞) \ Z.

Observe that h(r) = log λ(r) is a continuous increasing function and, by Proposi-
tion 3.18,

|h(r)| = | log f(ζf (r))| ≤ | log c|+
√

2π
1 + r√
r
≤ C(f)(r1/2 + r−1/2) (5.16)

for some constant C(f). Estimates (5.14) and (5.16) imply that

lim
r→∞

g(r)h(r) = 0, lim
r→0+

g(r)h(r) = 0. (5.17)

Since g(r) and h(r) have locally bounded variation on (0,∞) and no common discontinu-
ities, integration by parts and (5.17) lead to

−
∫ ∞

0

g(r)dh(r) =

∫ ∞
0

h(r)dg(r), (5.18)

provided that either integral exists.
Note that dh(r) = dλ(r)/λ(r), so that the integral in the left-hand side of (5.18)

coincides with the one in (5.11). Since h(r) is increasing and g(r) is non-negative, the
integral, if convergent, is automatically absolutely convergent.

We now evaluate the integral in the right-hand side of (5.17). Recall that g(r) may
have two jump discontinuities: at r = |ξ1|, of size π, if ξ1 ∈ D−; and at r = |ξ2|, of size −π,
if ξ2 ∈ D−. Otherwise, g(r) is absolutely continuous, with derivative g′(r) given by (5.15)
for r ∈ Z and equal to zero almost everywhere in (0,∞) \ Z. It follows that

1

π

∫ ∞
0

h(r)dg(r) =
1

π

∫
Z

h(r)g′(r)dr + h(|ξ1|)1D−(ξ1)− h(|ξ2|)1D−(ξ2). (5.19)

The integral in the right-hand side is identical to the one in Corollary 5.6; in particular
it is absolutely convergent. Furthermore, if ξ1 ∈ D−, then ζ(|ξ1|) = ξ1, and so h(|ξ1|) =

log f(ζ(|ξ1|)) = log f(ξ1). Similarly, if ξ2 ∈ D−, then h(|ξ2|) = log f(ξ2).
Let us summarise what we have found so far: the integral in (5.11) is convergent,

and by combining (5.18), (5.19) and Corollary 5.6 we obtain

− 1

π

∫ ∞
0

(
Arg(ζf (r)− ξ1)−Arg(ζf (r)− ξ2)

)dλ(r)

λ(r)

=


log(f+(−iξ1)/f+(−iξ2)) if ξ1, ξ2 ∈ D+

f ,

log(f−(iξ2)/f−(iξ1)) + log f(ξ1)− log f(ξ2) if ξ1, ξ2 ∈ D−f ,

log(f+(−iξ1)f−(−iξ2))− log f(ξ2) if ξ1 ∈ D+
f , ξ2 ∈ D−f ,

− log(f−(−iξ1)f+(−iξ2)) + log f(ξ1) if ξ1 ∈ D−f , ξ2 ∈ D+
f .
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Since f(ξ1) = f+(−iξ1)f−(iξ1) and f(ξ2) = f+(−iξ2)f−(iξ2), in each case the right-
hand side is equal to log(f+(−iξ1)/f+(−iξ2)), and consequently (5.11) is proved when
ξ1, ξ2 ∈ (0, i∞)∩(D+∪D−) and Im ξ1 < Im ξ2. The case Im ξ1 > Im ξ2 follows by symmetry.
Finally, extension to the case when ξ1 or ξ2 is in (0, i∞) \ (D+ ∪D−) follows by continuity:
(0, i∞)∩ (D+ ∪D−) is dense in (0, i∞), and both sides of (5.11) are continuous functions
of ξ1, ξ2 ∈ (0, i∞). Indeed, continuity of the left-hand side is obvious, while for the
right-hand side continuity is a consequence of dominated convergence theorem; we omit
the details.

The proof of (5.12) is very similar. In the proof of (5.13), the definition of g(r) is
different: we consider ξ1 ∈ (0, i∞) ∩ (D+ ∪D−) and ξ2 ∈ (−i∞, 0) ∩ (D+ ∪D−), and we
define

g(r) = Arg(ζ(r)− ξ2)−Arg(ζ(r)− ξ1)− π1(0,R)(r).

Note that since Im ξ2 < 0 < Im ξ1, we have 0 ≤ Arg(ζ(r) − ξ2) − Arg(ζ(r) − ξ1) ≤ π, so
that −π ≤ g(r) ≤ π. By a slightly more involved geometric argument, estimate (5.14)
is again satisfied. The remaining part of the proof is very similar, except that g(r) may
have up to three jump discontinuities, at r = |ξ1| (if ξ1 ∈ D−), at r = |ξ2| (if ξ2 ∈ D+)
and at r = R (always; two of these discontinuities may cancel out, though). The last
discontinuity gives rise to the additional factor 1/λ(R) in the left-hand side of (5.13). We
omit the details.

If f(0+) > 0, then we can follow the above argument with R = 0, with the convention
that in this case λ(R) = λ(0+) = f(0+) (see Theorem 4.3). Estimate (5.14) no longer
holds, and g(0+) = −π. Thus, g(0+)h(0+) = −π log λ(0+) must be added to the right-hand
side of (5.18). Again, we omit the details.

6 Space-time Wiener–Hopf factorisation

In this section we return to our original problem and prove Theorem 1.1. Recall
that we consider a non-constant Lévy process Xt with completely monotone jumps,
its characteristic exponent f(ξ), and the Wiener–Hopf factors κ+(τ, ξ) and κ−(τ, ξ). By
Theorem 3.3, f(ξ) extends to a non-zero Rogers function.

For τ ≥ 0 we denote fτ (ξ) = τ + f(ξ). Then fτ is a Rogers function, the spine Γfτ
of fτ does not depend on τ ≥ 0, and we have ζfτ (r) = ζf (r) and λfτ (r) = τ + λf (r) for
r > 0.

We divide the proof into five steps. First, however, we need an auxiliary lemma.

Lemma 6.1. If f(ξ) is a non-zero Rogers function, fτ (ξ) = τ + f(ξ) and 0 ≤ ξ1 ≤ ξ2, then

f+
τ (ξ1)

f+
τ (ξ2)

and
f−τ (ξ1)

f−τ (ξ2)

are complete Bernstein functions of τ . Similarly, if ξ1, ξ2 ≥ 0, then

f+
τ (ξ1)f−τ (ξ2)

is a complete Bernstein function of τ .

Proof. With no loss of generality we may assume that f(0+) = 0: the general case
follows then by applying the result to the Rogers function g(ξ) = f(ξ)− f(0+). By our
assumption, λf (0+) = f(0+) = 0.

Suppose that 0 < ξ1 < ξ2. Since iξ1, iξ2 ∈ (0, i∞), by Theorem 5.7 we have

f+
τ (ξ1)

f+
τ (ξ2)

= exp

(
− 1

π

∫ ∞
0

(
Arg(ζf (r)− iξ1)−Arg(ζf (r)− iξ2)

) dλf (r)

λf (r) + τ

)
.
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Write ϕ(λf (r)) = Arg(ζf (r)− iξ1)−Arg(ζf (r)− iξ2) for r > 0 (except perhaps r = ξ1 and
r = ξ2). In the proof of Theorem 5.7 we noticed that ϕ(λf (r)) takes values in [0, π]. It
follows that (

f+
τ (ξ1)

f+
τ (ξ2)

)−1

= exp

(
1

π

∫ ∞
0

ϕ(λf (r))
dλf (r)

τ + λf (r)

)
= exp

(
1

π

∫ λf (∞−)

0

ϕ(s)
1

τ + s
ds

)
.

The right-hand side is essentially the exponential representation (3.13) of a Stieltjes
function of τ . Since the reciprocal of a Stieltjes function is a complete Bernstein function,
the first part of the lemma is proved when 0 < ξ1 < ξ2. The general case 0 ≤ ξ1 ≤ ξ2
follows by continuity of the Wiener–Hopf factors and the fact that a point-wise limit of
complete Bernstein functions, if finite, is again a complete Bernstein function.

In a similar way one shows that f−τ (ξ1)/f−τ (ξ2) is a complete Bernstein function
of τ . To prove the last statement, we again use Theorem 5.7, with R = 0: since
λfτ (0+) = τ + f(0+) = τ , for ξ1, ξ2 > 0 we have

f+
τ (ξ1)f−τ (ξ2) = τ exp

(
1

π

∫ ∞
0

ϕ(λ(r))
dλf (r)

τ + λf (r)

)
,

where ϕ(λf (r)) = Arg(ζf (r) + iξ2) − Arg(ζf (r) − iξ1) takes values in [0, π]. As in the
first part of the proof, the exponential defines a Stieltjes function of τ , and therefore
f+
τ (ξ1)f−τ (ξ2) is a complete Bernstein function of τ , as desired. The extension to ξ1 = 0

or ξ2 = 0 again follows by continuity.

Before we proceed with the proof of Theorem 1.1, we clarify one aspect of the
statement of the theorem. If Xt is a compound Poisson process, then, according to our
definitions, the expressions κ+(τ, ξ1)κ−(τ, ξ2) and κ◦(τ)κ+(τ, ξ1)κ−(τ, ξ2) are different.
Below we prove that both of them define a complete Bernstein function of τ .

Proof of Theorem 1.1. Step 1: the properties of κ+(τ, ξ1)/κ+(τ, ξ2), κ−(τ, ξ1)/κ−(τ, ξ2)

and κ◦(τ)κ+(τ, ξ1)κ−(τ, ξ2) as functions of τ . We use the notation fτ (ξ) = τ + f(ξ)

introduced earlier in this section. According to Baxter–Donsker formulae (2.10), (2.11),
(2.12) and Proposition 5.3, we have

κ+(τ, ξ1)

κ+(τ, ξ2)
=
f+
τ (ξ1)

f+
τ (ξ2)

,
κ−(τ, ξ1)

κ−(τ, ξ2)
=
f−τ (ξ1)

f−τ (ξ2)
, (6.1)

and

κ◦(τ)κ+(τ, ξ1)κ−(τ, ξ2) =
f+
τ (ξ1)f−τ (ξ2)

1 + f(0+)
(6.2)

for τ ≥ 0 and ξ1, ξ2 > 0. By Lemma 6.1, both expressions in (6.1) are complete Bernstein
functions of τ when 0 ≤ ξ1 ≤ ξ2, and the expression in (6.2) is a complete Bernstein
function of τ when ξ1, ξ2 ≥ 0, as desired.

Step 2: the properties κ+(τ, ξ) and κ−(τ, ξ) as functions of τ . By (2.9) we have

lim
ξ→∞

κ+(τ1, ξ)

κ+(τ2, ξ)
= 1

when τ1, τ2 ≥ 0. It follows that

κ+(τ, ξ) = lim
η→∞

κ+(τ, ξ)κ+(1, η)

κ+(τ, η)
.
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We already know that if ξ, η ≥ 0 and ξ ≤ η, then the function κ+(τ, ξ)κ+(1, η)/κ+(τ, η)

is a complete Bernstein function of τ . Since a point-wise limit of complete Bernstein
functions is again a complete Bernstein function, we conclude that κ+(τ, ξ) is a complete
Bernstein function of τ . In a similar way one proves that κ−(τ, ξ) is a complete Bernstein
function of τ .

Step 3: the properties of κ+(τ1, ξ)/κ
+(τ2, ξ) and κ+(τ1, ξ)/κ

+(τ2, ξ) as functions of ξ.
Suppose that 0 ≤ τ1 ≤ τ2, and define

g(ξ) =
τ1 + f(ξ)

τ2 + f(ξ)
.

The following are Rogers functions of ξ by Proposition 3.12: τ1 + f(ξ), ξ2/(τ1 + f(ξ)),
ξ2 + (τ2 − τ1)ξ2/(τ1 + f(ξ)), and finally

g(ξ) =
τ1 + f(ξ)

τ2 + f(ξ)
= ξ2

(
ξ2 + (τ2 − τ1)

ξ2

τ1 + f(ξ)

)−1

.

By Baxter–Donsker formula (2.8) and Proposition 5.3, for all ξ, η > 0 we have

g+(ξ)

g+(η)
=
κ+(τ1, ξ)κ

+(τ2, η)

κ+(τ1, η)κ+(τ2, ξ)
.

Since g+(ξ) is a complete Bernstein function, it follows that κ+(τ1, ξ)/κ
+(τ2, ξ) is a com-

plete Bernstein function of ξ, as desired. A similar argument shows that κ−(τ1, ξ)/κ
−(τ2, ξ)

is a complete Bernstein function of ξ.

Step 4: the properties of κ+(τ, ξ) and κ−(τ, ξ) as functions of ξ. As in step 2, by (2.9)
we have

lim
τ→∞

κ+(τ, ξ1)

κ+(τ, ξ2)
= 1

when ξ1, ξ2 ≥ 0. It follows that

κ+(τ, ξ) = lim
σ→∞

κ+(τ, ξ)κ+(σ, 1)

κ+(σ, ξ)
.

We already proved that if τ, σ ≥ 0 and τ ≤ σ, then the function κ+(τ, ξ)κ+(σ, 1)/κ+(σ, ξ)

is a complete Bernstein function of ξ. A point-wise limit of complete Bernstein functions
is again a complete Bernstein function, and so κ+(τ, ξ) is a complete Bernstein function
of ξ, as desired. By a similar argument, also κ−(τ, ξ) is a complete Bernstein function of
ξ.

Step 5: the properties of κ+(τ, ξ1)κ−(τ, ξ2) as a function of τ . We already know that
g0(τ) = κ◦(τ), g1(τ) = κ+(τ, ξ1), g2(τ) = κ−(τ, ξ2), as well as g3(τ) = g0(τ)g1(τ)g2(τ) are
complete Bernstein functions of τ . Let ϕj(s) denote the function ϕ(s) in the exponential
representation (3.10) for the complete Bernstein function gj(ξ), where j = 0, 1, 2, 3.
Then g3(τ) has exponential representation (3.10) with function ϕ(s) equal either to
ϕ3(s) or to ϕ0(s) + ϕ1(s) + ϕ2(s). By uniqueness of this representation, we necessarily
have ϕ0(s) + ϕ1(s) + ϕ2(s) = ϕ3(s) for almost all s ∈ (0,∞). In particular, 0 ≤ ϕ1(s) +

ϕ2(s) ≤ ϕ3(s) ≤ π. This, however, implies that the function g1(τ)g2(τ) has exponential
representation (3.10) with function ϕ(s) equal almost everywhere to ϕ1(s)+ϕ2(s) ∈ [0, π].
Therefore, g1(τ)g2(τ) = κ+(τ, ξ1)κ−(τ, ξ2) is a complete Bernstein function of τ , and the
proof is complete.
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7 Local rectifiability of the spine

This section contains the proof of Theorem 4.2(d). Our strategy is as follows. We first
prove (in Lemma 7.1) inequality (4.4), which can be thought of as an upper bound for the
curvature of the spine Γ of f(ξ). Next, we use this bound to prove (in Lemma 7.2) that
Arg ζ(r) cannot oscillate too rapidly away from the imaginary axis. To prove that Arg ζ(r)

does not oscillate between ±π2 too quickly, we show (in Lemma 7.3) that the zeroes of
Arg ζ(r) are separated when the derivative of Arg ζ(r) is large. All these auxiliary results
are used to prove a variant of Theorem 4.2(d) in Lemma 7.4.

Throughout this section, we use the notation Γf , ζf (r) and Zf introduced in Theo-
rem 4.2, and for simplicity we omit the subscript f . We use logarithmic polar coordinates
ξ = eR+iα rather than the usual polar coordinates ξ = reiα; the two are clearly related
by the relation r = eR. We write Z̃ = logZ, so that R ∈ Z̃ if and only if r = eR ∈ Z. We
also define Θ(R) = ϑ(eR) = Arg ζ(eR), so that ζ(eR) = eR+iΘ(R).

We begin with the proof of an equivalent form of formula (4.4).

Lemma 7.1. For every R ∈ Z̃, we have

|Θ′′(R)| ≤ 9((Θ′(R))2 + 1)

cos Θ(R)
.

Proof. We denote H(R,α) = Arg f(eR+iα)/ cosα. By (3.23),

H(R,α) =
1

π

∫ ∞
−∞

−eRs
e2R + 2eRs sinα+ s2

ϕ(s)

|s|
ds

=
1

π

∫ ∞
−∞

−t
1 + 2t sinα+ t2

ϕ(eRt)

|t|
dt,

(7.1)

where the second equality follows by a substitution s = eRt. The former integral in the
above display can be differentiated under the integral sign with respect to R and α; for
example, we have

∂αH(R,α) =
1

π

∫ ∞
−∞

2e2Rs2 cosα

(e2R + 2eRs sinα+ s2)2

ϕ(s)

|s|
ds

=
1

π

∫ ∞
−∞

2t2 cosα

(1 + 2t sinα+ t2)2

ϕ(eRt)

|t|
dt,

(7.2)

where again the second equality is obtained by a substitution s = eRt.
For every R ∈ Z̃, we have H(R,Θ(R)) = 0 and ∂αH(R,Θ(R)) > 0, and therefore

Θ′(R) = −∂RH(R,Θ(R))

∂αH(R,Θ(R))
.

Similarly, we find that

Θ′′(R) = −∂RRH + 2Θ′(R)∂RαH + (Θ′(R))2∂ααH

∂αH
,

where to improve clarity we omitted the argument (R,Θ(R)) of the partial derivatives of
H. Since H(R,Θ(R)) = 0, we have

Θ′′(R) = −∂RRH + 2Θ′(R)∂RαH + (Θ′(R))2∂ααH −H
∂αH

.

The partial derivatives of H in the right-hand side can be evaluated as in (7.2). After a
lengthy calculation (that we omit here), we arrive at

Θ′′(R) =
1

π

1

∂αH

∫ ∞
−∞

2t2(A(Θ′(R))2 +BΘ′(R) + C)

(1 + 2t sin Θ(R) + t2)3

ϕ(eRt)

|t|
dt,
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with

A = (1 + 2t sin Θ(R) + t2) sin Θ(R) + 4t cos2 Θ(R),

B = 4(1− t2) cos Θ(R),

C = −3(1 + 2t sin Θ(R) + t2) sin Θ(R)− 4t cos2 Θ(R).

Using the inequalities cos2 α = 1− sin2 α ≤ 2− 2| sinα| and 2|t| ≤ 1 + t2, we find that

|4t cos2 α| ≤ 8|t| − 8|t sinα| ≤ 4(1 + t2)− 8t sinα = 4(1 + 2t sinα+ t2).

It follows that

|A| ≤ 5(1 + 2t sin Θ(R) + t2), |C| ≤ 7(1 + 2t sin Θ(R) + t2).

Furthermore, (1 + 2t sinα+ t2) + (1− t2) cosα = 2(t cos α2 + sin α
2 )2 ≥ 0 and (1 + 2t sinα+

t2)− (1− t2) cosα = 2(t sin α
2 + cos α2 )2 ≥ 0, and therefore

|B| = |4(1− t2) cos Θ(R)| ≤ 4(1 + 2t sin Θ(R) + t2).

The above estimates imply that

|Θ′′(R)| ≤ 1

π

1

∂αH

∫ ∞
−∞

2t2(5(Θ′(R))2 + 4Θ′(R) + 7)

(1 + 2t sin Θ(R) + t2)2

ϕ(eRt)

|t|
dt.

Comparing the right-hand side with (7.2), we conclude that

|Θ′′(R)| ≤ 5(Θ′(R))2 + 4Θ′(R) + 7

cos Θ(R)
≤ 9((Θ′(R))2 + 1)

cos Θ(R)
,

as desired.

Lemma 7.2. If R0 ∈ Z̃, |Θ′(R0)| ≤ 1 and |R − R0| < 1
90 cos Θ(R0), then R ∈ Z̃ and

|Θ′(R)| ≤ 2.

Proof. Let h be the largest number with the following property: if |R − R0| < h, then
R ∈ Z̃ and |Θ′(R)| ≤ 2. Suppose, contrary to the assertion of the lemma, that h <
1
90 cos Θ(R0). If |R1 −R0| ≤ h, we have

|Θ(R1)−Θ(R0)| =
∣∣∣∣∫ R1

R0

Θ′(R)dR

∣∣∣∣ ≤ 2|R1 −R0| ≤ 2h ≤ 1
2 cos Θ(R0),

and therefore

cos Θ(R1) ≥ cos Θ(R0)− |R1 −R0| ≥ 1
2 cos Θ(R0).

In particular, if |R1 −R0| = h, then cos Θ(R1) > 0, and hence R1 ∈ Z̃.
Using the above estimates, the inequality 9((Θ′(R))2 + 1) ≤ 45 and Lemma 7.1, we

find that if |R1 −R0| = h, then

|Θ′(R1)| =
∣∣∣∣Θ′(R0) +

∫ R1

R0

Θ′′(R)dR

∣∣∣∣
≤ 1 +

∫ R1

R0

9((Θ′(R))2 + 1)

cos Θ(R)
dR

≤ 1 + |R1 −R0|
45

1
2 cos Θ(R0)

< 2.

The above inequality contradicts the maximality of h, and the proof is complete.
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Lemma 7.3. If R0 ∈ Z̃, Θ(R0) = 0, |Θ′(R0)| ≥ 1 and 0 < |R − R0| < log(1 +
√

2), then
|Θ(R)| 6= 0.

Proof. Let H(R,α) be defined as in the proof of Lemma 7.1, and let h ∈ R. Since
H(R0, 0) = 0 and ∂RH(R0, 0) + Θ′(R0)∂αH(R0, 0) = 0, we have

H(R0 + h, 0) = H(R0 + h, 0)−H(R0, 0) coshh

− (∂RH(R0, 0) + Θ′(R0)∂αH(R0, 0)) sinhh.

We evaluate the right-hand side using (7.1), (7.2) and a similar expression for the deriva-
tive with respect to R; in the expresison for H(R0 + h, 0) we use the same substitution
s = eR0t rather than s = eR0+ht. This leads to

H(R0 + h, 0) =
1

π

∫ ∞
−∞

(
−eht
e2h + t2

− −t
1 + t2

coshh

− t(1− t2) + 2t2Θ′(R0)

(1 + t2)2
sinhh

)
ϕ(eR0t)

|t|
dt.

After a lengthy calculation (that we omit here), we find that

H(R0 + h, 0) = −2 sinhh

π

∫ ∞
−∞

t2(Θ′(R0)(e2h + t2)− (e2h − 1)t)

(e2h + t2)(1 + t2)2

ϕ(eR0t)

|t|
dt.

Suppose that Θ′(R0) ≥ 1 and |h| < log(1 +
√

2). Since |t| ≤ 1
2e
−h(e2h + t2), we have

Θ′(R0)(e2h + t2)− (e2h − 1)t ≥ (e2h + t2)− |e2h − 1||t|
≥ (e2h + t2)(1− 1

2e
−h|e2h − 1|)

= (e2h + t2)(1− | sinhh|) > 0.

It follows that H(R0 + h, 0) < 0 if h > 0 and H(R0 + h, 0) > 0 if h < 0. When Θ′(R0) ≤ −1,
the calculations are very similar: we find thatH(R0+h, 0) > 0 if h > 0 andH(R0+h, 0) < 0

if h < 0. In particular, in either case we have H(R0 +h, 0) 6= 0 when 0 < |h| < log(1 +
√

2),
as desired.

Lemma 7.4. Let h = log(1 +
√

2). For every R0 we have∫
Z̃∩[R0,R0+h]

|Θ′(R)|dR ≤ 140.

Proof. Define Z̃0 to be the set of R ∈ Z̃ for which |Θ′(R)| ≤ 1. Clearly,∫
Z̃0∩[R0,R0+h]

|Θ′(R)|dR ≤ |Z̃0 ∩ [R0, R0 + h]| ≤ h. (7.3)

Let Z̃1 be the union of those connected components (R1, R2) of Z̃ \ Z̃0 on which Θ(R)

takes value 0, and let Z̃2 be the union of the remaining connected components of Z̃ \ Z̃0.
Note that on each connected component (R1, R2) of Z̃1 or Z̃2, we have Θ′(R) 6= 0 for

R ∈ (R1, R2), and so Θ(R) is monotone on (R1, R2). If (R1, R2) is a connected component
of Z̃1, then ∫ R2

R1

|Θ′(R)|dR =

∣∣∣∣∫ R2

R1

Θ′(R)dR

∣∣∣∣ = |Θ(R2)−Θ(R1)| ≤ π.
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However, by Lemma 7.3, at most one connected component of Z̃1 is fully contained in
[R0, R0 + h], and so at most three connected components of Z̃1 intersect [R0, R0 + h]. It
follows that ∫

Z̃1∩[R0,R0+h]

|Θ′(R)|dR ≤ 3π. (7.4)

Suppose now that (R1, R2) is a connected component of Z̃2. Since Θ(R) is monotone
on (R1, R2) and Θ(R) 6= 0 for R ∈ (R1, R2), the number δ = max{cos Θ(R1), cos Θ(R2)}
is strictly positive. We assume that δ = cos Θ(R1); the other case is very similar. We
consider two scenarios. If R2 −R1 ≥ 1

90δ, then∫ R2

R1

|Θ′(R)|dR =

∣∣∣∣∫ R2

R1

Θ′(R)dR

∣∣∣∣ = |Θ(R2)−Θ(R1)|

≤ π
2 − |Θ(R1)| ≤ π

2 cos Θ(R1) = π
2 δ ≤ 45π(R2 −R1).

On the other hand, if R2 −R1 <
1
90δ, then, by Lemma 7.2,∫ R2

R1

|Θ′(R)|dR ≤ 2(R2 −R1).

Taking into account two connected components of Z̃2 which may intersect the boundary
of [R0, R0 + h], we conclude that∫

Z̃2∩[R0,R0+h]

|Θ′(R)|dR ≤ 45π|Z̃2 ∩ [R0, R0 + h]|+ π. (7.5)

The desired results follows by combining the three estimates (7.3), (7.4) and (7.5) and
the inequality h+ 3π + (45πh+ π) ≤ 140.

Proof of Theorem 4.2(d). Formula (4.4) is an equivalent form of Lemma 7.1, after substi-
tution ϑ(r) = Θ(log r). The estimate for the length is a consequence of Lemma 7.4: since
ζ(r) = reiΘ(log r), we have

|ζ ′(r)| = |eiΘ(log r)(1 + iΘ′(log r))| = ((Θ′(log r))2 + 1)1/2 ≤ |Θ′(log r)|+ 1,

and so ∫ 2r0

r0

|ζ ′(r)|dr ≤
∫ 2r0

r0

(|Θ′(log r)|+ 1)dr

=

∫ log r0+log 2

log r0

eR|Θ′(R)dR+ r0

≤ 2r0

∫ log r0+log(1+
√

2)

log r0

|Θ′(R)|dR+ r0 ≤ 300r0,

as desired.
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[36] P. Kim, R. Song, Z. Vondraček, Potential theory of subordinate Brownian motions revisited. In:
T. Zhang, X. Zhou (Eds.), Stochastic Analysis and Applications to Finance–Essays in Honour
of Jia-an Yan, World Scientific, 2012, 243–290. MR-2986850
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