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Abstract

Cellular automata (CA) are dynamical systems on symbolic configurations on the
lattice. They are also used as models of massively parallel computers. As dynamical
systems, one would like to understand the effect of small random perturbations on the
dynamics of CA. As models of computation, they can be used to study the reliability of
computation against noise.

We consider various families of CA (nilpotent, permutive, gliders, CA with a spread-
ing symbol, surjective, algebraic) and prove that they are highly unstable against noise,
meaning that they forget their initial conditions under slightest positive noise. This is
manifested as the ergodicity of the resulting probabilistic CA. The proofs involve a
collection of different techniques (couplings, entropy, Fourier analysis), depending on
the dynamical properties of the underlying deterministic CA and the type of noise.
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1 Introduction

Consider a configuration of symbols (or colors) from a finite set S on the sites of
the hypercubic lattice Zd. A cellular automaton (CA) is a dynamical system on such
configurations, obtained by iterating a local update rule simultaneously at every site
of the lattice. When the updates are random, we have a Markov process called a
probabilistic cellular automaton (PCA): at each time step, the new symbol at each site is
randomly updated, independently of the others, according to a distribution prescribed
by the current pattern of symbols on a finite collection of neighbouring sites.

CA and PCA have been widely studied with various motivations [60, 56, 58, 21, 9,
61, 38, 34, 1, 7, 52, 46, 44]. Despite the multiplicity of viewpoints, a central problem is
to describe the asymptotic behaviour of the system and its dependence on the initial
condition. Indeed, even when the local behaviour is simple, the global behaviour is
generally difficult to predict, and there are only few CA or PCA for which we have a
complete and explicit description of the asymptotic behaviour.

The most basic question about the asymptotic behaviour of a PCA is its ergodicity. A
PCA is said to be ergodic if it asymptotically “forgets” its initial condition, meaning that
the distribution of its configuration always converges to one and the same distribution re-
gardless of the initial condition. In other words, a PCA is ergodic if its action on probabil-
ity measures has a unique fixed point that attracts all the other measures. This paper con-
cerns the ergodicity problem for the family of PCA obtained by perturbing CA with noise.

In computer science, deterministic CA are used as models of massively parallel
computers (see e.g., [21] and the relevant chapters of [1] and [52]). In order to study the
reliability of computation against noise, one is interested in the effect of small random
perturbations on the dynamics of the CA. A prerequisite for the ability to perform
computation reliably in presence of noise is that the system should be able to remember
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at least one bit of information from its input, for otherwise the output will be pure noise
and independent of the input. Thus, a CA that becomes ergodic when perturbed by noise
cannot serve as a fault-tolerant computer in presence of noise.

From the perspective of probability theory, noisy CA constitute a class of PCA that
are close to being deterministic. In models originating from statistical physics, low noise
corresponds to low temperature, and the study of low-noise PCA shares the same kind
of challenges as in low-temperature models. In particular, the ergodicity question in
the low-noise regime is closely related to the question of presence or absence of phase
transition at low temperature [36, 23, 39, 12]. From a more abstract point of view,
CA form a rich class of topological dynamical systems, and the introduction of random
perturbations allows one to study probabilistic notions of sensitivity and stability.

For deterministic CA, the common tools for describing the possible asymptotic be-
haviour require the update rule to have specific algebraic or combinatorial structure.
One approach to analyze the asymptotic distribution is to interpret the dynamics in
terms of “particles” that move and interact [2, 3, 18, 37, 26]. An alternative approach
relies on the CA to have an algebraic structure [41, 50, 17, 28]. For deterministic
CA, ergodicity is equivalent to nilpotency, a property which is algorithmically unde-
cidable [33]. Nonetheless, nilpotent CA are not so widespread and a typical CA often
exhibits different asymptotic behaviour depending on its initial condition. In fact, using
the computation capabilities of CA, one can design deterministic CA having about any
behaviour wanted [27].

The case of PCA is quite different: constructing a CA whose trajectories remain
distinguishable under the influence of noise is a notoriously difficult problem. Most
CA seem to be highly unstable against noise, meaning that they forget their initial
conditions under slightest positive noise. This is manifested as the ergodicity of the
resulting PCA. The only known example of a one-dimensional CA that remains non-
ergodic under sufficiently small positive noise has a sophisticated construction due to
Peter Gács [19, 20]. In higher dimensions, a family of examples is provided by Andrei
Toom [57], but the problem remains highly non-trivial.

A variety of tools have been developed to study the ergodicity of PCA. However, most
of these tools only allow to handle PCA for which all the transition probabilities are
sufficiently large (i.e., the high-noise/high-temperature regime). In particular, ergodicity
is often difficult to prove for noisy CA when the noise is small, even in cases where it
appears clear from heuristics or simulations. Consider for instance the simplest case
of a one-dimensional PCA with binary alphabet and neighbourhood of size 2, under the
additional assumption of left-right symmetry of the update rule. Such a PCA is identified
by three parameters. The standard methods can be used to handle more than 90% of
the volume of the cube [0, 1]3 where the parameters lie [58, Chap. 7]. However, when
approaching some edges of the cube, none of the known criteria for ergodicity holds,
although one may expect the ergodicity to be the norm, as soon as the parameters belong
to the interior of the cube.

To understand the frontiers between ergodicity and non-ergodicity, we pursue the pro-
gram of identifying dynamical and combinatorial properties for a CA that guarantee the
ergodicity of its random perturbations. We prove the ergodicity of various families of CA
(nilpotent, permutive, gliders, CA with spreading symbols, surjective, algebraic) subject
to noise, using a collection of different techniques (couplings, entropy, Fourier analysis).

The results are summarized in Section 2.4. Section 2.1 is dedicated to notation and
terminology. In Section 2.2, we discuss the notion of ergodicity and prove two general
results regarding the unique invariant measure of ergodic PCA. The various models
of noise considered in this paper are introduced in Section 2.3. The ergodicity results
are divided into three sections based on the method of proof they use: the coupling
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method (Sec. 3), the entropy method (Sec. 4) and the Fourier analysis method (Sec. 5).
We conclude with some open problems in Section 6.

2 Preliminaries and results

2.1 Notation and terminology

We shall generally refer to the book by Kůrka [38] and the survey by Kari [34] for
background on deterministic cellular automata and to the surveys by Toom et al. [58]
and Mairesse and Marcovici [46] for background on probabilistic cellular automata.

Let S be a finite set of symbols, and d ≥ 1 an integer. A configuration on the d-
dimensional lattice Zd is a map x : Zd → S assigning a symbol xk from S to each site k of
Zd. We will often denote the set of all configurations by X , SZ

d

. A map F : X → X is a
cellular automaton (CA) on X if there exist n1, n2, . . . , nm ∈ Zd and f : Sm → S such that

(Fx)k , f(xk+n1
, . . . , xk+nm

) (2.1)

for each x ∈ X and k ∈ Zd. The function f : Sm → S is called the local rule of the CA and
the set N , {n1, n2, . . . , nm} its neighbourhood. The set N (k) , k+N = {k+n : n ∈ N}
consists of the neighbours of site k. We also introduce N 0 , {0}, and N t+1 , N t +N =

{a+ b ; a ∈ N t, b ∈ N} for t ≥ 0, so that N t can be thought of as the neighbourhood of
the CA F t. Similarly, we define N t(k) , k +N t.

The restriction of a configuration x to a set K ⊆ Zd is denoted by xK . The translation
(or shift) by a ∈ Zd is the map σa : X → X defined by (σax)k , xa+k for each k ∈ Zd.

The set X of configurations is equipped with the product topology. If K ⊆ Zd is
a finite set and yK ∈ SK , we call the set [yK ] , {x ∈ SZ

d

: xk = yk for all k ∈ K} a
cylinder with base K. Each cylinder set is both open and closed, and the collection of
all cylinder sets is a countable basis for the product topology of X . According to the
Curtis–Hedlund–Lyndon theorem (see e.g. [38, Thm. 5.2]), the CA on X are precisely
identified by the maps F : X → X that are continuous and commute with all translations.

For a probabilistic cellular automaton (PCA) the local rule is randomized, and is
independently applied at every site. More specifically, the local rule of a PCA is a
stochastic matrix ϕ : Sm × S → [0, 1], so that

∑
b∈S ϕ(a1, a2, . . . , am)(b) = 1 for each

a1, a2, . . . , am ∈ S. Starting from a configuration x, the symbol at each site k is updated
at random according to the distribution ϕ(xk+n1 , xk+n2 , . . . , xk+nm)(·), independently of
the other sites. This is described by a transition kernel Φ, where

Φ(x, [yK ]) ,
∏
k∈K

ϕ(xk+n1
, xk+n2

, . . . , xk+nm
)(yk) (2.2)

for every configuration x ∈ X and each cylinder set [yK ]. An evolution (or trajectory) of
the PCA is a Markov process with transition kernel Φ, that is, is a sequence X0, X1, . . .

of random configurations satisfying

P
(
Xt+1 ∈ [yK ]

∣∣X0, X1, . . . , Xt
)

= Φ
(
Xt, [yK ]

)
(2.3)

almost surely for every cylinder set [yK ] and every t ≥ 0. A bi-infinite evolution
. . . , X−1, X0, X1, . . . is defined similarly. A PCA has positive rates if its local rule
is strictly positive, meaning that for each a1, a2, . . . , am ∈ S and b ∈ S, we have
ϕ(a1, a2, . . . , am)(b) > 0.

The set of all continuous observables h : X → C, denoted by C(X ), is a Banach space
with the uniform norm ‖h‖ , supx∈X |h(x)|. A local observable is an observable h ∈ C(X )

that can be written as a linear combination of characteristic functions of cylinder sets,
so that h(x) depends on the symbols at only finitely many sites. The local observables
form a dense linear subspace of C(X ), which we shall denote by C0(X ).
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The set of all Borel probability measures on X is denoted by M (X ). A measure
µ ∈ M (X ) is uniquely determined by the probabilities it associates to cylinder sets.
Furthermore, a sequence µ1, µ2, . . . ∈M (X ) of probability measures converges weakly
to another measure µ ∈M (X ) if and only if µn(E)→ µ(E) for every cylinder set E ⊆ X .
With the weak topology, the space M (X ) is compact and metrizable. Let FA denote the
sub-σ-algebra of the Borel sets generated by the cylinder sets with base A. We denote by

‖µ− ν‖A , sup
E∈FA

|µ(E)− ν(E)| = 1

2

∑
u∈SA

∣∣µ([u])− ν([u])
∣∣ (2.4)

the total variation distance between the restrictions of µ and ν to FA. This is the distance
between the distributions of XA and YA where X and Y are random configurations
distributed according to µ and ν.

A PCA kernel Φ naturally defines two continuous linear operators, one on M (X ) and
the other on C(X ). Following the usual convention (e.g. [58]), we write Φ on the right-
hand side of measures and on the left-hand side of observables. Given a measure µ, we
denote by µΦ the measure defined by (µΦ)(A) ,

∫
Φ(x,A)µ(dx), that is, the distribution

of Xt+1 if Xt is distributed according to µ. Given an observable h ∈ C(X ), we write Φh

for the observable defined by (Φh)(x) , E
[
h(Xt+1)

∣∣Xt = x
]

=
∫
h(y)Φ(x, dy).

We will be concerned with PCA that are close to being deterministic. We say that a
PCA Φ is an ε-perturbation of a deterministic CA F if Φ and F share the same alphabet
S, and have a common neighbourhood N for which their local rules satisfy

ϕ(a1, a2, . . . , am)
(
f(a1, a2, . . . , am)

)
≥ 1− ε (2.5)

for all a1, a2, . . . , am ∈ S, meaning that under Φ, a deviation from F may occur indepen-
dently at each site with probability at most ε. In other words, Φ is an ε-perturbation of F if

Φ
(
x, [(Fx)K ]

)
≥ (1− ε)|K| (2.6)

for every configuration x ∈ X and every finite set K ⊆ Zd.

2.2 Ergodicity

A probability measure π ∈ M (X ) is invariant under a PCA Φ if πΦ = π. The
compactness of M (X ) ensures that every PCA has at least one invariant measure (see
e.g. [58, Prop. 2.5]). The non-empty set of invariant measures for a PCA is closed and
convex.

A PCA Φ is ergodic if it has a unique invariant measure π that attracts every initial
measure µ, in the sense that µΦt → π weakly as t→∞. Note that a PCA with a unique
invariant measure may not be ergodic [8] (see also [32]). When the convergence is
uniform among all initial measures, equivalently, when Φt( · , [u])→ π([u]) uniformly for
each cylinder set [u], we say that Φ is uniformly ergodic. It is not known whether a PCA
could exist that is ergodic but not uniformly ergodic. We conjecture that every ergodic
PCA is uniformly ergodic.1

Observe that the unique invariant measure of an ergodic PCA is shift-invariant, that
is, π ◦ σ−k = π for every k ∈ Zd. In view of the result of Goldstein et al. [23], it seems
plausible that the unique invariant measure of a positive-rate ergodic PCA is always
spatially mixing (≡ mixing under the shift action), that is,

lim
k→∞

π([u] ∩ σ−k[v]) = π([u])π([v]) (2.7)

1Compare this with deterministic CA for which asymptotic nilpotency (≡ ergodicity) is equivalent to
nilpotency (≡ uniform ergodicity) [25, 54, 46].
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for every two cylinder sets [u] and [v]. The spatial mixing of the invariant measure
is known for certain classes of ergodic PCA (see e.g. [39, 55, 45, 43, 10, 6], as well
as [59, 47, 31] in which the unique invariant measure is explicitly known). However,
even the weaker condition of spatial ergodicity (≡ ergodicity under the shift action)
is not known for general ergodic PCA. We now present a more general condition that
guarantees the spatial mixing of the unique invariant measure.

Let Φ be a uniformly ergodic PCA with unique invariant measure π. Then, for every
finite set A ⊆ Zd, the (maximum) distance from stationarity on A at time t,

dA(t) , sup
x∈X

∥∥π(·)− Φt(x, ·)
∥∥
A
, (2.8)

decreases to 0 as t→∞. Roughly speaking, the next proposition shows that if the speed
at which dA(t) approaches zero depends only on |A|, but not on the shape of A, then the
unique invariant measure is spatially mixing.

Proposition 2.1 (Spatial mixing of unique invariant measure). Let Φ be a uniformly
ergodic PCA, and for each finite set A ⊆ Zd, let dA(t) denote the distance from sta-
tionarity on A at time t. Suppose there is a family of functions ρn(t), n ∈ N such that
dA(t) ≤ ρ|A|(t) and ρn(t) → 0 as t → ∞. Then, the unique invariant measure of Φ is
spatially mixing.

Proof. Let π be the unique invariant measure of Φ and N the neighbourhood of its local
rule. Consider two finite patterns u ∈ SA and v ∈ SB, and let k ∈ Zd. Then,∣∣π([u])− Φt(x, [u])

∣∣ ≤ ρ|A|(t) , (2.9)∣∣π(σ−k[v])− Φt(x, σ−k[v])
∣∣ ≤ ρ|B|(t) , (2.10)∣∣π([u] ∩ σ−k[v]

)
− Φt

(
x, [u] ∩ σ−k[v]

)∣∣ ≤ ρ|A|+|B|(t) . (2.11)

Let r, a, b ≥ 0 be such that N ⊆ [−r, r]d, A ⊆ [−a, a]d and B ⊆ [−b, b]d. Observe that if
t ≥ 0 is such that N i(A) ∩

(
k +N i(B)

)
= ∅ for each 0 ≤ i ≤ t, then

Φt
(
x, [u] ∩ σ−k[v]

)
= Φt(x, [u])Φt(x, σ−k[v]) . (2.12)

This is because, given x, the random choices used to determine the patterns on A and
k+B at time t are independent (see Fig. 1). Thus, choosing t ≤ tk ,

⌊
(‖k‖∞−a−b)/(2r)

⌋
,

we can write∣∣π([u] ∩ σ−k[v]
)
− π([u])π(σ−k[v])

∣∣ ≤ ∣∣π([u] ∩ σ−k[v]
)
− Φt

(
x, [u] ∩ σ−k[v]

)∣∣
+ Φt(x, σ−k[v])

∣∣π([u])− Φt(x, [u])
∣∣ (2.13)

+ π([u])
∣∣π(σ−k[v])− Φt(x, σ−k[v])

∣∣
≤ ρ|A|+|B|(t) + ρ|A|(t) + ρ|B|(t) . (2.14)

Observe that tk →∞ as ‖k‖∞ →∞. Hence,

lim sup
k→∞

∣∣π([u] ∩ σ−k[v]
)
− π([u])π([v])

∣∣
≤ lim
t→∞

[
ρ|A|+|B|(t) + ρ|A|(t) + ρ|B|(t)

]
= 0 . (2.15)

All the ergodic PCA appearing in this paper satisfy the hypothesis of the above
proposition. It would be interesting to know whether the unique invariant measures of
these PCA satisfy any stronger mixing property, such as the strong mixing property of
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time t

time 0

A

N t(A)

k +B

k +N t(B)

Figure 1: Illustration of the proof of Prop. 2.1.

extremal Gibbs measures [22, Sec. 7.1]. A similar argument as above shows that under
the hypothesis of Proposition 2.1, the unique invariant measure is spatially k-fold mixing
for all k. We conjecture that for all the classes of ergodic PCA studied in this paper (with
the possible exception of those in Section 3.5), the unique invariant measure is in fact
measure-theoretically isomorphic to a Bernoulli process (see [55, 4]).

A rather different type of question about a probability measure on X is whether the
probabilities it associates to cylinder sets can be computed by an algorithm. It turns out
that the unique invariant measure of an ergodic PCA is always computable provided the
transition probabilities of the PCA are computable numbers. A real number x is said to
be computable if it can be approximated with arbitrary accuracy using an algorithm,
that is if there exists a computable function fx : N→ Q such that |fx(n)− x| < 1/n for all
n ∈ N. We say that a PCA Φ is computable if the values of its local rule ϕ are computable
real numbers. Let S# denote the set of patterns u ∈ SA where A ⊆ Zd is finite. A
measure µ ∈M (X ) is computable if there exists a computable function fµ : S#×N→ Q

such that |fµ(u, n)− µ([u])| < 1/n for every u ∈ S# and n ∈ N. Observe that if Φ is a
computable PCA and µ is a computable measure, then µΦ is also a computable measure.

Proposition 2.2 (Computability of unique invariant measure). Let Φ be a computable
PCA with a unique invariant measure π. Then, π is computable.

Proof. We first present the sketch of the proof and then get into more details. Let w ∈ SA
be a finite pattern and suppose we want to approximate π([w]) within accuracy 1/n. The
idea is that for every finite set B ⊇ A, we can approximately identify the set of measures
that are close to being invariant when restricted to the σ-algebra FB of events happening
on B. More specifically, for B ⊇ A and m ∈ N, let

QB,m ,
{
µ ∈M (X ) : ‖µΦ− µ‖B < 1/m

}
. (2.16)

We will show that given B and m ≥ n, we can algorithmically generate a finite set RB,m

of representatives from QB,m such that for every µ ∈ QB,3m, there is a ν ∈ RB,m with
‖ν − µ‖B < 1/(3m) < 1/(2n). A compactness argument will show that for all sufficiently
large B and m, every two measures ν, ν′ ∈ RB,m associate approximately the same
probabilities to the cylinder set [w], namely |ν′([w])− ν([w])| < 1/(2n). Since π ∈ QB,3m,
it will then follow that for each ν ∈ RB,m, the value ν([w]) approximates π([w]) with
accuracy 1/n.

More precisely, the algorithm thus proceeds as follows. Denote by Ik , [−k, k]d ∩Zd
the centered hypercube of size (2k + 1)d in Zd. We choose m0 such that Im0 ⊇ A. For
m = m0,m0 + 1, . . . we generate a set RIm,m with the above-mentioned property and
calculate ε , max{|ν′([w])− ν([w])| : ν, ν′ ∈ RIm,m}. Once ε < 1/(2n), we stop and return
ν([w]) for an arbitrarily chosen element of RIm,m.

Let us first show that ε will eventually become smaller than 1/(2n). Indeed, suppose
that for every m, there are two elements µm, µ′m ∈ QIm,m such that |µ′m([w])− µm([w])| ≥
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1/(2n). By compactness, there is a sequence m1 < m2 < . . . such that µmi
converges

weakly to a measure µ and µ′mi
converges weakly to a measure µ′. Clearly |µ′([w]) −

µ([w])| ≥ 1/(2n) and in particular, µ′ 6= µ. On the other hand, from the definition of QB,m,
it follows that both µ and µ′ must be invariant under Φ, hence a contradiction with the
uniqueness of the invariant measure.

It remains to show that for each B and m, a set RB,m with the prescribed properties
can be generated. The PCA Φ induces an affine mapping from probability measures on
SN (B) to probability measures on SB. It follows easily that ‖µ′Φ− µΦ‖B ≤ ‖µ′ − µ‖N (B)

for every µ, µ′ ∈M (X ). Fix an arbitrary symbol � ∈ S, and for finite C ⊆ Zd and k ∈ N,
define

MC,k ,

{
1

k

k∑
i=1

δx(i) : x(1), . . . , x(k) ∈ X and x(i)
j = � for j /∈ C

}
, (2.17)

where δx denotes the Dirac measure centered at x. When restricted to FC , the elements
of MC,k are precisely those measures whose probabilities are rational with denominator
k. In particular, for every µ ∈ M (X ), there exists a measure ν ∈ MC,k such that

‖ν − µ‖C < |S||C| /k. Given B and m, construct the set

RB,m ,
{
ν ∈MN (B),k : ‖νΦ− ν‖B < 1/m

}
(2.18)

with k , 3m |S||N (B)|. Clearly, RB,m ⊆ QB,m. Let µ ∈ QB,3m. Then, there exists a

measure ν ∈ MN (B),k such that ‖ν − µ‖N (B) < |S|
|N (B)|

/k = 1/(3m). For this measure,
we have

‖νΦ− ν‖B ≤ ‖µ− ν‖B︸ ︷︷ ︸
<1/(3m)

+ ‖µΦ− µ‖B︸ ︷︷ ︸
<1/(3m)

+ ‖νΦ− µΦ‖B︸ ︷︷ ︸
<1/(3m)

< 1/m , (2.19)

which means ν ∈ RB,m. Hence, RB,m has the desired properties.

2.3 Models of noise

In this article, we study the ergodicity problem for perturbations of deterministic CA.
We mainly focus on perturbations obtained when adding random and independent errors
to the updates of a deterministic CA. The transition probabilities of the resulting PCA
will thus have the form Φ(x,E) , Θ(Fx,E), where F is the deterministic CA and Θ a
noise kernel. We call such a perturbation a noisy version of F . The noise kernel is itself
assumed to be a PCA transition kernel (albeit a simple one) so that the updates of the
symbols at distinct sites are independent. The noise is said to be positive if its kernel
has positive rates.

Zero-range noise. A zero-range noise is a noise with neighbourhood N = {0}: the
symbol at each site is randomly modified, independently of the other sites, according to
transition probabilities prescribed by a stochastic matrix θ : S ×S → [0, 1]. The local rule
of the noisy CA is therefore given by ϕ(a1, a2, . . . , am)(b) , θ

(
f(a1, a2, . . . , am), b

)
, where

f is the local rule of the original CA.
Most of the results in this paper (with the exception of Sections 3.2, 3.3 and 3.4.2)

concern zero-range noise. Various classes of zero-range noise will be considered, each
with its own interpretation. Each of our proof techniques will be well suited for some of
these noise models.

Memoryless noise. A zero-range noise is memoryless if its noise matrix can be written
as θ(a, b) = (1 − ε)δa(b) + εq(b), where 0 ≤ ε ≤ 1, q is a probability distribution on S,
and δa is the distribution with unit mass at a. Under a memoryless noise, a symbol is
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Ergodicity of noisy cellular automata

erased with probability ε and replaced with an independent random symbol drawn from
distribution q. We call ε the error probability and q the replacement distribution of the
noise.

Additive noise. Suppose that the alphabet S is identified with a finite Abelian group
(G,+). Under an additive noise with noise distribution q, each symbol a is replaced with
a symbol a+N , where N is an S-valued random variable with distribution q. The noise
matrix can thus be written as θ(a, b) , q(b− a) for each a, b ∈ S.

Permutation noise. The permutation noise is an extension of additive noise, where
each symbol a is replaced with a symbol ς(a), where ς is a random permutation of S
drawn according to a fixed distribution q. Observe that the noise matrix of a permutation
noise can be written as a convex combination

θ(a, b) =
∑

ς∈Sym(S)

q(ς)Aς(a, b) (2.20)

of permutation matrices Aς(a, b) , δς(a)(b), and therefore is a doubly-stochastic matrix.
Conversely, the Birkhoff–von Neumann theorem implies that every zero-range noise with
a doubly-stochastic matrix is in fact a permutation noise. In particular, a permutation
noise is precisely a zero-range noise that preserves the uniform distribution on S. The
notion of noise in a weakly symmetric communication channel (see [11]) is a special case
of the permutation noise.

Birth-death noise. In some of our examples (see Sections 3.5), the alphabet has the
form S = {0, 1}n, where 1 and 0 represent the presence and absence of “particles” or
“walls” at n different “layers” of the system. Under a birth-death noise particles/walls
appear and disappear independently at each layer, thus the noise matrix has the form

θ(a, b) ,
n∏
i=1

θi(ai, bi) (2.21)

for a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) in S.

2.4 Summary of results

We prove several results regarding the ergodicity of noisy CA. Each result concerns a
class of CA with a specific dynamical property subject to a specific type of noise. The
following table summarizes our results. See Figures 2 and 3 for examples illustrating
the results.

Type of CA Type of noise Reference

I Any CA High noise Thm. 3.5
II Nilpotent Small perturbation Thm. 3.9
III CA with spreading symbol Memoryless noise Thm. 3.10
IV ”

(1d with N = {0, 1})
Small positive perturbation Thm. 3.11

V Gliders with annihilation Birth-death noise Thm. 3.12
VI Simple gliders with

reflecting walls (1d)
” Thm. 3.14

VII Permutive (1d) Permutation noise Thm. 3.16

VIII Surjective Additive noise Thm. 4.1

IX XOR Zero-range Thm. 5.1
X Binary CA with

spreading symbol
Zero-range

(75% of parameter range)
Thm. 5.3

EJP 24 (2019), paper 41.
Page 9/44

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP297
http://www.imstat.org/ejp/


Ergodicity of noisy cellular automata

The results are divided into three categories, depending on the type of tools used in
their proofs: coupling arguments (Sec. 3), entropy (Sec. 4) and Fourier analysis (Sec. 5).
The ergodicity in the high noise regime (Thm. 3.5) is rather standard and can be proven
using various approaches. Here we present a coupling proof using the so-called envelope
PCA (introduced in [6]) which we find most elegant. The nilpotent CA are special in
that they are ergodic in absence of noise. A coupling argument will show that the
ergodicity persists for small perturbations of nilpotent CA (Thm. 3.9). The ergodicity
of a CA that has a spreading symbol is intuitively plausible. We provide three different
proofs (Thms. 3.10, 3.11 and 5.3) each with a different model of noise and having a
different degree of generality. Theorems 3.12 and 3.14 concern the ergodicity of simple
systems of “particles” (or “gliders”) moving and interacting on the lattice, where the
noise occasionally destroys particles or creates new ones. The ergodicity of permutive
CA subject to permutation noise (Thm. 3.16) is a special case of a result of Vasilyev [59].
The argument is based on the identification of a certain finite-state time-inhomogeneous
Markov chain that is hidden inside the model. We also present an alternative (though
similar) argument using entropy (Sec. 4.4). Surjective CA constitute a broad class of CA
(including e.g., those addressed in Theorems 3.14, 3.16 and 5.1). For general surjective
CA with additive noise, we are only able to prove “ergodicity modulo shift” (Thm. 4.1),
that is the convergence towards equilibrium when the starting measure is shift-invariant.
The ergodicity of the XOR CA subject to noise (Thm. 5.1) is an application of the Fourier
analysis approach to the ergodicity problem developed by Toom et al. [58, Chap. 4].

Aside from cases VII and VIII in which the invariant measures are explicitly known,
in all the classes of ergodic PCA treated in this paper, the unique invariant measure is
spatially mixing and computable. The computability of the unique invariant measure
holds in general, as demonstrated in Proposition 2.2. The spatial mixing is proven in
each case with the help of Proposition 2.1. Furthermore, Proposition 3.3 below provides
a perfect sampling algorithm for the unique invariant measure in cases I–IV and VI.

Let us remark that except for Theorems 3.11, 3.14 and 3.16, all the results in this
paper are valid in any number of dimensions. The proof of Theorem 3.11 makes use of a
result on oriented bond percolation in 1 + 1 dimensions, and thus relies crucially on the
CA being one-dimensional. Nevertheless, it might be possible to use the same idea in
higher dimensions. Theorems 3.14 and 3.16 are restricted to the one-dimensional case
for expositional convenience. In higher dimensions, the definition of a permutive CA is
more cumbersome.

For the sake of comparison, let us now recall an example of a simple CA which, in
presence of small noise, remains non-ergodic. Needless to say, this example belongs to
none of the CA families II–X mentioned in the above table.

Example 2.3 (NEC-majority). Toom’s NEC-majority CA is the two-dimensional CA T :

SZ
2 → SZ

2

with binary alphabet S , {0, 1}, where

(Tx)i,j , majority(xi,j , xi+1,j , xi,j+1) . (2.22)

In other words, in one iteration of T , each symbol on the lattice is replaced with the
symbol that is in majority among its northern neighbour, eastern neighbour and itself.
Observe that T is monotonic (i.e., switching some 0s into 1s in a configuration x may
turn some 0s in Tx into 1s but not the other way around) and symmetric with respect to
0↔ 1 exchange. Moreover, it can be shown that T has the erosion property on the all-0
configurations (and by symmetry, also on the all-1 configuration). Namely, T keeps the
all-0 (resp., all-1) configuration unchanged, and if x is any configuration in which all but
finitely many sites have symbol 0 (resp., symbol 1), then there is a finite time t for which
T tx is the all-0 configuration (resp., the all-1 configuration).
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Toom [57] (see [58, Chaps. 9 and 10]) proved that for sufficiently small ε > 0, every
ε-perturbation of the NEC-majority CA is non-ergodic. In fact, he showed that in any
monotonic CA T , any homogeneous configuration z on which T has the erosion property
is stable against perturbations in the sense that the trajectory of any small perturbation
of T starting from z remains forever concentrated on configurations that agree with z on
the great majority of sites. #

ε = 0 ε = 0.01
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This CA satisfies F 12(x) = 0Z for all x ∈ {0, 1, 2}Z. Without noise the system dies out; the noise adds small local
perturbations that do not propagate. Ergodicity is proven in Theorem 3.9.
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The local rule is given by F (x)i , xi−1xixi+1 mod 3. Without noise, fractal patterns can appear but they are
unstable because of the spreading symbol. Noise helps destroying these patterns by introducing the spreading
symbol at random positions evenly distributed on the lattice. Ergodicity is established in Theorems 3.10 and 3.11.
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This CA consists of particles moving with speed 1 and −1 in an empty background. Two particles moving in
opposite directions annihilate upon encounter. Without noise, there are less and less particles as time passes by.
Ergodicity in presence of noise is established in Theorems 3.12 and 5.3.

Figure 2: Space-time diagrams of some CA perturbed by a memoryless noise with
uniform replacement distribution and error probability ε. Time goes upwards.
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This CA consists of non-interacting particles moving with constant speed in between walls. The particles reflect
upon hitting the walls. Without noise, the behaviour is very regular: the walls are static and the movement of
each particle is periodic. Noise mixes things up. Theorem 3.14 shows the ergodicity. Since the CA is surjective,
Theorem 4.1 also shows the ergodicity “modulo translations”. The invariant measure is the uniform measure.

P
e
rm

u
ti

ve
C

A
(S

e
c.

3
.6

)

The local rule is given by F (x)i , xi−1 + xi · xi+1 mod 3. The noisy version is ergodic by Theorems 3.16 or 4.1.
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The local rule is given by F (x)i , xi−1 + xi + xi+1 mod 3. This CA randomizes its initial condition even
in absence of noise: starting from a sufficiently random configuration, its distribution converges to the uniform
Bernoulli measure (see e.g. [41]). The ergodicity of the noise version is given by Theorem 3.16 or 4.1. See also
Theorem 5.1.

Figure 3: Space-time diagrams of some surjective CA perturbed by a memoryless noise
with uniform replacement distribution and error probability ε. Time goes upwards.

3 Coupling method

Intuitively, a PCA is ergodic if it “forgets” its initial condition. In some cases, it is
possible to prove ergodicity in a constructive fashion by means of a coupling, that is by
running the process simultaneously from different initial conditions using a common
source of randomness, and showing that all trajectories eventually merge.

In this section, we use coupling arguments to prove the ergodicity of some classes of
noisy CA. The arguments for most of the results in this section (Secs. 3.2–3.4, 3.5.2) are
based on “backward” couplings (a.k.a. coupling from the past). Only in Section 3.5.1 we
use a “forward” coupling. The coupling in the last result (Sec. 3.6) is rather different
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and merges the trajectories only on a finite window.

3.1 Forward and backward couplings

Recall that a coupling of two probability measures µ and ν is simply a pair (X,Y )

of random variables defined on the same probability space such that X is distributed
according to µ and Y is distributed according to ν. Couplings can be used to obtain
upper bounds on the total variation distance between two measures. In the special case
where µ, ν ∈M (X ) are measures on the configuration space X , the inequality

‖µ− ν‖A ≤ P(XA 6= YA) , (3.1)

holds for every coupling (X,Y ) of µ and ν and each finite set A ⊆ Zd. This is known as
the coupling inequality (see e.g. [42]).

By a coupling of a PCA Φ we mean a coupling of two trajectories of Φ, that is, a
sequence (Xt, Y t)t≥0 where both (Xt)t≥0 and (Y t)t≥0 are distributed according to the
evolution of the PCA Φ.

The following lemma is a basic tool for proving the ergodicity of a PCA.

Lemma 3.1. Let (Xt, Y t)t≥0 be a coupling of a PCA Φ. Let µ ∈ M (X ) denote the
distribution of X0 and suppose that Y 0 is distributed according to a measure π ∈M (X )

that is invariant under Φ. Assume that for every k ∈ Zd, P(Xt
k 6= Y tk ) → 0 as t → ∞.

Then, (µΦt)t≥0 converges weakly to π.

Proof. For every finite set A ⊂ Zd, we have, by the coupling inequality∥∥µΦt − π
∥∥
A
≤ P(Xt

A 6= Y tA) ≤
∑
i∈A

P(Xt
i 6= Y ti ) , (3.2)

which goes to 0 as t→∞, meaning that (µΦt)t≥0 converges weakly to π.

Following the same idea, we have the following criterion for uniform ergodicity.

Proposition 3.2. Let Φ be a PCA. Let ρ(t) be a real function with ρ(t) → 0 as t → ∞.
Suppose that for every two configurations x, y ∈ X , there is a coupling (Xt, Y t)t≥0 of
Φ with X0 = x and Y 0 = y such that P(Xt

0 6= Y t0 ) ≤ ρ(t) for all t ≥ 0. Then, the PCA is
uniformly ergodic and its unique invariant measure is spatially mixing.

Proof. Let π be an invariant measure for Φ and µ any other measure. Following the
argument of Lemma 3.1, for every two configurations x, y ∈ X and each finite set A ⊆ Zd
we get ‖Φt(x, ·)− Φt(y, ·)‖A ≤ |A| ρ(t). Integrating over x with respect to µ and over y
with respect to π, we find that ‖µΦt − π‖A ≤ |A| ρ(t). Therefore, the PCA is uniformly
ergodic with unique invariant measure π. Furthermore, dA(t) ≤ |A| ρ(t) and the spatial
mixing of π follows from Proposition 2.1.

One way to couple the evolutions of a given PCA from two different initial configu-
rations is to update the configurations iteratively using a common source of random-
ness. Let Φ be a PCA with local function ϕ. An update function for ϕ is a function
f : Sm × [0, 1]→ S such that for all (a1, a2, . . . , am) ∈ Sm and b ∈ S, we have

P
(
f(a1, a2, . . . , am;U) = b

)
= ϕ(a1, a2, . . . , am)(b) (3.3)

whenever U is a random variable uniformly distributed over the unit interval [0, 1].
The update function together with a collection of independent random samples

uniformly drawn from [0, 1] can be used to simulate the PCA. Let S , [0, 1]Z
d

. Given an
update function f , we define the global update map Ψ : X × S → X by

Ψ(x, u)k , f(xk+n1
, . . . , xk+nm

;uk) . (3.4)
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For t ≥ 1, we recursively define Ψt : X × St → X by Ψ1(x;u) , Ψ(x;u) and

Ψt+1(x;u1, u2, . . . , ut+1) , Ψ
(
Ψt(x;u1, u2, . . . , ut), ut+1

)
(3.5)

= Ψt
(
Ψ(x;u1);u2, . . . , ut+1

)
. (3.6)

By construction, when U , (Ui)i∈Zd is a collection of independent random variables
uniformly distributed over [0, 1], the configuration Ψ(x;U) is distributed according to
measure Φ(x, ·). More generally, if U1, U2, . . . , U t are independent random configurations
uniformly chosen from S, that is, if (Uni )i∈Zd,1≤n≤t is a collection of independent random
variables uniformly distributed over [0, 1], then the sequence

x,Ψ1(x;U1),Ψ2(x;U1, U2), . . . ,Ψt(x;U1, U2, . . . , U t) (3.7)

is distributed according to the evolution of Φ from time 0 to time t with initial configura-
tion x.

It is sometimes useful to simulate the PCA from the past. Let (Uni )i∈Zd,n∈N− be a
collection of independent uniformly distributed random variables chosen from [0, 1],
where N− , {0,−1,−2, . . .}, and write Un for the collection (Uni )i∈Zd . The value
Ψt(x;U−t, U−t+1, . . . , U0) can be interpreted as the configuration at time 0 obtained
when simulating the PCA Φ from configuration x at time −t and using the random
samples (Uni )i∈Zd,n∈N− . Let us define

pt(Φ) , P
(
the map x 7→ Ψt(x;U−t, U−t+1, . . . , U0)0 is constant

)
. (3.8)

In words, pt(Φ) is the probability that, when we simulate Φ with configuration x at time
−t and using the random samples (Uni )i∈Zd,n∈N− , the symbol at the origin at time 0 is
independent of x.

The following proposition provides another criterion for uniform ergodicity in terms
of pt(Φ). Under the same criterion, one can algorithmically generate a perfect sample
from the unique invariant measure of Φ. This is an adaptation to PCA of the coupling-
from-the-past algorithm of Propp and Wilson [51], which is developed in [6]. In the
present setting, a perfect sampling algorithm for a probability measure µ ∈M (X ) is an
algorithm that, given a finite set A ⊆ Zd and using an unbounded source of independent
random samples uniformly drawn from [0, 1], outputs a random pattern WA such that
P(WA = wA) = µ([wA]).2

Proposition 3.3. Let Φ be a PCA satisfying pt(Φ) → 1 as t → ∞. Then, Φ is uniformly
ergodic. Furthermore, the unique invariant measure of Φ is spatially mixing and has a
perfect sampling algorithm.

Proof. Let us imagine simulating the PCA Φ from time −t in the past up to time 0, starting
from two configurations X−t and Y −t. We can couple the configurations obtained at time
0 by using a family U = (Uni )i∈Zd,n∈N− of independent uniform random samples from [0, 1],
and setting X0 , Ψt(X−t;U−t, U−t+1, . . . , U0) and Y 0 , Ψt(Y −t;U−t, U−t+1, . . . , U0).

Take X−t to be a fixed configuration x and choose Y −t at random, independently
from U , according to an invariant measure π of the PCA. By the coupling inequality, for
every finite set A ⊂ Zd, we have∥∥π − Φt(x, ·)

∥∥
A
≤ P(X0

A 6= Y 0
A) ≤

∑
i∈A

P(X0
i 6= Y 0

i ) ≤ |A|
(
1− pt(Φ)

)
. (3.9)

2In general, the transition probabilities of the PCA are arbitrary real numbers and do not have finite
presentations. The sampling algorithm of Proposition 3.3 also requires access to an (infinite) symbolic
presentation of these real numbers.

EJP 24 (2019), paper 41.
Page 14/44

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP297
http://www.imstat.org/ejp/


Ergodicity of noisy cellular automata

Since x is arbitrary and pt(Φ)→ 1 as t→∞, it follows that Φ is uniformly ergodic with
unique invariant measure π. Furthermore, from (3.9) we get dA(t) ≤ |A|

(
1 − pt(Φ)

)
.

Therefore, the conditions of Proposition 2.1 are satisfied and π is spatially mixing.
Let us now present a perfect sampling algorithm for the unique invariant measure

π of Φ. We assume that we have access to a family U = (Uni )i∈Zd,n∈N− of independent
uniform random samples from [0, 1]. Let A be a finite subset of Zd. Since pt(Φ) → 1

as t → ∞, we know that almost surely, there exists an integer T ≥ 1 depending on
U , such that the map x 7→ ΨT (x;U−T , U−T+1, . . . , U0)A is constant. This constant is
distributed exactly according to π. More specifically, for a finite pattern w ∈ SA, the
probability that ΨT (x;U−T , U−T+1, . . . , U0)A = w is exactly π([w]). Furthermore, since
Ψt(x, U−t, U−t+1, . . . , U0)A depends only on xA+N t and on (Uni )i∈A+N−n,−t<n≤0, we can
indeed check for each t = 1, 2, . . . whether the function x 7→ Ψt(x, U−t, U−t+1, . . . , U0)A
is constant or not.

3.2 The high-noise regime

In this section, we prove an ergodicity criterion holding in the high-noise regime. In
particular, it gives a simple condition ensuring the ergodicity of deterministic CA when
perturbed by a high enough zero-range noise (see Prop. 3.6 and its two corollaries).

Let Φ be a PCA with alphabet S, neibhourhood N = {n1, . . . , nm} and local rule
ϕ. In order to prove the ergodicity of Φ using Proposition 3.3, we need to design an
update function f : Sm × [0, 1] → S for which the dependence of f(a1, . . . , am;u) on
(a1, . . . , am) ∈ Sm is weak. A natural idea is to choose an update function with the
property that for every b ∈ S, we have

P
(
f(a1, . . . , am;U) = b for all (a1, . . . , am) ∈ Sm

)
≥ min
a1,...,am∈S

ϕ(a1, . . . , am)(b) (3.10)

whenever U is a uniform sample from [0, 1]. In that case, with probability at least∑
b∈S

min
a1,...,am∈S

ϕ(a1, . . . , am)(b) , (3.11)

the knowledge of (a1, . . . , am) ∈ Sm will not be used for computing the value f(a1, . . . , am,

U). The notion of envelope PCA pursues this idea and provides a simple ergodicity
criterion in the high-noise regime.

Instead of running the PCA from different initial configurations, we define a new PCA
on an extended alphabet, containing a symbol ?© representing sites whose values are not
known (i.e., which may differ between the different copies) and we run it from a single
initial configuration containing only the symbol ?©. Each time we are able to make the
different copies match on a site, the symbol ?© is replaced by a symbol b ∈ S on which
the different copies agree. An evolution of the envelope PCA thus encodes a coupling of
different copies of the original PCA, with a symbol ?© denoting sites where the copies
disagree. If the density of symbol ?© converges to 0 when time goes to infinity, it means
that the original PCA is forgetting its initial condition, hence it is ergodic.

Let us now go into more details. We introduce a new alphabet S̃ = S∪{ ?©}, containing
an additional question mark symbol, and we define a partial order on S̃ by declaring
a ≺ ?© for every a ∈ S. We say that a ∈ S is compatible with b ∈ S̃ if a � b. The
envelope of the PCA Φ is another PCA Φ̃ with alphabet S̃, neighbourhood N and local
rule ϕ̃ : S̃m × S̃ → [0, 1] defined by

ϕ̃(a1, . . . , am)(b) , min
{
ϕ(a′1, . . . , a

′
m)(b) ; a′1 � a1, . . . , a

′
m � am

}
(3.12)

for a1, . . . , am ∈ S̃ and b ∈ S, where the minimum is taken over all a′1, . . . , a
′
m in S. The
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probability of transition to symbol ?© is then given by

ϕ̃(a1, . . . , am)( ?©) , 1−
∑
b∈S

ϕ̃(a1, . . . , am)(b) . (3.13)

From a configuration x ∈ S̃Zd

, the symbol at site k is thus updated to a symbol b ∈ S with
a probability that is the minimum of transition probabilities according to Φ to symbol b,
among all possible neighbourhood patterns for site k that are compatible with x. With
the remaining probability, the symbol at site k is updated to ?©.

The envelope PCA was introduced in [6] as a tool to prove the ergodicity of a PCA and
to generate perfect samples from its unique invariant measure. While it is particularly
convenient for the high-noise regime, the envelope PCA has also been successfully
exploited to prove the ergodicity of some models in the low-noise regime [30]. Similar
ideas have been pursued by others [16]. The idea of the envelope PCA is reminiscent of
the minorant PCA introduced by Toom et al. [58, Chap. 3], which can be used in a more
or less similar fashion to prove ergodicity in the high-noise regime.

The following corollary of Proposition 3.3, gives a sufficient condition for ergodicity
in terms of the envelope PCA.

Lemma 3.4. Suppose that the density Φ̃t
(

?©Zd

, [ ?©]
)

of symbols ?© at time t starting from

the initial configuration ?©Zd

converges to 0 as t → ∞. Then, the PCA Φ is uniformly
ergodic, and its unique invariant measure is spatially mixing and admits a perfect
sampling algorithm.

The fact that the symbol ?© dies out is equivalent to the ergodicity of the envelope
PCA Φ̃, but the ergodicity of the original PCA Φ does not in general imply the ergodicity
of Φ̃. When the alphabet has more than two elements, the definition of the envelope PCA
can be refined so as to keep more information about the possible values that a question
mark symbol represents [6].

In the evolution of the envelope PCA, at each time step, the symbol at a site is updated
to ?© only if at least one of its neighbours is in state ?©, and in that case, it becomes a ?©
with probability at most

p ?©(Φ) , ϕ̃( ?©, . . . , ?©)( ?©) (3.14)

= 1−
∑
b∈S

min
a1,...,am∈S

ϕ(a1, . . . , am)(b) . (3.15)

This quantity measures the dependence of the transition probabilities on the value of the
neighbourhood.

Let us consider an oriented graph G describing the dependence relation between
the sites in the space-time diagram of the PCA. The vertices of G are the elements of
Zd ×N, and there is an edge from (k, t) to (`, t+ 1) if k ∈ `+N . For a given parameter
p ∈ [0, 1], the directed site percolation on G consists in declaring each site to be open
with probability p and closed otherwise, independently for different sites. One can show
that there is a critical value pc(N ) ∈ (0, 1), such that when p < pc(N ), there is almost
surely no infinite open (oriented) path. By comparison with a branching process, one
can easily show that pc(N ) ≥ 1/ |N |. In one dimension, the value of pc(N ) is known to be
in [2/3, 3/4] when N = {0, 1} and in [1/2, 3/4] when N = {−1, 0, 1} (see [48]).

By dominating the appearances of symbol ?© in the space-time diagram of the enve-
lope PCA by a directed site percolation with parameter p ?©(Φ), one proves that when
p ?©(Φ) < pc(N ), the symbol ?© dies out.

Theorem 3.5. Let Φ be a PCA with neighbourhood N , and let pc(N ) denote the critical
value of the (d + 1)-dimensional directed site percolation with neighbourhood N . If
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p ?©(Φ) < pc(N ), then the PCA Φ is uniformly ergodic, and the unique invariant measure
of Φ is spatially mixing and admits a perfect sampling algorithm.

As a consequence, we obtain the following proposition, and the two corollaries that
follow from it.

Proposition 3.6. Let F be a deterministic CA with alphabet S and neighbourhood N ,
and let θ be the transition matrix of a zero-range noise. If∑

b∈S

min
a∈S

θ(a, b) > 1− pc(N ) , (3.16)

then the noisy version of F with noise θ is uniformly ergodic. Furthermore, the unique
invariant measure in that case is spatially mixing and admits a perfect sampling algo-
rithm.

Proof. The noisy version of F with noise θ satisfies p ?© ≤ 1−
∑
b∈S mina∈S θ(a, b).

Corollary 3.7. Let F be a deterministic CA with neighbourhood N , and let θ be a
memoryless noise with error probability ε. If ε > 1− pc(N ), then the noisy version of F
with noise θ is uniformly ergodic, and has an invariant measure that is spatially mixing
and which admits a perfect sampling algorithm.

Proof. Let q be the replacement distribution of the noise so that θ(a, b) = (1− ε)δa(b) +

εq(b). Then, mina∈S θ(a, b) = εq(b) and the claim follows from Proposition 3.6.

Corollary 3.8. Let F be a deterministic CA with binary symbol set S = {0, 1} and
neighbourhood N , and let θ be a zero-range noise. If |θ(0, 1)− θ(1, 1)| < pc(N ), then the
noisy version of F with noise θ is uniformly ergodic, and has an invariant measure that
is spatially mixing and which admits a perfect sampling algorithm.

Proof. In this case, we have

1−
∑
b∈S

min
a∈S

θ(a, b) = 1−min{θ(0, 0), θ(1, 0)} −min{θ(0, 1), θ(1, 1)} (3.17)

= max{θ(0, 1), θ(1, 1)} −min{θ(0, 1), θ(1, 1)} (3.18)

= |θ(0, 1)− θ(1, 1)| , (3.19)

thus the claim follows from Proposition 3.6.

3.3 Small perturbations of nilpotent CA

A CA F is nilpotent if there is a non-negative integer N such that FN is a constant
function. Clearly, the unique value of FN has to be a configuration αZ

d

with the same
symbol α ∈ S at each site. Observe that the NEC-majority CA (Example 2.3) is not
nilpotent, for it has two distinct fixed points.

Without noise, a nilpotent CA “forgets” its initial configuration in a finite number of
steps. It is therefore hard to imagine that adding noise could keep the CA from forgetting
its initial configuration. On the other hand, the envelope PCA introduced in the previous
section is not directly applicable to prove the ergodicity of the noisy CA. Indeed, suppose
that F is nilpotent. If F itself is not a constant function, then for an ε-perturbation of
F with small ε, the value p ?© is close to 1, hence Theorem. 3.5 does not say anything
about the ergodicity of such perturbations of F . Nevertheless, the ergodicity can still be
shown using a different coupling-from-the-past argument.

Theorem 3.9. Let F be a nilpotent CA. There exists εc > 0 such that for ε < εc, every
ε-perturbation of F is uniformly ergodic. Furthermore, the unique invariant measure of
such a perturbation is spatially mixing and admits a perfect sampling algorithm.
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Proof. Let ε > 0, and let Φ be an ε-perturbation of F . We prove that if ε is small enough,
we can couple all the trajectories of Φ.

Since Φ is an ε-perturbation of F , its local rule can be written as

ϕ(a1, . . . , am)(b) = (1− ε)δf(a1,...,am)(b) + εϕ̃(a1, . . . , am)(b) (3.20)

where δf(a1,...,am) is the distribution with unit mass at f(a1, . . . , am) and ϕ̃ is another
local rule. Let f : Sm × [0, 1] → S be an update function for ϕ with the property that
f(a1, . . . , am;u) = f(a1, . . . , am) when u > ε; when u ≤ ε, the value of f(a1, . . . , am;u)

could be different from f(a1, . . . , am). Thus, if U is a random variable uniformly dis-
tributed over [0, 1], then the value f(a1, . . . , am;U) may disagree with f(a1, . . . , am) with
probability at most ε.

Let U = (Unk )k∈Zd,n∈N− be a collection of independent random samples uniformly
drawn from [0, 1]. We simulate Φ from the past using the update function f and the
samples U . Let K be a finite subset of Zd. We prove that almost surely, there exists a
time T > 0 such that the trajectories from all possible starting configurations at time
−T provide the same pattern X0

K on K at time 0. In particular, pt(Φ) → 1 as t → ∞,
and the uniform ergodicity and the spatial mixing of the invariant measure follow from
Proposition 3.3.

Let N ≥ 1 be such that FN is constant. The value of this constant has to be a
configuration αZ

d

with the same symbol α at every site. Let N denote the neighbourhood
of the local rule of F . Consider the following subset of the space-time Zd ×N−:

W , {(`,−i) : 0 ≤ i ≤ N − 1 and ` ∈ N i } . (3.21)

We say that an error has occurred at position (k,−t) if U−tk ≤ ε. Since FN is a constant
function, if the set (k,−t) +W contains no error, then we know that X−tk = α.

For k ∈ Zd and t ≥ 0, let us define the random set

E(k,−t) ,

{
{(k,−t) + (m,−N) : m ∈ NN} if (k,−t) +W contains an error,

∅ otherwise.
(3.22)

We recursively define a sequence of sets A0, A1, . . . by setting A0 , K × {0} and

Ai+1 , E(Ai) =
⋃

(k,−t)∈Ai

E(k,−t) (3.23)

for i ≥ 0. Clearly, t = iN for every (k,−t) ∈ Ai. Observe that if Ai = ∅, then running the
simulation from time −iN till 0 using the samples in U will lead to a pattern X0

K on K at
time 0 that does not depend on the choice of the configuration X−iN at time −iN (see
Fig. 4).

It remains to prove that if ε is small enough, then almost surely, there exists an
integer after which all the sets Ai are empty.

We set mi ,
∣∣N i

∣∣. If there is an error inside (k,−iN) + W , then |E(k,−iN)| = mN .
Let (`,−t) be a space-time position with t = iN + j and 0 ≤ j ≤ N − 1. Then, we have
(`,−t) ∈ (k,−iN) + W if and only if k ∈ ` − N j . Thus, the number of points (k,−iN)

such that (`,−t) is in (k,−iN) +W is bounded by mj ≤ mN−1. It follows that an error at
(`,−t) has a contribution of at most L , mN−1mN points to Ai+1.

Let M , m0 + m1 + . . . + mN−1, so that |W | = M . The number of points in⋃
(k,−iN)∈Ai

(k,−iN) + W is thus smaller than |Ai| ×M , and an error occurs at each
point independently with probability ε. Consequently, |Ai+1| is bounded by the sum of
at most |Ai| ×M independent random variables, each taking value L with probability
ε, and 0 with probability 1− ε. If ε < 1/(LM), a comparison with a branching process
shows that there is extinction: almost surely, the sets Ai are eventually empty. The claim
follows.
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t = 0

t = −N

t = −2N

t = −3N

A0 = K × {0}

A1

A2

A3 = ∅

Figure 4: Illustration of the the proof of Theorem 3.9. Errors are represented by red
dots. Blue domains represent sites that are known to be in state α (i.e., there are no
errors affecting them in the last N time steps). Black (wavy) domains represent sites for
which further information from the past might be needed to determine their states.

Let us remark that the bound given for ε in the above proof is rough and can certainly
be improved.

3.4 CA with a spreading state

Let F be a deterministic CA with symbol set S and neighbourhood N . We say that
a symbol α ∈ S is spreading under F if |N | ≥ 2 and F (x)k = α whenever xk+n = α for
some n ∈ N . By definition, a CA can have at most one spreading symbol. For comparison,
let us note that in Toom’s NEC-majority CA (Example 2.3), neither of the two symbols
0 and 1 is spreading. Here, we prove the ergodicity of perturbations of a CA with a
spreading symbol for two classes of perturbations. Another class of perturbations is
treated in Section 5.2, under the extra assumption that the alphabet is binary.

3.4.1 Memoryless noise

Consider a memoryless noise θ with error probability ε and replacement distribution q,
so that θ(a, b) = (1− ε)δa(b) + εq(b). We say that the noise is α-positive if q(α) > 0.

Theorem 3.10. Let F be a CA with spreading state α. Then, every perturbation of F by
an α-positive memoryless noise is uniformly ergodic. Furthermore, the unique invariant
measure of the perturbation is spatially mixing and admits a perfect sampling algorithm.

The proof we propose below has the same flavour as the one of Theorem 3.9 for
nilpotent CA, and uses the idea of coupling from the past. Observe however that unlike
for nilpotent CA, in some sense, the errors that are introduced here by the random noise
favour ergodicity.

Proof. Let Φ be a perturbation of F by a memoryless noise, defined by the matrix
θ(a, b) = (1− ε)δa(b) + εq(b), where ε > 0 and q(α) > 0.

Let q : [0, 1] → S be a function with the property that if U is a random variable
uniformly distributed over [0, 1], then P(q(U) = b) = q(b). We use an update function
f : Sm × [0, 1]→ S for Φ defined by

f(a1, . . . , am;u) =

{
q(u/ε) if u ≤ ε,
f(a1, . . . , am) otherwise,

(3.24)
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where f denotes the local rule of F . Observe that if U is a random variable uniformly dis-
tributed over [0, 1], then P

(
f(a1, . . . , am;U) = b

∣∣U ≤ ε) = q(b) and P
(
f(a1, . . . , am;U) =

f(a1, . . . , am)
∣∣U > ε

)
= 1.

As in the proof of Theorem 3.9, we let U = (Unk )k∈Zd,n∈N− be a collection of indepen-
dent random samples uniformly drawn from [0, 1]. We simulate Φ from the past using
the update function f and the samples U . We prove that almost surely, there exists a
time T > 0 such that the trajectories from all possible starting configurations at time −T
provide the same value X0

0 for site 0 at time 0. It follows that pt(Φ)→ 1 as t→∞, and
the uniform ergodicity of Φ and the spatial mixing of its invariant measure follow from
Proposition 3.3.

We say that an error has occurred at space-time position (k,−t) if U−tk ≤ ε. By
construction, we know that if there is an error at position (k,−t), then the value X−tk
does not depend on the past: it is only a function of U−tk .

For k ∈ Zd and t ≥ 0, let us define the set

E(k,−t) =

{
{(k +m,−t− 1) : m ∈ N} if there is no error at position (k,−t),
∅ otherwise.

(3.25)

We recursively define sets A0, A1, . . . by setting A0 , {(0, 0)} and

Ai+1 , E(Ai) =
⋃

(k,−t)∈Ai

E(k,−t) (3.26)

for i ≥ 0. The set A =
⋃
i≥0Ai can be seen as an oriented tree, that is, a directed acyclic

graph with edges from each (k,−t) ∈ A to the points of E(k,−t). Observe that a point
(k,−t) ∈ A is a leaf of the tree if and only if there is an error at position (k,−t).

Now, let us distinguish two cases (see Fig. 5):

(I) The tree A is finite. In this case, there exists an integer T ≥ 0 such that AT = ∅
(hence Ai = ∅ for all i ≥ T ), and the value X0

0 is only a function of the finite family
of samples U−tk with k ∈ N t and 0 ≤ t ≤ T − 1.

(II) The tree A is infinite. In this case, almost surely the tree contains an infinite number
of leaves. Indeed, each point (k,−t) is an error with probability ε, independently
for different points. Furthermore, conditioned on the event that (k,−t) is a leaf,
the symbol X−tk takes value α with probability q(α) > 0, independently for different
leaves. Thus, almost surely, the tree A contains at least one leave labeled by the
symbol α, at some time −T . Using the fact that α is a spreading symbol, we can
then trace the tree up to time 0 to find that X0

0 = α.

In both cases, the value X0
0 is almost surely uniquely determined by a finite number

of samples in the family U . In particular, almost surely there is a time T > 0 such that if
we simulate the PCA from time −T using the samples in U , all possible choices of the
configuration X−T lead to the same value X0

0 for site 0 at time 0.

3.4.2 Positive perturbation

In this section, we consider ε-perturbations of a CA F with spreading symbol α. Recall
that an ε-perturbation of a CA with local rule f is a PCA whose local rule ϕ satisfies
ϕ(a1, . . . , am)(f(a1, . . . , am)) ≥ 1 − ε for all a1, . . . , am ∈ S. We consider perturbations
that are α-positive, meaning that ϕ(a1, . . . , am)(α) > 0 for all a1, . . . , am ∈ S.

Theorem 3.11. Let F be a one-dimensional CA with neighbourhood N = {0, 1} and
spreading state α. There exists an εc > 0 such that for ε < εc, every α-positive ε-
perturbation of F is uniformly ergodic, with an invariant measure that is spatially mixing
and admits a perfect sampling algorithm.
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t = 0

t = −1

t = −2

t = −3

...

X0
0 X0

0 = α

α

Figure 5: Illustration of the proof of Theorem 3.10. Errors are represented by red
dots. In the first case, the tree is finite, and X0

0 is a function of the values given by the
memoryless noise q at the errors. In the second case, the tree is infinite: then it contains
an infinite number of leaves, and there is almost surely one leaf having value α, so that
X0

0 = α.

Proof. Let Φ be an α-positive ε-perturbation of F . The local rule of Φ can be written as

ϕ(a0, a1)(b) = (1− 2ε)δf(a0,a1)(b) + 2εϕ̃(a0, a1)(b) (3.27)

where f is the local rule of F and ϕ̃ is another local rule. We have used 2ε instead of
ε to make sure that ϕ̃ is also α-positive. Let δ , 2ε ·min{ϕ̃(a0, a1)(α) : a0, a1 ∈ S} and
note that δ > 0. Let f : S2 × [0, 1]→ S be an update function for ϕ with the property that
f(a0, a1;u) = f(a0, a1) when u > 2ε and f(a0, a1;u) = α when u ≤ δ.

Let U , (Uni )i∈Z,n∈Z be a collection of independent uniform samples from [0, 1]. We
use the update function f and the collection U to simulate Φ from a time far in the past.
Let Xt denote the configuration at time t.

Since α is a spreading symbol for F and at each space-time point the local rule
is applied with probability at least 1 − 2ε, the spread of α dominates an oriented site
percolation with parameter 1− 2ε. More specifically, consider the “space-time” graph
with vertex set Z × Z and oriented edges (i, n − 1) → (i, n) and (i + 1, n − 1) → (i, n)

for all i, n ∈ Z. Declare a point (i, n) open if Uni > 2ε and closed otherwise. The open
cluster of the point (0, 0) is the set C of all points (i, n) that can be reached from (0, 0)

by an oriented open path. Clearly, if X0
0 = α (in particular, if U0

0 < δ), then for every
point (i, n) in the open cluster of (0, 0), we necessarily have Xn

i = α. But even more is
true. Let Qn , {i : (i, n) ∈ C} be the set of descendants of (0, 0) at time n and denote
by Ln , inf Qn and Rn , supQn the leftmost and rightmost elements of Qn (with the
convention inf ∅ , +∞ and sup∅ , −∞). Observe that if X0

0 = α, then for every n > 0

and i with Ln ≤ i ≤ Rn, the value Xn
i is uniquely determined by the samples Umj with

0 < m ≤ n and −m ≤ j ≤ 0. Let us call the set C , {(i, n) : n > 0 and Ln ≤ i ≤ Rn} the
cone of (0, 0). The cone of a point (k, t) is defined in a similar fashion and is denoted by
C(k, t).

In order to prove ergodicity, we claim that when ε is small enough (in particular, when
2ε < (1− pc)2, where pc is the critical value for oriented bond percolation on Z×Z), the
point (0, 0) is almost surely in the cone of a point (k,−t) with U−tk < δ (see Fig. 6). This
implies that pt(Φ)→ 1 as t→∞, and the uniform ergodicity of Φ and the spatial mixing
of its invariant measure follow from Proposition 3.3.

To prove the latter claim, we invoke a result of Durrett [14, Sec. 3] on oriented
bond percolation. In the oriented bond percolation, each edge of the above-mentioned
space-time graph is declared open with probability p, independently of the other edges.
Observe that when p = 1−

√
2ε, the oriented bond percolation with parameter p and the
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t = 0

L
slope

R
slope

X−2k
k = α

X0
0

Figure 6: Illustration of the proof of Theorem. 3.11. With probability 1, the point (0, 0)

belongs to the cone of a point (k,−2k).

oriented site percolation with parameter 1− 2ε can be coupled in such a way that a point
(i, n) is open if and only if at least one of its two incoming edges are open. With such a
coupling, the open bond-cluster of (0, 0) will be included in the open site-cluster of (0, 0).
Let L , lim supn→∞ Ln/n and R , lim infn→∞Rn/n. It follows from the result of Durrett
that when p > pc, on the event that the open bond-cluster of (0, 0) is infinite, we almost
surely have L < −1/2 < R.

As a consequence, when 2ε < (1 − pc)2, there exists a value i0 > 0 such that, with
positive probability, every point (−i, 2i) with i ≥ i0 is in the cone of (0, 0). Observe that
the cone of (0, 0) is independent of the variable U0

0 . Therefore, with positive probability,
U0

0 < δ and every point (−i, 2i) with i ≥ i0 is in the cone of (0, 0). Let E(k, t) denote the
event that U tk < δ and every point (k − i, t+ 2i) with i ≥ i0 is in the cone of (k, t). Since
the process (Uni )i∈Z,n∈Z is ergodic with respect to the shift along (−1, 2), we find that
with probability 1, the events E(k,−2k) occur for infinitely many k > 0. In particular,
almost surely, there exists a point (k,−2k) with k ≥ i0 for which U−2k

k < δ and the cone
of (k,−2k) includes (0, 0). This concludes the proof.

The assumption N = {0, 1} is not essential, and the proof can be extended to the
case where N = {`, `+ 1, . . . , r} is an interval in Z. Extending the result to more general
neighbourhoods would require additional technical details.

3.5 Interacting gliders with birth-death noise

3.5.1 Gliders with annihilation

A gliders CA is a deterministic CA describing the movement of particles of different types
according to given velocities. More specifically, a gliders CA with N ≥ 1 particle types
and particle velocities v1, . . . , vN ∈ Zd is a CA G with alphabet S , {0, 1}N defined by

(Gx)k,i , xk+vi,i (3.28)

for every x ∈ SZd

, k ∈ Zd and i ∈ {1, . . . , N}. Here, xk,i denotes the ith component of
the symbol at site k in x, and xk,i = 1 indicates the presence of a particle of type i at site
k. Thus, G simply shifts the particles of type 1 with vector v1, the particles of type 2 with
vector v2 and so forth. The neighbourhood of G is clearly NG , {v1, . . . , vN}.
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For i ∈ {1, . . . , N}, let ei ∈ {0, 1}N denote the symbol representing the presence of a
particle of type i and absence of all the other types of particles, that is, (ei)j , 1i(j). An
elementary annihilation rule is a function hi,j : S → S defined by

hi,j(a) ,

{
a− ei − ej if ai = aj = 1,

a otherwise.
(3.29)

An annihilation rule is a composition h , hin,jn ◦ · · · ◦ hi1,j1 of elementary annihilation
rules. Observe that elementary annihilation rules may not commute. An annihilation
CA is a CA A with neighbourhood NA , {0} whose local rule is an annihilation rule. A
gliders with annihilation is a composition F , A ◦G of a gliders CA G followed by an
annihilation CA A. In words, a gliders with annihilation represents the movement of
N types of particles where certain pairs of particles annihilate upon encounter at the
same position. Note that, due to the discrete nature of time, particles moving in opposite
directions can possibly pass each other without encountering at the same position.

Recall that a birth-death noise on S = {0, 1}N is a zero-range noise under which
particles of different type appear and disappear independently from one another. The
matrix of a birth-death noise can therefore be written as

θ(a, b) ,
n∏
i=1

θi(ai, bi) . (3.30)

Each matrix θi has the form

θi =

(
1− βi βi
δi 1− δj

)
, (3.31)

where βi ∈ [0, 1] and δi ∈ [0, 1] respectively represent the birth rate and death rate of
particles of type i. A birth-death noise is positive if βi, δi ∈ (0, 1) for each i ∈ {1, . . . , N}.

t = 0

Figure 7: Examples of space-time diagrams of a gliders with annihilation (left) and of
a gliders with annihilation subject to noise (right). In these examples, there are three
types of particles: blue (zigzag) particles have speed −1, green (wavy) particles have
speed 1, and red ones have speeds 2. Red and green particle do not interact, while red
and blue particles annihilate upon meeting, and so do green and blue.

Theorem 3.12. Let F , A ◦ G be a gliders with annihilation, and let θ be a positive
birth-death noise. The noisy version of F with noise θ is uniformly ergodic, with a
spatially mixing invariant measure.
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Proof. We couple the action of the noise θ on two configurations x and y in the following
manner. For each site k ∈ Z and each i ∈ {1, . . . , N}, we draw independently a random
number Uk,i, uniformly distributed on [0, 1]. We update x and y using the same samples,
and according to the following rule:

• if xk,i = 0 (resp. yk,i = 0) and 1 − βi ≤ Uk,i ≤ 1, we add a particle of type i at
position k in configuration x (resp. in y),

• if xk,i = 1 (resp. yk,i = 1) and 0 ≤ Uk,i ≤ δi, we remove the particle of type i at
position k in configuration x (resp. in y),

• otherwise, xk,i (resp. yk,i) remains unchanged.

Let us first assume that δi < 1− βi. Then, if Uk,i ∈ [0, δi], whatever the values of xk,i
and yk,i are, we know that after the update, there is no particle of type i at position
k in either configuration. On the other hand, if Uk,i ∈ [1 − βi, 1], we know that after
the update, there is a particle of type i at position k in both configurations. Thus, if
Uk,i ∈ [0, δi] ∪ [1 − βi, 1], then the two updated configurations coincide at component
i of position k. If we now assume that δi > 1 − βi, we can check in the same fashion
that if Uk,i ∈ [0, 1 − βi] ∪ [δi, 1], the two updated configurations coincide at component
i of position k. This shows that in all cases, after the action of the noise, the two
configurations coincide at component i of position k with probability at least εi ,
min{βi + δi, 2− (βi + δi)} > 0.

Let us make a coupling (Xt, Y t)t≥0 of the PCA recursively as follows. Let U ,
(U tk,i)k∈Zd,1≤i≤N,t∈N be a collection of independent random samples uniformly drawn

from [0, 1]. Starting with arbitrary configurations X0 , x0 and Y 0 , y0, at each time step,
we first apply the deterministic CA F = A ◦G and then perturb the two configurations
with the noise, using the random samples in U and the coupling strategy sketched above.

We say that two configurations x and y have a disagreement of type i at position k if
xk,i 6= yk,i. For a finite subset K ⊂ Zd, let DK(x, y) =

∑
k∈K ‖xk − yk‖1 be the number of

disagreements between x and y in K. Note that DK(x, y) ≤ N · |K|.
In the two configurations G(x) and G(y), there can be a disagreement G(x)k,i 6=

G(y)k,i of type i at position k if and only if xk+vi,i 6= yk+vi,i. Let us recall that G has
neighbourhood NG , {v1, . . . , vN}. It follows that DK

(
G(x), G(y)

)
≤ DK+NG

(x, y). Next,
observe that the action of the annihilating rule A does not increase the number of
disagreements. Indeed, when applying an annihilation rule Ai,j at position k,

• if there is no disagreement of types i and j, then after the action of the annihilation
rule, there is still no disagreement,

• if exactly one of the two components i and j contains a disagreement, then in
the updated configuration, still exactly one of the two components contains a
disagreement,

• if there are two disagreements of types i and j, then in the updated configuration,
there are either no disagreement (if there were particles both types in one of the
configuration, and none in the other) or still two disagreements (if one configuration
has only a particle of type i and the other only a particle of type j).

The other components are not affected by the annihilation rule. Combining the effects of
the glider G and the annihilation A, we find that

DK

(
F (x), F (y)

)
≤ DK+NG

(x, y) (3.32)

for each two configurations x and y.
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Applying the noise, the expected number of disagreements decreases by a factor at
least 1− ε, where ε , mini∈{1,...,N} εi. It follows that

E
[
DK(Xt+1, Y t+1)

∣∣Xt, Y t
]
≤ (1− ε)DK+NG

(Xt, Y t) , (3.33)

and thus

E
[
DK(Xt+1, Y t+1)

]
≤ (1− ε)E

[
DK+NG

(Xt, Y t)
]
, (3.34)

Consequently, for every k ∈ Zd and t ≥ 0, we have

E
[
D{k}(X

t, Y t)
]
≤ (1− ε)tDk+N t

G
(x0, y0) . (3.35)

Let r = maxi∈{1,...,N} |vi| be the neighbourhood radius of G. The cardinality of the set
N t
G is bounded by (2rt+ 1)d. Thus, we obtain

E
[
D{k}(X

t, Y t)
]
≤ (1− ε)t(2rt+ 1)dN , (3.36)

It follows that P(Xt
k 6= Y tk )→ 0 as t→∞, uniformly in the position k and the choice of

the initial configurations x0 and y0. The uniform ergodicity of the PCA and the spatial
mixing of its unique invariant measure follow from Proposition 3.2.

Remark 3.13. Let us highlight the essence of the above argument.

• We have a discrepancy function δ : S × S → R+ with the property that

δ(a, b) = 0 if and only if a = b. (3.37)

For a finite set K ⊂ Z and two configurations x, y, we define DK(x, y) ,
∑
i∈K

δ(xi, yi).

• We have a CA F that is almost contractive, meaning that

DK(Fx, Fy) ≤ DK+N (x, y) (3.38)

for all x, y ∈ SZd

and K ⊂ Zd.

• We have a zero-range noise, identified by a matrix θ, that is contractive in the sense
that there exists an ε > 0 with the following property: for every a, b ∈ S, there is a
coupling (U, V ) of θ(a, ·) and θ(b, ·) such that E[δ(U, V )] ≤ (1− ε)δ(a, b).

If all these conditions are fulfilled, then the argument above shows that the noisy
version of F with noise θ is uniformly ergodic. For instance, the uniform ergodicity of
Theorem 3.12 persists if we replace the annihilation rule with any other interaction rule
h : S → S satisfying ‖h(b)− h(a)‖1 ≤ ‖b− a‖1.

In the next section, we show how the coupling presented in the proof of Theorem 3.12
can be used to prove the ergodicity of another type of gliders with noise, even in a case
where the approach via discrepancy functions is not sufficient. 3

3.5.2 Simple gliders with reflecting walls

Let us consider a one-dimensional gliders CA G with three types of particles:

• particles of type ‘W’ have velocity 0; they play the role of walls,

• particles of type ‘R’ have velocity 1; they move one unit to the right at each time
step,
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• particles of type ‘L’ have velocity −1; they move one unit to the left at each time
step.

The set of symbols is thus S = {0, 1}3 and the neighbourhood is N = {−1, 0, 1}. We keep
the same notations as in the previous section: for x ∈ SZ, k ∈ Z and i ∈ {W, R, L}, xk,i = 1

means that in x, there is a particle of type i at position k.

We combine G with a reflection rule I modeling the reflection of left and right
particles on walls (see Fig. 8). The reflection rule I is the CA of neighbourhood {0}
defined on the same configuration space SZ by

I(x)k =



[
1
0
1

]
if xk =

[
1
1
0

]
,[

1
1
0

]
if xk =

[
1
0
1

]
,

xk otherwise,

(3.39)

for each x ∈ SZ and k ∈ Z. We call the composition I ◦G the (one-dimensional) gliders
with reflecting walls.

As in the previous section, we consider a birth-death noise θ, defined by some
parameters βW, βR, βL ∈ [0, 1] and δW, δR, δL ∈ [0, 1] respectively representing the birth and
death rates of the three types of particles.

t = 0

Figure 8: Example of space-time diagram of a noisy gliders with reflecting walls.

Theorem 3.14. Let F = I ◦G be the gliders with reflecting walls, and let θ be a positive
birth-death noise. The noisy version of F with noise θ is uniformly ergodic, with an
invariant measure that is spatially mixing and admits a perfect sampling algorithm.

Proof. We couple the action of the noise on configurations in the same manner as in the
proof of Theorem 3.12. However, unlike in the previous result, we couple the PCA from
the past.

To be more specific, we use an update function of the form n : S × [0, 1]3 → S for the
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noise θ, where

n(a;u)i ,


1 if ai = 0 and 1− βi ≤ ui ≤ 1,

0 if ai = 1 and 0 ≤ ui ≤ δi,
ai otherwise,

(3.40)

for each a ∈ S, u ∈ [0, 1]3 and i ∈ {W, R, L}. If U is uniformly drawn from [0, 1]3, then for
every a ∈ S, the value n(a, U) is distributed according to θ(a, ·).

We use a family of independent samples (Unk )k∈Z,n∈N− uniformly drawn from [0, 1]3

to simulate the PCA from the past. To determine Xn, we first apply the CA F on Xn−1

and then update the value at each site k using the update function n and the sample Unk .
First, observe that the evolution of the walls at different sites are independent and

are not affected by the other types of particles. Namely, walls have velocity 0 and are not
affected by the reflection rule, and moreover, the noise is zero-range and acts on walls
independently of the other two types of particles. It follows that the presence or absence
of a wall at position 0 and time 0 is almost surely uniquely determined by a finite (though
random) number of samples Um0,W with m ≤ 0.

We claim that the presence of left- or right-moving particles at position 0 and time 0 is
also almost surely a function of a finite number of random samples Umk . In order to know
if there is a right-moving particle at position 0 and time 0, we trace back the possible
trajectory of the particle in time. Each time we take a step back, we first determine
the presence or absence of a wall at the current position so as to know whether the
particle has changed direction or not. The potential ancestor at time −t can either be
a right-moving particle or a left-moving particle, depending on whether the backward
trajectory has met an even or odd number of walls.

Let εR = min{βR + δR, 2 − (βR + δR)} and εL = min{βL + δL, 2 − (βL + δL)} and set
ε , min{εR, εL} > 0. When tracing back the trajectory of a potential right-moving
particle, at each step, we have a probability at least ε of learning whether there is
indeed an ancestor particle or not. Therefore, almost surely, we eventually learn about
the presence or absence of an ancestor. If so, when going up again in time, we can
determine whether there is a right-moving particle at position 0 and time 0 or not. In the
same fashion, we can almost surely determine the presence or absence of a left-moving
particle at position 0 and time 0 by exploring a finite part of the samples in U .

It follows that pt → 1 as t→∞, and Proposition 3.3 concludes the proof.

Remark 3.15. The two-dimensional version of gliders with reflecting walls is often
called the mirror model (or the discrete Lorentz gas model) [53]. In the mirror model,
mirrors are placed at some sites of the lattice Z2 in either of the two diagonal directions.
Particles (or beams of light) travel with speed 1 vertically or horizontally and are reflected
upon hitting the mirrors. A similar argument as above shows the ergodicity of the mirror
model in presence of positive birth-death noise. 3

3.6 Permutive CA with permutation noise

In this section, the kind of coupling is quite different, since it involves only finite
Markov chains: for permutive CA with permutation noise, it is indeed possible to couple
the evolution of all trajectories in any finite window. For the simplicity of the presentation,
we focus on the one-dimensional setting. Analogous results can be obtained in higher
dimensions.

Let F be a CA of neighbourhood N = {`, `+ 1, . . . , r} and local function f : Sm → S,
with m = r − ` + 1 ≥ 2. We say that F is left-permutive (resp. right-permutive) if, for
all w ∈ Sm−1, the mapping τw : S → S given by τw(a) , f(aw) (resp., τw(a) , f(wa)) is
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bijective. A CA is permutive if it is either left- or right-permutive; it is bipermutive if it is
both left- and right-permutive. For example, when S is the ring Zn of integers modulo
n, the affine CA defined by f(x, y) , ax+ by + c for a, b, c ∈ Zn is left-permutive (resp.,
right-permutive) if a (resp. b) is invertible in Zn.

Let F be a permutive CA. Using the bijections τw one can prove that F is surjective.
Every surjective CA with configuration space X preserves the uniform Bernoulli measure
λ on X (see e.g. [38, Thm. 5.21]). The next proposition shows that when a permutive CA
is subjected to a zero-range noise that preserves λ, the resulting PCA indeed converges
to λ. The proof below is adapted from a work of Vasilyev [59, 58]. An alternative proof
(for additive noise) is provided at the end of Section 4.4.

Theorem 3.16. Every PCA resulting from adding positive permutation noise to a permu-
tive CA is uniformly ergodic with the uniform Bernoulli measure as its unique invariant
measure.

Proof. Let F be a permutive CA with local rule f , and Θ a permutation noise with noise
matrix θ. Let Φ denote the resulting noisy CA. We will prove that for every n ∈ N and
every initial measure µ on X , the marginal distribution of µΦt on K = {−n,−n+1, . . . , n}
converges exponentially to the uniform Bernoulli distribution on SK , which we denote
by λK . More specifically, we will prove that for each n ∈ N, there exists a real number
ρ < 1 such that for every µ ∈M (X ) and each t ∈ N, we have ‖µΦt − λ‖K ≤ ρt, where as
before, ‖ν′ − ν‖K denotes the total variation distance between the marginal distributions
of ν and ν′ on K.

Let us first assume that F is left-permutive with neighbourhood N = {0, 1, . . . , r}. By

permutivity of F , for every w ∈ Sr we have a bijection τ (K)
w : SK → SK given by

τ (K)
w (x) , f (K)(xw) , (3.41)

where f (K) denotes the map SN (K) → SK induced by the local rule f .
When fixing the word w as a boundary condition on the right of K, the PCA Φ

transforms a word x in SK to a random word Z in SK distributed according to a product
distribution with marginal distribution θ(yk, ·) at site k ∈ K, where y = τ

(K)
w (x). We

denote by Pw(x, z) the probability that x ∈ SK is transformed into z ∈ SK , that is,
Pw(x, z) =

∏
k∈K θ(yk, zk).

Since the map τ
(K)
w is bijective, it preserves the uniform distribution λK . By as-

sumption, the noise matrix θ also preserves the uniform distribution on S, so we obtain
λKPw = λK .

For each w ∈ Sr, the matrix Pw is a positive stochastic matrix. Therefore, there exists
ρw < 1 such that for every two probability distributions q, q′ on SK , we have

‖q′Pw − qPw‖TV ≤ ρw ‖q
′ − q‖TV , (3.42)

where ‖q′ − q‖TV denotes the total variation distance between q and q′. Let us set
ρ , max{ρw ; w ∈ Sr}. It follows that for any sequence (wt)t≥0 of words of Sr, we have

‖q′Pw0Pw1 · · ·Pwt−1 − qPw0Pw1 · · ·Pwt−1‖TV ≤ ρ
t ‖q′ − q‖TV . (3.43)

In particular, for q′ = λK , we obtain that for every distribution q on SK and every
sequence (wt)t≥0 of words in Sr, ‖qPw0Pw1 · · ·Pwt−1 − λK‖TV ≤ ρt ‖q − λK‖TV ≤ ρt.

Let now µ be a distribution on X . When iterating Φ, it induces a random sequence of
words (W t)t≥0 on {n+ 1, . . . , n+ r}. Conditioning on this sequence and using the above
inequality, we get∥∥µΦt − λ

∥∥
K
≤ max
w0,...,wt−1∈Sr

‖µKPw0Pw1 · · ·Pwt−1 − λK‖TV ≤ ρ
t (3.44)

EJP 24 (2019), paper 41.
Page 28/44

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP297
http://www.imstat.org/ejp/


Ergodicity of noisy cellular automata

t = 0 w0

t = 1 w1

t = 2 w2

t = 3 w3

U0 ∼ q
U1 ∼ qPw0

U2 ∼ qPw0Pw1

U3 ∼ qPw0Pw1Pw2

−n +n n+ r

Figure 9: Illustration of the proof of Theorem 3.16.

for every t ∈ N (see Fig. 9).

If the neighbourhood of F is not of the form N = {0, 1, . . . , r}, then there exists
a number s ∈ Z such that F ◦ σs is a left-permutive CA having a neighbourhood of
that form. If we denote the noisy version of F ◦ σs by Φs, the above inequality yields
‖µ′Φts − λ‖K ≤ ρt for every distribution µ′, in particular, for µ′ , σ−stµ. With this
choice, µ′Φts = µΦt and we obtain ‖µΦt − λ‖K ≤ ρt, which concludes the proof. The
right-permutive case is analogous.

4 Entropy method: surjective CA with additive noise

The purpose of this section is to prove that under the action of a surjective CA
perturbed by positive additive noise, every shift-invariant probability measure is attracted
towards the uniform Bernoulli measure. This does not settle the ergodicity question
because we do not know if other non-shift-invariant measures are attracted towards
the same measure, and we do not know if the uniform Bernoulli measure is the only
invariant measure.

The idea of the proof is as follows: we know that a surjective CA preserves the
entropy per site of shift-invariant probability measures. On the other hand, positive
additive noise increases the entropy unless the measure has maximal entropy. Combining
these two, we get that a surjective CA followed by positive additive noise increases the
entropy unless the measure has maximal entropy. This however is not quite enough
to prove convergence to the measure of maximal entropy because entropy per site is
not a continuous function of the measure and hence cannot serve as a simple Lyapunov
function; we need to control how much the entropy increases.

The analysis of finite-state Markov chains via entropy is classic and goes back to
the ideas of Boltzmann (see e.g. [49, Sec. II.7] or [40, Sec. II.4]). The use of entropy
to describe the asymptotic behaviour of continuous-time interacting particle systems
was pioneered by Holley [29, 40] and has been very successful. For applications of the
entropy method to PCA see [36, 62, 12].

In this section, we prove the following result.

Theorem 4.1. Let Φ be a PCA on configuration space X obtained by perturbing a
surjective CA with a positive additive noise. Then, the uniform Bernoulli measure λ on X
is invariant under Φ and µΦt → λ weakly as t→∞ for every shift-invariant measure µ
on X .

Before entering the proof, let us note that the NEC-majority CA of Example 2.3 is
not surjective. The non-surjectivity in that example follows easily from the Garden-of-
Eden theorem, which is discussed below in the proof of Lemma 4.2. For a more direct
argument, one can verify that, for instance, any configuration that has an occurrence of
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the pattern

1 0 0 0

0 0 0 0

1 1 0 0

0 1 0 1

(4.1)

has no pre-image under the NEC-majority CA.
For clarity, we present the proof of Theorem 4.1 in the one-dimensional setting, but

everything goes through similarly in the higher-dimensional case. The notion of additive
noise requires that the set of symbols for the PCA is identified with a finite Abelian group.
This identification is however arbitrary. In fact, the theorem remains true if the additive
noise is replaced with any positive permutation noise. We stick to the additive noise to
keep the presentation simple. At the end of this section, we also use the entropy method
to give an alternate proof of Theorem 3.16 in case of additive noise.

4.1 Entropy

Let us fix the notation and terminology for entropy. The entropy of a random variable
A taking values from a finite set Σ will be denoted by

H(A) , −
∑
a∈Σ

P(A = a) logP(A = a) . (4.2)

We recall that H(A) ≤ log |Σ| and the equality holds if and only if A is uniformly dis-
tributed over Σ. If B is another random variable on the same probability space, we
write

Ĥ(A |B) , −
∑
a∈Σ

P(A = a |B) logP(A = a |B) (4.3)

for the entropy of the conditional distribution of A given B. Note that this is a random
variable, and is not the same as the usual notion of conditional entropy which is a number.
The usual conditional entropy of A given B is given by

H(A |B) , E
[
Ĥ(A |B)

]
. (4.4)

Entropies satisfy the chain rule H(A,B) = H(B) + H(A |B), where H(A,B) denotes
the entropy of the pair (A,B). As a consequence, if a random variable B , g(A) is a
function of another random variable A, then H(A) = H(B) + H(A |B) ≥ H(B). The
mutual information

I(A;B) , H(A)−H(A |B) = H(B)−H(B |A) (4.5)

between two random variables A and B is always non-negative and takes value 0 if and
only if the two variables are independent.

The entropy per site of a shift-invariant probability measure µ refers to the limit

h(µ) , lim
n→∞

H
(
X[−n,n]

)
2n+ 1

, (4.6)

where X is a (one-dimensional) random configuration with distribution µ. Among the
shift-invariant measures on X , SZ, the uniform Bernoulli measure is the unique
measure with maximum entropy per site h , log |S|.

For background on the entropy, we refer to the book of Cover and Thomas [11] in the
context of information theory and to the book of Denker, Grillenberger and Sigmund [13]
in the context of dynamical systems.
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4.2 The effect of a surjective CA on entropy

We start by looking at how a surjective CA affects the entropy of a finite region.

Lemma 4.2. Let F be a one-dimensional surjective CA. There is a constant c > 0 such
that for every random configuration X and every finite interval J ⊆ Z, we have

H
(
(FX)J

)
≥ H(XJ)− c . (4.7)

Proof. Without loss of generality, we may assume that the neighbourhood of the local rule
of F is of the form N , {−r,−r + 1, . . . , r}. We write ∂N (J) , N (J) \ J for the external
boundary of a set J ⊆ Z with respect to N . Similarly, we write ∂N 2(J) , N 2(J) \ J .

Let x ∈ X be an arbitrary configuration. For an interval J , the pattern (F (x))J is
uniquely determined by the patterns xJ and x∂N (J). Conversely, since by the Garden-
of-Eden theorem (see e.g. [7, Theorem 5.3.1]), every surjective CA is pre-injective, the
pattern xJ is uniquely determined by the patterns (F (x))J , (F (x))∂N (J) and x∂N 2(J).

To see the latter, let y be any configuration such that yJ 6= xJ and y∂N 2(J) = x∂N 2(J).
Define a configuration y′ that agrees with y on N 2(J) and with x outside J . Then x

and y′ are asymptotic to each other. Since x and y disagree on J , so do x and y′. By
pre-injectivity, F (x) and F (y′) must be different from each other. Since x and y′ disagree
only on J , F (x) and F (y′) can only disagree on N (J). On the other hand, F (y) and F (y′)

agree on N (J). Therefore, F (x) and F (y) must disagree on N (J) = J ∪ ∂N (J).
Now consider the random configuration X. Since XJ is uniquely determined by

(FX)J , (FX)∂N (J) and X∂N 2(J), we have the inequality

H(XJ) ≤ H
(
(FX)J , (FX)∂N (J), X∂N 2(J)

)
(4.8)

= H ((FX)J) +H
(
(FX)∂N (J), X∂N 2(J) | (FX)J

)
(4.9)

for the entropy. Since |∂N (J)| = 2r and
∣∣∂N 2(J)

∣∣ = 4r, the second term on the right-hand
side is bounded from above by 6r log |S|. Therefore,

H((FX)J) ≥ H(XJ)− c (4.10)

with c , 6r log |S|.

Remark 4.3. The same argument is used in [35] to show that h(Fµ) = h(µ) for every
shift-invariant measure µ on X . Indeed, for a random configuration X with distribution
µ one has

h(µ) = lim
n→∞

H
(
X[−n,n]

)
2n+ 1

≤ lim
n→∞

H
(
(FX)[−n,n]

)
+ c

2n+ 1
= h(Fµ) . (4.11)

The opposite inequality is true in general. 3

4.3 The effect of noise on entropy

Lemma 4.2 says that a one-dimensional surjective CA reduces the entropy of a finite
window by at most a constant c, uniformly on the size of the window. We now show that if
the window is large, the extra entropy added by the noise is large enough to compensate
the lost entropy, at least if the entropy of the window is not too close to maximal. We
divide the argument into a few lemmas.

Recall that in order to describe an additive noise, we identify the alphabet S with a
finite Abelian group (G,+). Under an additive noise, each symbol a is replaced with a
symbol a + N , where N is G-valued random variable. The noise variables at different
sites are independent and all have distribution q. We are assuming that the noise is
positive, hence q(b) > 0 for each b ∈ S. We denote by h , log |S| the maximum possible
entropy carried by a single site.
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Lemma 4.4. For every ε > 0, there is a δ(ε) > 0 with the following property. If A and N
are independent G-valued random variables and N is distributed according to q, then

H(A) ≤ h− ε =⇒ H(A+N) ≥ H(A) + δ(ε) . (4.12)

The inequality H(A+N) ≥ H(A) holds in general as long as A and N are independent.

Proof. The entropy of a G-valued random variable A and its noisy version A+N (where
N is independent of A) are related in the following way:

H(N,A+N) = H(N) +H(A+N |N) , (4.13)

H(N,A+N) = H(A+N) +H(N |A+N) . (4.14)

Since A and N are independent, we have H(A+N |N) = H(A). It follows that

H(A+N) = H(A) +H(N)−H(N |A+N)︸ ︷︷ ︸
I(N ;A+N)

. (4.15)

The mutual information I(N ;A+N) is non-negative and takes value 0 if and only if N
and A+N are independent, which happens if and only if A is uniform on G, that is to
say H(A) = h.

The claim follows from the continuity of entropy and convolution and the compactness
of the set of probability measures on G.

Lemma 4.5. For every ε > 0, there is a ρ(ε) > 0 with the following property. Let A and
N be G-valued random variables and C another random variable. Suppose that N is
distributed according to q, and is independent of A and C. Then,

H(A |C) ≤ h− ε =⇒ H(A+N |C) ≥ H(A |C) + ρ(ε) . (4.16)

The inequality H(A + N |C) ≥ H(A |C) holds in general as long as A and N are inde-
pendent conditioned on C.

Proof. For each ε > 0, denote δ(ε) the number whose existence is guaranteed by
Lemma 4.4. Lemma 4.4 immediately gives a corresponding almost sure statement
about the entropy of conditional distributions Ĥ(A |C) and Ĥ(A+N |C). Namely, if con-
ditioned on C, the random variables A and N are independent and N has distribution q,
then

Ĥ(A |C) ≤ h− ε =⇒ Ĥ(A+N |C)− Ĥ(A |C) ≥ δ(ε) (4.17)

with probability 1. (In the proof of Theorem 4.1, we will only need Lemma 4.5 in situations
where C is a discrete variable and the conditional distributions are elementary.)

Now, suppose that

E
[
Ĥ(A |C)

]
= H(A |C) ≤ h− ε . (4.18)

Using Markov’s inequality, we get

P
(
Ĥ(A |C) ≥ h− ε/2

)
≤
E
[
Ĥ(A |C)

]
h− ε/2

≤ h− ε
h− ε/2

< 1 . (4.19)

Therefore,

P
(
Ĥ(A |C) < h− ε/2

)
≥

ε/2

h− ε/2
> 0 , (4.20)
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that is, with probability at least ε/(2h − ε), we have Ĥ(A |C) < h − ε/2. Hence, with
probability at least ε/(2h− ε), we have

Ĥ(A+N |C)− Ĥ(A |C) ≥ δ(ε/2) > 0 . (4.21)

Taking expectation and using the non-negativity of Ĥ(A+N |C)− Ĥ(A |C), we get

H(A+N |C)−H(A |C) ≥ ε

2h− ε
δ(ε/2) > 0 , (4.22)

which proves the claim with ρ(ε) , [ε/(2h− ε)]δ(ε/2).

Lemma 4.6. Let s > 0. For every ε > 0, there exists an integer n0 > 0 such that for
all n ≥ n0, if A1, A2, . . . , An are G-valued random variables and N1, N2, . . . , Nn are i.i.d.
G-valued random variables with distribution q and independent of A1, A2, . . . , An, then

H(A) ≤ n(h− ε) =⇒ H(A+N) ≥ H(A) + s , (4.23)

where A , (A1, A2, . . . , An) and N , (N1, N2, . . . , Nn) for brevity. The inequality H(A+

N) ≥ H(A) holds in general as long as A and N are independent.

Proof. We have

H(A1, A2) = H(A1) +H(A2 |A1) , (4.24)

H(A1 +N1, A2 +N2) = H(A1 +N1) +H(A2 +N2 |A1 +N1) . (4.25)

Since conditioning on more information does not increase the entropy, we have

H(A2 +N2 |A1 +N1) ≥ H(A2 +N2 |A1, N1) = H(A2 +N2 |A1) (4.26)

where the last equality is by the independence of N1 and A2 +N2. In a similar fashion,
we obtain

H(A) = H(A1) +H(A2 |A1) + · · ·+H(An |A1, . . . , An−1) (4.27)

H(A+N) ≥ H(A1 +N1) +H(A2 +N2 |A1) + · · ·
+H(An +Nn |A1, . . . , An−1) . (4.28)

Hence,

H(A+N)−H(A) ≥
n∑
i=1

[
H(Ai +Ni |A1, . . . , Ai−1)−H(Ai |A1, . . . , Ai−1)

]
. (4.29)

Choose k large enough so that kρ(ε/2) ≥ s, where ρ(·) is as in Lemma 4.5. Take n0

large enough so that (ε/2)n0 ≥ (k−1)
(
h−ε/2

)
. Let n ≥ n0 and assume thatH(A) ≤ n(h−ε).

By the pigeonhole principle, there must be k distinct indices 1 ≤ i1, i2, . . . , ik ≤ n such
that

H(Ai` |A1, . . . , Ai`−1) ≤ h− ε/2 . (4.30)

Indeed, if this is not the case, there can exist at most k − 1 indices i ∈ {1, 2, . . . , n} for
which H(Ai |A1, . . . , Ai−1) ≤ h− ε/2, hence

H(A) =

n∑
i=1

H(Ai |A1, . . . , Ai−1) > (n− k + 1)
(
h− ε/2

)
(4.31)

≥ n(h− ε) + (ε/2)n− (k − 1)
(
h− ε/2

)
(4.32)

≥ n(h− ε) , (4.33)
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which contradicts the assumption H(A) ≤ n(h− ε).
By Lemma 4.5, for each of these k indices we have

H(Ai` +Ni` |A1, . . . , Ai`−1)−H(Ai` |A1, . . . , Ai`−1) ≥ ρ(ε/2). (4.34)

Since all the other terms in (4.29) are non-negative, we get

H(A+N)−H(A) ≥ kρ(ε/2) ≥ s . (4.35)

4.4 Proof of Theorem 4.1

Proof of Theorem 4.1. For clarity, we focus on the one-dimensional case. See Remark 4.7
for the general case.

Let π be an accumulation point of the measure orbit µ→ µΦ→ µΦt → · · · starting
from a shift-invariant measure µ. We show that π is the uniform Bernoulli measure. In
order to do that, we show that h(π) ≥ h − ε for every ε > 0, and use the fact that the
uniform Bernoulli measure is the only shift-invariant measure with entropy h.

To be specific, let us use the following construction of a trajectory of the noisy CA with
initial distribution µ. Let X(0) be a configuration with distribution µ. Let Z(1), Z(2), . . . be
a sequence of independent random configurations independent of X(0), each distributed
according to the product measure with marginal q at each site. ConstructX(t) recursively
by setting X(t+1) , FX(t) + Z(t+1).

By Lemma 4.2, for every finite interval J ⊆ Z and every t ∈ N, we have

H
(

(FX(t))J

)
≥ H(X

(t)
J )− c . (4.36)

Let ε > 0. By Lemma 4.6, there is an n0 > 0 (corresponding to s← 2c and ε) such that
for every finite interval J ⊆ Z of size at least n0 and every t ∈ N, either

H
(
X

(t+1)
J

)
≥ H

(
(FX(t))J

)
> |J | (h− ε) (4.37)

or

H
(
X

(t+1)
J

)
≥ H

(
(FX(t))J

)
+ 2c ≥ H(X

(t)
J ) + c . (4.38)

It follows that for every t ≥ (|J | · h)/c,

H
(
X

(t)
J

)
> |J | (h− ε)− c , (4.39)

provided |J | ≥ n0. Indeed, observe that once (4.39) is satisfied for some t = t0, it remains
satisfied for all t ≥ t0. On the other hand, within

⌈
(|J | · h)/c

⌉
steps, inequality (4.37) is

bound to be satisfied at least once. Letting |J | → ∞, we get

h(π) ≥ lim
|J|→∞

lim inf
t→∞

H(X
(t)
J )

|J |
≥ lim
|J|→∞

|J | (h− ε)− c
|J |

= h− ε . (4.40)

Since ε > 0 is arbitrary, the claim follows.

Remark 4.7. For a d-dimensional surjective CA, Lemma 4.2 remains true except that
rather than a constant c, we need a function c(J) that is o(|J |) (for hypercubic J) as
|J | → ∞. More specifically, with N , [−r, r]d ∩ Zd, the statement holds for c(J) ,(
|∂N (J)|+

∣∣∂N 2(J)
∣∣) log |S|. The rest of the argument goes through in the same fashion.

In fact, the theorem remains true if the lattice Zd is replaced with a countable amenable
group. 3
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Remark 4.8. The proof of Theorem 4.1 can be adapted to encompass the broader
scenario in which the noise is a (positive) permutation noise. Indeed, Lemma 4.4 remains
true if the noise variable N is a random permutation chosen according to a distribution q
and the sum A+N is replaced with the application N(A), provided that the distribution q
has the property that for every a, a′ ∈ S, there is a permutation ς ∈ Sym(S) with q(ς) > 0

such that ς(a′) = a. The latter condition is easily seen to be equivalent to the condition
that the noise is positive. The adapted variants of Lemmas 4.5 and 4.6 and the rest of
the proof then follow similarly. 3

Remark 4.9. Applying the argument of Theorem 4.1 to non-shift-invariant measures,
we still get a weaker statement: every accumulation point of the orbit of the noisy CA
has well-defined uniform entropy per site h. More specifically, let Γ0 denote the set
of probability measures on X (not necessarily shift-invariant) that have well-defined
uniform entropy per site h, that is, the measures µ for which the limit

h̆(µ) , lim
|J|→∞

H(XJ)

|J |
(4.41)

(for a random configuration X ∼ µ) exists and equals h. The limit is taken over intervals.
The argument of Theorem 4.1 shows that the iterates of the noisy CA Φ on any probability
measure µ converge weakly to the set Γ0. 3

Let us conclude this section by giving an alternate proof of Theorem 3.16 in case the
noise is additive. For permutive CA under positive additive noise, the entropy argument
can be easily formulated in terms of conditional entropy, hence providing convergence
for every (not necessarily shift-invariant) measure. The argument is however not en-
tirely different from the Markov chain proof given in Section 3.6; the Markov chain
interpretation is implicit in the following proof.

Alternate proof of Theorem 3.16 with additive noise. Let F be a right-permutive CA
with neighbourhood N , {l, l + r, . . . , r}. Let X be a random configuration with ar-
bitrary distribution and set Y , FX. Then, for every k ∈ Z,

H(Xk+r |X(−∞,k+r)) = H(Yk |X(−∞,k+r)) (4.42)

≤ H(Yk |Y(−∞,k)) . (4.43)

The first equality is by permutiveness, and the second inequality is by the fact that
Y(−∞,k) is a function of X(−∞,k+r).

Next, let Z be a noise configuration independent of X, and distributed according to a
product measure with marginal q at each site. Then,

H(Yk + Zk |Y(−∞,k) + Z(−∞,k)) ≥ H(Yk + Zk |Y(−∞,k), Z(−∞,k)) (4.44)

= H(Yk + Zk |Y(−∞,k)) , (4.45)

where the last equality follows from the independence of Z(−∞,k) and Yk + Zk.
Combining these two with Lemma 4.5, we get that for every ε > 0,

H(Xk+r |X(−∞,k+r)) ≤ h− ε (4.46)

⇓
H(Yk + Zk |Y(−∞,k) + Z(−∞,k)) ≥

(
H(Xk+r |X(−∞,k+r)) + ρ(ε)

)
∧ (h− ε) . (4.47)

In particular, if X(0), X(1), . . . represents the evolution of the noisy CA, then

H(X
(t)
k |X

(t)
(−∞,k))→ h (4.48)

as t→∞, uniformly in k. This implies convergence to the uniform Bernoulli measure of
the distribution of X(t).
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5 Fourier analysis method

In this section, we apply (generalized) Fourier analysis to establish ergodicity under
noise of CA with certain algebraic properties. For clarity and brevity, we focus on two
concrete examples (the XOR CA and the binary spreading CA) and prove ergodicity
under zero-range noise. Further development of this approach will be left to another
paper.

Our exposition is based on Chapter 4 of the survey by Toom et al. [58]. The idea is to
show that the action of the PCA on local observables is “contractive” in an appropriate
sense. When the CA has an algebraic property (e.g., additive), it is sometimes possible to
choose a basis for the space of observables (e.g., the Fourier basis) with respect to which
the CA maps each basis element into another basis element. Proving the ergodicity of
the noisy CA would then be reduced to showing that the action of noise on the same
basis is contractive.

5.1 XOR CA with zero-range noise

Let S , {0, 1} be the binary alphabet. We identify S with the cyclic group Z/2Z. The

XOR CA with neighbourhood N ⊆ Zd is identified with the map x 7→ Fx on X , SZ
d

,
where

(Fx)i ,
∑
j∈N

xi+j (mod 2) . (5.1)

We consider the PCA Φ obtained by combining F with a zero-range noise kernel Θ,
identified by the matrix

θ ,

(
1− p p

q 1− q

)
, (5.2)

which modifies each symbol independently according to transition probabilities 0
p−→ 1

and 1
q−→ 0.

Since F is permutive, we already know (Theorem 3.16) the ergodicity of the noisy
version as long as the noise is positive and preserves the uniform distribution, that is, if
q = p ∈ (0, 1). In the case q = p ∈ (0, 1), the ergodicity also follows by a classic application
of Fourier analysis (see [58, Example 1.3]) or by coupling from the past (see [15, Sec. 5d]).
In this case, the convergence to the limit measure is super-exponentially fast (i.e., the
probability of each cylinder set converges super-exponentially fast to its limit value). In
the degenerate case, that is, when p ∈ {0, 1} or q ∈ {0, 1}, Bramson and Neuhauser [5]
have proved that the system is not ergodic, at least in the one-dimensional case with
N = {−1, 0, 1}.

Following [58, Chap. 4], Fourier analysis can in fact be used to prove ergodicity in
the entire domain 0 < p, q < 1.

Theorem 5.1. The XOR CA with positive zero-range noise is uniformly ergodic. More-
over, its unique invariant measure is spatially mixing.

Proof. Define the function χ : Z2 → C by χ(a) , (−1)a (i.e., χ(0) , 1 and χ(1) , −1).
This is a character of the group Z2 (i.e., a homomorphism into the multiplicative group
of C), and along with the constant 1 (the trivial character), forms a basis for the two-
dimensional space of functions Z2 → C. For a finite set A ⊆ Zd, define χA : X → C

by

χA(x) ,
∏
i∈A

χ(xi) . (5.3)
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(In particular, χ∅ ≡ 1.) The collection of all functions χA (for finite A ⊆ Zd) is a basis
(the Fourier basis) for the linear space C0(X ), which is orthonormal with respect to the
inner product 〈g, h〉 , π(gh), where h is the complex conjugate of h and π is the uniform
Bernoulli measure on X (a.k.a. the Haar measure).

The basis {χA : A ⊆ Zd finite} is particularly convenient, because the XOR CA F

maps each character χA into another character χF∗A. Namely,

χA(Fx) =
∏
i∈A

χ
(
(Fx)i

)
=
∏
i∈A

χ
( ∑
j∈i+N

xj

)
=
∏
i∈A

∏
j∈i+N

χ(xj) = χF∗A(x) , (5.4)

where F ∗A denotes the set of all j ∈ Zd for which the set {i ∈ A : j ∈ i+N} has an odd
number of elements. (If we represent A as a configuration c : Zd → Z2 with ci = 1 if and
only if i ∈ A, then F ∗A will be represented by F ∗c where (F ∗c)k ,

∑
j∈N ck−j (mod 2).)

To calculate the effect of noise, let x be an arbitrary configuration and Y a random
configuration chosen according Θ(x, ·), so that each Yi is obtained from xi independently
at random with transition probabilities prescribed by θ. We have

(ΘχA)(x) = Ex[χA(Y )] = Ex

[∏
i∈A

χ(Yi)
]

=
∏
i∈A

Ex[χ(Yi)] =
∏
i∈A

(θχ)(xi) . (5.5)

Note how the multiplicative form of χA and the independence of noise at different sites
reduce the calculation of ΘχA to the calculation of θχ. For the latter, we have

(θχ)(a) =

{
1− 2p if a = 0,

2q − 1 if a = 1,
(5.6)

which can be written as the linear combination θχ = (q− p) + (1− p− q)χ. It follows that

(ΘχA)(x) =
∏
i∈A

(
(q − p) + (1− p− q)χ(xi)

)
(5.7)

=
∑
I⊆A

(q − p)|A\I|(1− p− q)|I|χI(x) . (5.8)

Combining the effect of the CA F and the noise Θ, we get the representation

ΦχA = Θ(χA ◦ F ) =
∑

I⊆F∗A

(q − p)|(F
∗A)\I|(1− p− q)|I|χI (5.9)

in the Fourier basis.
In order to prove the ergodicity of a PCA Φ, we show that for each local function

h ∈ C0(X ), the sequence Φth converges exponentially fast to a constant. In particular,
ergodicity follows if we are able to show that Φ contracts the non-constant component of
h. The non-constant part of h can, for instance, be measured by

⟪h⟫ ,
∑

∅ 6=A⊆Zd

∣∣ĥA∣∣ , (5.10)

where h =
∑
A⊆Zd ĥAχA is the representation of h in the Fourier basis. This is a semi-

norm satisfying ⟪h⟫ = 0 if and only if h is constant. Suppose that Φ is contractive with
respect to ⟪·⟫, in the sense that there is a constant 0 ≤ ρ < 1 such that ⟪Φh⟫ ≤ ρ ⟪h⟫ for
all h ∈ C0(X ). Then, ⟪Φth⟫ ≤ ⟪h⟫ ρt for every h ∈ C0(X ) and t ≥ 0. In particular,∣∣Φt(y, [u])− Φt(x, [u])

∣∣ ≤ 2⟪Φt1[u]⟫ ≤ 2⟪1[u]⟫ ρt (5.11)

for every cylinder set [u], every two configurations x, y ∈ X and each t ≥ 0. Hence, we
obtain the uniform ergodicity of Φ.
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In order to verify that Φ is contractive, it is sufficient to verify that ⟪ΦχA⟫ ≤ ρ for
each non-empty finite A ⊆ Zd. Namely, for an arbitrary h ∈ C0(X ), the latter condition
gives

⟪Φh⟫ = ⟪
∑
A⊆Zd

ĥAΦχA⟫ ≤
∑

∅ 6=A⊆Zd

∣∣ĥA∣∣ ⟪ΦχA⟫ ≤ ρ ⟪h⟫ . (5.12)

For the PCA Φ(x,E) , Θ(Fx,E), we have

⟪ΦχA⟫ = ⟪
∑

I⊆F∗A

(q − p)|(F
∗A)\I|(1− p− q)|I|χI⟫ (5.13)

=
∑

∅ 6=I⊆F∗A

|q − p||(F
∗A)\I| |1− p− q||I| (5.14)

= (|q − p|+ |1− p− q|)|F
∗A| − |q − p||F

∗A|
. (5.15)

Note that ρ , |q − p| + |1− p− q| < 1 for p, q ∈ (0, 1). Therefore, ⟪ΦχA⟫ ≤ ρ for every
finite ∅ 6= A ⊆ Zd, and the uniform ergodicity of Φ follows.

To see the spatial mixing of the unique invariant measure π of Φ, observe that for
u ∈ SA, we have ⟪1[u]⟫ = 1− 2−|A| ≤ 1, because

1[u] =
∏
k∈A

1

2

(
1 + χ(uk)χk

)
= 2−|A|

∑
B⊆A

χB(u)χB . (5.16)

Integrating (5.11) over y with respect to π, we therefore get
∣∣π([u]) − Φt(x, [u])

∣∣ ≤ 2ρt.
Now, using (2.4), we obtain that dA(t) ≤ 2|A|ρt for every finite set A ⊆ Zd and t ≥ 1. The
spatial mixing of the invariant measure thus follows from Proposition 2.1.

Remark 5.2. Observe that ⟪ΦχA⟫ < 1 even in the degenerate (but non-deterministic)
case, for instance, when p = 0 and q ∈ (0, 1). Namely, in the latter case we have

⟪ΦχA⟫ = 1− |q − p||F
∗A|

< 1. However, this is not sufficient for ergodicity, as the upper
bound for ⟪ΦχA⟫ depends on A and approaches 1 as A grows. 3

5.2 Binary spreading CA with zero-range noise

Consider a non-constant CA F with binary alphabet S , {0, 1} in which 0 is spreading.
Namely, x 7→ Fx is given by

(Fx)i ,

{
0 if xi+j = 0 for some j ∈ N ,

1 otherwise,
(5.17)

where N ⊆ Zd is a finite set. As in the case of the XOR CA, we consider a general
zero-range noise kernel Θ defined by the transition matrix

θ ,

(
1− p p

q 1− q

)
. (5.18)

When q = 0, we recover Stavskaya’s PCA (a.k.a. directed site percolation), which is
non-ergodic for sufficiently small p ≥ 0 (see [58, Chap. 1]). Using coupling arguments,
we already know the ergodicity of a CA with spreading symbol with either memoryless
noise (Theorem 3.10) or sufficiently weak positive perturbation (Theorem 3.11). In the
binary case, we get an alternative argument via (generalized) Fourier analysis, covering
most of the parameter space.
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Theorem 5.3. The binary CA with spreading 0 combined with a zero-range noise with
transition probabilities 0

p−→ 1 and 1
q−→ 0 is uniformly ergodic if p + |1− p− q| < 1.

Moreover, under the same condition, the unique invariant measure of the system is
spatially mixing.

Proof. The proof is similar to that of Theorem 5.1 except that we use a different basis
for C0(X ). Define χ : S → C by χ(0) , 0 and χ(1) , 1. Clearly, {1, χ} is a basis for the
linear space CS . For a finite A ⊆ Zd, define χA : X → C by

χA(x) ,
∏
i∈A

χ(xi) =

{
1 if xi = 1 for each i ∈ A,

0 otherwise.
(5.19)

It is easy to verify (e.g., using the inclusion-exclusion principle) that the functions χA
(for finite A ⊆ Zd) form a basis for C0(X ). We call this basis the Möbius basis and each
χA a character of X .

The advantage of the above basis is that the CA F maps characters into characters.
Namely, χA(Fx) = 1 if and only if (Fx)i = 1 for every i ∈ A, which is in turn the case
if and only if xi+j = 1 for every i ∈ A and j ∈ N . Therefore, FχA = χF∗A, where
F ∗A , A+N .

As in the case of the Fourier basis, calculating the effect of the noise Θ on characters
boils down to calculating the effect of the transition matrix θ on χ. For the latter, we
obtain

(θχ)(a) =

{
p if a = 0,

1− q if a = 1,
(5.20)

which gives θχ = p+ (1− p− q)χ. It follows, as in the previous case, that

ΘχA =
∑
I⊆A

p|A\I|(1− p− q)|I|χI . (5.21)

For the combination of the CA F and noise Θ, we get

ΦχA = Θ(χA ◦ F ) =
∑

I⊆A+N

p|(A+N )\I|(1− p− q)|I|χI . (5.22)

Each local function h ∈ C0(X ) has a unique representation h =
∑
A⊆Zd ĥAχA as a

linear combination of characters. We define a semi-norm on C0(X ) by

⟪h⟫ ,
∑

∅6=A⊆Zd

∣∣ĥA∣∣ (5.23)

for each h ∈ C0(X ). Following the same argument as in the case of the XOR CA, a
sufficient condition for the uniform ergodicity of Φ is that Φ is contractive with respect
to ⟪·⟫, in the sense that there is a constant 0 ≤ ρ < 1 such that ⟪Φh⟫ ≤ ρ ⟪h⟫ for every
h ∈ C0(X ). The property ⟪Φh⟫ ≤ ρ ⟪h⟫ for every h ∈ C0(X ) in turn is equivalent to the
condition that ⟪ΦχA⟫ ≤ ρ for each non-empty finite A ⊆ Zd.

Clearly, Φχ∅ = χ∅, hence ⟪Φχ∅⟫ = ⟪χ∅⟫ = 0. For a non-empty finite A ⊆ Zd, we
have

⟪ΦχA⟫ = ⟪
∑

I⊆A+N

p|(A+N )\I|(1− p− q)|I|χI⟫ (5.24)

=
∑

∅6=I⊆A+N

p|(A+N )\I| |1− p− q||I| (5.25)

= (p+ |1− p− q|)|A+N| − p|A+N| . (5.26)

EJP 24 (2019), paper 41.
Page 39/44

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP297
http://www.imstat.org/ejp/


Ergodicity of noisy cellular automata

We get uniform ergodicity if p + |1− p− q| < 1, that is if either p + q ≤ 1 and q > 0, or
p+ q > 1 and p+ 1

2q < 1.
The spatial mixing of the unique invariant measure follows in a similar fashion as in

Theorem 5.1. Note that ⟪1[u]⟫ < 2|A| for a cylinder with base A, because

1[u] = χu−1(1)

∏
k∈u−1(0)

(1− χk) =
∑

B⊆u−1(0)

(−1)|B|χu−1(1)∪B . (5.27)

Integrating (5.11) over y with respect to π, we therefore get
∣∣π([u])−Φt(x, [u])

∣∣ ≤ 2×2|A|ρt.
Now, using (2.4), we obtain that dA(t) ≤ 22|A|ρt for every finite set A ⊆ Zd and t ≥ 1.
The spatial mixing of the invariant measure hence follows from Proposition 2.1.

6 Open problems

We conclude with several open problems, some of which are already mentioned in
the text.

Problem 6.1. Is every ergodic PCA uniformly ergodic?

For deterministic CA, ergodicity and uniform ergodicity are known to be equivalent [25,
54, 46]. We conjecture that the same is true for general PCA.

The ergodic PCA discussed in this article are all exponentially ergodic, in the sense
that, the probability of each cylinder set converges exponentially fast to its stationary
value. We do not know any example of an ergodic PCA that is not exponentially ergodic.

Problem 6.2. Find an example of a (uniformly) ergodic PCA that is not exponentially
ergodic.

For the class of PCA that are monotonic with respect to a total ordering of the alphabet,
Louis [43] has provided a necessary and sufficient condition for exponential ergodicity
in terms of a spatial mixing condition.

Proposition 2.2 above established the computability of the unique invariant measure
for every ergodic PCA. However, for the PCA discussed in this article, one can exploit
the exponential ergodicity to give a “fast” algorithm for computing the unique invariant
measure.

Problem 6.3. Give an example of (uniformly) ergodic PCA for which the unique invariant
measure is not computable by a “fast” algorithm.

Problem 6.4. Is the unique invariant measure of every (uniformly) ergodic PCA spatially
mixing? Find an example of a (uniform) ergodic PCA whose unique invariant measure is
not measure-theoretically isomorphic to a Bernoulli process.

Proposition 2.1 above provides a sufficient condition for the unique invariant measure of
a uniformly ergodic PCA. In view of the result of Goldstein et al. [23], we conjecture that
the unique invariant measure of a positive-rate uniformly ergodic PCA is always spatially
mixing.

For perturbations of a nilpotent CA with noise, we know ergodicity when noise is
sufficiently high (Thm. 3.5) or sufficiently low (Thm. 3.9). When the noise has zero range,
one may expect ergodicity to hold for all the parameter range.

Problem 6.5. Is every perturbation of a nilpotent CA with a positive zero-range noise
ergodic?

The complete ergodicity of surjective CA under positive permutation noise remains
open.

Problem 6.6. Is every perturbation of a surjective CA with a positive permutation noise
ergodic? How about perturbations with other types of noise?
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One of the simplest CA for which the ergodicity under noise is unknown is the majority
rule. A majority CA is a CA with binary alphabet under which the symbol at each site
is updated to the symbol that is in majority among the neighbouring sites (see Fig. 10).
The neighbourhood has to have an odd cardinality to avoid ties.

Problem 6.7. Is every small positive perturbation of a one-dimensional majority CA
ergodic? Is every perturbation of the two-dimensional nearest-neighbour majority CA
with sufficiently small positive zero-range noise non-ergodic?

For the one-dimensional case, Gray has outline a proof of ergodicity for the nearest-
neighbour marjority CA under small symmetric zero-range noise [24]. On the other
hand, Toom has proven the non-ergodicity of sufficiently small perturbations of the
two-dimensional majority CA with the NEC-neighbourhood (see Example 2.3). It is
conjectured that in two dimensions, the non-ergodicity holds also for the symmetric
nearest-neighbour majority rule.

ε = 0 ε = 0.01

The local rule is given by F (x)i , majority(xi−1, xi, xi+1). The noisy version appears to be ergodic.

Figure 10: Space-time diagrams of the majority rule perturbed by a memoryless noise
with uniform replacement distribution and error probability ε. Time goes upwards.

We end with posing two widely open-ended problems.

Problem 6.8. Study the continuity of the unique invariant measure of ergodic perturba-
tions of CA as a function of the noise parameters.

Problem 6.9. Identify classes of CA that remain non-ergodic in presence of sufficiently
small noise.

See [57] for a class of two-dimensional examples, and [19, 20] for a one-dimensional
example.
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