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Abstract

We study some linear SDEs arising from the two-dimensional q-Whittaker driven
particle system on the torus as q → 1. The main result proves that the SDEs along
certain characteristics converge to the additive stochastic heat equation. Extensions
for the SDEs with generalized coefficients and in other spatial dimensions are also
obtained. Our proof views the limiting process after recentering as a process of the
convolution of a space-time white noise and the Fourier transform of the heat kernel.
Accordingly we turn to similar space-time stochastic integrals defined by the SDEs,
but now the convolution and the Fourier transform are broken. To obtain tightness
of these induced integrals, we bound the oscillations of complex exponentials arising
from divergence of the characteristics, with two methods of different nature.
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1 Introduction

The two-dimensional q-Whittaker driven particle system on the torus [6] has an
interpretation as a discrete (2 + 1)-dimensional surface growth model. It is proven in [4]
that the fluctuations of the particle locations satisfy a system of linear SDEs in the limit
q → 1. Our main objective in this paper is to prove the weak convergence of these SDEs
to the additive stochastic heat equation. In this way, a full picture for the fluctuations of
the Whittaker driven particle system follows and it holds at the process level.

For q ∈ [0, 1), the q-Whittaker driven particle system in [6] carries interlaced particles
occupying different vertices of a periodic lattice in two dimensions. These particles jump
to the right in the lattice according to rates defined by q and distances to certain nearest
particles. The interlacing of the particles stays the same over time. Vertices occupied
by the particles can be mapped to certain edges in perfect matchings of a periodized
hexagonal lattice. These edges induce a certain height function for a discrete surface.
Hence, the particle system can be seen as a discrete surface growth model.

Through this correspondence, the particle system is believed to belong to the
anisotropic Kardar–Parisi–Zhang class described as follows. In general, the height
function H(x, t) of a surface growth model is expected to satisfy the following stochastic
partial differential equation (SPDE) [14]:

∂H

∂t
(x, t) = ν∆H(x, t) + 〈∇H,Λ∇H〉(x, t) + σẆ (x, t), x ∈ R2. (1.1)

Here, ∆ is the Laplacian in x and Ẇ is a space-time white noise. The scalars ν, σ and
the 2× 2 matrix Λ are physical parameters associated to the surface. The anisotropic
class consists of growth models where signs of the eigenvalues of Λ differ [23]. It is
predicted by Wolf [25] for this class that the expected noise in the height function should
behave like the expected noise in the Edwards–Wilkinson equation which is also called
the additive stochastic heat equation. (The additive stochastic heat equation is the SPDE
in (1.1) without the nonlinear term 〈∇H,Λ∇H〉.) See [22] for a broad discussion of
Wolf’s prediction and the recent mathematical progress. For physics introductions to
surface growth models, see the lecture by Kardar [13] and the monograph by Barabási
and Stanley [1]. Walsh’s lecture notes [24, Chapter 5] give a solution theory of the
additive stochastic heat equation.

The first instance of Wolf’s prediction is obtained in [4] by taking an iterated limit of
the q-Whittaker driven particle system. The first limit is as mentioned above, showing
that the fluctuations of the particle locations converge to the solution {ξt(x);x ∈ R} of a
system of linear SDEs as q → 1. Here, R is a finite quotient group in Z2 and describes
the locations of the particles in a reduced manner. See [4, Theorem 1] or Example 2.2
for these SDEs, and they are called the Whittaker driven SDEs in this paper.
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Our main interest arises from the other limits in [4] in proving Wolf’s prediction for
the particle system, which we now recall. The Whittaker driven SDEs are defined with
the drift vector Aξ for ξ ∈ RR and a constant matrix A. A crucial observation made in
[4] is that the discrete Fourier transform of A:

Â(k)
def
=
∑
x∈R

Ax,0e
−i〈x,k〉, k ∈ R2, (1.2)

satisfies

Â(k) = −i〈k, U〉+
〈k,Qk〉

2
+O(|k|3), k → 0, (1.3)

for a real vector U and a real strictly negative definite matrix Q. In terms of Fourier
multipliers, a Laplacian defined by the quadratic form in (1.3) is thus hidden in the drift
vector of the Whittaker driven SDEs. Let the Whittaker driven SDEs be subject to the
following spatial mesh points at time δ−1t:

bδ−1Ut+ δ−1/2(−Q)1/2zc, z ∈ R2. (1.4)

Upon passing R ↗ Z2 and then δ → 0+, the SDEs are proven in [4] to converge to the
additive stochastic heat equation in terms of the correlation structure. It is pointed out
in [4] that only a few properties of the matrix A (Assumption 2.4) are needed to obtain
this convergence.

The main theorem of this paper (Theorem 3.1) proves convergence of the distribution-
valued processes Xδ which are defined by the (R ↗ Z2)-limit of the Whittaker driven
SDEs subject to the generalized matrices A mentioned above. In other dimensions d,
Xδ defined by some generalized Zd-indexed processes also converge to the additive
stochastic heat equation. The limiting scheme is for δ → 0+ and in the path space of
continuous, distribution-valued functions. The definition of Xδ in any case incorporates
discrete characteristics as in (1.4) and the Edwards–Wilkinson growth exponent (d −
2)/4. The SDEs from [4] and the present result give a proof of the Edwards–Wilkinson
fluctuation in the Whittaker driven particle system, now at the process level.

The proof of the theorem focuses on the stochastic integral part Zδ of Xδ. We
view its convergence as δ → 0+ as convergence of integrands of space-time stochastic
integrals and do not use the limit of covariance functions from [4]. This viewpoint begins
with the fact that the corresponding part of the solution of the additive stochastic heat
equation can be written as a stochastic convolution of the space-time white noise and the
Fourier transform of the heat kernel by Itô’s and Plancherel’s isometries. We find that
Zδ satisfies a similar form, the difference being that its integrand shows truncation of
spatial domain and discretization from the characteristics. This representation provides
an alternative explanation of the emergence of the additive stochastic heat equation.
The choice of the characteristics in (1.4) also arises naturally from the usual diffusive
scaling of space and time (see the discussion before Proposition 4.2). Nevertheless, the
discrete characteristics diverge and break the convolution and the Fourier transform
to the effect of inducing new oscillations from complex exponentials. These properties
make it the central question whether the regularity of Zδ will be lost in the limit.

We obtain the tightness of Zδ by two different methods (Sections 4.1.3 and 4.1.4).
The first method proves a uniform Hölder condition of the covariance functions since
Zδ are Gaussian processes. The other one generalizes the factorization method (cf. [8]),
viewing Zδ as stochastic integrals that approximate stochastic convolutions. Either
method relies on a semi-discrete integration by parts to obtain precise decay rates of the
broken Fourier transforms in the stochastic integral representation of Zδ (Section 4.1.1).
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Figure 1: A set representation of Rm with m = 4 and m2 = 1. The vertices are
(− 3

2 ,−2), ( 5
2 ,−2), ( 3

2 , 2), (− 5
2 , 2).

Organization of this paper. In Section 2, we discuss the explicit solutions of the
Whittaker driven SDEs and their limit as R ↗ Z2. In Section 3, we set up notations for
the main theorem (Theorem 3.1) of this paper and outline its proof. The proof is divided
into Sections 4 and 5. As we need more complicated notations after Section 2, the reader
can find a list of frequent notations for Sections 3–5 in Section 6.

Acknowledgements. The author would like to thank an anonymous associate editor,
an anonymous referee, Fabio Toninelli, and Edwin A. Perkins. The associate editor and
the referee provided valuable comments that significantly help improve the presentation.
The extension beyond two spatial dimensions of the author’s earlier proof is suggested
by the associate editor and Fabio Toninelli. Edwin A. Perkins pointed out [24] in a brief,
but illuminating, conversation on the additive stochastic heat equation.

2 Fourier representations of the Whittaker driven SDEs

In this section, we specify the Whittaker driven SDEs and their generalizations. Then
as in [4] we represent these SDEs in terms of Fourier transforms and derive their infinite
volume limits.

First, we recall the discrete quotient groups that label coordinates in the SDEs. Given
two positive integers m2 and m such that m2/m ∈ (0, 1), Rm is defined to be the quotient
group Z2/∼, where the equivalence relation ∼ is given by

x ∼ y ⇐⇒x+ (j1m, j2m) = y + (j2m2, 0) for some j1, j2 ∈ Z (2.1)

[4, Remark 1]. The quotient group Z2/∼ can be identified as a discrete parallelogram
subject to periodic boundary conditions. Whenever Rm is used as a set, we always refer
to the discrete parallelogram defined by (2.2) below. See Figure 1 for an example of this
set representation of Rm.

Proposition 2.1. The quotient group Z2/∼ is isomorphic to the quotient group defined
as the discrete parallelogram{

(x1, x2) ∈ Z2
∣∣∣−m

2
≤ x2 <

m

2
,−m

2
− m2

m
x2 ≤ x1 <

m

2
− m2

m
x2

}
(2.2)

subject to the pasting rule “≡” as follows:

(1) Points on the lower and upper edges are pasted together by the rule(
x1,−

m

2

)
≡
(
x1 −m2,

m

2

)
, ∀ x1 ∈

[
−m

2
+
m2

2
,
m

2
+
m2

2

)
∩ Z,

which is along the direction defining the left and right edges.
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(2) Points on the left and right edges are pasted together horizontally.

Proof. Write Pm for the discrete set defined in (2.2). For x, y ∈ Pm, x ∼ y implies
x = y since, with respect to the notation in (2.1), j2 = 0 by the assumption that
−m/2 ≤ x2, y2 < m/2 and then j1 = 0 for a similar reason. Also, any point in Z2 is
∼-equivalent to a point in Pm by the observation that the translated parallelograms
Pm + (j1m − j2m2, j2m) for j1, j2 ranging over Z tile the whole space Z2. Hence, we
conclude that there is a natural isomorphism between Z2/∼ and Pm/≡. �

Given the set Rm, consider the following system of linear SDEs:

dξmt (x) =
∑
y∈Rm

Ax,yξ
m
t (y)dt+

√
vdWt(x), x ∈ Rm. (2.3)

Here, Ax,y ∈ R and v ∈ (0,∞) are constant, and {W (x);x ∈ Rm} is an m2-dimensional
standard Brownian motion.

Example 2.2 (Whittaker driven SDEs). In [4], the SDEs derived from the Whittaker
driven particle system on Rm are defined by (2.3) with the following coefficients:

v =
(1− e−D)(1− e−B)

1− e−C

and

Ax,y =



e−D(1− e−B)

1− e−C
− e−C(1− e−D)(1− e−B)

(1− e−C)2
− e−B(1− e−D)

1− e−C
, y = x,

−e
−D(1− e−B)

1− e−C
y = x+ (−1, 0),

e−C(1− e−D)(1− e−B)

(1− e−C)2
y = x+ (0,−1),

e−B(1− e−D)

1− e−C
y = x+ (1,−1),

0, otherwise,

for constants D ∈ (0,∞), C ∈ (0, D), and B = D − C with C/D = m2/m. �

In the sequel, we work with more general matrices A satisfying only Assumption 2.3
and Assumption 2.4 stated below. See [4, Section 4, especially Theorem 2 and Remark 5]
for these assumptions. In Remark 2.5, we will recall the reason why these assumptions
are satisfied by the matrix in Example 2.2.

Assumption 2.3. For d ≥ 1, Â(k) : Rd → C satisfies the following conditions:

(1) Â(k) is 2π-periodic, is in C∞(Rd), and satisfies Â(k) = Â(−k).

(2) Â(0) = 0 with i∇Â(0) ∈ Rd.

(3) The function

R(k)
def
= Â(k) + Â(−k) = 2Re Â(k), k ∈ Rd, (2.4)

satisfies

R(k) = Q(k) +O(|k|3), k → 0, (2.5)

with Q(k) = 〈k,Qk〉 for a real strictly negative definite matrix Q.
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(4) R(k) defined by (2.4) is nonpositive and its only zero in Td is k = 0. �

Here in (4) and throughout this paper, Td = [−π, π]d is a set and no periodic boundary
conditions are implicitly imposed.

Assumption 2.4. A is a matrix indexed by Z2 × Z2 such that, for some integer m0 ≥ 2,
A restricted to Rm ×Rm satisfies the following conditions every m ≥ m0:

(1) Translation invariance holds on the quotient group Rm:

Ax,y = Ax+z,y+z, ∀ x, y, z ∈ Rm. (2.6)

(2) The discrete Fourier transform Â(k) defined by (1.2) with R = Rm satisfies As-
sumption 2.3 with d = 2.

Moreover, these discrete Fourier transforms on Rm × Rm are independent of m for
m ≥ m0. �

Notice that the constancy of the Fourier transforms in Assumption 2.4 is equivalent
to the finite support property of x 7→ Ax,0 on Z2.

Remark 2.5. The matrix A in Example 2.2 satisfies the translation invariance in Assump-
tion 2.4. By this property and the group property Rm = −Rm, Â(k) and R(k) defined by
(1.2) and (2.4) take the following simple forms: for all k ∈ R2,

Â(k) =
∑
x∈Rm

A0,xe
i〈x,k〉

= A0,0 +A0,(1,−1)e
i(k1−k2) +A0,(0,−1)e

−ik2 +A0,(−1,0)e
−ik1 ,

R(k) = A0,0 +A0,(1,−1) cos(k1 − k2) +A0,(0,−1) cos(k2) +A0,(−1,0) cos(k1).

These explicit forms can be used to verify the rest of Assumption 2.4. See [4, Proposition 2
and Appendix B] for the details. �

Assumption 2.4 is in force in the rest of this section.

Recall that the explicit solution to the linear system in (2.3) is given by

ξmt (x) =
∑
y∈Rm

etA(x, y)ξm0 (y) +
∑
y∈Rm

√
v

∫ t

0

e(t−s)A(x, y)dWs(y), ∀ x ∈ Rm (2.7)

(cf. [12, Eq.(6.6) in Section 5.6]). Here in (2.7), etA is understood to be the usual matrix
exponential of the sub-matrix of A restricted toRm×Rm. Note that even in the Whittaker
driven case (Example 2.2), A is not a generator matrix. So not all of the entries of these
matrix exponentials are nonnegative. We decompose the Gaussian process ξm into

ξm = ηm + ζm, (2.8)

where ηmt (x) and ζmt (x) are defined by the first and second sums in (2.7), respectively.
We say that ηm is the deterministic part of ξm and ζm is the stochastic part.

To apply Assumption 2.4, we turn to the Fourier transform of ξm. Define

fk(x)
def
=

1

m
e−i〈k,x〉 (2.9)
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and

ξ̂(k)
def
=

∑
x∈Rm

ξ(x)fk(x), ξ ∈ CRm . (2.10)

Then the translation invariance in Assumption 2.4 and the definition (1.2) of Â(k) imply
that for any analytic function F , the usual multiplier formula holds:

F̂ (A)ξ (k) = F
(
Â(k)

)
ξ̂(k), ∀ k ∈ R2. (2.11)

The processes ηm and ζm can be represented by their Fourier transforms η̂m(k)

and ζ̂m(k). For this purpose, it is enough to require that k be points ranging over the
following set:

Km
def
=

{(
2π

m
r1,

2π

m

(m2

m
r1 + r2

))∣∣∣∣ r1, r2 ∈ Z,−m
2
≤ r1, r2 <

m

2

}
. (2.12)

The additional properties that we need are summarized in Lemma 2.6 below (see [21,
Chapter 1] or [4, Section 3.1]). For any subset E of Z2, write

〈φ1, φ2〉E =
∑
x∈E

φ(x)φ2(x). (2.13)

Lemma 2.6. Let fk and Km be defined by (2.9) and (2.12), respectively.

(1) For any k ∈ Km, fk is well-defined on the quotient group Rm.

(2) {fk; k ∈ Km} is an orthonormal basis of (CRm , 〈 · , · 〉Rm).

(3) The following inversion formula holds:

ξ(x) =
∑
k∈Km

ξ̂(k)fk(x), ∀ x ∈ Rm. (2.14)

Corollary 2.7. With respect to the decomposition in (2.8), it holds that

ηmt (x) =
∑
k∈Km

etÂ(k)ξ̂m0 (k)fk(x), (2.15)

ζmt (x) =
√
v
∑
k∈Km

∫ t

0

e(t−s)Â(k)dŴs(k)fk(x) (2.16)

for all x ∈ Rm, where {Ŵ (k); k ∈ Km} is an m2-dimensional complex-valued centered
Brownian motion defined by

Ŵt(k)
def
=
∑
y∈Rm

Wt(y)fk(y). (2.17)

Proof. Since ηmt = etAξm0 by definition, (2.15) follows from (2.11) and (2.14). Similarly,
we obtain from the definition of ζm that

ζmt (x) =
√
v
∑
y∈Rm

∫ t

0

∑
k∈Km

e(t−s)Â(k)1̂y(k)fk(x)dWs(y)

=
√
v
∑
k∈Km

∫ t

0

e(t−s)Â(k)dŴs(k)fk(x),
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which is (2.16). �

The next result uses the above Fourier characterizations to define the limit of ξm as
m → ∞. See also [4, (6.4) and (6.8)] for the following limiting mean and covariance
functions. To state the result, we introduce some notation. For all m ≥ m0, we extend
ξm to the whole space Z2 by setting

ξm(x) ≡ 0, ∀ x ∈ R{
m.

The same extension applies to ηm and ζm. Also, we write

K∞(m)
def
=
{

(k1, k2) ∈ R2
∣∣∣− π ≤ k1 ≤ π,−π ≤ k2 −mk1 ≤ π

}
(2.18)

and Cov[X;Y ] = E[XY ]− E[X]E[Y ] for complex-valued random variables X and Y .

Proposition 2.8. Assume that (1) them2’s definingRm’s are chosen so that lim
m→∞

m2/m=

m and (2) the initial conditions ξm0 satisfy

sup
m∈N

sup
k′∈Km

|mξ̂m0 (k′)| <∞, and for some µ̂ ∈ C (R2), lim
m→∞

mξ̂m0 (km) = µ̂(k) (2.19)

for all k ∈ K∞(m) and sequences (km) such that km ∈ Km and km → k.
Under these assumptions, the sequence {ξm(x);x ∈ Z2} converges in distribution in

C(R+,R)Z
2

to a Gaussian process ξ∞ = {ξ∞(x);x ∈ Z2} characterized by the following
equations: for all 0 ≤ s ≤ t <∞ and x, y ∈ Z2,

E[ξ∞t (x)] =
1

(2π)2

∫
T2

dketÂ(k)ei〈k,x〉µ̂(k), (2.20)

Cov[ξ∞s (x); ξ∞t (y)] =
v

(2π)2

∫ s

0

dr

∫
T2

dke(s−r)Â(k)ei〈k,x〉e(t−r)Â(−k)e−i〈k,y〉. (2.21)

Moreover, by (2.20) and (2.21), ξ∞ admits an extension, still denoted by ξ∞, which is a
jointly continuous real-valued Gaussian process indexed by R+ × R2.

Proof. We compute the mean function and covariance function of ξm in the limit m→∞
first. By (2.15), (2.19) and dominated convergence,

lim
m→∞

ηmt (x) =
1

(2π)2

∫
K∞(m)

dketÂ(k)µ̂(k)ei〈k,x〉

=
1

(2π)2

∫
T2

dketÂ(k)µ̂(k)ei〈k,x〉, (2.22)

where the last equality follows from the 2π-periodicity of the integrand. (K∞(m) can be
read as the limiting parallelogram of Km in R2 as m→∞.) For the covariance function,
first notice that by Lemma 2.6 (2), the complex-valued Brownian motion in (2.17) satisfies

Cov[Ŵs(k); Ŵt(k
′)] = δk=k′s, ∀ 0 ≤ s ≤ t <∞, k, k′ ∈ Km. (2.23)

Hence, for any x, y ∈ Z2 and m large such that x, y ∈ Rm, (2.16) gives

Cov[ξms (x); ξmt (y)]

=
v

m2
E

[ ∑
k,k′∈Km

∫ s

0

e(s−r)Â(k)ei〈k,x〉dŴr(k)×
∫ t

0

e(t−r)Â(−k′)e−i〈k
′,y〉dŴr(k′)

]
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=
v

m2

∑
k∈Km

∫ s

0

dre(s−r)Â(k)ei〈k,x〉e(t−r)Â(−k)e−i〈k,y〉 (2.24)

−−−−→
m→∞

v

(2π)2

∫ s

0

dr

∫
T2

dke(s−r)Â(k)ei〈k,x〉e(t−r)Â(−k)e−i〈k,y〉 (2.25)

by dominated convergence and the 2π-periodicity of the integrand as above in (2.22).

Next, we show the weakly relative compactness of the sequence of laws of ξm. For
any 0 ≤ s ≤ t ≤ T and x, y ∈ Z2, (2.24) gives

E
[∣∣ζmt (y)− ζms (x)

∣∣2]
=

v

m2

∑
k∈Km

(∫ s

0

dr
∣∣e(t−r)Â(k)ei〈k,y〉 − e(s−r)Â(k)ei〈k,x〉

∣∣2 +

∫ t

s

dre(t−r)Â(k)e(t−r)Â(−k)

)
≤ v

m2

∑
k∈Km

[∫ s

0

dr
(

2
∣∣e(t−r)Â(k) − e(s−r)Â(k)

∣∣2 + 2
∣∣e(s−r)Â(k)

(
ei〈k,y〉 − ei〈k,x〉

)∣∣2)
+

∫ t

s

dre(t−r)Â(k)e(t−r)Â(−k)

]
≤ v

m2

∑
k∈Km

(
2s|Â(k)|2|t− s|2 + 2s|y − x|2 + |t− s|

)
, (2.26)

where the last inequality uses the following inequality:

|ez1 − ez2 | ≤ max{|ez1 |, |ez2 |} · |z1 − z2|, ∀ z1, z2 ∈ C, (2.27)

and Assumption 2.3 (4). Now we use (2.26) with x = y, Assumption 2.3 (1), and the fact
that the fourth moment of a centered, real-valued Gaussian with variance σ2 is given by
3σ4. Hence, for any T ∈ (0,∞), we can find C2.28 and ε > 0 such that

sup
m∈N

E
[
|ζmt (x)− ζms (x)|4

]
≤ C2.28|t− s|1+ε, ∀ 0 ≤ s ≤ t ≤ T, x ∈ Z2. (2.28)

A calculation similar to (2.26) shows the equicontinuity of {ηm(x);m ∈ N} for all x ∈
Z2. Hence, by Kolmogorov’s criterion [20, Theorem XIII.1.8], we obtain the weakly
relative compactness of the sequence of laws of ξm(x) for every fixed x ∈ Z2. By [10,
Proposition 3.2.4], an extension to the sequence of laws of ξm applies. Then (2.20) and
(2.21) follow from (2.22) and (2.25), respectively.

Next, we show that ξ∞ admits an extension to a jointly continuous Gaussian pro-
cess. The extension after recentering, called ζ∞, can be obtained from the standard
reproducing kernel argument for the following family of functions in L2(R+ × T2,drdk):

(r, k) 7−→
√
v

2π
1[0,s](r)e

(s−r)Â(k)ei〈k,x〉, (s, x) ∈ R+ × R2. (2.29)

A jointly continuous modification of ζ∞ follows since an argument similar to (2.26) gives

E
[∣∣ζ∞t (y)− ζ∞s (x)

∣∣2]
≤ v

(2π)2

∫
T2

dk
(

2s|Â(k)|2|t− s|2 + 2s|y − x|2 + |t− s|
) (2.30)

for all 0 ≤ s ≤ t < ∞ and x, y ∈ R2. Hence, an analogue of (2.28) holds. The proof is
complete. �

EJP 24 (2019), paper 36.
Page 9/33

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP289
http://www.imstat.org/ejp/


Rescaled Whittaker driven SDEs converge to the additive SHE

3 The main theorem

3.1 Setup

Fix v ∈ (0,∞) and d ≥ 1. Let Â satisfy Assumption 2.3 and µ ∈ `1(Zd) with Fourier
transform

µ̂(k) =
∑
x∈Zd

µ(x)e−i〈k,x〉 ∈ C (Td). (3.1)

We consider a real-valued Gaussian process {ξ∞t (x);x ∈ Zd} with initial condition µ. Its
mean function and covariance function are given by the following generalizations of
(2.20) and (2.21): For all 0 ≤ s ≤ t <∞ and x, y ∈ Zd,

E[ξ∞t (x)] =
1

(2π)d

∫
Td

dketÂ(k)ei〈k,x〉µ̂(k), (3.2)

Cov[ξ∞s (x); ξ∞t (y)] =
v

(2π)d

∫ s

0

dr

∫
Td

dke(s−r)Â(k)ei〈k,x〉e(t−r)Â(−k)e−i〈k,y〉. (3.3)

The proof of Proposition 2.8 shows that ξ∞ exists and allows for a jointly continuous
version on R+ × Rd.

To state the following theorem, we define

U = i∇Â(0) (3.4)

and let V be the square root of −Q−1 so that

Q = −(V −1)2. (3.5)

Here, U ∈ Rd by Assumption 2.3 (2) andQ is real and strictly negative definite by Assump-
tion 2.3 (3). Also, write S(Rd) for the space of real-valued Schwartz functions on Rd and
S ′(Rd) for the space of bounded linear functionals over R on S(Rd) [19, Section V.3]. By
convention, S ′(Rd) is equipped with the weak topology. Given {µδ}δ∈(0,1] ⊂ `1(Zd), con-
sider ξ∞,δ satisfying (3.2) and (3.3) with ξ∞ and µ replaced by ξ∞,δ and µδ, respectively.
Then we define S ′(Rd)-valued processes Xδ by

Xδ
t (φ)

def
= δ−

d−2
4

∫
Rd

dz ξ∞,δδ−1t(bδ
−1Ut+ δ−1/2V −1zc)φ(z), φ ∈ S(Rd). (3.6)

The growth exponent d−2
4 of the Edwards–Wilkinson equation is applied in (3.6) [1,

(5.16)]. Our goal is to prove the convergence of Xδ as δ → 0+ to the solution of a
stochastic heat equation under suitable assumptions on the initial conditions ξ∞,δ0 . The
main result is stated in the following theorem.

Theorem 3.1 (Main theorem). Let v ∈ (0,∞) and d ≥ 1. Let Â satisfy Assumption 2.3
and {µδ}δ∈(0,1] ⊂ `1(Zd) satisfy

δ
d+2
4

∑
y∈δ1/2V Zd

µδ(δ−1/2V −1y)φ(y) −−−−→
δ→0+

µ0(φ), ∀ φ ∈ S(Rd), (3.7)

for some µ0 ∈ S ′(Rd). If ξ∞,δ are continuous Gaussian processes subject to ξ∞,δ0 = µδ,
(3.2) and (3.3), then the processes Xδ defined by (3.6) satisfy

Xδ (d)−−−−→
δ→0+

X0 in C(R+,S ′(Rd)).
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Rescaled Whittaker driven SDEs converge to the additive SHE

Here, the limiting process X0 is the pathwise unique solution to the following additive
stochastic heat equation:

∂X0

∂t
=

∆X0

2
+
√
v|det(V )| Ẇ , X0

0 = |det(V )|µ0, (3.8)

subject to a (d+ 1)-dimensional space-time white noise Ẇ on R+ × Rd.

Remark 3.2. (1) See [2, 3, 5] for rescaled limits of related growth models in (2 + 1)

dimensions and [16, 11] for results in higher dimensions.

(2) Pathwise explicit solutions for general additive stochastic heat equations can be found
in [24, Theorem 5.1 on page 342]. See also [15] for uniqueness theorems of general
stochastic equations.

(3) Suppose that µδ(x) ≡ δ
d−2
4 ψ(δ1/2x) for some ψ ∈ S(Rd). Then the convergence in

(3.7) holds with

δ
d+2
4

∑
y∈δ1/2V Zd

µδ(δ−1/2V −1y)φ(y) =
∑

y∈δ1/2V Zd
δd/2ψ(V −1y)φ(y)

−−−−→
δ→0+

1

|det(V )|

∫
Rd
ψ(V −1y)φ(y)dy. �

3.2 Outline of the proof

For the proof of Theorem 3.1, we decompose the Gaussian process ξ∞,δ according to
its deterministic part and stochastic part as in Section 2:

ξ∞,δt (x) = η∞,δt (x) + ζ∞,δt (x). (3.9)

That is, η∞,δt (x) is the mean function of ξ∞,δt (x) in (3.2) and ζ∞,δ is a centered Gaussian
process with a covariance function given by (3.3). The analogous decomposition of Xδ(φ)

is defined by:
Xδ
t (φ) = Y δt (φ) + Zδt (φ), φ ∈ S(Rd),

where

Y δt (φ)
def
=

∫
Rd

dzη∞,δδ−1t(bδ
−1Ut+ δ−1/2V −1zc)φ(z), (3.10)

Zδt (φ)
def
=

∫
Rd

dzζ∞,δδ−1t(bδ
−1Ut+ δ−1/2V −1zc)φ(z). (3.11)

Also, to lighten notation, we use the following notation from now on: for 0−1/2Td = Rd
and any δ ∈ [0, 1],∫ t

0

∫
δ−1/2Td

Φ(r, k) •W(dr, dk)
def
=

∫ t

0

∫
δ−1/2Td

Re Φ(r, k)W 1(dr, dk)

+

∫ t

0

∫
δ−1/2Td

Im Φ(r, k)W 2(dr, dk).

(3.12)

Here, W 1 and W 2 are independent copies of a space-time white noise. The covariance
measure of W j is given by drdk:

E
[
W j
s (φ1)W j

t (φ2)
]

= min{s, t}〈φ1, φ2〉L2(Rd,dk).

In Section 4, we show that the weak limit of the family of laws {Zδ}δ∈(0,1] as δ → 0+

is given by the law of a C(R+,S ′(Rd))-valued random element Z0 solving the following
additive stochastic heat equation:

Z0
t (φ) =

∫ t

0

Z0
s

(
∆φ

2

)
ds+

√
v|det(V )|

∫ t

0

∫
Rd
φ(k)W (dr, dk). (3.13)
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Rescaled Whittaker driven SDEs converge to the additive SHE

In the preliminary steps of the proof, we explain the choice of the characteristics
in (3.11) (Proposition 4.2). The discussion also shows that Zδ(φ) admits the following
stochastic integral representation (Proposition 4.2):

√
v

∫ t

0

∫
δ−1/2Td

Φδt (r, k) •W(dr, dk), (3.14)

where

Φδt (r, k) = eδ
−1(t−r)[Â(δ1/2k)+i〈δ1/2k,U〉]

× 1

(2π)d/2

∫
Rd

dzφ(z)ei〈δ
1/2k,bδ−1Ut+δ−1/2V −1zc〉−i〈δ1/2k,δ−1Ut〉.

(3.15)

Our proof of the convergence of Zδ is based on (3.14). Assumption 2.3 implies

δ−1[Â(±δ1/2k)± i〈δ1/2k, U〉] =
Q(k)

2
+O(δ1/2|k|3), (3.16)

and so (3.15) shows that

lim
δ→0+

Φδt (r, k) = Φ0
t (r, k)

def
= e(t−r)Q(k)/2 1

(2π)d/2

∫
Rd

dzφ(z)ei〈k,V
−1z〉. (3.17)

Hence, passing δ → 0+ in (3.14) yields the following stochastic convolution:

Z0
t (φ)

def
=
√
v

∫ t

0

∫
Rd
e(t−r)Q(k)/2FφV (k) •W(dr, dk), (3.18)

where

Fφ(k)
def
=

1

(2π)d/2

∫
Rd

dzφ(z)ei〈k,z〉. (3.19)

In Section 4.1.5, we prove (3.13) by Itô’s and Plancherel’s isometries as mentioned in
Section 1.

The main argument of the proof is to show that Zδ converges in distribution to Z0

as processes taking values in S ′(Rd). We use Mitoma’s conditions [17, Theorem 3.1]
for tightness of probability measures on C(R+,S ′(Rd)). This amounts to verifying the
tightness of the family of probability measures of {Zδ(φ)}δ∈(0,1] for any fixed φ ∈ S(Rd).
We decompose the integrands in (3.14) to handle the approximation errors from (3.16)
and the following integrals in (3.15):∫

Rd
dzφ(z)ei〈δ

1/2k,bδ−1Ut+δ−1/2V −1zc〉−i〈δ1/2k,δ−1Ut〉. (3.20)

Then we proceed as discussed at the end of Section 1.
The main result of Section 5 (Proposition 5.1) shows that Y δ converges to Y 0 as

S ′(Rd)-valued continuous processes. This limit Y 0 satisfies

Y 0
t (φ) = |det(V )|µ0(φ) +

∫ t

0

Y 0
s

(
∆φ

2

)
ds. (3.21)

In summary, writing
(d)−−−−→

δ→0+
for convergence in distribution as δ → 0+, we have

Xδ = Y δ + Zδ
(d)−−−−→

δ→0+
Y 0 + Z0 = X0.

Moreover, we obtain from (3.13) and (3.21) that X0 solves the additive stochastic heat
equation defined in (3.8).
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Rescaled Whittaker driven SDEs converge to the additive SHE

4 Convergence of the stochastic parts

In this section, we prove the convergence of Zδ defined in (3.11). First, we start with
some preliminary results.

Proposition 4.1. For any δ ∈ (0, 1], the stochastic part ζ∞,δ in (3.9) continuously
extended to R+ × Rd satisfies the following growth bounds:

E

[
sup
x∈Zd

1

1 + ‖x‖2r∞
sup
t∈[0,T ]

sup
y∈x+[0,1)d

∣∣ζ∞,δt (y)
∣∣2r] <∞, ∀ r ∈ (d/2,∞). (4.1)

Hence, for every δ ∈ (0, 1], Zδ takes values in D(R+,S ′(Rd)) almost surely.

Proof. We partition Zd\{0} according to the level sets En = {x ∈ Zd; 2n−1 ≤ ‖x‖∞ < 2n}
for n ≥ 1. Since |{x ∈ Zd; ‖x‖∞ = n}| ≤ Cdnd−1 for some constant Cd depending only on

the dimension d, we have |En| ≤
∑2n−1
j=2n−1 Cdj

d−1 ≤ Cd · 2nd. It follows that for r > d/2,

E

[
sup
x∈Zd

1

1 + ‖x‖2r∞
sup
t∈[0,T ]

sup
y∈x+[0,1)d

∣∣ζ∞,δt (y)
∣∣2r]

≤ E

[
sup
t∈[0,T ]

sup
y∈[0,1)d

|ζ∞,δt (y)|2r
]

+

∞∑
n=1

E

[
sup
x∈En

1

1 + ‖x‖2r∞
sup
t∈[0,T ]

sup
y∈x+[0,1)d

|ζ∞,δt (y)|2r
]

≤

(
1 +

∞∑
n=1

Cd · 2nd

1 + 22r(n−1)

)
E

[
sup
t∈[0,T ]

sup
y∈[0,1)d

|ζ∞,δt (y)|2r
]
<∞. (4.2)

Here, in the second inequality, we use the spatial translation invariance of ζ∞,δ from
(3.3). By an analogue of (2.30), the Gaussian property of ζ∞,δ and Kolmogorov’s criterion
for continuity [20, Theorem I.2.1], we deduce that the expectation in (4.2) is finite. We
have proved (4.1). The required property of Zδ then follows from the almost surely
polynomial growth of ζ∞,δ implied by (4.1). �

Next, we explain the choice of the characteristics in (3.6). Under the diffusive scaling
(δ−1/2k, δ−1r) of space and time, we consider the covariance function of the process ζ∞,δ

defined by (3.3): for any a, b ∈ Zd,

E
[
ζ∞,δδ−1s(a)ζ∞,δδ−1t(b)

]
=

v

(2π)d

∫ δ−1s

0

dr

∫
Td

dkeδ
−1(s−δr)Â(k)ei〈k,a〉eδ

−1(t−δr)Â(−k)e−i〈k,b〉

=
vδ

d−2
2

(2π)d

∫ s

0

dr′
∫
δ−1/2Td

dk′eδ
−1(s−r′)Â(δ1/2k′)ei〈δ

1/2k′,a〉

× eδ
−1(t−r′)Â(−δ1/2k′)e−i〈δ

1/2k′,b〉

by changing variables to δ1/2k′ = k and δ−1r′ = r. To elicit a Laplacian via the quadratic
form 〈k,Qk〉/2 in (3.16), we write the last equality as

E
[
ζ∞,δδ−1s(a)ζ∞,δδ−1t(b)

]
=
vδ

d−2
2

(2π)d

∫ s

0

dr′
∫
δ−1/2Td

dk′eδ
−1(s−r′)[Â(δ1/2k′)+i〈δ1/2k′,U〉]ei〈δ

1/2k′,a〉−δ−1si〈δ1/2k′,U〉

× eδ
−1(t−r′)[Â(−δ1/2k′)−i〈δ1/2k′,U〉]e−i〈δ

1/2k′,b〉+δ−1ti〈δ1/2k′,U〉.

(4.3)

Note that an additional factor ζζ for ζ = e−δ
−1r′i〈δ1/2k′,U〉 is introduced.
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To get a nontrivial limit from (4.3), it is necessary to remove the scaling factor
δ
d−2
2 . Also, we need to choose a, b ∈ Zd to remove the large terms δ−1si〈δ1/2k′, U〉 and

δ−1ti〈δ1/2k′, U〉 in the exponents. The chosen a, b need to induce the Edwards–Wilkinson
limit (recall (3.17)). Taking all these into account, the reader can see that one choice of
(a, b) is

a = bδ−1Us+ δ−1/2V −1zc, b = bδ−1Ut+ δ−1/2V −1z′c.

This leads to the definition of Zδ in (3.11).
From (4.3), we get

E
[
Zδs (φ)Zδt (φ)

]
=

∫
Rd

dzφ(z)

∫
Rd

dz′φ(z′)κδs,t(z, z
′), (4.4)

where

κδs,t(z, z
′) =

v

(2π)d

∫ s

0

dr′
∫
δ−1/2Td

dk′eδ
−1(s−r′)[Â(δ1/2k′)+i〈δ1/2k′,U〉]

× ei〈δ
1/2k′,bδ−1Us+δ−1/2V −1zc〉−δ−1si〈δ1/2k′,U〉

× eδ
−1(t−r′)[Â(−δ1/2k′)−i〈δ1/2k′,U〉]

× e−i〈δ
1/2k′,bδ−1Ut+δ−1/2V −1z′c〉+δ−1ti〈δ1/2k′,U〉.

For our purpose below, it is more convenient to rewrite (4.4) by the following change-of-
variable operator TV on S(Rd):

φV (z) = TV φ(z)
def
= |det(V )|φ(V z) ∈ S(Rd). (4.5)

We summarize this discussion in the following proposition.

Proposition 4.2. For any fixed φ ∈ S(Rd) and δ ∈ (0, 1], Zδ(φ) defined by (3.11) has the
same law as the process

Z̃δt (φ) =
√
v

∫ t

0

∫
δ−1/2Td

eδ
−1(t−r)[Â(δ1/2k)+i〈δ1/2k,U〉]φδt (k) •W(dr, dk) (4.6)

in D(R+,R). Here, φδt is a transformation of φ given by

φδt (k)
def
=

1

(2π)d/2

∫
Rd

dzφV (z)ei〈δ
1/2k,bδ−1Ut+δ−1/2zc〉−i〈δ1/2k,δ−1Ut〉, (4.7)

where φV is defined in (4.5).

Proof. By (4.4) and (4.5), the Gaussian processes Zδ(φ) and Z̃δ(φ) have the same covari-
ance function. Since they have càdlàg paths, they have the same law in D(R+,R). �

Henceforth, we identify Zδ(φ) with the stochastic integral defined in (4.6).

4.1 Tightness

4.1.1 A semi-discrete integration by parts formula

We write

Sδ(k)
def
=

eiδ
1/2k/2

(
eiδ

1/2k/2 − e−iδ1/2k/2
)

iδ1/2
, k ∈ δ−1/2T, δ ∈ (0, 1]. (4.8)
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This sine-like function Sδ will be used repeatedly in the rest of this paper, along with the
following two properties:

2

π
|k| ≤ |Sδ(k)| ≤ |k|, ∀ k ∈ δ−1/2T;

lim
δ→0+

Sδ(k) = k, ∀ k ∈ R.
(4.9)

The first property in (4.9) follows from Jordan’s inequality.

Proposition 4.3. For any f ∈ `1(Z), n ∈ Z+, δ ∈ (0, 1] and k1 ∈ δ−1/2T \ {0}, we have∑
x1∈Z

eiδ
1/2k1x1f(x1) =

(−1)n(
iSδ(k1)

)n ∑
x1∈Z

eiδ
1/2k1x1∇nδ f(x1), (4.10)

where Sδ is defined in (4.8) and∇δ is the ordinary (backward) difference operator defined
by

∇δf(x1) =
f(x1)− f(x1 − 1)

δ1/2
. (4.11)

Proof. It suffices to prove (4.10) for n = 1. The case of general n follows from iteration.
Now, summation by parts gives∑

x1∈Z
eiδ

1/2k1x1f(x1)

= lim
N→∞

N∑
x1=−N

eiδ
1/2k1x1f(N)−

N−1∑
x1=−N

x1∑
m=−N

eiδ
1/2k1m[f(x1 + 1)− f(x1)].

Since k1 ∈ δ−1/2T \ {0}, we have

x1∑
m=−N

eiδ
1/2k1m =

eiδ
1/2k1(x1+1) − e−iδ1/2k1N

eiδ1/2k1 − 1
.

Then by a telescoping sum argument and the assumption that f ∈ `1(Z), we get from the
last two equalities that∑

x1∈Z
eiδ

1/2k1x1f(x1)

=−
∞∑

x1=−∞

(
eiδ

1/2k1(x1+1)

eiδ1/2k1 − 1

)
[f(x1 + 1)− f(x1)]

=
−1

eiδ1/2k1/2(eiδ1/2k1/2 − e−iδ1/2k1/2)δ−1/2

∞∑
x1=−∞

eiδ
1/2k1x1

f(x1)− f(x1 − 1)

δ1/2
.

Applying the notations Sδ and ∇δ to the last equality proves (4.10) for n = 1. This
completes the proof. �

To state the next result, we introduce a few more notations. First, bzjcδ,t,j denotes
the nearest point in δ1/2Z− δ−1/2Ujt to the left of zj ∈ R and

bzcδ,t
def
= (bz1cδ,t,1, bz2cδ,t,2, · · · , bzdcδ,t,d), z = (z1, z2, · · · , zd) ∈ Rd. (4.12)

We also write
bzcδ,t,j

def
= bzjcδ,t,j .
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Then the following inequalities hold:

0 ≤ zj − bzjcδ,j,t < δ1/2, ∀ zj ∈ R, δ ∈ (0, 1], 1 ≤ j ≤ d, t ∈ R+. (4.13)

Also, we define a partial difference operator ∇δ,1 by

∇δ,1φ(z)
def
=

φ(z1, z2, · · · , zd)− φ(z1 − δ1/2, z2, · · · , zd)
δ1/2

. (4.14)

The operators ∇δ,j for 2 ≤ j ≤ d are similarly defined. Note that in contrast to ∇δ defined
in (4.11), a scaling of space by δ1/2 is now in the definitions of the ∇δ,j ’s.

Proposition 4.4. Let δ ∈ (0, 1], φ ∈ S(Rd) and 1 ≤ j ≤ d. Then for all n ∈ Z+, multi-
indices α ∈ Zd+, and k ∈ δ−1/2Td with kj 6= 0 when n > 0, it holds that

∂α

∂kα

∫
Rd

dzei〈δ
1/2k,bδ−1Ut+δ−1/2zc〉−i〈δ1/2k,δ−1Ut〉φ(z)

=
(−1)ni|α|(
iSδ(kj)

)n ∫
Rd

dzei〈k,bzcδ,t〉∇nδ,j
(
b·cαδ,tφ

)
(z),

(4.15)

where |α| =
∑d
j=1 αj and zα =

∏d
j=1 z

αj
j for all z ∈ Rd.

Proof. The integral on the left-hand side of (4.15) can be written as

∂α

∂kα

∫
Rd

dzei〈δ
1/2k,bδ−1Ut+δ−1/2zc〉−i〈δ1/2k,δ−1Ut〉φ(z)

= i|α|δ|α|/2
∫
Rd

dzei〈δ
1/2k,bδ−1Ut+δ−1/2zc〉−i〈δ1/2k,δ−1Ut〉

×
(
bδ−1Ut+ δ−1/2zc − δ−1Ut

)α
φ(z).

(4.16)

Below we prove the required formula (4.15) for j = 1 in the form (4.16).

Now, we partition Rd by the semi-closed cubes Qδ
δ1/2x−δ−1/2Ut

for x ranging over Zd,
where

Qδy = [y, y + δ1/2)
def
=

d∏
j=1

[yj , yj + δ1/2), y ∈ Rd. (4.17)

These cubes Qδ
δ1/2x−δ−1/2Ut

are chosen such that

bδ−1Ut+ δ−1/2zc = x, ∀ z ∈ Qδδ1/2x−δ−1/2Ut, x ∈ Zd.

Then by the foregoing display, the right-hand side of (4.16) can be written as

i|α|δ|α|/2
∫
Rd

dzei〈δ
1/2k,bδ−1Ut+δ−1/2zc〉−i〈δ1/2k,δ−1Ut〉(bδ−1Ut+ δ−1/2zc − δ−1Ut)αφ(z)

= i|α|δ|α|/2
∑
x∈Zd

ei〈δ
1/2k,x〉

∫
Qδ
δ1/2x−δ−1/2Ut

dze−i〈δ
1/2k,δ−1Ut〉(x− δ−1Ut)αφ(z)

= i|α|δ|α|/2
∞∑

x1=−∞
eiδ

1/2k1(x1−δ−1U1t)Φδ(x1), (4.18)
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where

Φδ(x1)
def
=

∫ δ1/2x1−δ−1/2U1t+δ
1/2

δ1/2x1−δ−1/2U1t

dz1

∑
x2∈Z

eiδ
1/2k2(x2−δ−1U2t)

∫ δ1/2x2−δ−1/2U2t+δ
1/2

δ1/2x2−δ−1/2U2t

dz2 · · ·

∑
xd∈Z

eiδ
1/2kd(xd−δ−1Udt)

∫ δ1/2xd−δ−1/2Udt+δ
1/2

δ1/2xd−δ−1/2Udt

dzd(x− δ−1Ut)αφ(z).

(4.19)

By Proposition 4.3, (4.16) and (4.18), we get

∂α

∂kα

∫
Rd

dzei〈δ
1/2k,bδ−1Ut+δ−1/2zc〉−i〈δ1/2k,δ−1Ut〉φ(z)

=
(−1)ni|α|δ|α|/2(

iSδ(k1)
)n ∞∑

x1=−∞
eiδ

1/2k1(x1−δ−1U1t)∇nδΦδ(x1), ∀ n ∈ Z+.
(4.20)

Our next step is to rewrite the last sum as an integral. We claim that, for all n ∈ Z+,

∞∑
x1=−∞

eiδ
1/2k1(x1−δ−1U1t)∇nδΦδ(x1) = δ−|α|/2

∫
Rd

dzei〈k,bzcδ,t〉∇nδ,1(b·cαδ,tφ)(z), (4.21)

where b·cδ,t and ∇δ,1 are defined in (4.12) and (4.14), respectively.
We first show by an induction on n that

∇nδΦδ(x1) =δ−|α|/2
∫ y1+δ1/2

y1

dz1

∫
R

dz2e
ik2bz2cδ,t,2 · · ·

×
∫
R

dzde
ikdbzdcδ,t,d∇nδ,1

(
b·cαδ,tφ

)
(z), ∀ n ∈ Z+,

(4.22)

where the following change of variables for x ∈ Zd is in use:

y = δ1/2x− δ−1/2Ut ∈ δ1/2Zd − δ−1/2Ut. (4.23)

First, (4.21) for n = 0 follows immediately from the definition (4.19) of Φδ:

Φδ(x1) = δ−|α|/2
∫ y1+δ1/2

y1

dz1

∑
y2∈δ1/2Z−δ−1/2U2t

eik2y2
∫ y2+δ1/2

y2

dz2 · · ·

∑
yd∈δ1/2Z−δ−1/2Udt

eikdyd
∫ yd+δ1/2

yd

dzdy
αφ(z)

= δ−|α|/2
∫ y1+δ1/2

y1

dz1

∫
R

dz2e
ik2bz2cδ,t,2 · · ·

∫
R

dzde
ikdbzdcδ,t,dbzcαδ,tφ(z), (4.24)

where the last equality uses the definition in (4.12). In general, if (4.22) holds for some
n ∈ Z+, we write

∇n+1
δ Φ(x1)

=
∇nδΦδ(x1)−∇nδΦδ(x1 − 1)

δ1/2

=
δ−|α|/2

δ1/2

∫ y1+δ1/2

y1

dz1

∫
R

dz2e
ik2bz2cδ,t,2 · · ·

∫
R

dzde
ikdbzdcδ,t,d∇nδ,1

(
b·cαδ,tφ

)
(z1, z2)
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− δ−|α|/2

δ1/2

∫ y1+δ1/2

y1

dz1

∫
R

dz2e
ik2bz2cδ,t,2 · · ·

∫
R

dzde
ikdbzdcδ,t,d∇nδ,1

(
b·cαδ,tφ

)
(z1 − δ1/2, z2)

= δ−|α|/2
∫ y1+δ1/2

y1

dz1

∫
R

dz2e
ik2bz2cδ,t,2 · · ·

∫
R

dzde
ikdbzdcδ,t,d∇n+1

δ,1

(
b·cα2

δ,tφ
)
(z),

which gives (4.22) for n replaced by n + 1. Hence, by mathematical induction, (4.22)
holds for all n ∈ Z+.

In summary, from (4.22) and the definition in (4.12), we get

∞∑
x1=−∞

eiδ
1/2k1(x1−δ−1U1t)∇nδΦδ(x1)

= δ−|α|/2
∑

y1∈δ1/2Z−δ−1/2U1t

∫ y1+δ1/2

y1

dz1e
ik1bz1cδ,t,1

×
∫
R

dz2e
ik2bz2cδ,t,2 · · ·

∫
R

dzde
ikdbzdcδ,t,d∇nδ,1

(
b·cαδ,tφ

)
(z)

= δ−|α|/2
∫
Rd

dzei〈k,bzcδ,t〉∇nδ,1
(
b·cαδ,tφ)(z),

which gives the required identity in (4.21). The proof of (4.15) with j = 1 is complete
upon combining (4.20) and (4.21). �

4.1.2 Decomposition

Now we introduce decompositions of Zδ(φ) which will be used for the rest of Section 4.
We start with the following representations of the function φδt defined by (4.7). Note that
these representations show the precise decay rate of φδt .

Lemma 4.5. For m ∈ N, let {Γ1, · · · ,Γm} be a partition of Rd by Borel subsets, (n1, · · · ,
nm) ∈ Zm+ , and (j1, · · · , jm) ∈ {1, 2}m such that kj` 6= 0 for all k = (k1, k2, · · · , kd) ∈ Γ`
whenever n` > 0. Then for any δ ∈ (0, 1] and t ∈ R+, the function φδt defined on δ−1/2Td
by (4.7) can be written as

φδt (k) =
1

(2π)d/2

m∑
`=1

1Γ`(k)

∫
Rd

dz
(−1)n`ei〈k,bzcδ,t〉(

iSδ(kj`)
)n` ∇n`δ,j`φV (z) (4.25)

=
∑
x∈Zd

∫ δ1/2x1−δ−1/2U1t+δ
1/2

δ1/2x1−δ−1/2U1t

dz1 · · ·
∫ δ1/2xd−δ−1/2Udt+δ

1/2

δ1/2xd−δ−1/2Udt

dzd(
m∑
`=1

1Γ`(k)φδ,n`
δ1/2x−δ−1/2Ut,z,j`

(k)

)
,

(4.26)

where φV and Sδ are defined in (4.5) and (4.8), respectively, and

φδ,ny,z,j(k)
def
=

1

(2π)d/2
(−1)nei〈k,y〉(
iSδ(kj)

)n ∇nδ,jφV (z). (4.27)

Proof. For all n ∈ Z+ and k = (k1, k2, · · · , kd) ∈ δ−1/2Td with kj 6= 0 if n > 0, the first
integral in the definition (4.7) of φδt (k) can be written as

1

(2π)d/2

∫
Rd

dzei〈δ
1/2k,bδ−1Ut+δ−1/2zc〉−i〈δ1/2k,δ−1Ut〉φV (z)
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=
1

(2π)d/2
(−1)n(

iSδ(kj)
)n ∫

Rd
dzei〈k,bzcδ,t〉∇nδ,jφV (z) (4.28)

by (4.15) with α = (0, 0, · · · , 0). It follows that

φδt (k) =

∫
Rd

dz
1

(2π)d/2
(−1)nei〈k,bzcδ,t〉(

iSδ(kj)
)n ∇nδ,jφV (z)

=

∫
Rd

dz
∑

y∈δ1/2Zd−δ−1/2Ut

1Qδy (z)φδ,ny,z,j(k),

where Qδy and φδ,ny,z,j(k) are defined by (4.17) and (4.27), respectively. The last display is
enough for both (4.25) and (4.26). �

Assumption 4.6. Set Γ1 = [−1, 1]d, j1 = 1, n1 = 0 and n2 = · · · = nm = d + 10. Fix
a choice of (possibly infinite) rectangles Γ2, · · · ,Γm and j2, · · · , jm ∈ {1, 2, · · · , d}m for
some m ≥ 2 such that k = (k1, k2, · · · , kd) 7→ |kj` | is bounded away from zero on Γ`, for
all 2 ≤ ` ≤ m, and {Γ1, · · · ,Γm} is a partition of Rd.

For every δ ∈ (0, 1], we decompose the function φδt , defined by (4.7), according to
(4.25) as follows:

φδt (k) = φδ,1(k) + φδ,2t (k), k ∈ δ−1/2Td, (4.29)

where

φδ,1(k) =
1

(2π)d/2

m∑
`=1

1Γ`(k)

∫
Rd

dz
(−1)n`ei〈k,z〉(
iSδ(kj`)

)n` ∇n`δ,j`φV (z), (4.30)

φδ,2t (k) =
1

(2π)d/2

m∑
`=1

1Γ`(k)

∫
Rd

dz
(−1)n`

(
ei〈k,bzcδ,t〉 − ei〈k,z〉

)(
iSδ(kj`)

)n` ∇n`δ,j`φV (z). (4.31)

�

We also set

S(k)
def
= Â(k) + i〈k, U〉 − Q(k)

2
(4.32)

and

φδ,3t (r, k) = e−(t−r)Q(k)/2
(
eδ
−1(t−r)[Â(δ1/2k)+i〈δ1/2k,U〉] − e(t−r)Q(k)/2

)
φδt (k)

= φδt (k)
(
eδ
−1(t−r)S(δ1/2k) − 1

)
. (4.33)

Remark 4.7. (1) We stress that the function φδ,1 defined in (4.30) does not depend on t.
The modified time-dependent floor function b·cδ,t is used only in φδ,2t .

(2) Under Assumption 4.6,

max

{
sup
t∈R+

sup
δ∈(0,1]

|φδt (k)|, sup
δ∈(0,1]

|φδ,1(k)|, sup
t∈R+

sup
δ∈(0,1]

|φδ,2t (k)|

}
≤ C4.34

1 + |k|d+10
(4.34)

by (4.9) and the choice of n`. �

With the definitions of φδ,1, φδ,2t and φδ,3t in (4.30), (4.31) and (4.33), we define

Iδ,1t (r, k) = e(t−r)Q(k)/2φδ,1(k), (4.35)
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Iδ,2t (r, k) = e(t−r)Q(k)/2φδ,2t (k), (4.36)

Iδ,3t (r, k) = e(t−r)Q(k)/2φδ,3t (r, k). (4.37)

Then we decompose Zδ(φ) by

Zδt (φ) = Zδ,1t (φ) + Zδ,2t (φ) + Zδ,3t (φ), (4.38)

using the notation in (3.12) and the representation in (4.6), where

Zδ,jt (φ) =
√
v

∫ t

0

∫
δ−1/2Td

Iδ,jt (r, k) •W(dr, dk), 1 ≤ j ≤ 3. (4.39)

Proposition 4.8. Recall the process Z0 defined in (3.18). Then Zδ,1(φ) converges in
distribution to Z0(φ) in C(R+,R) as δ → 0+.

Proof. For any 0 ≤ s ≤ t ≤ T ,

E
[∣∣Zδ,1s (φ)− Zδ,1t (φ)

∣∣2]
= v

∫ s

0

dr

∫
Rd

dk
∣∣e(s−r)Q(k)/2φδ,1(k)− e(t−r)Q(k)/2φδ,1(k)

∣∣2
+ v

∫ t

s

dr

∫
Rd

dk
∣∣e(t−r)Q(k)/2φδ,1(k)

∣∣2
≤ (t− s)2v

∫ T

0

dr

∫
Rd

dkerQ(k)|Q(k)/2|2|φδ,1(k)|2 + v(t− s)
∫
Rd

dk|φδ,1(k)|2 (4.40)

by (2.27) and the nonpositivity of Q(k) (Assumption 2.3 (3)). Hence, by Remark 4.7
(2), the proposition follows from the last inequality, Kolmogorov’s criterion for weak
compactness [20, Theorem XIII.1.8], (3.18) and [10, Theorem 3.7.8 (b)]. �

4.1.3 Tightness by regularity of covariance functions

Recall that Zδ,j(φ) for j = 2, 3 are defined in (4.38). In this section, we discuss the Hölder
continuity of their covariance functions. We define metrics ρδ,j on R+ as follows: for
0 ≤ s ≤ t <∞,

ρδ,j(s, t)2

= E
[∣∣Zδ,js (φ)− Zδ,jt (φ)

∣∣2]
= v

∫ s

0

dr

∫
δ−1/2Td

dk|Iδ,js (r, k)− Iδ,jt (r, k)|2 + v

∫ t

s

dr

∫
δ−1/2Td

dk|Iδ,jt (r, k)|2.

(4.41)

Observe that the following bounds for Q(k), R(k) and S(k) (defined by (4.32)) follow
from Assumption 2.3: For constants C4.42 ∈ (0, 1] and C4.43 > 0,

−C−1
4.42|k|2 ≤ min{Q(k), R(k)} ≤ max{Q(k), R(k)} ≤ −C4.42|k|2, ∀ k ∈ Td (4.42)

and

|S(k)| ≤ C4.43|k|3, ∀ k ∈ Td. (4.43)

Proposition 4.9. For all T ∈ (0,∞), we can find C4.44 > 0 depending only on (φ,A, v, T )

such that

sup
δ∈(0,1]

max
{
ρδ,2(s, t)2, ρδ,3(s, t)2

}
≤ C4.44|s− t|, ∀ 0 ≤ s ≤ t ≤ T. (4.44)
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Proof. First, we observe a differentiation rule. For x ∈ Zd and 1 ≤ j ≤ d, write
yj(a) = δ1/2xj − δ−1/2Uja. Then for a C 1-function Φ(b, z) on R× Rd,

d

da

∫ y1(a)+δ1/2

y1(a)

dz1

∫ y2(a)+δ1/2

y2(a)

dz2 · · ·
∫ yd(a)+δ1/2

yd(a)

dzdΦ(δ−1/2a, z)

can be written as the sum of α1 + α2. Here,

α1 = −δ−1/2
d∑
j=1

Uj

∫ y1(a)+δ1/2

y1(a)

dz1 · · ·

×
∫ yj−1(a)+δ1/2

yj−1(a)

dzj−1

∫ yj+1(a)+δ1/2

yj+1(a)

dzj+1 · · ·
∫ yd(a)+δ1/2

yd(a)

dzd

×
[
Φ
(
δ−1/2a, z1, · · · , zj−1, yj(a) + δ1/2, zj+1, · · · , zd

)
− Φ

(
δ−1/2a, z1, · · · , zj−1, yj(a), zj+1, · · · , zd

)]
and

α2 = δ−1/2

∫ y1(a)+δ1/2

y1(a)

dz1

∫ y2(a)+δ1/2

y2(a)

dz2 · · ·
∫ yd(a)+δ1/2

yd(a)

dzd∂bΦ(δ−1/2a, z).

It follows that

d

da

∫ y1(a)+δ1/2

y1(a)

dz1

∫ y2(a)+δ1/2

y2(a)

dz2 · · ·
∫ yd(a)+δ1/2

yd(a)

dzdΦ(δ−1/2a, z)

= δ−1/2

∫ y1(a)+δ1/2

y1(a)

dz1

∫ y2(a)+δ1/2

y2(a)

dz2 · · ·
∫ yd(a)+δ1/2

yj(a)

dzd

×

− d∑
j=1

Uj
∂

∂zj
+

∂

∂b

Φ(δ−1/2a, z).

(4.45)

We are ready to bound ρδ,2(s, t)2. Recall the definition (4.31) of φδ,2a and note that an
expression similar to (4.26) applies to φδ,2a . Hence, by (4.45), we get

d

da
Iδ,2a (r, k)

= Q(k)e(a−r)Q(k)φδ,2a (k)

+ e(a−r)Q(k)δ−1/2
∑
x∈Zd

∫ δ1/2x1−δ−1/2U1t+δ
1/2

δ1/2x1−δ−1/2U1t

dz1 · · ·
∫ δ1/2xd−δ−1/2Udt+δ

1/2

δ1/2xd−δ−1/2Udt

dzd

1

(2π)d/2

m∑
`=1

1Γ`(k)

(
(−1)n`

(
i
∑d
j=1 Ujkje

i〈k,z〉 − i〈k, U〉ei〈k,δ1/2x−δ−1/2Ua〉)(
iSδ(kj`)

)n` ∇n`δ,j`φV (z)

)
.

Here, we can kill the factor δ−1/2 in the second term since for z such that δ1/2xj −
δ−1/2Ujt ≤ zj < δ1/2xj − δ−1/2Ujt+ δ1/2 for all 1 ≤ j ≤ d,∣∣∣∣∣∣i

d∑
j=1

Ujkje
i〈k,z〉 − i〈k, U〉ei〈k,δ

1/2x−δ−1/2Ua〉

∣∣∣∣∣∣ ≤ |〈k, U〉|δ1/2

by (2.27). Hence, by (4.41), (4.42) and Remark 4.7 (2),

sup
δ∈(0,1]

ρδ,2(s, t)2 ≤ v|s− t|2
∫ s

0

dr

∫
Rd

dk
C4.46

(1 + |k|d+8)2

+

∫ t

s

dr

∫
Rd

dk
C4.46

(1 + |k|d+10)2
, ∀ 0 ≤ s ≤ t ≤ T

(4.46)
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for some constant C4.46 depending only on (φ,A, T ).
To bound ρδ,3(s, t)2, we need more estimates. For the first integral in (4.41), observe

that given a ∈ [s, t], r ∈ [0, s] and functions Aδ(k), Bδ(k) and fδ(a, k), we have∣∣∣∣ d

da

[
(eδ

1/2(a−r)Aδ(k) − eδ
1/2(a−r)Bδ(k))fδ(a, k)

]∣∣∣∣
≤
(∣∣δ1/2Aδ(k)eδ

1/2(a−r)Aδ(k)
∣∣+
∣∣δ1/2Bδ(k)eδ

1/2(a−r)Bδ(k)
∣∣) ∣∣fδ(a, k)

∣∣
+ max

{
|eδ

1/2(a−r)Aδ(k)|, |eδ
1/2(a−r)Bδ(k)|

}
× (a− r)|Aδ(k)−Bδ(k)| · |δ1/2f ′δ(a, k)|,

(4.47)

where f ′δ(a, k) = (∂/∂a)fδ(a, k). Then we apply (4.47) with the following choice of
functions in k ∈ δ−1/2Td:

Aδ(k) = δ−3/2[Â(−δ1/2k)− i〈δ1/2k, U〉],

Bδ(k) = δ−3/2Q(δ1/2k)/2,

fδ(a, k) = φδa(k).

(4.48)

Here, Re δ1/2Aδ(k) = δ−1R(−δ1/2k)/2 can be bounded by (4.42) and (4.43): for all
k ∈ δ−1/2Td,

−C−1
4.42|k|2 ≤ Re δ1/2Aδ(k) ≤ −C4.42|k|2, (4.49)

|Aδ(k)| ≤ C4.50

(
δ−1|δ1/2k|2 + δ−1|δ1/2k|3

)
= C4.50

(
|k|2 + δ1/2|k|3

)
, (4.50)

where C4.50 = max{C−1
4.42, C4.43} depends only on A. The same bound (4.49) is satisfied

by δ1/2Bδ. Also, (4.43) shows that

|Aδ(k)−Bδ(k)| ≤ C4.43|k|3, ∀ k ∈ δ−1/2Td.

By Remark 4.7 (2), (4.45), and the choice of fδ(a, k) = φδa(k) in (4.48) represented
according to (4.26), we deduce that

sup
δ∈(0,1]

sup
a∈[0,T ]

|δ1/2f ′δ(a, k)| ≤ C4.51

1 + |k|d+9
, ∀ k ∈ δ−1/2Td, (4.51)

for some constant C4.51 depending only on (φ,A).
To bound the metric ρδ,3 defined by (4.41), we apply (4.49), (4.50) and (4.51) to (4.47).

Also, recall (4.41) and Remark 4.7 (2). It follows that

sup
δ∈(0,1]

ρδ,3(s, t)2 ≤ v|s− t|2
∫ s

0

dr

∫
Rd

dk
C4.52

(1 + |k|d+6)2

+

∫ t

s

dr

∫
Rd

dk
C4.52

(1 + |k|d+10)2
, ∀ 0 ≤ s ≤ t ≤ T,

(4.52)

for some constant C4.52 depending only on (φ,A, T ).
The required inequality in (4.44) for ρδ,j for j = 2, 3 follows from (4.46) and (4.52). �

Proposition 4.10. For j = 2, 3, the processes Zδ,j(φ) defined in (4.38) converge to zero
in distribution in C(R+,R) as δ → 0+.

Proof. By dominated convergence, it follows from (2.27), (4.42) and (4.43) that Zδ,jt (φ)

converge to zero in L2(P) for all t ∈ R+. Then we use Kolmogorov’s criterion [20,
Theorem XIII.1.8], Proposition 4.9 and [10, Theorem 3.7.8 (b)]. �
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4.1.4 Tightness by approximate factorizations

Now we provide a different method to prove Proposition 4.10, aiming to show conver-
gence to zero of expectations of the following form:

E

[
sup

t∈[0,T ]∩Q

∣∣∣∣∫ t

0

∫
δ−1/2Td

e(t−r)Q(k)/2vt(r, k)W (dr, dk)

∣∣∣∣p
]
, p ∈ [1,∞), (4.53)

where W (dr, dk) is a space-time white noise on R+ × Rd. This setup is chosen for the
process Zδ,jt (φ) defined by (4.39) in view of the explicit form of Iδ,jt , for j = 2, 3. Indeed,
we can write

Iδ,2t (r, k)

= e(t−r)Q(k) 1

(2π)d/2

m∑
`=1

1Γ`(k)(−1)n`(
iSδ(kj`)

)n` ∫
Rd

dzei〈k,z〉∇n`δ,j`φV (z)
(
e−i〈k,z−bzcδ,t〉 − 1

) (4.54)

by (4.31) and (4.36), and

Iδ,3t (r, k) = e(t−r)Q(k)/2φδt (k)
(
eδ
−1(t−r)S(δ1/2k) − 1

)
by (4.33) and (4.37).

Our plan below can be outlined as follows. We use ea =
∑∞
n=0 a

n/n! to expand the
differences

e−i〈k,z−bzcδ,t〉 − 1 and eδ
−1(t−r)S(δ1/2k) − 1

in Iδ,jt for j = 2, 3. (These differences are “small” due to (4.13) and (4.43).) Since
[−i〈k, z−bzcδ,t〉]n and [δ−1(t−r)S(δ1/2k)]n are polynomials in (k, bzcδ,t) or in (t, r, S(δ1/2k)),
the expansions separate t and (r, k). This yields true stochastic convolutions without an
interference of t from vt in terms of the general form in (4.53). Hence, the factorization
method [8, Section 5.3.1] can be generalized to accommodate the present setup to bound
the suprema of those stochastic convolutions. If we undo the series expansions after
using the factorization method, then the convergence to zero of supt∈[0,T ] |Z

δ,j
t (φ)| is

attributable to a limit of the following form: For a square-integrable function ϕ and a
constant C > 0,∫ t

0

dr

∫
δ−1/2Td

dke−2ae(t−r)Q(k)ϕ(k)2
(
eC(δ1/2|k|)2 − 1

)
−−−→
δ→0

0 (4.55)

since Q is strictly negative definite by Assumption 2.3 (3). Here, the additional term
e−2a for some a ∈ (0, 1

2 ) arises from the factorization method.
We carry out the above steps in the rest of Section 4.1.4. First, we adapt the

factorization method to a Fourier setting as follows. We write (qt(w1, w2))t>0 for the
transition densities of a d-dimensional Brownian motion with covariance matrix −Q.
We also write qt(w) = qt(0, w). Then for a ∈ (0, 1

2 ) and Borel measurable functions
u(s, w1) : R+ × Rd → R and v(r, k) : R+ × δ−1/2Td → R, we define two integral operators
Ja−1 and J−a:

Ja−1u(t)
def
=

sin(πa)

π

∫ t

0

ds

∫
Rd

dw1(t− s)a−1qt−s(w1)u(s, w1), (4.56)

J−av(s, w1)
def
=

∫ s

0

∫
δ−1/2Td

(s− r)−aei〈k,w1〉+(s−r)Q(k)/2v(r, k)W (dr, dk) (4.57)

=

∫ s

0

∫
δ−1/2Td

(s− r)−a
(∫

Rd
dw2qs−r(w1, w2)ei〈k,w2〉

)
× v(r, k)W (dr, dk).

(4.58)
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See [8] and [18, Appendix A] for analogous integral operators in the standard setting of
the factorization method.

Lemma 4.11 (Factorization). Let a ∈ (0, 1
2 ) and t ∈ (0,∞). For v(r, k) such that

supr∈[0,t] |v(r, k)| ∈ L2(δ−1/2Td,dk), J−av(s, w1) is a well-defined integral a.s. for all

(s, w1) and, as a function of (s, w1), is a.s. in L2([0, t]× Rd,drdk). Moreover, we have

Ja−1J−av(t) =

∫ t

0

∫
δ−1/2Td

e(t−r)Q(k)/2v(r, k)W (dr, dk). (4.59)

Proof. By Itô’s isometry, the integrability assumption on v, and the choice a ∈ (0, 1
2 ),

it holds that sup(s,w1)∈[0,t]×Rd E[|J−av(s, w1)|2] is finite. Hence, the first two assertions
hold. It remains to prove (4.59). By the definition of (qt) and the Chapman–Kolmogorov
equation, we can write

e(t−r)Q(k)/2 =

∫
Rd

dwqt−r(w)ei〈k,w〉 (4.60)

=

∫
Rd

dw1qt−s(w1)

∫
Rd

dw2qs−r(w1, w2)ei〈k,w2〉, ∀ 0 < r < s < t. (4.61)

Note that (4.60) gives∫ t

0

∫
δ−1/2Td

e(t−r)Q(k)/2v(r, k)W (dr, dk)

=

∫ t

0

∫
δ−1/2Td

(∫
Rd

dwei〈k,w〉qt−r(w)

)
v(r, k)W (dr, dk).

(4.62)

On the other hand, it follows from (4.56) and (4.58) that

Ja−1J−av(t) =
sin(πa)

π

∫ t

0

ds

∫
Rd

dw1(t− s)a−1qt−s(w1)

×
∫ s

0

∫
δ−1/2Td

(s− r)−a
(∫

Rd
dw2qs−r(w1, w2)ei〈k,w2〉

)
v(r, k)W (dr, dk)

=
sin(πa)

π

∫ t

0

∫
δ−1/2Td

(∫ t

r

ds(t− s)a−1(s− r)−a

×
∫
Rd

dw1qt−s(w1)

∫
Rd

dw2qs−r(w1, w2)ei〈k,w2〉
)
v(r, k)W (dr, dk)

=

∫ t

0

∫
δ−1/2Td

(∫
Rd

dwei〈k,w〉qt−r(w)

)
v(r, k)W (dr, dk), (4.63)

where the second equality follows from the stochastic Fubini theorem (see [24, Theo-
rem 2.6 on page 296]) and the third equality follows from the identity:∫ t

r

ds(t− s)α−1(s− r)−α =
π

sin(πα)
, ∀ 0 ≤ r ≤ t, α ∈ (0, 1)

and (4.61). The last term in (4.63) is the same as the right-hand side of (4.62). The
required identity (4.59) is proved. �

The next two lemmas give bounds for Ja−1.

Lemma 4.12. Let (a, p?) be such that

0 < a <
1

2
and p? >

1 + d/2

a
> 2. (4.64)
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For any T, λ ∈ (0,∞) and Borel measurable function (s, w1) 7→ u(s, w1), we have

|Ja−1u(t)|p? ≤ C4.65

∫ t

0

ds

∫
Rd

dw1|u(s, w1)|p?e−λ|w1|, ∀ t ∈ [0, T ], (4.65)

where C4.65 depends only on (a, p?), Q, T and λ. In particular, given a family (ut)t∈[0,T ]∩Q,

sup
t∈[0,T ]∩Q

|Ja−1ut(t)|p? ≤ C4.65

∫ T

0

ds

∫
Rd

dw1 sup
t∈[s,T ]∩Q

|ut(s, w1)|p?e−λ|w1|. (4.66)

Proof. The proof of (4.65) is the same as the proof of a similar bound in [18, Lemma A.3].
We include it here for completeness. Write C for a constant depending only on (a, p?), Q,
T and λ, which may change from line to line. By (4.56), it holds that

|Ja−1u(t)|

≤ C

∫ t

0

ds(t− s)a−1

∫
Rd

dw1qt−s(w1)|u(s, w1)|

≤ C

∫ t

0

ds(t− s)a−1

(∫
Rd

dw1qt−s(w1)eλ|w1|/2 · |u(s, w1)|p?/2e−λ|w1|/2
)2/p?

≤ C

∫ t

0

ds(t− s)a−1

(∫
Rd

dw1qt−s(w1)2eλ|w1|
)1/p? (∫

Rd
dw1|u(s, w1)|p?e−λ|w1|

)1/p?

≤ C

∫ t

0

ds(t− s)a−1− d
2p?

(∫
Rd

dw1|u(s, w1)|p?e−λ|w1|
)1/p?

≤ C

(∫ t

0

ds(t− s)(a−1− d
2p?

) p?
p?−1

) p?−1
p?
(∫ t

0

ds

∫
Rd

dw1|u(s, w1)|p?e−λ|w1|
)1/p?

≤ C

(∫ t

0

ds

∫
Rd

dw1|u(s, w1)|p?e−λ|w1|
)1/p?

.

Here, the second, the third and the fifth inequalities follow from Hölder’s inequality. The
last inequality uses (4.64) so that the first integral in the fifth inequality is finite. The
last inequality proves (4.65). �

We prove the required convergence of Zδ,2(φ) first. Now we use the particular form
of Iδ,2t .

Lemma 4.13. For any δ ∈ (0, 1], p ∈ [1,∞) and T ∈ (0,∞), it holds that

sup
w1∈Rd

sup
s∈[0,T ]

E

[
sup

t∈[s,T ]∩Q
|J−aφδ,2t (s, w1)|p

]1/p

≤ C4.67

(∫ T

0

dr

∫
δ−1/2Td

dk
r−2aerQ(k)(e|δ

1/2k|2 − 1)

1 + |k|d+10

)1/2
(4.67)

for C4.67 depending only on p, φ, d and the parameters fixed in Assumption 4.6.

Proof. Let 0 ≤ s ≤ t ≤ T , and recall the definition (4.31) of φδ,2t . By the stochastic
Fubini theorem [24, Theorem 2.6 on page 296], we can write

J−aφ
δ,2
t (s, w1) =

1

(2π)d/2

m∑
`=1

∫
Rd

dz∇n`δ,j`φV (z)
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×
∫ s

0

∫
δ−1/2Td

(s− r)−ae(s−r)Q(k)/21Γ`(k)(−1)n`(
iSδ(kj`)

)n` ei〈k,(w1+z)〉

×
(
e−i〈k,z−bzcδ,t〉 − 1

)
W (dr, dk). (4.68)

To proceed, we write

e−i〈k,z−bzcδ,t〉 − 1

=

∞∑
n=1

(−i)n

n!

 d∑
j=1

kj
(
zj − bzjcδ,t,j

)n

=

∞∑
n=1

(−i)n

n!

∑
ι:ι1+···+ιd=n

(
n

ι1, · · · , ιd

) d∏
j=1

(
zj − bzjcδ,t,j

δ1/2

)ιj
(δ1/2kj)

ιj . (4.69)

Combining the last two displays gives the following equation where the series on the
right-hand side converges absolutely in L2(P):

J−aφ
δ,2
t (s, w1)

=
m∑
`=1

∞∑
n=1

(−i)n

n!

∑
ι:ι1+···+ιd=n

(
n

ι1, · · · , ιd

)∫
Rd

dz∇n`δ,j`φV (z)
d∏
j=1

(
zj − bzjcδ,t,j

δ1/2

)ιj
×
∫ s

0

∫
δ−1/2Td

(s− r)−ae(s−r)Q(k)/21Γ`(k)(−1)n`(
iSδ(kj`)

)n` ei〈k,(w1+z)〉

×
d∏
j=1

(δ1/2kj)
ιjW (dr, dk),

(4.70)

where ι ranges over Zd+. By the Minkowski inequality and the Burkholder–Davis–Gundy
inequality [20, Theorem IV.4.1], we get

E

[
sup

t∈[s,T ]∩Q
|J−aφδ,2t (s, w1)|p

]1/p

≤ C4.71

m∑
`=1

∞∑
n=1

1

n!

∑
ι:ι1+···+ιd=n

(
n

ι1, · · · , ιd

)(∫
Rd

dz|∇n`δ,j`φV (z)|
)

×

∫ T

0

dr′
∫
δ−1/2Td

dk(r′)−2aer
′Q(k) 1Γ`(k)

|Sδ(kj`)|2n`

d∏
j=1

(δ1/2kj)
2ιj

1/2

.

(4.71)

In more detail, for (4.71), C4.71 is a constant depending only on p, and we change
variables by r′ = s− r. Let C4.71 absorb the finite constant

sup
δ∈(0,1]

sup
`∈{1,··· ,m}

∫
Rd

dz|∇n`δ,j`φV (z)|.

Then the required inequality (4.67) follows from (4.71) upon applying the Cauchy–
Schwarz inequality with respect to the counting measure f 7→

∑
`,n,ι

1
n!

(
n

ι1,··· ,ιd

)
f(`, n, ι)

and then undoing series expansions. The proof is complete. �

Proposition 4.14. The laws of the processes Zδ,2(φ) defined in (4.38) converge weakly
to zero in the space of probability measures on C(R+,R) as δ → 0+.

Proof. Let (a, p?) satisfy (4.64). It is enough to show that supt∈[0,T ] |Z
δ,2
t (φ)| converges

to zero in Lp?(P) as δ → 0+ for every T ∈ (0,∞).
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Recalling (4.36), (4.38) and the notation
∫∫

Φ•dW in (3.12), we can use Lemma 4.11 to

rewrite the stochastic integral defining Zδ,2t (φ) with respect to Ẇ ` as a linear combination

of Ja−1J−aφ
δ,2
t (t) and Ja−1J−aφ

δ,2
t (t) with Ẇ replaced by Ẇ `, for ` = 1, 2. Since a ∈ (0, 1

2 )

by (4.64), it follows from Lemma 4.13 that, for any p ∈ [1,∞),

lim
δ→0+

sup
w1∈Rd

sup
s∈[0,T ]

E

[
sup

t∈[s,T ]∩Q

∣∣J−aφδ,2t (s, w1)
∣∣p]1/p

= 0.

Then applying these two properties to Lemma 4.12 with ut(s, w1)(ω) ≡ J−aφδ,2t (s, w1)(ω),
we obtain from dominated convergence that

lim
δ→0+

E

[
sup

t∈[0,T ]∩Q

∣∣Ja−1J−aφ
δ,2
t (t)

∣∣p?] = 0. (4.72)

The same limit holds with φδ,2t replaced by φδ,2t since J−aφ
δ,2
t (s,−w1) = J−aφ

δ,2
t (s, w1).

Note that Zδ,2(φ) has continuous paths by (4.26), (4.31), (4.36) and (4.38). Then by the
limits obtained in the previous paragraph, we deduce that, as δ → 0+, supt∈[0,T ] |Z

δ,2
t (φ)|

converges to zero in Lp?(P), as required. �

Almost the same argument can be used to prove the required convergence of Zδ,3(φ).

Proposition 4.15. The laws of the processes Zδ,3(φ) defined in (4.38) converge weakly
to zero in the space of probability measures on C(R+,R) as δ → 0+.

Proof. We prove an analogue of Lemma 4.13 for φδ,2t replaced by φδ,3t . By (4.33),

φδ,3t (r, k) = φδt (k)

∞∑
n=1

1

n!

n∑
j=0

(
n

j

)
(t− s)n−j(s− r)j [δ−1S(δ1/2k)]n.

Recall the uniform bound of φδt in Remark 4.7. Then as a counterpart of (4.67), we have
the following: for any p ∈ [1,∞) and w1 ∈ Rd,

E

[
sup
t∈[s,T ]

|J−aφδ,3t (s, w1)|p
]1/p

≤ C4.73

∞∑
n=1

1

n!

n∑
j=0

(
n

j

)
Tn−j

(∫ T

0

dr

∫
δ−1/2Td

dkr−2aerQ(k)r2j |δ−1S(δ1/2k)|2n
)1/2

(4.73)

≤C4.73

(∫ T

0

dr

∫
δ−1/2Td

dk
r−2aerQ(k)

(
e(T+T 2)|δ−1S(δ1/2k)|2 − 1

)
1 + |k|d+10

)1/2

for a constant C4.73 depending only on p, φ, d and the parameters fixed in Assumption 4.6.
Thanks to (4.43), the last term tends to zero as δ → 0+. The rest follows similarly as in
the proof of Proposition 4.14. �

4.1.5 Characterization of limits

By Propositions 4.1, 4.8, 4.14 and 4.15 (or Proposition 4.10 in place of Propositions 4.14
and 4.15), we have verified conditions in Mitoma’s theorem [17, Theorem 3.1] and proved
that {Zδ}δ∈(0,1] converge in distribution to Z0 in C(R+,S ′(Rd)). Recall that Z0 is defined
by (3.18). Our goal here is to show that Z0 solves (3.13).

In the following, we apply Duhamel’s principle to get a preliminary SPDE satisfied by
Z0. Then we apply Fourier inversions to transform the SPDE to (3.13).
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Lemma 4.16. Recall that we write 0−1/2Td for Rd. For any δ ∈ [0, 1) and any bounded
continuous complex-valued function φ defined on δ−1/2Td,

Zt(φ) =
√
v

∫ t

0

∫
δ−1/2Td

e(t−r)Q(k)/2φ(k) •W(dr, dk)

solves the following SPDE:

Zt(φ) =

∫ t

0

Zr

(
Qφ

2

)
dr +

√
v

∫ t

0

∫
δ−1/2Td

φ(k) •W(dr, dk). (4.74)

Proof. We write out the right-hand side of (4.74) and then use the stochastic Fubini
theorem [24, Theorem 2.6 on page 296] in the second equality below. These give∫ t

0

Zs

(
Qφ

2

)
ds+

√
v

∫ t

0

∫
δ−1/2Td

φ(k) •W(dr, dk)

=
√
v

∫ t

0

∫ s

0

∫
δ−1/2Td

Q(k)

2
e(s−r)Q(k)/2φ(k) •W(dr, dk)ds+

√
v

∫ t

0

∫
δ−1/2Td

φ(k) •W(dr, dk)

=
√
v

∫ t

0

∫
δ−1/2Td

∫ t

r

Q(k)

2
e(s−r)Q(k)/2dsφ(k) •W(dr, dk) +

√
v

∫ t

0

∫
δ−1/2Td

φ(k) •W(dr, dk)

=
√
v

∫ t

0

∫
δ−1/2Td

(e(t−r)Q(k)/2 − 1)φ(k) •W(dr, dk) +
√
v

∫ t

0

∫
δ−1/2Td

φ(k) •W(dr, dk)

=
√
v

∫ t

0

∫
δ−1/2Td

e(t−r)Q(k)/2φ(k) •W(dr, dk)

= Zt(φ),

which is (4.74). �

Proposition 4.17. The unique distributional limit Z0 defined in (3.18) of Zδ as δ → 0+

solves the following SPDE: for some space-time white noise W (dr, dk) with covariance
measure drdk on R+ × Rd,

Z0
t (φ) =

∫ t

0

Z0
s

(
∆φ

2

)
ds+

√
v|det(V )|

∫ t

0

∫
Rd
φ(k)W (dr, dk), φ ∈ S(Rd). (4.75)

Proof. Recall φV and TV defined in (4.5). We define Z by

Zt(FTV φ)
def
= Z0

t (φ), φ ∈ S(Rd).

By the bijectivity of F and TV on S(Rd), Z has a domain given by S(Rd) and is well-
defined. Then Lemma 4.16 implies that

Zt(FTV φ)−
∫ t

0

Zs

(
QFTV φ

2

)
ds, 0 ≤ t <∞, (4.76)

is a continuous centered Gaussian process. Its covariance across times 0 ≤ s ≤ t <∞ is
given by

sv

∫
Rd
|FTV φ(k)|2dk = sv

∫
Rd

∣∣Fφ(V −1k)
∣∣2dk

= sv|det(V )|
∫
Rd
|Fφ(k′)|2dk′

= sv|det(V )|
∫
Rd
|φ(k′)|2dk′.
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Here, the first two equalities follow from the change of variables V z′ = z and k′ = V −1k,
respectively, and the last equality follows from Plancherel’s identity. Note that we use
the normalization of Fourier transforms as in [19, Section IX.1]. To rewrite the Riemann-
integral term in (4.76) in terms of φ, we recall V =

√
−Q−1 and then change variables

to get

Q(k)

2
FTV φ(k) =

−〈V −1k, V −1k〉
2

Fφ(V −1k)

= F
(

∆φ

2

)(
V −1k

)
= FTV

(
∆φ

2

)
(k).

From the last three displays, we deduce that, for a space-time white noise Ẇ with
covariance measure drdk,√

v|det(V )|
∫ t

0

∫
R
φ(k)W (dr, dk) = Zt(FTV φ)−

∫ t

0

Zs

(
QFTV φ

2

)
ds

= Zt(FTV φ)−
∫ t

0

Zs

(
FTV

(
∆φ

2

))
ds

= Z0
t (φ)−

∫ t

0

Z0
s

(
∆φ

2

)
ds,

as required in (4.75). �

5 Convergence of the deterministic parts

Recall that Y δ is defined by (3.10). In this section, we prove the convergence of Y δ

as δ → 0+.

Proposition 5.1. Let {µδ}δ∈(0,1] ⊂ `1(Zd) satisfy (3.7) and (Pt) denote the semigroup of
the d-dimensional standard Brownian motion. Then Y δ takes values in C(R+,S ′(Rd)) for
every δ ∈ (0, 1] and

Y δ −−−−→
δ→0+

Y 0 in C(R+,S ′(Rd)), (5.1)

where

Y 0
t (φ)

def
= |det(V )|µ0(Ptφ). (5.2)

Proof. We divide the proof into the following steps.

Step 1. We compute the explicit form of Y δt (φ) first. We use (3.2) to write

η∞,δδ−1t

(
bδ−1Ut+ δ−1/2V −1zc

)
=

1

(2π)d

∫
Td

dkeδ
−1tÂ(k)ei〈k,bδ

−1Ut+δ−1/2V −1zc〉µ̂δ(k)

=
∑
x∈Zd

µδ(x)
1

(2π)d

∫
Td

dkeδ
−1tÂ(k)e−i〈k,x〉ei〈k,bδ

−1Ut+δ−1/2V −1zc〉

= δ
d
2

∑
y∈δ1/2V Zd

µδ(δ−1/2V −1y)

(2π)d

∫
δ−1/2Td

dkeδ
−1tÂ(δ1/2k)e−i〈k,V

−1y〉ei〈δ
1/2k,bδ−1Ut+δ−1/2V −1zc〉,

where we use (3.1) and the assumption that µδ ∈ `1(Zd) in the second equality. By the
definition (3.10) of Y δ(φ) and the last equality, we can write
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Y δt (φ) = δ
d+2
4

∑
y∈δ1/2V Zd

µδ(δ−1/2V −1y)

×
∫
δ−1/2Td

dkeδ
−1tÂ(δ1/2k)+i〈δ1/2k,δ−1Ut〉e−i〈k,V

−1y〉

×
∫
Rd

dz
1

(2π)d
ei〈δ

1/2k,bδ−1Ut+δ−1/2V −1zc〉−i〈δ1/2k,δ−1Ut〉φ(z), ∀ φ ∈ S(Rd).

(5.3)

By the weak topology on S ′(Rd), Lemma 4.5 and (4.42), Y δ takes values in C(R+,S ′(Rd)).

Step 2. By Mitoma’s theorem [17, Theorem 3.1], (5.1) follows if we show that for all
φ ∈ S(Rd),

Y δt (φ) −−−−→
δ→0+

Y 0
t (φ) in C(R+,R), (5.4)

where Y 0 is defined in (5.2). To this end, we first show in Step 3 that the following
convergence holds in S(Rd) for functions of ζ = V −1y: for all t ∈ R+ and sequences
R+ 3 tδ → t, ∫

δ−1/2Td
dkeδ

−1tδÂ(δ1/2k)+i〈δ1/2k,δ−1Utδ〉e−i〈k,ζ〉

×
∫
Rd

dz
1

(2π)d
ei〈δ

1/2k,bδ−1Utδ+δ
−1/2V −1zc〉−i〈δ1/2k,δ−1Utδ〉φ(z)

−−−−→
δ→0+

1

(2π)d

∫
Rd

dketQ(k)/2−i〈k,ζ〉
∫
Rd

dzei〈k,V
−1z〉φ(z). (5.5)

In Step 4, we show that the limit of Y δt (φ) coincides with Y 0
t (φ) defined in (5.2). Then we

put the results in Steps 3–4 together for the proof of (5.4) in Step 5.

Step 3. Observe that the integrands with respect to dk in (5.3) depend on ζ only
through e−i〈k,ζ〉. Recall the notation φV in (4.5). Hence, (5.5) follows if we can show that
for any multi-indices β, γ ∈ Zd+,

Kδ(ζ) −−−−→
δ→0+

K0(ζ) uniformly in ζ ∈ Rd, (5.6)

where

Kδ(ζ) = ζβ
∫
δ−1/2Td

dk

(
kγeδ

−1tδÂ(δ1/2k)+i〈δ1/2k,δ−1Utδ〉

×
∫
Rd

dz
1

(2π)d
ei〈δ

1/2k,bδ−1Utδ+δ
−1/2zc〉−i〈δ1/2k,δ−1Utδ〉φV (z)

)
e−i〈k,ζ〉, δ ∈ (0, 1],

K0(ζ) = ζβ
∫
Rd

dk
(
kγetQ(k)/2

∫
Rd

dz
1

(2π)d
ei〈k,z〉φV (z)

)
e−i〈k,ζ〉.

In formulating these functions, we introduce ζβkγ to (5.5) after a change of variable in z.
For the proof of (5.6), we handle the growth of ζβ by integration by parts with

respect to kj multiple times, for all j ∈ {1, · · · , d}. (The assumption Â ∈ C∞(Rd) from
Assumption 2.3 (1) is now used.) This argument also uses the fact that whenever ζj 6= 0,
∂kj [e

−i〈k,ζ〉/(−iζj)] = e−i〈k,ζ〉.
In more detail, we apply integration by parts to Kδ for any fixed δ ∈ [0, 1] inductively

as follows. Suppose that (βi1 , · · · , βi`) are the nonzero entries of β for i1 < i2 < · · · < i`.
We integrate by parts with respect to ki1 first. This yields three terms, two of them being
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boundary terms, and then the next stage applies integration by parts to each of the three
terms in the following way. The two boundary terms are integrated by parts with respect
to ki2 and the remaining term is integrated by parts with respect to ki1 again if βi1 > 1

and with respect to ki2 otherwise. In summary, this procedure focuses on exhausting ζβ

in the non-boundary terms by multiple integration by parts with respect to variables in
the order ki1 , ki2 , · · · , ki` .

In this way, we obtain the decomposition

Kδ(ζ) =
∑
b∈B

Kδ,b(ζ) +Kδ,c(ζ), δ ∈ [0, 1].

Here, Kδ,b, b ∈ B, range over terms as the boundary terms in applying the above multiple
integration by parts for Kδ(ζ). The finite index set B has a size depending only on β.
Note that K0,b = 0 for all b ∈ B by (4.42). (For δ > 0, it is possible that Kδ,b is a nonzero
integral since the integration with respect to kj in Kδ is only over a bounded domain.
Therefore, the uniform convergence Kδ → K0 as δ → 0+ follows if we show the uniform
convergence of

Kδ,b → 0, ∀ b ∈ B, and Kδ,c → K0,c as δ → 0+. (5.7)

Thanks to domination from (4.42) and (4.43) in passing the limits, all the convergences
in (5.7) can be obtained by the following bounds: For any m,n ∈ Z+ and T ∈ (0,∞),

sup
α∈Zd+:|α|=m

sup
δ∈(0,1]

sup
s∈[0,T ]

sup
k∈δ−1/2Td

∣∣∣∣ ∂α∂kα eδ−1sÂ(δ1/2k)+i〈δ1/2k,δ−1Us〉
∣∣∣∣ <∞ (5.8)

and

sup
α:|α|=m

sup
δ∈(0,1]

sup
s∈[0,T ]

∣∣∣∣ ∂α∂kα
∫
Rd

dz
1

(2π)d
ei〈δ

1/2k,bδ−1Us+δ−1/2zc〉−i〈δ1/2k,δ−1Us〉φV (z)

∣∣∣∣
≤ C5.9

1 + |k|n
, ∀ k ∈ δ−1/2Td,

(5.9)

for a constant C5.9 > 0.
We prove (5.8) and (5.9) now. First, the Taylor expansion of Â(k) + i〈k, U〉 around

k = 0 has the lowest order term 〈k,Qk〉/2 by Assumption 2.3 (3). Hence, (5.8) follows
upon using (4.42). To see (5.9), we apply the alternative forms (4.15) of the derivatives
of the integrals in (5.9). Then we still need to bound ∇nδ,j(b·cαδ,sφV )(z) as in (4.15) by an
integrable function independent of α, δ, s. For this property, we first apply the following
discrete Leibniz rule for ∇δ,1 defined by (4.14):

∇nδ,1(fg)(z) =

n∑
`=0

(
n

`

)
∇`δ,1(f)(z)×∇n−`δ,1 (g)(z1 − `δ1/2, z2, · · · , zd), ∀ n ≥ 1, (5.10)

and its analogue for with respect to z2, · · · , zd. By these rules, we can expand the partial
difference ∇nδ,j(b·cαδ,sφV ) as in (4.15) into sums of products of ∇`δ,jφV and ∇`jδ,jb·cδ,s,j for

1 ≤ j ≤ d and 0 ≤ `, `j ≤ n. Observe that the partial differences ∇`2δ,jb·cδ,s,j ≡ 1 if `2 = 1

by the definition (4.12) of b·cδ,s,j and so ≡ 0 whenever `2 ≥ 2. We have proved (5.9) since
bzcδ,s,j grows at most linearly in |z| and the partial derivatives of φV of all fixed orders
are rapidly decreasing.

Step 4. The limiting integral in (5.5) with respect to k over Rd can be simplified as
follows: with the change of variables k = V j/

√
t,

EJP 24 (2019), paper 36.
Page 31/33

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP289
http://www.imstat.org/ejp/


Rescaled Whittaker driven SDEs converge to the additive SHE

1

(2π)d

∫
Rd

dketQ(k)/2−i〈k,V −1y〉+i〈k,V −1z〉 =
|det(V )|
(2π)dtd/2

∫
Rd

dje−|j|
2/2−i〈j,y/

√
t〉+i〈j,z/

√
t〉

=
|det(V )|
(2πt)d/2

exp

(
−|y − z|

2

2t

)
.

It follows that∫
Rd

dzφ(z)
1

(2π)d

∫
Rd

dketQ(k)/2−i〈V −1y,k〉+i〈k,V −1z〉 = |det(V )|Ptφ(y), (5.11)

where (Pt) is the semigroup of the d-dimensional standard Brownian motion.

Step 5. Note that all the functionals in (3.7) are S ′(Rd)-valued since µδ ∈ `1(Zd). Also,
the convergence in (3.7) holds uniformly on compact subsets of S(Rd). Indeed, the
convergence in (3.7) is with respect to the weak topology of S ′(Rd) [19, Section V.3] so
that [19, Theorems V.8 and V.9] apply. Hence, by (5.3), (5.5) and (5.11), we deduce the
uniform convergence of Y δt (φ) to |det(V )|µ0(Ptφ) on compacts in t. This completes the
proof of (5.4). �

6 List of frequent notations for Sections 3–5

Fφ(k): the Fourier transform of φ with a normalization defined in (3.19).
Iδ,jt (r, k): the integrands of stochastic integrals defined in (4.35)– (4.37).
Ja−1: the integral operator defined in (4.56).
J−a: the stochastic integral operator defined in (4.58).
Q: the 2× 2 strictly negative definite matrix defined in Assumption 2.3 (3).
Q(k): the function 〈k,Qk〉 defined in Assumption 2.3 (3).
R(k): twice the real part of Â(k) defined in (2.4).
S(k): a remainder function of Â(k) defined in (4.32).
Sδ(k): the sine-like function defined in (4.8).
U : the two-dimensional real vector defined in (3.4).
V : the square root of −Q−1 defined in (3.5).
Xδ: the rescaled S ′(Rd)-valued process defined in (3.6).
Y δ: the deterministic part of Xδ defined in (3.10).
Zδ: the stochastic part of Xδ defined in (3.11).
∇δ,1: the partial difference operator defined in (4.14).
φδt (k) = φδ,1(k)+φδ,2t (k): the auxiliary function defined in (4.7) and decomposed in (4.29).
φδ,3t (r, k): the auxiliary function defined in (4.33).
φV (z) = TV φ(z): the change-of-variable transformation of φ defined in (4.5).∫ ∫

Φ(r, k) •W(dr, dk): the sum of stochastic integrals of Re Φ and Im Φ defined in (3.12).
bzcδ,t, bzcδ,t,j , bzjcδ,t,j: the modified floor functions on rescaled lattices defined in (4.12).
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