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Multivariate approximation in total variation using
local dependence
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Abstract

We establish two theorems for assessing the accuracy in total variation of multivariate
discrete normal approximation to the distribution of an integer valued random vector
W . The first is for sums of random vectors whose dependence structure is local.
The second applies to random vectors W resulting from integrating the Zd-valued
marks of a marked point process with respect to its ground process. The error bounds
are of magnitude comparable to those given in [Rinott & Rotar (1996)], but now with
respect to the stronger total variation distance. Instead of requiring the summands
to be bounded, we make third moment assumptions. We demonstrate the use of
the theorems in four applications: monochrome edges in vertex coloured graphs,
induced triangles and 2-stars in random geometric graphs, the times spent in different
states by an irreducible and aperiodic finite Markov chain, and the maximal points in
different regions of a homogeneous Poisson point process.
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1 Introduction

In this paper, we prove a general theorem that can be used to give bounds in total vari-
ation on the accuracy of multivariate discrete normal approximation to the distribution
of a random vector W in Zd, when W is a sum of n random vectors whose dependence
structure is local. Our setting is rather similar to that in [Rinott & Rotar (1996)]. In
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Multivariate approximation in total variation using local dependence

their paper, Stein’s method is used to derive the accuracy, in terms of the convex sets
metric, of multivariate normal approximation to suitably normalized sums of bounded
random vectors; under reasonable conditions, error bounds of order O(n−1/2 log n) are
obtained. [Fang (2014)] improves the order of the error to O(n−1/2), using slightly
different conditions, and also obtains optimal dependence on the dimension d. Here, we
are interested in total variation distance bounds, so as to be able to approximate the
probabilities of arbitrary sets. For random elements of Zd, this necessitates replacing
the multivariate normal distribution by a discretized version. We use the d-dimensional
discrete normal distribution DNd(nc, nΣ) that is obtained from the multivariate normal
distribution Nd(nc, nΣ) by assigning the probability of the d-box

[i1 − 1/2, i1 + 1/2)× · · · × [id − 1/2, id + 1/2)

to the integer vector (i1, . . . , id)
T , for each (i1, . . . , id)

T ∈ Zd. This family of distributions
is a natural choice, when approximating a discrete random vector in a central limit
setting. We are able to establish discrete normal approximation under conditions broadly
analogous to those of [Rinott & Rotar (1996)] and [Fang (2014)], with an error of order
O(n−1/2 log n), but without their boundedness assumption; a suitable third moment
condition is all that is needed.

For generality, we replace n with an m which is essentially the dimension adjusted
trace of the covariance matrix of W . Our approach to establishing approximation in
total variation by DNd(mc,mΣ) is by way of Stein’s method. Letting e(i) denote the
coordinate vector in the i-direction, we start with a Stein operator Ãm, acting on
functions h : Zd → R, defined by

(Ãmh)(z) := mTr(Σ∆2h(z))− (z −mc)T∆h(z), z ∈ Zd, (1.1)

where
∆jh(z) := h(z + e(j))− h(z); ∆2

jkh(z) := ∆j(∆kh)(z),

∆h(z) := (∆1h(z), . . . ,∆dh(z))T , and ∆2h(z) is the matrix whose jk element is ∆2
jkh(z).

For any z ∈ Zd and 0 < r ≤ ∞, define

|∆h(z)| := max
1≤i≤d

|∆ih(z)|; |∆2h(z)| := max
1≤i,k≤d

|∆2
ikh(z)|;

‖∆h‖r,∞ := max
z∈Zd∩Br(mc)

|∆h(z)|; ‖∆2h‖r,∞ := max
z∈Zd∩Br(mc)

|∆2h(z)|, (1.2)

where Br(x) := {y ∈ Rd : |y − x| ≤ r}; note that the centre mc is suppressed in the norm
notation. Using the operator Ãm, the following abstract result can be deduced from
[Barbour, Luczak & Xia (2018b), Theorem 2.4] and [Barbour, Luczak & Xia (2018a), Re-
mark 4.2]. In its statement, we use ρ(Σ) to denote the condition number λmax(Σ)/λmin(Σ)

of a matrix Σ, where λmax(Σ) and λmin(Σ) denote the largest and smallest eigenvalues of
Σ.

Theorem 1.1. Let W be a random vector in Zd with mean µ := EW and positive definite
covariance matrix V := E{(W − µ)(W − µ)T }; define m := dd−1TrV e, c := m−1µ and
Σ := m−1V . Set δ0 := 1

72 ρ(Σ)−3/2. Then, for any 0 < δ ≤ δ0, there exist C1.1(δ), n1.1(δ) <

∞, depending continuously on δ and the condition number ρ(Σ), but not on d or m, with
the following property: if, for some ε1, ε20, ε21 and ε22, and for some m ≥ n1.1(δ),

(a) dTV(L(W ),L(W + e(j))) ≤ ε1, for each 1 ≤ j ≤ d;

(b) |E{Ãmh(W )}I[|W − µ| ≤ mδ]|

≤ ε20‖h‖3mδ0/2,∞ + ε21m
1/2‖∆h‖3mδ0/2,∞ + ε22m‖∆2h‖3mδ0/2,∞,
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for all h : Zd → R, then it follows that

dTV(L(W ),DNd(mc,mΣ))

≤ C1.1(δ)(d4(m−1/2 + ε1) + ε20 + ε21 + ε22) logm.

The unspecified constants can in principle be deduced from the more detailed information
in [Barbour, Luczak & Xia (2018a), Barbour, Luczak & Xia (2018b)].

Applying the theorem in practice may not be easy. Condition (b) is much like the
sort of condition that has to be checked to prove multivariate normal approximation
using Stein’s method [Chen, Goldstein & Shao (2011), p. 337], with differences and
derivatives exchanged, except for the indicator I[|W −mc| ≤ mδ], which truncates W to
the ball Bmδ(mc). The truncation has both good and bad consequences. It introduces
an awkward discontinuity inside the expectation, which needs careful treatment in the
arguments that follow. On the other hand, it ensures that all the expectations to be
considered are finite, and that the function h only has to be evaluated within certain
closed balls around mc; this latter feature is important, because the solutions to the
Stein equation for this problem may grow large as the distance from mc increases.
Condition (a) imposes a certain smoothness on the distribution of W .

In Section 2, we prove a multivariate approximation theorem, Theorem 2.1, with error
bounds in the total variation distance, that is much simpler to use than Theorem 1.1.
The setting is one of predominately local dependence. The basic elements making up
the error bounds are sums of third moments, similar to those that would be expected
to quantify the error in the CLT for dissociated summands, together with dependence
coefficients analogous to those in [Rinott & Rotar (1996)]. However, there is an extra
quantity εW appearing in the bound, which quantifies the smoothness of the distribution
of W , and which is not as simple to express in concrete terms. We also consider a
more general setting, in which W arises from integrating the marks of a marked point
process with respect to its ground process on a suitable metric space. For integrals of
functionals of a Poisson process, [Schulte & Yukich (2018a), Schulte & Yukich (2018b)]
have recently established an order O(n−1/2) rate of multivariate approximation with
respect to the convex sets metric, using the Malliavin–Stein approach and second order
Poincaré inequalities. They require somewhat stronger moment assumptions than ours,
but, as in the theorems of [Rinott & Rotar (1996)] and of [Fang (2014)], there is no need
to bound an analogue of εW .

In Section 3, we introduce a stronger notion of local dependence, that is convenient
for many applications. It enables us to give rather simple error bounds, in Corollary 3.1,
expressed in terms of an upper bound for the maximum of the third moments of the |X(α)|
and the sizes of the neighbourhoods in the dependency graph, both being quantities
that typically appear in error bounds in the CLT. It also enables us to give a general
result, Theorem 3.2, that is helpful for bounding εW . The effectiveness of our bounds is
illustrated in a number of examples in Section 4. These also give some insight into why,
in addition to the sort of moment conditions that suffice for approximation in metrics
weaker than total variation, some smoothness condition is needed.

2 Main theorems

For the ease of use, we present our main results for the accuracy of multivariate
discrete normal approximation in two distinct but related settings. We postpone the
proofs of the main theorems to Section 5.

In the first setting, we suppose that W =
∑n
j=1X

(j) is a sum of n vectors in Rd. As
before, we write

µ := EW, V := Cov(W ) and m := dd−1TrV e. (2.1)
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We assume that there are decompositions of the following form:

(a) For each 1 ≤ j ≤ n, we can write W = W (j) + Z(j), where W (j) ∈ Zd is only weakly
dependent on X(j);

(b) For each 1 ≤ j ≤ n, we can write Z(j) =
∑nj
k=1 X̃

(j,k), with X̃(j,k) ∈ Zd, and then, for
each 1 ≤ k ≤ nj , we can write W (j) = W (j,k) + Z(j,k), where W (j,k) ∈ Zd is only

weakly dependent on (X(j), X̃(j,k)).

Because of the restrictions to Zd, centring on the mean is not possible in these decom-
positions, but it could, for instance, be arranged that each component of Z(j), X̃(j,k)

and Z(j,k) has mean with modulus at most 1. This makes no difference to the argu-
ments that follow, but the moment sums H1 and H2 that appear in the error bounds
might otherwise be larger than necessary. We assume that E|X(j)|3 < ∞ for each
j ∈ [n]:= {1, 2, . . . , n}, and that E|X̃(j,k)|3 < ∞ and E|Z(j,k)|3 < ∞ for each j ∈ [n] and
1 ≤ k ≤ nj; our bounds are not useful otherwise.

Weak dependence is expressed by the smallness of dependence coefficients analogous
to those in [Rinott & Rotar (1996)]. With µ(j) := EX(j) and with | · |1 denoting the l1
norm, we begin by defining

χ12j := E
∣∣E(|X(j)| |W (j))− E|X(j)|

∣∣;
χ13j := E

∣∣E(|X(j)|1 |W (j))− E|X(j)|1
∣∣; (2.2)

χ2jk :=

d∑
i=1

d∑
l=1

E
∣∣E{|X(j)

i | |X̃
(j,k)
l | |W (j,k)} − E{|X(j)

i | |X̃
(j,k)
l |}

∣∣
+

d∑
i=1

d∑
l=1

|µ(j)
i |E

∣∣E{|X̃(j,k)
l | |W (j,k)} − E{|X̃(j,k)

l |}
∣∣

+

d∑
i=1

d∑
l=1

E
∣∣E{X(j)

i X̃
(j,k)
l |W (j,k)} − E{X(j)

i X̃
(j,k)
l }

∣∣ (2.3)

+

d∑
i=1

d∑
l=1

|µ(j)
i |E

∣∣E{X̃(j,k)
l |W (j,k)} − E{X̃(j,k)

l }
∣∣,

and then set

χ11 := (dm)−1/2
n∑
j=1

E|E(X(j) |W (j))− EX(j)|;

χ12 := (dm)−1/2
n∑
j=1

χ12j ; χ13 = d−1m−1/2
n∑
j=1

χ13j ;

χ2 := d−3m−1
n∑
j=1

nj∑
k=1

χ2jk; (2.4)

χ3 := d−1m−1
n∑
j=1

E{|E(X(j) |W (j))− µ(j)| |W (j) − µ|}.

We then write χ1 := max1≤l≤3 χ1l. Note that the m-factors, with m as defined in (2.1),
are not present in the quantities in [Rinott & Rotar (1996)] that are directly analogous
to χ11, χ2 and χ3. This is because, in their formulation, the random variables corre-
sponding to X(j) are normalized to make Cov(W ) close to the identity matrix. Since
our sum W is not normalized, to keep its values in Zd, the elements of its covariance
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matrix typically grow with n. The quantities χ12 and χ13 have no direct analogue in
[Rinott & Rotar (1996)], and appear only in dealing with the truncation to Bnδ(µ), some-
thing that is not needed in their arguments.

Again recalling m from (2.1), we introduce some moment sums, used in the error
estimates, defining

H21 := d−3/2m−1
n∑
j=1

E{(|X(j)|+ |µ(j)|) |Z(j)|2};

H22 := d−3/2m−1
n∑
j=1

nj∑
k=1

E{(|X(j)|+ |µ(j)|) |X̃(j,k)| |Z(j,k)|};

H23 := d−3/2m−1
n∑
j=1

nj∑
k=1

E{(|X(j)|+ |µ(j)|) |X̃(j,k)|}E|Z(j,k)|;

H24 := d−3/2m−1
n∑
j=1

nj∑
k=1

E{(|X(j)|+ |µ(j)|) |X̃(j,k)|}E|Z(j)|,

and then setting

H0 := d−1/2m−1
n∑
j=1

E|X(j)|;

H1 := d−1m−1
n∑
j=1

nj∑
k=1

E{(|X(j)|+ |µ(j)|) |X̃(j,k)|}; (2.5)

H2 := max
1≤l≤4

H2l.

We also assume that

E{|Z(j)|2} ≤ dm; E{|Z(j,k)|2} ≤ dm, for all 1 ≤ j ≤ n; 1 ≤ k ≤ nj . (2.6)

The various d-factors are designed to offset any automatic dimension dependence in the
corresponding quantities, but their choice plays no essential part in the bounds given
below.

A rough idea of the magnitudes of the quantities H0, H1 and H2 can be gained
as follows. In circumstances in which the weak dependence in the decomposition is
sufficiently weak, it is to be expected that

TrV = E{(W − µ)T (W − µ)} ≈
n∑
j=1

nj∑
k=1

E{(X(j) − µ(j))T (X̃(j,k) − EX̃(j,k))} =: v̂,

say; suppose, for definiteness, that 1/2 ≤ v̂/TrV ≤ 2. Using the fact that µ(j) = EX(j),
and replacing vectors by their moduli in the sum on the right hand side, it follows that
dmH1 is an upper bound for v̂. Suppose, as is the case in many applications, that all
of the {E|X(j)|3}1/3 and {E|X̃(j,k)|3}1/3 are bounded by c2

√
d for some c2 <∞, and also

that {E|Z(j,k)|3}1/3 ≤ n∗c2
√
d for all j, k, where n∗ := max1≤j≤n nj . Suppose further that

v̂ ≥ nn∗c21d for some 0 < c1 < c2, that nj ≥ 1 for all j, and that TrV ≥ d. Then it follows
that

nn∗c
2
1d ≤ v̂ ≤ mdH1 ≤ 2nn∗c

2
2d,

so that mdH1 ≤ 4(c2/c1)2 TrV ; this implies that H1 ≤ 4(c2/c1)2, from the definition
of m, so that H1 remains bounded if c1 and c2 remain constant as n increases. Similar
considerations show also that

H0 ≤
4c2
n∗c21

and H2 ≤
2n∗c

3
2

c21
,
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so that H0 also remains bounded if c1 and c2 remain constant as n increases, whereas H2

may grow if n∗ grows with n. These assumptions are automatically satisfied under
the conditions of Corollary 3.1, with the exception of the lower bound v̂ ≥ nn∗c

2
1d

for the variance; this, however, is typically satisfied too, as in Example 4.1. Finally,
assumption (2.6) is satisfied if n∗ ≤ 1

2n(c1/c2)2, which is true for large enough n if
n∗ = o(n) as n→∞. In Example 4.1, this would only require that the underlying graph
be sparse, in that the maximal vertex degree should be of smaller order than the number
of vertices.

We now make a smoothness assumption on the distributions of W (j) and W (j,k) that is
key for approximation in total variation. We assume that, for each 1 ≤ j ≤ n, 1 ≤ k ≤ nj
and 1 ≤ i ≤ d, we have

dTV

(
L(W (j) + e(i) |X(j), Z(j)),L(W (j) |X(j), Z(j))

)
≤ εW a.s.;

dTV

(
L(W (j,k) + e(i) |X(j), X̃(j,k), Z(j,k)),L(W (j,k) |X(j), X̃(j,k), Z(j,k))

)
≤ εW a.s.,

(2.7)

for some εW < 1. Of course, for the bounds that we shall prove, we shall want εW
to be suitably small. This assumption is clearly useful in establishing Condition (a) of
Theorem 1.1, but is also used throughout the treatment of |E{Ãmh(W )}I[|W − µ| ≤ mδ]|.
Theorem 2.1. Let W :=

∑n
j=1X

(j) be decomposed as above, with (2.6) satisfied, and
suppose that V is positive definite. Then there exist constants C2.1 and n2.1, depending
continuously on the condition number ρ(V ), such that

dTV(L(W ),DNd(µ, V ))

≤ C2.1d
3 logm{(d+H2)εW + (d+H0 +H2 +m−1/2H1)m−1/2 + (χ1 + χ2 + χ3)},

for all m ≥ n2.1, where m is as in (2.1), εW is as in (2.7), H0, H1 and H2 are as in (2.5),
and χ1, χ2 and χ3 are as in (2.4).

Our second setting is somewhat more general. We suppose that W results from
integrating the marks of a marked point process with respect to its ground process. We
assume that the carrier space Γ of the ground point process Ξ is a locally compact second
countable Hausdorff topological space [Kallenberg (1983), p. 11], with Borel σ-field B(Γ).
Let G̃ := Γ × Zd, and equip it with the product Borel σ-field B(G̃) = B(Γ) × B(Zd). We
use H to denote the space of all locally finite non-negative integer valued measures
ξ on G̃ such that ξ({α} × Zd) ≤ 1 for all α ∈ Γ. The space H is endowed with the
σ-field B(H) generated by the vague topology [Kallenberg (1983), p. 169]. A marked
point process Ξ̃ is a measurable mapping from (Ω,F ,P) to (H,B(H)) [Kallenberg (2017),
p. 49]. The induced simple point process Ξ(·) := Ξ̃(· ×Zd) is called the ground process
[Daley & Vere-Jones (2008), p. 3] or projection [Kallenberg (2017), p. 17] of the marked
point process Ξ̃. For (α, y) ∈ Γ × Zd such that Ξ̃({(α, y)}) = 1, we write X(α) := y, so
that X(α) represents the mark of Ξ̃ at α. We assume that the ground process Ξ is locally
finite, with mean measure ν.

Let {Dα, α ∈ Γ} be a class of neighbourhoods such that, for each α ∈ Γ, Dα ∈ B(Γ)

is a Borel set containing α and such that D = {(α, β) : β ∈ Dα, α ∈ Γ} is a measurable
subset of the product space Γ2 := Γ×Γ with the product Borel σ-field B(Γ)×B(Γ). For the
neighbourhoods {Dα, α ∈ Γ}, one can easily adapt the proof in [Chen & Xia (2004)] to
show that the mapping (α, ξ) 7→ (α, ξ|Dα×Zd) is a measurable mapping from (Γ×H,B(Γ)×
B(H)) into itself, where ξ|Dα×Zd is the restriction of ξ ∈ H to Dα×Zd [Kallenberg (1983),
p. 12].

Our goal is to establish the accuracy of discrete normal approximation to W =∫
Γ
X(α)Ξ(dα). When Γ = {1, . . . , n} and Ξ is the counting measure on Γ, W reduces
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to the sum in the previous setting, so the bound in Theorem 2.1 is a corollary of that
in Theorem 2.2. However, if there is dependence between Ξ and X, then there is
significant difference between the two settings. For the latter setting, it is necessary
to introduce extra machinery, including the first and second order Palm distributions
[Kallenberg (1983), p. 83 and p. 103], to tackle the problem.

For convenience, we use Pα, Eα and Lα to stand for the conditional probability,
conditional expectation and conditional distribution given {Ξ({α}) = 1} respectively. It
is a routine exercise [Kallenberg (1983), pp. 83–84] to show that Eα satisfies

E

∫
Γ

f(X(α), α)Ξ(dα) =

∫
Γ

Eαf(X(α), α)ν(dα)

for all non-negative functions f on (Zd × Γ,B(Zd) × B(Γ)). Similarly, for α 6= β, we
use Pαβ, Eαβ and Lαβ to stand for the conditional probability, conditional expectation
and conditional distribution given {Ξ({α}) = 1} ∩ {Ξ({β}) = 1} respectively. Writing
ν2(dα, dβ) = E(Ξ(dα)Ξ(dβ)) for α 6= β, we can also show that Eαβ satisfies,

E

∫
α,β∈Γ,α 6=β

f(X(α), X(β), α, β)Ξ(dβ)Ξ(dα)

=

∫
α,β∈Γ,α 6=β

Eαβf(X(α), X(β), α, β)ν2(dα, dβ), (2.8)

for any non-negative measurable function f on (Zd×Zd×Γ×Γ,B(Zd)×B(Zd)×B(Γ)×
B(Γ)). To avoid unnecessary complexity and to keep our notation consistent, we write
Pαα = Pα, Eαα = Eα, Lαα = Lα and ν2(dα, dα) = ν(dα) so that (2.8) can be extended to

E

∫
α,β∈Γ

f(X(α), X(β), α, β)Ξ(dβ)Ξ(dα) =

∫
α,β∈Γ

Eαβf(X(α), X(β), α, β)ν2(dα, dβ).

As in the previous setting, we assume that there are decompositions of the following
form:

(a’) For each α ∈ Γ, we can write W = W (α) +Z(α), where, under Pα, W (α) ∈ Zd is only
weakly dependent on X(α);

(b’) For each α ∈ Γ, we can write Z(α) =
∫
Dα

X̃(α,β)Ξ(dβ), with X̃(α,β) ∈ Zd, and then,

for each β ∈ Dα, we can write W (α) = W (α,β) + Z(α,β), where W (α,β) ∈ Zd is only
weakly dependent on X̃(α,β) under Pβ , and on the pair (X(α), X̃(α,β)) under Pαβ . In

particular, we take X̃(α,α) = X(α) if Ξ({α}) = 1, Z(α,α) = Z(α) and W (α,α) = W (α).

We assume for each α ∈ Γ that Eα|X(α)|3 <∞ ν-a.s., and for each α ∈ Γ and β ∈ Dα that
Eβ |X̃(α,β)|3 <∞ ν-a.s., Eαβ |X̃(α,β)|3 <∞ and Eαβ |Z(α,β)|3 <∞ ν2-a.s., since our bounds
are not useful otherwise. We set µ(α) := EαX

(α) and µ :=
∫

Γ
µ(α)ν(dα) = EW , and write

V := Cov(W ); m := dd−1TrV e. (2.9)
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We then define

χ′12α := Eα
∣∣Eα(|X(α)| |W (α))− Eα|X(α)|

∣∣;
χ′13α := Eα

∣∣Eα(|X(α)|1 |W (α))− Eα|X(α)|1
∣∣; (2.10)

χ′2αβ :=

d∑
i=1

d∑
l=1

Eαβ
∣∣Eαβ{|X(α)

i | |X̃
(α,β)
l | |W (α,β)} − Eαβ{|X(α)

i | |X̃
(α,β)
l |}

∣∣
+

d∑
i=1

d∑
l=1

Eαβ
∣∣Eαβ{X(α)

i X̃
(α,β)
l |W (α,β)} − Eαβ{X(α)

i X̃
(α,β)
l }

∣∣;
χ′′2αβ :=

d∑
i=1

d∑
l=1

|µ(α)
i |Eβ

∣∣Eβ{|X̃(α,β)
l | |W (α,β)} − Eβ{|X̃(α,β)

l |}
∣∣

+

d∑
i=1

d∑
l=1

|µ(α)
i |Eβ

∣∣Eβ{X̃(α,β)
l |W (α,β)} − Eβ{X̃(α,β)

l }
∣∣.

Note that the quantities χ′2αβ and χ′′2αβ are more complicated than their counterparts
χ2jk in the earlier setting, to allow for possible dependence between the ground process
and the marks. Then let

χ′11 := (dm)−1/2

∫
Γ

Eα|Eα(X(α) |W (α))− µ(α)|ν(dα);

χ′12 := (dm)−1/2

∫
Γ

χ′12αν(dα); χ′13 = d−1m−1/2

∫
Γ

χ′13αν(dα);

χ′1 := max
1≤l≤3

χ′1l

χ′2 := d−3m−1

(∫
Γ

∫
Dα

χ′2αβν2(dα, dβ) +

∫
Γ

∫
Dα

χ′′2αβν(dβ)ν(dα)

)
; (2.11)

χ′3 := d−1m−1

∫
Γ

Eα{|Eα(X(α) |W (α))− µ(α)| |W (α) − µ|}ν(dα).

We next introduce some moment sums by defining

H ′21 := d−3/2m−1

∫
Γ

{Eα{|X(α)| |Z(α)|2}+ |µ(α)|E{|Z(α)|2}}ν(dα);

H ′22 := d−3/2m−1

∫
Γ

∫
Dα

Eαβ{|X(α)| |X̃(α,β)| |Z(α,β)|}ν2(dα, dβ)

+d−3/2m−1

∫
Γ

∫
Dα

|µ(α)|Eβ{|X̃(α,β)| |Z(α,β)|}ν(dβ)ν(dα);

H ′23 := d−3/2m−1

∫
Γ

∫
Dα

Eαβ{|X(α)| |X̃(α,β)| }E{|Z(α,β)|}ν2(dα, dβ)

+d−3/2m−1

∫
Γ

∫
Dα

|µ(α)|Eβ{|X̃(α,β)| }E{|Z(α,β)|}ν(dβ)ν(dα);

H ′24 := d−3/2m−1

∫
Γ

∫
Dα

Eαβ{|X(α)| |X̃(α,β)| }E{|Z(α)|}ν2(dα, dβ)

+d−3/2m−1

∫
Γ

∫
Dα

|µ(α)|Eβ{|X̃(α,β)| }E{|Z(α)|}ν(dβ)ν(dα),

(2.12)

noting the extra complication in H ′22, H ′23 and H ′24 as compared with H22, H23 and H24,
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and then setting

H ′0 := d−1/2m−1

∫
Γ

Eα|X(α)|ν(dα);

H ′1 := d−1m−1

∫
Γ

∫
Dα

Eαβ{|X(α)| |X̃(α,β)|}ν2(dα, dβ) (2.13)

+d−1m−1

∫
Γ

|µ(α)|
∫
Dα

Eβ{|X̃(α,β)|}ν(dβ)ν(dα);

H ′2 := max
1≤l≤4

H ′2l.

As a consequence of the dependence between the marks and the ground process, the
analogue of (2.6) is more involved: we need to assume that there exists a constant C ≥ 1

such that

Eα(|W − µ|2) ≤ Cdm ν − a.s., Eαβ(|W − µ|2) ≤ Cdm ν2 − a.s.,

E{|Z(α)|2} ≤ dm, Eα{|Z(α)|2} ≤ dm ν − a.s., (2.14)

max{Eαβ{|Z(α)|2},Eβ{|Z(α)|2}, Eβ{|Z(α,β)|2},Eαβ{|Z(α,β)|2}} ≤ dm ν2 − a.s..

The analogue of (2.7) is even more involved. First, for 1 ≤ i ≤ d, ν-a.s. in α and ν2-a.s. in
α, β, we need to find ε′W < 1 such that

dTV

(
L(W (α) + e(i) |X(α), Z(α)),L(W (α) |X(α), Z(α))

)
≤ ε′W P− a.s.;

dTV

(
Lα(W (α) + e(i) |X(α), Z(α)),Lα(W (α) |X(α), Z(α))

)
≤ ε′W Pα − a.s.;

dTV

(
L(W (α,β) + e(i) |X(α), X̃(α,β), Z(α,β)),L(W (α,β) |X(α), X̃(α,β), Z(α,β))

)
≤ ε′W P− a.s.,

dTV

(
Lβ(W (α,β) + e(i) |X(α), X̃(α,β), Z(α,β)),Lβ(W (α,β) |X(α), X̃(α,β), Z(α,β))

)
≤ ε′W Pβ − a.s.,

dTV

(
Lαβ(W (α,β) + e(i) |X(α), X̃(α,β), Z(α,β)),Lαβ(W (α,β) |X(α), X̃(α,β), Z(α,β))

)
≤ ε′W Pαβ − a.s.

(2.15)

We then also need to find ε′′W < 1 such that

dTV

(
Lα(W (α)),L(W (α))

)
≤ ε′′W ν − a.s.,

dTV

(
Lαβ(W (α,β)),L(W (α,β))

)
≤ ε′′W ν2 − a.s.,

dTV

(
Lβ(W (α,β)),L(W (α,β))

)
} ≤ ε′′W ν2 − a.s.. (2.16)

Finally, we need a bound controlling the difference between some conditional and
unconditional expectations: we need to find ε′′′W < 1 such that

|Eα(W (α))− E(W (α))| ≤ ε′′′W ν − a.s. . (2.17)

Fortunately, under many circumstances (see [Barbour & Xia (2006)]), both ε′′W and ε′′′W
can be reduced to 0, as is the case in Example 4.4.

Theorem 2.2. Let W :=
∫

Γ
X(α)Ξ(dα) be decomposed as above, such that (2.14) is

satisfied, and suppose that V is positive definite. Then there exist constants C2.2 and n2.2,
depending continuously on the condition number ρ(V ), such that

dTV(L(W ),DNd(µ, V ))

≤ C2.2d
3 logm

{
(d+H ′2)ε′W + (d+H ′0 +H ′2 +m−1/2H ′1)m−1/2

+ε′′W (d−2m1/2H ′0 + d−1H ′1) + d−3/2H ′0ε
′′′
W + (χ′1 + χ′2 + χ′3)

}
,
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for all m ≥ n2.2, where m is as in (2.9), ε′W , ε
′′
W and ε′′′W are as in (2.15)–(2.17), H ′0, H

′
1

and H ′2 are as in (2.13), and χ′1, χ
′
2 and χ′3 are as in (2.11).

3 Intersection graph dependence

In this section, we consider sums W :=
∑n
j=1X

(j) of random vectors X(j) that are
determined by the values of an underlying collection of independent random elements
(Yi, 1 ≤ i ≤M); we assume that X(j) := X(j)((Yi, i ∈Mj)), for some subset Mj⊂[M ] :=

{1, 2, . . . ,M}. The subsets Mj induce an intersection graph G on [n], in which there
is an edge between j and k 6= j, j ∼ k, exactly when Mj ∩ Mk 6= ∅; we denote by
Nj := {k ∈ [n] \ {j} : k ∼ j} the neighbourhood of j in G. With this definition, X(j) is
independent of (X(k) : k ∈ [n] \ ({j} ∪Nj)), and the graph G is a dependency graph in
the sense of [Baldi & Rinott (1989)].

Corollary 3.1. Suppose that the assumptions in the preceding paragraph are satisfied,
with µ := EW and V := Cov(W ), and that

1 ≤ max
1≤j≤n

d−3/2E|X(j)|3 =: γ < ∞. (3.1)

Recalling the notation of Theorem 2.1, with m := dd−1TrV e, define

Dj := |Nj | and D2 := m−1
n∑
j=1

(Dj + 1)2.

Then, if m ≥ n2.1,

dTV(L(W ),DNd(µ, V )) ≤ C2.1d
3 logm(m−1/2 + εW ){d+ 3γD2},

where C2.1 from Theorem 2.1 depends only on the condition number ρ(V ) of V .

Proof. In this setting, Theorem 2.1 can be employed to prove the corollary. In fact,
there is a natural way to define W (j) and W (j,k). For each j ∈ [n], we define Z(j) :=

X(j) +
∑
k∼j X

(k) and W (j) := W − Z(j), noting that W (j) and X(j) are independent, so

that X̃(j,k) = X(k), k ∈ Nj ∪ {j}, and χ1 = χ3 = 0. Then, for k = j, W (j,k) = W (j) and
Z(j,k) = 0; otherwise, for j 6= k ∈ [n] such that j ∼ k, we define W (j,k) :=

∑
l/∈Nj∪Nk X

(l)

and Z(j,k) := W (j) −W (j,k); note that W (j,k) and the pair (X(j), X(k)) are independent,
so that χ2 = 0 also. The proof is completed by observing that H1 ≤ 1

2 (H0 +H2), and that

max{H0, H2} ≤ γD2.

The main difficulty in applying the bounds in Theorem 2.1 and Corollary 3.1 is putting
a value to εW . This can nonetheless often be dealt with, provided that enough of the
underlying random variables (Yl, l ∈ [M ]) each influence rather few of the X(j). The
next theorem gives a way of exploiting this.

Given any l ∈ [M ], define Ll := {j ∈ [n] : Mj 3 l}, and Sl :=
∑
j∈Ll X

(j); write
Gl := σ(Yl′ , l

′ ∈ [M ] \ {l}), and define

d
(i)
l (Y ) := dTV(L(Sl | Gl),L(Sl + e(i) | Gl)), 1 ≤ i ≤ d.

Given any j 6= k ∈ [n] such that j ∼ k, define

M (j,k) :=
⋃

j′∈Nj∪Nk

Mj′ ,
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and find l1 < l2 < · · · < ls ∈ [M ] \M (j,k) such that Llr ∩ Llr′ = ∅ for all 1 ≤ r < r′ ≤ s.
Then the vectors Sl1 , . . . , Sls are conditionally independent, given F (j,k) := σ

(
Yl, l /∈

{l1, . . . , ls}
)
. Write

D
(j,k)
i (Y ) :=

s∑
r=1

(1− d(i)
lr

(Y )).

Theorem 3.2. Suppose that, for j 6= k ∈ [n] such that j ∼ k, we can find s and l1 < l2 <

· · · < ls ∈ [M ] \M (j,k) such that the sets Llr , 1 ≤ r ≤ s, are disjoint, and such that

P[D
(j,k)
i (Y ) ≤ T ] ≤ η.

Then

dTV

(
L(W (j,k)+e(i) | {X(r), r ∈ Nj∪Nk}),L(W (j,k) | {X(r), r ∈ Nj∪Nk})

)
≤
(

2

πT

)1/2

+η.

Proof. Writing U (j,k) :=
∑s
r=1 Slr , we have

dTV

(
L(W (j,k) + e(i) | {X(r), r ∈ Nj ∪Nk}),L(W (j,k) | {X(r), r ∈ Nj ∪Nk})

)
≤ E

{
dTV

(
L(W (j,k) + e(i) | F (j,k)),L(W (j,k) | F (j,k))

)}
≤ E

{
dTV

(
L(U (j,k) + e(i) | F (j,k)),L(U (j,k) | F (j,k))

)}
.

Now, by the Mineka coupling argument [Lindvall (2002), Section II.14],

dTV

(
L(U (j,k) + e(i) | F (j,k)),L(U (j,k) | F (j,k))

)
≤

(
2

πD
(j,k)
i (Y )

)1/2

,

where the constant comes from [Mattner & Roos (2007), Corollary 1.6], and the theorem
follows.

4 Examples

In this section, we demonstrate that Theorems 2.1 and 2.2 can be easily applied in a
range of situations. The first three examples are discrete sums, and Theorem 2.1 can be
invoked. In the last example, we need Theorem 2.2.

4.1 Graph colouring

As a first example, suppose that the vertices in a graph G := ([M ], E) are coloured
independently, with colour i being chosen with probability πi, 1 ≤ i ≤ d. Let Yl be the
colour of vertex l, and let Wi denote the number of edges of G that connect two vertices
of colour i; write W := (W1, . . . ,Wd)

T . Then n := |E| is the number of edges in G, and,
for j, k ∈ E, j ∼ k if j and k share a common vertex. For l ∈ [M ], let δl denote the degree
of l in G; then, for j := {l, l′} ∈ E, Dj := |Nj | = δl + δl′ − 2. Define

D̃ := n−1
∑
j∈E

Dj , D̃2 := n−1
∑
j∈E

D2
j .

Then it is easy to compute

µi = EWi = nπ2
i ; Vii = VarWi = n{π2

i (1− π2
i ) + D̃π3

i (1− πi)};
Vii′ = Cov(Wi,Wi′) = −nπ2

i π
2
i′(1 + D̃), i 6= i′.
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Thus TrV = nd{c1 + D̃c2}, where

c1 := d−1
d∑
i=1

π2
i (1− π2

i ); c2 := d−1
d∑
i=1

π3
i (1− πi),

so that we take m := dn(c1 + D̃c2)e in Corollary 3.1. We can clearly take γ = 1 also, and,
for fixed d and π1, . . . , πd, this yields a bound

dTV(L(W ),DNd(µ, V )) = O
{

(m−1/2 + εW ) logm (1 + D̃2/D̃)
}
,

which relies on having a reasonable bound for εW .
In order to apply Theorem 3.2, for each j ∼ k ∈ E, we want first to find s and

l1, l2, . . . , ls ∈ [M ] \ {Mj ∪Mk} such that the sets Ll1 , . . . , Lls are disjoint. Now Ll ={
{l, l′} : l′ ∈ [M ], {l, l′} ∈ E

}
, so that |Ll| = δl, and Ll ∩ Ll′ 6= ∅ exactly when {l, l′} ∈ E.

Thus we need to find a set of vertices l1, . . . , ls subtending no edges of G (independent
in the graph theoretical sense). Letting δ∗ := maxl δl, we note that |[M ] \ {Mj ∪Mk}| ≥
M − 3δ∗, and that we can thus always take s ≥ s(M, δ∗) := bM/(δ∗ + 1)c − 3.

The next step is to bound d(i)
l (Y ) = d

(i)
l ({Yl′ , {l, l′} ∈ E}), for each 1 ≤ i ≤ d and for

any l. To do so, let Ril :=
∑
l′ : {l,l′}∈E I[Yl′ = i] be the number of neighbours of l in G that

have colour i. Then Sl takes one of the values R1le
(1), . . . , Rdle

(d) ∈ Zd, with conditional
probabilities π1, . . . , πd. Hence, if Ril = 1 and Ri′l = 0 for some i′ 6= i, then Sl = e(i) with
conditional probability πi, and Sl = 0 with conditional probability at least πi′ , giving
d

(i)
l ≤ 1−min{πi, πi′}. Hence, for any i′ 6= i, we have

s∑
r=1

(1− d(i)
lr

) ≥
s∑
r=1

I[Ri,lr = 1, Ri′,lr = 0] min{πi, πi′}

=: min{πi, πi′}R̂(i, i′).

Now, if δl = t,

P[Ril = 1, Ri′l = 0] = h(t, i, i′) := tπi(1− πi − πi′)t−1,

giving ER̂(i, i′) =
∑s
r=1 h(δlr , i, i

′) ≥ shmin(i, i′), where hmin(i, i′) := min1≤t≤δ∗ h(t, i, i′).
Then, since the events {Ri,lr = 1, Ri′,lr = 0} and {Ri,lr′ = 1, Ri′,lr′ = 0} are independent
unless there is a path of length 2 connecting lr and lr′ , we have

Var (R̂(i, i′)) ≤ ER̂(i, i′)(1 + δ∗(δ∗ − 1)).

Hence, by Chebyshev’s inequality,

P[R̂(i, i′) ≤ 1
2s(M, δ∗)hmin(i, i′)] ≤ 4(1 + δ∗(δ∗ − 1))

ER̂(i, i′)
≤ 4δ∗2

s(M, δ∗)hmin(i, i′)
.

Thus we can take

T = 1
2s(M, δ∗) min{πi, πi′}hmin(i, i′) and η =

4δ∗2

s(M, δ∗)hmin(i, i′)

in Theorem 3.2. If, as M →∞, n ≥ cM for some c > 0 and δ∗ remains bounded, with the
colour probabilities remaining constant, this gives εW = O(M−1/2), and so

dTV(L(W ),DNd(µ, V )) = O
{
M−1/2 logM

}
.

The order in M is the same as is obtained, in the context of δ∗-regular graphs and using
the convex sets metric, by [Rinott & Rotar (1996)].
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Note that, if most of the degrees in G become large as M increases, hmin(i, i′) may
well converge to zero too fast for the bound on εW to be useful, and more sophisticated
arguments would be needed. Note also that, for d = 2, h(t, i, i′) = h(t, 1, 2) = 0 for
all t 6= 1, because π1 + π2 = 1, and we obtain no bound on εW in this way. Indeed,
if G is a δ∗-regular graph and d = 2, εW is not small, since the distribution of W is
concentrated on a sub-lattice of Z2 if δ∗ ≥ 2, and L(W ) is no longer close to DNd(µ, V )

in total variation; see [Barbour, Luczak & Xia (2018b), Section 4.2.1].
The problem can be modified, by only counting a random subset of monochrome edges.

Let (Ỹj , j ∈ E) be independent Be (p) random variables, and define W̃i :=
∑
j∈E ỸjX

(j),

where X(j) is as before. Then

µ̃ := EW̃ = pµ; Ṽii := Var (W̃ii) = n{pπ2
i (1− pπ2

i ) + D̃p2π3
i (1− πi)};

Ṽii′ := Cov(W̃i, W̃
′
i ) = −np2π2

i π
2
i′(1 + D̃),

giving m = dnd{pc1 +p(1−p)c′1 +p2D̃c2}e, where c′1 := d−1
∑d
i=1 π

4
i . As before, for fixed d

and π1, . . . , πd, this yields

dTV(L(W̃ ),DNd(µ̃, Ṽ )) = O
{

(m−1/2 + ε̃n)(1 + D̃2/D̃) logm
}
.

However, the quantity ε̃n is rather easier to bound than εW , since we can take the
independent random variables (Ỹj , j ∈ E) to use in Theorem 3.2, each of which influences
only the corresponding X(j). Conditional on the colours, G := σ(Yl, l ∈ [M ]), we have

W̃i =
∑

j={l,l′}∈E

I[Yl = Yl′ = i] Ỹj ∼ Bi (Wi, p),

with W̃1, . . . , W̃d conditionally independent, and hence

dTV(L(W̃ | G),L(W̃ + e(i) | G)) ≤ 1/
√
pWi.

Using the moments of W calculated above, it follows easily that ε̃n = O({np}−1/2), giving

dTV(L(W̃ ),DNd(µ̃, Ṽ )) = O
{

(MpD̃)−1/2(1 + D̃2/D̃) logM
}
. (4.1)

The apparent order in D̃ is misleading here. If D̃ is large, the covariance matrix V
is ill conditioned, since TrV � nD̃ � MD̃2, whereas Var

{∑d
i=1 π

−1
i Wi

}
= n(d − 1) �

MD̃. Thus the condition number ρ(V ) grows like D̃, and ρ(V ) enters the constant C2.1

implied in the order symbol in (4.1). However, if only the joint distribution of, say,
(W̃1, . . . , W̃d−1)T is of interest, the corresponding covariance matrix then has condition
number that is bounded in D̃, for fixed d and π1, . . . , πd > 0, and the orders in both M

and D̃ are as in (4.1).
A more general modification, in the same spirit, is to choose (Ỹ

(i)
j , j ∈ E, 1 ≤ i ≤ d)

to be any independent integer valued random variables, with distributions depending
only on i, and to set W̃i :=

∑
j={l,l′}∈E I[Yl = Yl′ = i]Ỹ

(i)
j . Then, if the mean and variance

of Ỹ (i)
1 are m̃(i) and ṽ(i), we have

µ̃i := EW̃i = nπ2
i m̃

(i);

Ṽii := Var (W̃ii) = nπ2
i

{
v(i) + (m̃(i))2{1− π2

i + D̃πi(1− πi)}
}

;

Ṽii′ := Cov(W̃i, W̃i′) = −nπ2
i π

2
i′m̃

(i)m̃(i′)(1 + D̃),

from which the corresponding value of m can be deduced. As above, it is not difficult to
show that

dTV(L(W̃i | G),L(W̃i + 1 | G)) = O(1/
√
u(i)Wi),
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where u(i) := 1−dTV(Ỹ
(i)
1 , Ỹ

(i)
1 +1), from which it follows that ε̃n = O((MD̃)−1/2). Hence

we find from Corollary 3.1 that

dTV(L(W̃ ),DNd(µ̃, Ṽ )) = O
{

(MpD̃)−1/2γ(1 + D̃2) logM
}
, (4.2)

where γ := max1≤i≤dE|Ỹ (i)
1 |3.

4.2 Random geometric graphs

Let M := n2 points be distributed uniformly and independently over the torus
Tn := [0, n] × [0, n]. For some fixed r, join all pairs of points whose distance apart
is less than or equal to r. This yields a particular example of a random geometric
graph; the book by [Penrose (2003)] discusses much more general models, and gives a
comprehensive treatment of their properties. In this section, we illustrate the application
of Theorem 2.1 to counting induced triangles and 2-stars; more complicated examples
can be treated in much the same way. If the positions of the points are denoted by
(Yl, 1 ≤ l ≤M), we express our statistic as

W := (W1,W2)T : Wi :=
∑

j∈[M ]3

I[Gj = G(i)],

where [M ]3 denotes the set of 3-subsets of [M ], Gj := G(Yj1 , Yj2 , Yj3) denotes the induced
graph on the points Yj1 , Yj2 , Yj3 , G(1) denotes the triangle and G(2) denotes the 2-star.

For any x ∈ Tn, the probability that any given point lies in the circle of radius r
around x is πr2/n2 =: n−2p̂r. Hence P[Gj = G(i)] = n−4p

(i)
r is the same for all j ∈ [M ]3,

and p
(1)
r , p

(2)
r ≤ p̂2

r. The quantities Gj and Gk are independent unless j and k have at
least two of their vertices in common, Gj is independent of the set (Gk : j ∩ k = ∅), and
the pair (Gj , Gj′) is independent of the set (Gk : (j ∪ j′) ∩ k = ∅). Using these facts, we
can make some computations:

µ := EW =

(
M

3

)
n−4(p(1)

r , p(2)
r )T ∼ 1

3n
2(p(1)

r , p(2)
r )T ;

Vii := VarWi ∼ ciin
2; V12 := Cov(W1,W2) ∼ c12n

2,

and the matrix
(c11 c12

c21 c22

)
is non-singular, with values involving the geometry of intersec-

tions of discs in R2. Thus we can take m = cn2 for some c > 0. The quantities H0 and H2

are then easily bounded:

H0 ≤ 1

cn2
√

2

(
M

3

)
2n−4(p(1)

r + p(2)
r ) � 1;

H2 ≤ c′

cn2

(
M

3

)
n−4p̂2

r{1 + (Mn−2p̂r)
4} � 1,

giving
dTV(L(W ),DN2(µ, V )) = O((n−1 + εW ) log n).

It thus remains to bound εW .
To do so, break up [0, n]2 into 9bn/3rc2 non-overlapping r × r squares, denoted by

Ql,l′ := [(l − 1)r, lr)× [(l′ − 1), l′r). Then there can be no triangles or 2-stars with points
in two of the squares in Q := (Q3l,3l′ , 1 ≤ l, l′ ≤ bn/3rc), because points in two of them
are more than 2r apart. Consider evaluating dTV(L(W + e(i) | G),L(W | G)), much as for
Theorem 3.2, where G consists of the positions of all points not in members ofQ, together
with the numbers of points falling in each member of Q. If Sl,l′ denotes the contribution
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Multivariate approximation in total variation using local dependence

resulting from assigning positions to the points in Q3l,3l′ , then the random variables
(Sl,l′ , 1 ≤ l, l′ ≤ bn/3rc) are conditionally independent, given G. Let N(A) denote the
number of points falling in the set A ⊂ Tn. Then the event El,l′ that N(Q3l,3l′) = 1, that
the rectangle [(3l+ 0.25)r, (3l+ 0.5)r)× [(3l′ − 1)r, 3l′r) contains two points at a distance
between r/2 and r from one another, and that N(Ul,l′) = 3, where Ul,l′ is the union of
(Qr,s, l − 2 ≤ r ≤ l + 2, l′ − 2 ≤ s ≤ l′ + 2), is such that P[El,l′ ] � 1 as n→∞, and is the
same for all l, l′. Indeed, we have

P[El,l′ ] = χP[N(U1,1) = 3],

for a constant χ > 0 that is independent of n also. Conditional on El,l′ , we have

1− dTV

(
L(Sl,l′ |El,l′),L(Sl,l′ + e(i) |El,l′)

)
= ui, i = 1, 2,

for u1, u2 > 0. Now the events (El,l′ , 1 ≤ l, l′ ≤ bn/3rc) are not independent, but, except
for neighbouring pairs of indices, they are only weakly dependent: for r, r′ such that
max{|r − l|, |r′ − l′| ≥ 2}, we have

P[El,l′ , Er,r′ ] = χ2P[{N(Ul,l′) = 3} ∩ {N(Ur,r′) = 3}]
= (χP[N(U1,1) = 3])2Bi (n2, 25r2/n2){3}Bi (n2 − 3, 25r2/(n2 − 25r2)){3}
= P[El,l′ ]P[Er,r′ ]{1 +O(n−2)}.

Hence

E
{∑
l,l′

I[El,l′ ]
}

= bn/3rc2χP[N(U1,1) = 3]; Var
{∑
l,l′

I[El,l′ ]
}

= O(n2),

and calculations as for Theorem 3.2 now easily yield εW = O(n−1). Hence it follows that

dTV(L(W ),DN2(µ, V )) = O(n−1 log n).

The asymptotics of εW are, however, sensitive to the choice of r: if r = rn →∞, even
logarithmically in n, P[N(U1,1) = 3] becomes very small, and the bound on εW derived in
this way is no longer useful.

4.3 Finite Markov chains

Let (Zj , j ≥ 0) be an irreducible, aperiodic Markov chain on the finite state space
{0, 1, . . . , d}, and set X(j) := (I[Zj = 1], . . . , I[Zj = d])T . Let Wn :=

∑n
j=1X

(j) denote
the vector of the amounts of time spent in the states 1 ≤ i ≤ d between times 1

and n. We are interested in the accuracy of approximating the distribution of Wn by
DNd(µn, Vn), where µn := EWn and Vn := CovWn; translated Poisson approximation for
each component Win separately can be shown to be accurate to order O(n−1/2) using
the results of [Barbour & Lindvall (2006)]. In a Markov chain, the dependence between
the states at different times never completely disappears, so we shall need to make
use of the dependence coefficients χl, 1 ≤ l ≤ 3. We make the following simplifying
assumption:

Assumption A1: P[Z1 = i |Z0 = i] > 0 for all 0 ≤ i ≤ d.

Clearly, a local decomposition in which

Z(j) :=
∑

|l−j|≤mn

X(l) and Z(j,k) :=
∑

max{|l−j|,|l−k|}≤mn

X(l)
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is likely to be effective, if mn is suitably chosen. Because a finite state irreducible
aperiodic Markov chain is geometrically ergodic, there exist 0 < ρ < 1 and C <∞ such
that, for all 0 ≤ i, r ≤ d, we have

|P (k)
ir − πr| ≤ Cρk, (4.3)

where P (k)
ir := P[Zk = r |Z0 = i], and πr := limn→∞P[Zn = r |Z0 = i]. It is then easy to

deduce that, as n→∞,

n−1µn ∼ (π1, . . . , πd)
T =: π; (4.4)

n−1Vir;n ∼
{
πi
∑
k≥1

(P
(k)
ir − πr) + πr

∑
k≥1

(P
(k)
ri − πi) + δir − πiπr

}
=: Vir,

for 1 ≤ i, r ≤ d. Now, from (4.3), uniformly in i, r, s, q,

P[Z0 = i, Zj = r, Zj+k = s |Z0 = i, Zj+k = s] =
P[Z0 = i]P

(j)
ir P

(k)
rq

P[Z0 = i]P
(j+k)
iq

= πr
(
1 +O(ρ(j∧k))

)
,

and

P[Z0 = i, Zj = r, Zj+l = s, Zj+l+k = q |Z0 = i, Zj+l+k = q]

=
P[Z0 = i]P

(j)
ir P

(l)
rs P

(k)
sq

P[Z0 = i]P
(j+l+k)
iq

= πrP
(l)
rs

(
1 +O(ρ(j∧k))

)
,

so that all the dependence coefficients χl, 1 ≤ l ≤ 3, in (2.4) are of order O(ρmn). It
is also immediate, because indicators are bounded random variables, that H0 = O(1),
H1 = O(mn) and H2 = O(m2

n). It thus remains to consider the quantity εW of (2.7).
Assuming that 2mn ≤ n/4, it is enough to bound

dTV

(
Lr
( l∑
j=1

X(j) + e(i)
)
,Lr
( l∑
j=1

X(j)
))
, (4.5)

for any l ≥ bn/4c and 0 ≤ r ≤ d, where Lr stands for the distribution given the initial
state of the Markov chain is at r. This is because, for 1 ≤ j ≤ n/2 and k ≤ j + mn,
conditioning on the values of Zj up to time j + k +mn and using the Markov property,
the quantity εW in (2.7) is no bigger than any bound for the distance in (4.5), for
l = n − j − k − mn ≥ n/2 − 2mn ≥ n/4, that is uniform in the initial state r. For
j > n/2, we note that the same argument works, using the reversed Markov chain. We
establish (4.5) by using coupling.

Let Z ′ and Z ′′ be two copies of the Markov chain Z, both starting in r. We couple
them in such a way that the sequence of transitions in the first is the same as that in
the second, except that the holding times in 0 and i are allowed to be different. Initially,
if (N ′0l, l ≥ 1) and (N ′′0l, l ≥ 1) denote the sequence of successive holding times in 0 of
the two chains, then the pair (N ′0l, N

′′
0l) is chosen independently of the past according

to the Mineka coupling [Lindvall (2002), Section II.14], so that (N ′0l − N ′′0l, l ≥ 1) are
the increments of a lazy symmetric random walk with steps in {−1, 0, 1}. After the first
occasion L0 such that

L0∑
l=1

{N ′0l −N ′′0l} = 1,

the values of N ′0l and N ′′0l are chosen to be identical. The same strategy is applied to
the holding times N ′il and N ′′il, except that they are chosen to be identical after the first
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occasion Li on which
Li∑
l=1

{N ′il −N ′′il} = −1.

Let M0i denote the first time in the underlying Markov chains Z ′ and Z ′′ at which
both of these occasions have occurred. At this point, both chains have made the same
number of steps, because their paths differ only through differences in the partial sums∑
l{N ′0l +N ′il} and

∑
l{N ′′0l +N ′′il}, and these are equal at all times after M0i. However, at

this point, both have spent the same amount of time in states other than i and 0, but Z ′

has spent one step less in i. By the usual coupling argument, for any set A ⊂ Zd,

Pr

[ k∑
j=1

X(j) + e(i) ∈ A
]

= Pr

[ k∑
j=1

(X(j))′ + e(i) ∈ A
]

= Pr

[{ k∑
j=1

(X(j))′ + e(i) ∈ A
}
∩ {M0i ≤ k}

]

+ Pr

[{ k∑
j=1

(X(j))′ + e(i) ∈ A
}
∩ {M0i > k}

]

= Pr

[{ k∑
j=1

(X(j))′′ ∈ A
}
∩ {M0i ≤ k}

]
+ Pr

[{ k∑
j=1

(X(j))′ + e(i) ∈ A
}
∩ {M0i > k}

]

= Pr

[{ k∑
j=1

(X(j))′′ ∈ A
}]

+ Pr

[{ k∑
j=1

(X(j))′ + e(i) ∈ A
}
∩ {M0i > k}

]

− Pr
[{ k∑

j=1

(X(j))′′ ∈ A
}
∩ {M0i > k}

]

= Pr

[{ k∑
j=1

X(j) ∈ A
}]

+ Pr

[{ k∑
j=1

(X(j))′ + e(i) ∈ A
}
∩ {M0i > k}

]

− Pr
[{ k∑

j=1

(X(j))′′ ∈ A
}
∩ {M0i > k}

]
.

It thus follows that

dTV

(
Lr
( k∑
j=1

X(j) + e(i)
)
,Lr
( k∑
j=1

X(j)
))
≤ Pr[M0i > k].

Now we have P[L0 > l] = O(l−1/2) and P[Li > l] = O(l−1/2), by [Lindvall (2002),
Section II.14]. Also, because Z has finite state space, the times between visits to 0 and
between visits to i have means γ0 and γi and finite variances v0 and vi. So, if τ ′0l denotes
the time at which Z ′ completes its l-th visit to 0, we have

{M0i >
1
4n} ⊂ {L0 > αn} ∪ {τ ′0,αn > 1

4n} ∪ {Li > αn} ∪ {τ ′i,αn > 1
4n}.

Hence it follows by Chebyshev’s inequality that, if αmax{γ0, γi} < 1/8, then

Pr[M0i >
1
4n] ≤ Pr[L0 > αn]+Pr[Li > αn]+

αnv0

( 1
4n− αγ0n)2

+
αnvi

( 1
4n− αγin)2

= O(n−1/2),

where this order follows for the first pair of terms as above, and the second pair are of
order O(n−1). This shows that εW = O(n−1/2).
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Theorem 4.1. Let (Zj , j ≥ 1) be an irreducible, aperiodic Markov chain on a finite state
space {0, 1, . . . , d}, that satisfies Assumption A1. Let Wn := (Wn1, . . . ,Wnd)

T represent
the number of steps spent in the states 1, 2, . . . , d up to time n. Then, for any 0 ≤ r ≤ d,

dTV(Lr(Wn),DNd(nπ, nV )) = O(n−1/2 log3 n),

where π and V are as given in (4.4).

Proof. We apply Theorem 2.1, taking mn = log n/ log(1/ρ), so that χ1 + χ2 + χ3 =

O(n−1). Then log nH2(εW +m−1/2) = O(n−1/2 log3 n) represents the largest order term
in the error bound. Finally, it follows from (4.3) that |EWn − nπ| = O(1) and that
|Cov(Wn)ir − nVir| = O(1) for each i, r also, so that, to the stated accuracy, we can
replace the mean and covariance by nπ and V respectively.

4.4 Maximal points

Given a configuration Ξ of points in R2, a point ααα = (α1, α2)T ∈ Ξ is called maximal if
there are no other points βββ = (β1, β2)T ∈ Ξ such that βi ≥ αi for i = 1, 2. In this example,
we take Ξ to be a realisation of a Poisson point process with intensity λ on the triangle

Γ := {ααα = (α1, α2)T : 0 ≤ α2 ≤ 1− α1, 0 ≤ α1 ≤ 1}.

Letting

Aααα := {(x1, x2)T : α1 ≤ x1 ≤ 1− α2, α2 ≤ x2 ≤ 1− x1} \ {ααα},

a point ααα of Ξ is maximal if Ξ(Aααα) = 0. The process of maximal points of Ξ can thus be
written as the random point measure Υ(dααα) := 1[Ξ(Aααα)=0]Ξ(dααα), and has mean measure

υ(dααα) := EΥ(dααα) = λe−
1
2λ(1−α1−α2)2dα1dα2.

For 0 ≤ b1 < d1 ≤ b2 < d2 <∞, define the strips

Ei :=
{
ααα = (α1, α2)T : (1−diλ−1/2−α1)∨0 ≤ α2 < 1−biλ−1/2−α1, 0 ≤ α1 ≤ 1−biλ−1/2

}
,

parallel to the hypotenuse of Γ and close to it, and define Yi = Υ(Ei). Our interest is in
the approximate joint distribution of (Y1, Y2)T .

Proposition 4.2. Let φ(x) = e−
x2

2 and m̂i =
∫ di
bi
φ(x)dx, and define

σii := m̂i + 2m̂2
i

∫ bi

0

1

φ(x)
dx+ 2

∫ di

bi

φ(z)dz

∫ z

bi

1

φ(y)
dy

∫ di

y

φ(x) dx

−2m̂i(φ(bi)− φ(di)), i = 1, 2;

σ12 := 2m̂2

∫ d1

b1

φ(z)dz

∫ z

0

1

φ(y)
dy

−{m̂1(φ(b2)− φ(d2)) + m̂2(φ(b1)− φ(d1))} .

Then, as λ→∞,

EYi = υ(Ei) ∼ m̂i

√
λ; Var (Yi) ∼ σii

√
λ, i = 1, 2; Cov(Y1, Y2) ∼ σ12

√
λ.

Proof. Since υ(dααα) = EΥ(dααα) = λφ(
√
λ(1− α1 − α2))dα1dα2, we have

υ(Ei) = λ

∫ 1−biλ−1/2

0

dα1

∫ 1−α1−biλ−1/2

0∨(1−α1−diλ−1/2)

φ
(√

λ(1− α1 − α2)
)
dα2.
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Figure 1: The dependence neighbourhood Figure 2: Dark area is NL
ααα ∩ Ei

By taking x =
√
λ(1− α1 − α2) and y = α1, we obtain

υ(Ei) =
√
λ

∫ 1−biλ−1/2

0

dy

∫ di∧(
√
λ(1−y))

bi

φ(x) dx,

from which the first claim follows.
Next, referring to Figure 1, we define

NU
ααα := {(x1, x2)T : 0 ≤ x1 < α1, α2 ≤ x2 ≤ 1− α1};

NL
ααα := {(x1, x2)T : α1 ≤ x1 ≤ 1− α2, 0 ≤ x2 < α2};

ND
ααα := {(x1, x2)T : 0 ≤ x1 < α1, 0 ≤ x2 < α2},

and then set Nααα = Aααα ∪ NU
ααα ∪ NL

ααα ∪ ND
ααα . Then, since I[Ξ(Aααα) = 0] is independent of

I[Ξ(Aβββ) = 0] for βββ /∈ Nααα∪{ααα}, and Ξ(ND
ααα ) = Ξ(Aααα) = 0 if Υ({ααα}) = 1, we have

Var (Yi) = υ(Ei) +

∫
Ei

E
(
Υ((NL

ααα ∪NU
ααα ) ∩ Ei) |Υ({ααα}) = 1

)
υ(dααα)

−
∫
Ei

υ(Nααα ∩ Ei)υ(dααα). (4.6)

However, using Figure 2, we obtain∫
Ei

E
(
Υ(NL

ααα ∩ Ei)|Υ({ααα}) = 1
)
υ(dααα)

= λ

∫
Ei

υ(dααα)

∫ 1−α2

α1

dβ1

∫ α2∧(1−biλ−1/2−β1)

(1−diλ−1/2−β1)∨0

e−
λ
2 ((1−β1−β2)2−(1−β1−α2)2) dβ2

=
√
λ

∫ 1−biλ−1/2

0

dα1

∫ di∧((1−α1)
√
λ)

bi

φ(z) dz

∫ z

0

1

φ(y)
dy

∫ di∧(y−z+
√
λ(1−α1))

y∨bi
φ(x) dx

∼
√
λm̂2

i

∫ bi

0

1

φ(y)
dy +

√
λ

∫ di

bi

φ(z) dz

∫ z

bi

1

φ(y)
dy

∫ di

y

φ(x) dx,

(4.7)

where the last equality is from the change of variables

1− α2 = α1 + zλ−1/2, x = (1− β1 − β2)
√
λ and y = (1− β1 − α2)

√
λ. (4.8)
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Figure 3: N1
ααα, N

2
ααα, N

3
ααα Figure 4: Bl

By symmetry, the calculation for ND
ααα ∩ Ei gives an identical result. Similarly, by taking

1 − α2 = α1 + zλ−1/2, y =
√
λ(α1 − β1) and x =

√
λ(1 − β1 − β2) in the second equality

below, we get

υ(Nααα ∩ Ei) =

∫ 1−α2

(α1−diλ−1/2)∨0

dβ1

∫ (1−α1)∧(1−biλ−1/2−β1)

(1−diλ−1/2−β1)∨0

λφ(
√
λ(1− β1 − β2))dβ2

=

∫ di∧(α1

√
λ)

−z
dy

∫ di∧(y+
√
λ(1−α1))

bi∨y
φ(x)dx,

which implies that∫
Ei

υ(Nααα ∩ Ei)υ(dααα)

=
√
λ

∫ 1−biλ−1/2

0

dα1

∫ di∧((1−α1)
√
λ)

bi

φ(z) dz

∫ di∧(α1

√
λ)

−z
dy

∫ di∧(y+
√
λ(1−α1))

bi∨y
φ(x) dx

∼
√
λ

∫ di

bi

φ(z)dz

∫ di

−z
dy

∫ di

bi∨y
φ(x) dx

= 2
√
λm̂i(φ(bi)− φ(di)). (4.9)

Combining (4.7) and (4.9) with (4.6) gives the second claim.
Finally we estimate Cov(Y1, Y2). For ααα ∈ E1, we refer to Figure 3 and define

N1
ααα := E2 ∩NU

ααα , N2
ααα := E2 ∩NL

ααα and N3
ααα := E2 ∩ND

ααα . Then we can express the covariance
as

Cov(Y1, Y2) = 2

∫
E1

E[Υ(N2
ααα)|Υ({ααα}) = 1)]υ(dααα)−

∫
E1

υ(N1
ααα ∪N2

ααα ∪N3
ααα)υ(dααα).(4.10)

For the first term, we have

E[Υ(N2
ααα)|Υ({ααα}) = 1)]

= λ

∫ 1−α2

α1

dβ1

∫ 1−b2λ−1/2−β1

(1−d2λ−1/2−β1)∨0

φ(
√
λ(1− β1 − β2))

φ(
√
λ(1− β1 − α2))

dβ2

=

∫ z

0

φ−1(y)dy

∫ d2∧(y−z+
√
λ(1−α1))

b2

φ(x)dx

∼ m̂2

∫ z

0

φ−1(y)dy, (4.11)
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for α1 < 1, where the last equality is from the change of variables specified in (4.8). It
thus follows from (4.11) that∫

E1

E[Υ(N2
ααα)|Υ({ααα}) = 1)]υ(dααα)

∼ m̂2

√
λ

∫ 1−b1λ−1/2

0

dα1

∫ d1∧((1−α1)
√
λ)

b1

φ(z) dz

∫ z

0

φ−1(y) dy

∼ m̂2

√
λ

∫ d1

b1

φ(z) dz

∫ z

0

φ−1(y) dy. (4.12)

Likewise, using the convention that
∫ c2
c1
f(x)dx = 0 for c1 > c2, we have∫

E1

υ(N1
ααα ∪N2

ααα ∪N3
ααα)υ(dααα)

= λ

∫
E1

υ(dααα)

∫ 1−α2

(α1−d2λ−1/2)∨0

dβ1

∫ (1−b2λ−1/2−β1)∧(1−α1)

(1−d2λ−1/2−β1)∨0

φ(
√
λ(1− β1 − β2))dβ2

=
√
λ

∫ 1−b1λ−1/2

0

dα1

∫ d1∧(
√
λ(1−α1))

b1

φ(z) dz

×
∫ (z+d2)∧(z+

√
λα1)

0

dy

∫ d2∧(y−z+(1−α1)
√
λ)

b2∨(y−z)
φ(x) dx

∼
√
λ

∫ d1

b1

φ(z)dz

∫ z+d2

0

dy

∫ d2

b2∨(y−z)
φ(x) dx

=
√
λm̂1(φ(b2)− φ(d2)) +

√
λm̂2(φ(b1)− φ(d1)), (4.13)

where, again, we used the the change of variables in (4.8) for the penultimate equality.
Combining (4.12) and (4.13) with (4.10) completes the proof.

Theorem 4.3. Let W = (Y1, Y2)T , µ = EW and V = Cov(W ) be as in Proposition 4.2.
Then, as λ→∞,

dTV(L(W ),DN2(µ, V )) = O
(
λ−1/4 ln(λ)

)
.

Proof. In order to apply Theorem 2.2 to the maximal points in E′ := E1 ∪E2, we need to
establish suitable decompositions. As neighbourhoods, we take Dααα := Nααα ∪ {ααα}, with
Nααα as defined in the proof of Proposition 4.2 (see Figure 1). Proposition 4.2 ensures that
TrV�λ1/2, and so m � λ1/2 also. We assign a mark

X(ααα) := 1[Ξ(Aααα)=0](1[ααα∈E1],1[ααα∈E2])
T

if Ξ({ααα}) = 1, so that µ(ααα) = EX(ααα), and define

X̃(ααα,βββ) := X(βββ), βββ ∈ Dααα.

Then

W =

∫
ααα∈E′

X(ααα)Ξ(dααα), and ν(dααα) = λdα1dα2, ν2(dααα, dβββ) = ν(dααα)ν(dβββ).

We now decompose the integral as follows. For each ααα ∈ E′, define

Z(ααα) :=

∫
βββ∈Dααα∩E′

X(βββ)Ξ(dβββ); W (ααα) :=

∫
γγγ∈Dcααα∩E′

X(γγγ)Ξ(dγγγ);

Z(ααα,βββ) :=

∫
γγγ∈Dcααα∩Dβββ∩E′

X(γγγ)Ξ(dγγγ); W (ααα,βββ) :=

∫
γγγ∈Dcααα∩Dcβββ∩E′

X(γγγ)Ξ(dγγγ).
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This decomposition ensures that X(ααα) is independent of W (ααα) with respect to P and Pααα,
and that W (ααα,βββ) is independent of (X(ααα), X(βββ)) with respect to P, Pααα, Pβββ and Pαααβββ. This
immediately implies that

χ′11 = χ′12 = χ′13 = χ′2 = χ′3 = ε′′W = ε′′′W = 0.

Hence, it suffices to show that H ′0, H
′
1, H

′
2i, i = 1, 2, 3, 4, are all of order O(1), that (2.14)

holds and that ε′W = O(λ−1/4).
For brevity, we write ςααα = 1[Ξ(Aααα)=0] and θααα = E(ςααα). Clearly, Eααα(ςααα) = θααα also, and

Eαααβββ(ςαααςβββ) =

{
E(ςαααςβββ) for βββ ∈ NU

ααα ∪NL
ααα

0 for βββ ∈ ND
ααα ∪Aααα

}
≤ E(ςαααςβββ),

where NU
ααα , N

L
ααα and ND

ααα are defined in Figure 1. Noting that |X(ααα)| = ςααα1[ααα∈E′], we have

E

∫
ααα∈E′

ςαααΞ(dααα) =

∫
ααα∈E′

Eααα(ςααα)ν(dααα) =

∫
ααα∈E′

θαααν(dααα) = |µ|1 = O(λ1/2). (4.14)

It thus follows that

H ′0 = d−1/2m−1

∫
ααα∈E′

Eααα(ςααα)ν(dααα) = d−1/2m−1

∫
ααα∈E′

θαααν(dααα) = O(1).

For H ′1 and H ′2i, we repeatedly need to apply the estimate

ν(Dααα ∩ E′) = λO(λ−1) = O(1), (4.15)

which follows because the area of Dααα ∩E′ is of order O(λ−1) and the intensity of Ξ is of
order O(λ). Note that the bound (4.15) and all the upper bounds below are uniform in ααα
and βββ.

First, with (4.15) in mind, we obtain∫
βββ∈Dααα∩E′

E{ςβββ | ςααα = 1}ν(dβββ) ≤ ν(Dααα ∩ E′) = O(1),∫
βββ∈Dααα∩E′

θβββν(dβββ) ≤ ν(Dααα ∩ E′) = O(1),

which, together with (4.14), imply that∫
ααα∈E′

∫
βββ∈Dααα∩E′

{E(ςαααςβββ) + θαααθβββ}ν(dβββ)ν(dααα)

=

∫
ααα∈E′

∫
βββ∈Dααα∩E′

{E [ςβββ | ςααα = 1] + θβββ} θαααν(dβββ)ν(dααα)

= O(1)

∫
ααα∈E′

θαααν(ααα) = O(λ1/2). (4.16)

It therefore follows from (4.16) that

H ′1 ≤ d−1m−1

∫
ααα∈E′

∫
βββ∈Dααα∩E′

{Eαααβββ(ςαααςβββ) + θαααEβββ(ςβββ)}ν(dβββ)ν(dααα)

≤ d−1m−1

∫
ααα∈E′

∫
βββ∈Dααα∩E′

{E(ςαααςβββ) + θαααθβββ} ν(dβββ)ν(dααα) = O(1).

To show that H ′21 = O(1), we proceed as follows. With ψααα := Ξ(Dααα ∩ E′), we obtain
from (4.15) that

E
{
|Z(ααα)|2

}
≤ E{ψ2

ααα} = ν(Dααα ∩ E′) + ν(Dααα ∩ E′)2 = O(1). (4.17)
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Since ςααα is independent of ψ′ααα := Ξ(Dααα ∩Acααα ∩ E′), it follows from (4.15) and (4.17) that

Eααα{|Z(ααα)|2 | ςααα = 1} ≤ Eααα

{
(ψ′ααα)

2
∣∣∣ ςααα = 1

}
= E

{
(1 + ψ′ααα)

2
}
≤ E{(1 + ψααα)2} = O(1).

(4.18)
Combining (4.17) and (4.18) with (4.14) then ensures that

H ′21 ≤ d−3/2m−1

∫
ααα∈E′

{
Eααα(ςααα|Z(ααα)|2) + θαααE(|Z(ααα)|2)

}
ν(dααα)

= d−3/2m−1

∫
ααα∈E′

{
Eααα[|Z(ααα)|2 | ςααα = 1] + E[|Z(ααα)|2]

}
θαααν(dααα)

= O(λ−1/2)

∫
ααα∈E′

θαααν(dααα) = O(1).

In order to bound H ′22, H ′23 and H ′24, we apply (4.15) again to get the estimates

Eβββ{|Z(ααα,βββ)| | ςβββ = 1} ≤ EβββΞ(Dc
ααα ∩Dβββ ∩Acβββ ∩ E′) ≤ 1 + ν(Dβββ ∩ E′) = O(1),

Eαααβββ{|Z(ααα,βββ)| | ςααα = ςβββ = 1} ≤ EαααβββΞ(Dc
ααα ∩Dβββ ∩Acααα ∩Acβββ ∩ E′)

≤ 2 + ν(Dβββ ∩ E′) = O(1),

E|Z(ααα,βββ)| ≤ EΞ(Dc
ααα ∩Dβββ ∩ E′) ≤ ν(Dβββ ∩ E′) = O(1),

E|Z(ααα)| ≤ EΞ(Dααα ∩ E′) = ν(Dααα ∩ E′) = O(1).

These in turn show that

H ′22 ≤ d−3/2m−1

∫
ααα∈E′

∫
βββ∈Dααα∩E′

{
Eαααβββ(ςαααςβββ |Z(ααα,βββ)|) + θαααEβββ(ςβββ |Z(ααα,βββ)|)

}
ν(dβββ)ν(dααα)

= d−3/2m−1

∫
ααα∈E′

∫
βββ∈Dααα∩E′

Eαααβββ(|Z(ααα,βββ)| | ςααα = ςβββ = 1)

×Pαααβββ(ςααα = ςβββ = 1)ν(dβββ)ν(dααα)

+ d−3/2m−1

∫
ααα∈E′

∫
βββ∈Dααα∩E′

Eβββ(|Z(ααα,βββ)| | ςβββ = 1)θαααθβββν(dβββ)ν(dααα)

= O(λ−1/2)

∫
ααα∈E′

∫
βββ∈Dααα∩E′

{E(ςαααςβββ) + θαααθβββ} = O(1), (4.19)

H ′23 = d−3/2m−1

∫
ααα∈E′

∫
βββ∈Dααα∩E′

{Eαααβββ(ςαααςβββ) + θαααEβββ(ςβββ)}E|Z(ααα,βββ)|ν(dβββ)ν(dααα)

= O(λ−1/2)

∫
ααα∈E′

∫
βββ∈Dααα∩E′

{E(ςαααςβββ) + θαααθβββ}ν(dβββ)ν(dααα) = O(1), (4.20)

and

H ′24 = d−3/2m−1

∫
ααα∈E′

∫
βββ∈Dααα∩E′

{Eαααβββ(ςαααςβββ) + θαααEβββ(ςβββ)}E|Z(ααα)|ν(dβββ)ν(dααα)

= O(λ−1/2)

∫
ααα∈E′

∫
βββ∈Dααα∩E′

{E(ςαααςβββ) + θαααθβββ}ν(dβββ)ν(dααα) = O(1), (4.21)

where the last equalities in (4.19)–(4.21) are from (4.16).
Next, we turn to (2.14). In view of (4.15) and (4.17), we have the bounds

Eααα(|Z(ααα)|2) ≤ E{(1 + ψααα)2} = O(1), Eβββ(|Z(ααα)|2) ≤ E{(1 + ψααα)2} = O(1),

E(|Z(ααα,βββ)|2) ≤ E(ψ2
βββ) = O(1), Eβββ(|Z(ααα,βββ)|2) ≤ E{(1 + ψβββ)2} = O(1),

Eαααβββ(|Z(ααα)|2) ≤ E{(2 + ψααα)2} = O(1), Eαααβββ(|Z(ααα,βββ)|2) ≤ E{(1 + ψβββ)2} = O(1).
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To show that both Eααα(|W − µ|2) and Eαααβββ(|W − µ|2) are bounded by Cdm = O(λ1/2), for
a suitably chosen C, we use the following crude estimates, which are adequate under
local dependence conditions:

Eααα(|W − µ|2) ≤ 2Eααα(|W (ααα) − µ|2) + 2Eααα(|Z(ααα)|2) = 2E(|W (ααα) − µ|2) + 2Eααα(|Z(ααα)|2)

≤ 4E(|W − µ|2) + 4E(|Z(ααα)|2) + 2Eααα(|Z(ααα)|2) = O(λ1/2),

and

Eαααβββ(|W − µ|2) ≤ 2Eαααβββ(|W (ααα,βββ) − µ|2) + 2Eαααβββ(|Z(ααα) + Z(ααα,βββ)|2)

= 2E(|W (ααα,βββ) − µ|2) + 2Eαααβββ(|Z(ααα) + Z(ααα,βββ)|2)

≤ 4E(|W − µ|2) + 4E(|Z(ααα) + Z(ααα,βββ)|2) + 2Eαααβββ(|Z(ααα) + Z(ααα,βββ)|2)

= O(λ1/2);

hence (2.14) holds.
Finally, we show that ε′W = O(λ−1/4). Referring to Figure 4, we fix θ ≥ d2 as a

constant, and set κ := b(
√
λ/θ)− 1c. We then define

Bl := A(1−(l+1)θλ−1/2,lθλ−1/2); ηηηl :=

∫
ααα∈Bl∩E′

X(ααα)Ξ(dααα), l = 0, 1, . . . , κ.

Then the ηηηl’s are independent and identically distributed random vectors. For any ααα ∈ E′
and βββ ∈ Dααα ∩ E′, there are at most three of Bl’s such that Bl ∩ (Dααα ∪Dβββ) 6= ∅, so we
eliminate such ηηηl’s and define W ′ααα,βββ :=

∑
l:Bl∩(Dααα∪Dβββ)=∅ ηηηl. We use W ′ααα,βββ to estimate ε′W .

To this end, let Fααα,βββ be the σ-algebra generated by the configurations of points of Ξ in
Γ \
(
∪l: Bl∩(Dααα∪Dβββ)=∅Bl

)
, and let dTV

(
W (ααα),W (ααα) + e(i)

∣∣Fααα,βββ) denote the total variation

distance between W (ααα) and W (ααα) + e(i) given configurations in Fααα,βββ under P. Then it
follows that

dTV

(
L(W (ααα) + e(i) |X(ααα), Z(ααα)),L(W (ααα) |X(ααα), Z(ααα))

)
≤ ess sup

{
dTV

(
W (ααα),W (ααα) + e(i)

∣∣∣Fααα,βββ)} = dTV (W ′ααα,βββ ,W
′
ααα,βββ + e(i)),(4.22)

where ess sup stands for the essential supremum. Likewise,

dTV

(
Lα(W (ααα) + e(i) |X(ααα), Z(ααα)),Lα(W (ααα) |X(ααα), Z(ααα))

)
≤ ess sup

{
dTV

(
W (ααα),W (ααα) + e(i)

∣∣∣Fααα,βββ)} = dTV (W ′ααα,βββ ,W
′
ααα,βββ + e(i)),

dTV

(
L(W (ααα,βββ) + e(i) |X(ααα), X̃(ααα,βββ), Z(ααα,βββ)),L(W (ααα,βββ) |X(ααα), X̃(ααα,βββ), Z(ααα,βββ))

)
≤ ess sup

{
dTV

(
W (ααα,βββ),W (ααα,βββ) + e(i)

∣∣∣Fααα,βββ)} = dTV (W ′ααα,βββ ,W
′
ααα,βββ + e(i)),

dTV

(
Lβ(W (ααα,βββ) + e(i) |X(ααα), X̃(ααα,βββ), Z(ααα,βββ)),Lβ(W (ααα,βββ) |X(ααα), X̃(ααα,βββ), Z(ααα,βββ))

)
≤ ess sup

{
dTV

(
W (ααα,βββ),W (ααα,βββ) + e(i)

∣∣∣Fααα,βββ)} = dTV (W ′ααα,βββ ,W
′
ααα,βββ + e(i)),

dTV

(
Lαβ(W (ααα,βββ) + e(i) |X(ααα), X̃(ααα,βββ), Z(ααα,βββ)),Lαβ(W (ααα,βββ) |X(ααα), X̃(ααα,βββ), Z(ααα,βββ))

)
≤ ess sup

{
dTV

(
W (ααα,βββ),W (ααα,βββ) + e(i)

∣∣∣Fααα,βββ)} = dTV (W ′ααα,βββ ,W
′
ααα,βββ + e(i)). (4.23)

On the other hand,

dTV (ηηη1, ηηη1 + e(i)) ≤ 1− P(ηηη1 = 0) ∧ P(ηηη1 = e(i)).

Noting that B1 and B1 ∩ Ei satisfy

ν(B1) =
θ2

2
, and ν(B1 ∩ Ei) =

1

2
(di − bi)(2θ − (di + bi)),
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we obtain

P(ηηη1 = 0) ≥ P(Υ(B1) = 0) = e−
1
2 θ

2

,

P(ηηη1 = e(i)) ≥ P(Υ(B1 ∩ Ei) = 1,Υ(B1 \ Ei) = 0)

=
1

2
(di − bi)(2θ − (di + bi))e

− 1
2 θ

2

,

which together imply that

dTV (ηηη1, ηηη1 + e(i)) ≤ 1−
{

1 ∧
(

1

2
(di − bi)(2θ − (di + bi))

)}
e−

1
2 θ

2

.

Hence it follows from Lemma 4.1 of [Barbour, Luczak & Xia (2018b)] that

dTV (W ′ααα,βββ ,W
′
ααα,βββ + e(i)) = O

(
(κ− 3)−1/2

)
= O(λ−1/4),

since κ ≥ (
√
λ/θ)− 2. This, together with (4.22) and (4.23), ensures that ε′W = O(λ−1/4),

and completes the proof of the theorem.

5 The proofs of Theorems 2.1 and 2.2

Before proving our main theorems, we establish an auxiliary lemma. It is useful in
what follows to be able to extend the definition of a function h from a ball Bmδ(x)∩Zd to
the whole of Zd in such a way that, in the notation of (1.2), ‖∆h‖∞ := supz∈Zd |∆h(z)|
can be bounded in terms of ‖∆h‖3mδ/2,∞. That this can be done, if mδ ≥ 2

√
d, is proved

using the following lemma.

Lemma 5.1. Let h : Zd → R be given. Then, for any x ∈ Rd and r > 0, it is possible to
modify h outside the set Zd ∩Br(x) in such a way that the resulting function h̃ satisfies
‖∆h̃‖∞ ≤

√
d‖∆h‖r+√d,∞.

Proof. First, for all y = (y1, . . . , yd) ∈ Br(x), we have

Z(y) := byc+ {0, 1}d ⊂ Br+
√
d(x),

where byc := (by1c, . . . , bydc), because, for each z ∈ Z(y), |z − y| ≤
√
d. Extend the

definition of h to all y ∈ Br(x) by averaging over the values at the points Z(y):

h(y) :=
∑

q∈{0,1}d

{ d∏
i=1

(1− {yi}+ qi(2{yi} − 1))
}
h(byc+ q),

where {yi} := yi − byic. It is immediate that h is continuous in Br(x), and that, for y in
the interior of any unit cube,

|Djh(y)| =
∣∣∣ ∑
q∈{0,1}d

(2qj − 1)
{∏
i6=j

(1− {yi}+ qi(2{yi} − 1))
}
h(byc+ q)

∣∣∣
≤

∑
q′∈{0,1}j−1×{0}×{0,1}d−j

{∏
i 6=j

(1− {yi}+ q′i(2{yi} − 1))
}
|∆jh(byc+ q′)|

≤ ‖∆h‖r+√d,∞.

Hence it follows that |h(y)− h(y′)| ≤
√
d‖∆h‖r+√d,∞|y − y

′| for any y, y′ ∈ Br(x).

Now define h̃ on Rd by setting h̃(y) = h(y) on Br(x), and h̃(y) = h(πxy) for y /∈ Br(x),
where πxy := x+ r(y − x)/|y − x| is the projection of y onto the surface of Br(x). Then,
since

|a− b| ≥
∣∣∣ a|a| − b

|b|

∣∣∣ if |a|, |b| ≥ 1,
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it follows that

|h̃(y)−h̃(y′)| = |h(πxy)−h(πxy
′)| ≤

√
d‖∆h‖r+√d,∞|πxy−πxy

′| ≤
√
d‖∆h‖r+√d,∞|y−y

′|,

and so ‖∆h̃‖∞ ≤
√
d‖∆h‖r+√d,∞.

We are now in a position to prove our main theorems.

Proofs of Theorems 2.1 and 2.2. We first prove Theorem 2.2. Condition (a) of Theo-
rem 1.1 follows directly from (2.15), with ε′W for ε1. We thus turn to Condition (b), using
the Stein operator Ãm, as in (1.1), with m as defined in (2.9), and with

c := m−1µ; Σ := m−1V. (5.1)

As a first step, choose some δ > 0 such that 2δ ≤ δ0, where δ0 is as in Theorem 1.1.
Given any function h to be used in Theorem 1.1(b), use Lemma 5.1 to continue it
outside B3mδ/2(µ) in such a way that

‖∆h‖∞ ≤
√
d‖∆h‖2mδ,∞ ≤

√
d‖∆h‖mδ0,∞, (5.2)

possible provided that
√
d ≤ mδ/2; since the bound given in the theorem is trivial (taking

C2.1 ≥ 1 if necessary) if m ≤ d8, it is enough for this to suppose that δ
√
m ≥ 2. We now

observe by Cauchy–Schwarz and Chebyshev’s inequality that

|E{(W − µ)T∆h(W )I[|W − µ| > mδ]}|
≤ ‖∆h‖∞{E|W − µ|2P[|W − µ| > mδ]}1/2 ≤ ‖∆h‖∞Tr(V )/(mδ) ≤ d/δ‖∆h‖∞.

This allows the second part of E{Ãmh(W )I[|W − µ| ≤ mδ]} to be computed without the
indicator, at little cost:

|E{(W − µ)T∆h(W )I[|W − µ| ≤ mδ]} − E{(W − µ)T∆h(W )}|
≤ (d/δ) ‖∆h‖∞. (5.3)

Then, expanding W as an integral and using EαX(α) = µ(α), we have

E{(W − µ)T∆h(W )} (5.4)

=

∫
Γ

{Eα{(X(α))T∆h(Z(α) +W (α))} − E{(µ(α))T∆h(Z(α) +W (α))}}ν(dα)

=

∫
Γ

Eα{(X(α))T (∆h(Z(α) +W (α))−∆h(W (α)))}ν(dα)

−
∫

Γ

E{(µ(α))T (∆h(Z(α) +W (α))−∆h(W (α)))}ν(dα) + η1 + η2, (5.5)

where

|η1| =

∣∣∣∣∫
Γ

Eα

((
Eα

(
(X(α))T

∣∣W (α)
)
− (µ(α))T

)
∆h(W (α))

)
ν(dα)

∣∣∣∣
≤ (dm)1/2‖∆h‖∞χ′11,

|η2| =

∣∣∣∣∫
Γ

(µ(α))T
(
Eα∆h(W (α))− E∆h(W (α))

)
ν(dα)

∣∣∣∣
≤ 2d1/2m‖∆h‖∞H ′0ε′′W . (5.6)
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Multivariate approximation in total variation using local dependence

The next step is to approximate ∆h(Z(α) + W (α)) − ∆h(W (α)) by ∆2h(W (α))Z(α)

in (5.5), and to take care of the error. This is accomplished in a number of steps. First,
in view of Condition (b) of Theorem 1.1, we need to express bounds on the second
differences of h in terms of their supremum in some mη-ball around µ = mc; we do
not have an analogue of Lemma 5.1 for the second differences. Thus we re-introduce
truncation, to ensure that bothW (α) andW are close enough to µ. From (2.10) and (2.14),
and by Chebyshev’s inequality, we have

Eα
{
|(X(α))T {∆h(Z(α) +W (α))−∆h(W (α))}|(I[|W (α) − µ| > mδ] + I[|Z(α)| >

√
m])
}

≤ 2‖∆h‖∞
{
Eα{|X(α)|(Pα[|W (α) − µ| > mδ] +m−1|Z(α)|2)}+ χ′12α

}
≤ 2‖∆h‖∞

{
Eα{|X(α)|(Pα[|W − µ| > mδ/2]

+Pα[|Z(α)| > mδ/2] +m−1|Z(α)|2)}+ χ′12α

}
≤ 2‖∆h‖∞

{
m−1Eα{|X(α)|

(
8Cδ−2d+ |Z(α)|2

)
}+ χ′12α

}
(5.7)

and

E
{
|(µ(α))T {∆h(Z(α) +W (α))−∆h(W (α))}|(I[|W (α) − µ| > mδ] + I[|Z(α)| >

√
m])
}

≤ 2‖∆h‖∞
{
{|µ(α)|(P[|W (α) − µ| > mδ] +m−1E(|Z(α)|2))}

}
≤ 2‖∆h‖∞

{
{|µ(α)|(P[|W − µ| > mδ/2] + P[|Z(α)| > mδ/2] +m−1E(|Z(α)|2))}

}
≤ 2‖∆h‖∞m−1|µ(α)|

(
8δ−2d+ E(|Z(α)|2)

)
. (5.8)

Integrating over α with respect to ν, it thus follows from (2.13) that∫
Γ

Eα

∣∣∣(X(α))T {∆h(Z(α) +W (α))−∆h(W (α))}

− (X(α))T {∆h(Z(α) +W (α))−∆h(W (α))}I[|W (α) − µ| ≤ mδ]I[|Z(α)| ≤
√
m]
∣∣∣ν(dα)

≤ 2d3/2‖∆h‖∞(8Cδ−2H ′0 +H ′21) + 2‖∆h‖∞(dm)1/2χ′12, (5.9)

and∫
Γ

E

∣∣∣(µ(α))T {∆h(Z(α) +W (α))−∆h(W (α))}

− (µ(α))T {∆h(Z(α) +W (α))−∆h(W (α))}I[|W (α) − µ| ≤ mδ]I[|Z(α)| ≤
√
m]
∣∣∣ν(dα)

≤ 2d3/2‖∆h‖∞(8δ−2H ′0 +H ′21). (5.10)

The integrals on the right hand side of (5.5) can thus be replaced by∫
Γ

Eα
{

(X(α))T (∆h(Z(α) +W (α))−∆h(W (α)))I[|W (α) − µ| ≤ mδ]I[|Z(α)| ≤
√
m]
}
ν(dα)

−
∫

Γ

E
{

(µ(α))T (∆h(Z(α) +W (α))−∆h(W (α)))I[|W (α) − µ| ≤ mδ]I[|Z(α)| ≤
√
m]
}
ν(dα)

=

∫
Γ

Eα
{

(X(α))T ∆2h(W (α))Z(α)I[|W (α) − µ| ≤ mδ]I[|Z(α)| ≤
√
m]
}
ν(dα) (5.11)

+

∫
Γ

Eα
{

(X(α))T (∆h(Z(α) +W (α))−∆h(W (α))−∆2h(W (α))Z(α))

I[|W (α) − µ| ≤ mδ]I[|Z(α)| ≤
√
m]
}
ν(dα) (5.12)

−
∫

Γ

E
{

(µ(α))T ∆2h(W (α))Z(α)I[|W (α) − µ| ≤ mδ]I[|Z(α)| ≤
√
m]
}
ν(dα) (5.13)

−
∫

Γ

E
{

(µ(α))T (∆h(Z(α) +W (α))−∆h(W (α))−∆2h(W (α))Z(α))

I[|W (α) − µ| ≤ mδ]I[|Z(α)| ≤
√
m]
}
ν(dα), (5.14)
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Multivariate approximation in total variation using local dependence

having truncation in both W (α) and Z(α), with errors bounded by (5.9) and (5.10).

Now (5.12) and (5.14) can be represented in terms of sums of second differences of h.
Defining Ẑ [α,l] :=

∑l
t=1 Z

(α)
t e(t), 1 ≤ l ≤ d, we have

(e(i))T {∆h(Z(α) +W (α))−∆h(W (α))−∆2h(W (α))Z(α)}

=

d∑
l=1


Z

(α)
l −1∑
s=0

{∆2
ilh(W (α) + Ẑ [α,l−1] + se(l))−∆2

ilh(W (α))}I[Z
(α)
l ≥ 1]

−
−1∑

s=Z
(α)
l

{∆2
ilh(W (α) + Ẑ [α,l−1] + se(l))−∆2

ilh(W (α))}I[Z
(α)
l ≤ −1]

 .

Writing

hil(w, δ) := ∆2
ilh(w)I[|w − µ| ≤ mδ],

it then follows that

{∆2
ilh(W (α) + Ẑ [α,l−1] + se(l))−∆2

ilh(W (α))}I[|W (α) − µ| ≤ mδ]
= hil(W

(α) + Ẑ [α,l−1] + se(l), δ)− hil(W (α), δ) (5.15)

−∆2
ilh(W (α) + Ẑ [α,l−1] + se(l))

{I[|W (α) + Ẑ [α,l−1] + se(l) − µ| ≤ mδ]− I[|W (α) − µ| ≤ mδ]}. (5.16)

The contribution from (5.15) to (5.12) and (5.14) can be respectively bounded by first
taking the expectation conditional on X(α) and Z(α), and using (2.15); this gives∣∣Eα{(X

(α)
i ){hil(W (α) + Ẑ [α,l−1] + se(l), δ)− hil(W (α), δ)}I[|Z(α)| ≤

√
m] |X(α), Z(α)

}∣∣
≤ |X(α)

i | 2‖∆
2h‖mδ,∞ ε′W (|s|+ |Ẑ [α,l−1]|1), (5.17)

and∣∣E{( µ
(α)
i ){hil(W (α) + Ẑ [α,l−1] + se(l), δ)− hil(W (α), δ)}I[|Z(α)| ≤

√
m] |X(α), Z(α)

}∣∣
≤ |µ(α)

i | 2‖∆
2h‖mδ,∞ ε′W (|s|+ |Ẑ [α,l−1]|1). (5.18)

Adding over s and over 1 ≤ i ≤ d, integrating over α ∈ Γ with respect to ν and taking
expectations with respect to Eα and E respectively, we get error bounds of at most

ε′W

∫
Γ

Eα{|X(α)|1 |Z(α)|1(|Z(α)|1 + 1)}‖∆2h‖3mδ/2,∞ ν(dα) ≤ 2d3m‖∆2h‖3mδ/2,∞H ′21 ε
′
W

(5.19)
and

ε′W

∫
Γ

E{|µ(α)|1 |Z(α)|1(|Z(α)|1 + 1)}‖∆2h‖3mδ/2,∞ ν(dα) ≤ 2d3m‖∆2h‖3mδ/2,∞H ′21 ε
′
W .

(5.20)

For the contribution from (5.16) to (5.12) and (5.14), recalling that
√
m ≥ 2/δ, we

have ∣∣I[|W (α) + Ẑ [α,l−1] + se(l) − µ| ≤ mδ]− I[|W (α) − µ| ≤ mδ]
∣∣ I[|Z(α)| ≤

√
m]

≤ I[|W (α) − µ| > 1
2mδ]

for 0 ≤ s < Z
(α)
l if Z(α)

l ≥ 1, and for Z(α)
l ≤ s < 0 if Z(α)

l < 0. Arguing for Z(α)
l ≥ 1, we
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Multivariate approximation in total variation using local dependence

thus have

∣∣∣Z(α)
l −1∑
s=0

∆2
ilh(W (α) + Ẑ [α,l−1] + se(l))

{
I[|W (α) + Ẑ [α,l−1] + se(l) − µ| ≤ mδ]− I[|W (α) − µ| ≤ mδ]

}
I[|Z(α)| ≤

√
m]
∣∣∣

≤ Z
(α)
l I[|W (α) − µ| > 1

2mδ]‖∆
2h‖3mδ/2,∞,

from which it follows that

∣∣∣ d∑
i=1

Eα

{
X

(α)
i

d∑
l=1

Z
(α)
l −1∑
s=0

∆2
ilh(W (α) + Ẑ [α,l−1] + se(l))

{
I[|W (α) + Ẑ [α,l−1] + se(l) − µ| ≤ mδ]− I[|W (α) − µ| ≤ mδ]

}
I[|Z(α)| ≤

√
m]
}∣∣∣

≤ ‖∆2h‖3mδ/2,∞
{
Eα|X(α)|1Pα[|W (α) − µ| > 1

2mδ] + χ′13α

}√
dm (5.21)

and that

∣∣∣ d∑
i=1

E
{
µ

(α)
i

d∑
l=1

Z
(α)
l −1∑
s=0

∆2
ilh(W (α) + Ẑ [α,l−1] + se(l))

{I[|W (α) + Ẑ [α,l−1] + se(l) − µ| ≤ mδ]− I[|W (α) − µ| ≤ mδ]}I[|Z(α)| ≤
√
m]
}∣∣∣

≤ ‖∆2h‖3mδ/2,∞|µ(α)|1P[|W (α) − µ| > 1
2mδ]

√
dm. (5.22)

The argument for Z(α)
l < 0 is almost exactly the same.

The first part of (5.21) yields at most

√
dm‖∆2h‖3mδ/2,∞d1/2Eα|X(α)|Pα[|W (α) − µ| > 1

2mδ]

≤ d
√
m‖∆2h‖3mδ/2,∞Eα|X(α)| {Pα[|W − µ| > 1

4mδ] + Pα[|Z(α)| > 1
4mδ]}

≤ 32Cd2δ−2m−1/2‖∆2h‖3mδ/2,∞Eα|X(α)|, (5.23)

and (5.22) generates at most

√
dm‖∆2h‖3mδ/2,∞d1/2|µ(α)|P[|W (α) − µ| > 1

2mδ]

≤ d
√
m‖∆2h‖3mδ/2,∞|µ(α)| {P[|W − µ| > 1

4mδ] + P[|Z(α)| > 1
4mδ]}

≤ 32d2δ−2m−1/2‖∆2h‖3mδ/2,∞|µ(α)|, (5.24)

using Assumption (2.14) and Chebyshev’s inequality in the last steps. Integrating over α
with respect to ν, we deduce that the contribution from (5.16) to (5.12) is bounded by(

32Cd2δ−2m−1/2

∫
Γ

Eα|X(α)|ν(dα) + d3/2mχ′13

)
‖∆2h‖3mδ/2,∞

≤ (32Cd5/2δ−2m
−1/2

H ′0 + d3/2χ′13)m‖∆2h‖3mδ/2,∞ (5.25)

and to (5.14) is bounded by(
32d2δ−2m−1/2

∫
Γ

|µ(α)|ν(dα)
)
‖∆2h‖3mδ/2,∞

≤ (32d5/2δ−2m−1/2H ′0)m‖∆2h‖3mδ/2,∞. (5.26)
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Multivariate approximation in total variation using local dependence

This leaves the quantities in (5.11) and (5.13). First, we easily have∣∣Eα{(X(α))T∆2h(W (α))Z(α)I[|W (α) − µ| ≤ mδ]I[|Z(α)| >
√
m]
}∣∣

≤ m−1/2‖∆2h‖mδ,∞Eα{|X(α)|1 |Z(α)|1 |Z(α)|},

and ∣∣E{(µ(α))T∆2h(W (α))Z(α)I[|W (α) − µ| ≤ mδ]I[|Z(α)| >
√
m]
}∣∣

≤ m−1/2‖∆2h‖mδ,∞|µ(α)|1E{|Z(α)|1 |Z(α)|},

so that I[|Z(α)| ≤
√
m] can be dispensed with by incurring an extra error of at most

2m‖∆2h‖mδ,∞ d5/2m−1/2H ′21. (5.27)

Then we can expand Z(α), giving

Eα
{

(X(α))T∆2h(W (α))Z(α)I[|W (α) − µ| ≤ mδ]
}

=

∫
Dα

Eαβ
{

(X(α))T∆2h(W (α))X̃(α,β)I[|W (α) − µ| ≤ mδ]
}
να(dβ), (5.28)

where να(dβ) := ν2(dα, dβ)/ν(dα), and

E
{

(µ(α))T∆2h(W (α))Z(α)I[|W (α) − µ| ≤ mδ]
}

=

∫
Dα

Eβ
{

(µ(α))T∆2h(W (α))X̃(α,β)I[|W (α) − µ| ≤ mδ]
}
ν(dβ), (5.29)

and then introduce the indicator I[|Z(α,β)| ≤ 1
2mδ] in exchange for an error of at most

‖∆2h‖mδ,∞
∫

Γ

∫
Dα

Eαβ{|X(α)|1 |X̃(α,β)|1|Z(α,β)|/ 1
2mδ}ν2(dα, dβ)

≤ 2δ−1d5/2H ′22‖∆2h‖mδ,∞. (5.30)

‖∆2h‖mδ,∞
∫

Γ

∫
Dα

|µ(α)|1Eβ{|X̃(α,β)|1|Z(α,β)|/ 1
2mδ}ν(dβ)ν(dα)

≤ 2δ−1d5/2H ′22‖∆2h‖mδ,∞. (5.31)

The next step is to split ∆2h(W (α)) in (5.28) and (5.29), for β ∈ Dα, giving

∆2h(W (α)) = (∆2h(W (α))−∆2h(W (α,β))) + ∆2h(W (α,β)). (5.32)

Much as for (5.25), we write

(∆2h(W (α))−∆2h(W (α,β)))I[|W (α) − µ| ≤ mδ]
= (∆2h(W (α))I[|W (α) − µ| ≤ mδ]−∆2h(W (α,β))I[|W (α,β) − µ| ≤ mδ])

+ ∆2h(W (α,β))(I[|W (α,β) − µ| ≤ mδ]− I[|W (α) − µ| ≤ mδ]).

Now, using (2.15), we deduce that∣∣Eαβ{(X(α))T (∆2h(W (α))I[|W (α) − µ| ≤ mδ]−∆2h(W (α,β))I[|W (α,β) − µ| ≤ mδ])X̃(α,β)

I[|Z(α,β)| ≤ 1
2mδ] |X

(α), X̃(α,β), Z(α,β)
}∣∣

≤ |X(α)|1 2‖∆2h‖3mδ/2,∞ |X̃(α,β)|1|Z(α,β)|1 ε′W , (5.33)

and∣∣Eβ{(µ(α))T (∆2h(W (α))I[|W (α) − µ| ≤ mδ]−∆2h(W (α,β))I[|W (α,β) − µ| ≤ mδ])X̃(α,β)

I[|Z(α,β)| ≤ 1
2mδ] |X

(α), X̃(α,β), Z(α,β)
}∣∣

≤ |µ(α)|1 2‖∆2h‖3mδ/2,∞ |X̃(α,β)|1|Z(α,β)|1 ε′W , (5.34)
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giving a first contribution to the errors incurred in (5.11) and (5.13) by splitting
∆2h(W (α)) in (5.28) and (5.29) of

2m‖∆2h‖3mδ/2,∞ d3H ′22ε
′
W . (5.35)

For the remaining contribution, because

|I[|W (α,β) − µ| ≤ mδ]− I[|W (α) − µ| ≤ mδ]| I[|Z(α,β)| ≤ 1
2mδ] ≤ I[|W (α,β) − µ| > 1

2mδ],

we have

Eαβ
{∣∣(X(α))T∆2h(W (α,β))(I[|W (α,β) − µ| ≤ mδ]− I[|W (α) − µ| ≤ mδ])X̃(α,β)

∣∣
×I[|Z(α,β)| ≤ 1

2mδ]
}

≤ ‖∆2h‖3mδ/2,∞
(
Eαβ{|X(α)|1 |X̃(α,β)|1}Pαβ [|W (α,β) − µ| > 1

2mδ] + χ′2αβ
)
, (5.36)

and

Eβ
{∣∣(µ(α))T∆2h(W (α,β))(I[|W (α,β) − µ| ≤ mδ]− I[|W (α) − µ| ≤ mδ])X̃(α,β)

∣∣
×I[|Z(α,β)| ≤ 1

2mδ]
}

≤ ‖∆2h‖3mδ/2,∞
(
|µ(α)|1Eβ{|X̃(α,β)|1}Pβ [|W (α,β) − µ| > 1

2mδ] + χ′′2αβ
)
. (5.37)

Integrating over β ∈ Dα and then α ∈ Γ, and using Assumption (2.14), the first part
of (5.36) gives at most

d‖∆2h‖3mδ/2,∞
∫

Γ

∫
Dα

Eαβ{|X(α)| |X̃(α,β)|}{
Pαβ [|W − µ| > 1

4mδ] + Pαβ [|Z(α)| > 1
8mδ] + Pαβ [|Z(α,β)| > 1

8mδ]
}
ν2(dα, dβ)

≤ 144Cd2

mδ2
‖∆2h‖3mδ/2,∞

∫
Γ

∫
Dα

Eαβ{|X(α)| |X̃(α,β)|}ν2(dα, dβ)

=
144Cd3

δ2
H ′1‖∆2h‖3mδ/2,∞ (5.38)

and the first part of (5.37) produces at most

d‖∆2h‖3mδ/2,∞
∫

Γ

∫
Dα

|µ(α)|Eβ{|X̃(α,β)|}{
Pβ [|W − µ| > 1

4mδ] + Pβ [|Z(α)| > 1
8mδ] + Pβ [|Z(α,β)| > 1

8mδ]
}
ν(dβ)ν(dα)

≤ 144Cd2

mδ2
‖∆2h‖3mδ/2,∞

∫
Γ

∫
Dα

|µ(α)|Eβ{|X̃(α,β)|}ν(dβ)ν(dα)

=
144Cd3

δ2
H ′1‖∆2h‖3mδ/2,∞. (5.39)

The second parts of (5.36) and (5.37) give at most d3m‖∆2h‖3mδ/2,∞χ′2. Thus (5.35),
(5.36), (5.37), (5.38) and (5.39) together give a contribution to the error of at most

m‖∆2h‖3mδ/2,∞ {2d3H ′22 ε
′
W + 288Cd3m−1H ′1δ

−2 + d3χ′2}. (5.40)

Thus, having used (5.32) to replace ∆2h(W (α)) by ∆2h(W (α,β)) in (5.28) and (5.29), with
the error being bounded by the sum of (5.30), (5.31) and (5.40), we are left with

Eαβ
{

(X(α))T∆2h(W (α,β))X̃(α,β)I[|W (α) − µ| ≤ mδ]I[|Z(α,β)| ≤ 1
2mδ]

}
(5.41)

and

Eβ
{

(µ(α))T∆2h(W (α,β))X̃(α,β)I[|W (α) − µ| ≤ mδ]I[|Z(α,β)| ≤ 1
2mδ]

}
. (5.42)
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Multivariate approximation in total variation using local dependence

Exactly as above, we can replace I[|W (α) − µ| ≤ mδ] by I[|W (α,β) − µ| ≤ mδ], adding
a second contribution as in (5.38), (5.39) and d3m‖∆2h‖3mδ/2,∞χ′2 to the error. Then, to
remove the factor I[|Z(α,β)| ≤ 1

2mδ], note that

Eαβ
{
|(X(α))T∆2h(W (α,β))X̃(α,β)| I[|W (α,β) − µ| ≤ mδ] I[|Z(α,β)| > 1

2mδ]
}

≤ ‖∆2h‖mδ,∞Eαβ{|X(α)|1 |X̃(α,β)|1|Z(α,β)|}/ 1
2mδ, (5.43)

and that

Eβ
{
|(µ(α))T∆2h(W (α,β))X̃(α,β)| I[|W (α,β) − µ| ≤ mδ] I[|Z(α,β)| > 1

2mδ]
}

≤ ‖∆2h‖mδ,∞Eβ{|µ(α)|1 |X̃(α,β)|1|Z(α,β)|}/ 1
2mδ. (5.44)

Integrating over β ∈ Dα and α ∈ Γ thus gives a contribution to the error of at most

2d5/2δ−1H ′22‖∆2h‖mδ,∞. (5.45)

After these adjustments, we are left with∫
Γ

∫
Dα

Eαβ{(X(α))T∆2h(W (α,β))X̃(α,β)I[|W (α,β) − µ| ≤ mδ]}ν2(dα, dβ) (5.46)

=

∫
Γ

∫
Dα

Tr
(
Eαβ((X(α))(X̃(α,β))T )

×Eαβ{∆2h(W (α,β))I[|W (α,β) − µ| ≤ mδ]}
)
ν2(dα, dβ) + η3

=

∫
Γ

∫
Dα

Tr
(
Eαβ((X(α))(X̃(α,β))T )

×E{∆2h(W (α,β))I[|W (α,β) − µ| ≤ mδ]}
)
ν2(dα, dβ) + η3 + η4

and ∫
Γ

∫
Dα

Eβ{(µ(α))T∆2h(W (α,β))X̃(α,β)I[|W (α,β) − µ| ≤ mδ]}ν(dβ)ν(dα) (5.47)

=

∫
Γ

∫
Dα

Tr
(
Eβ((µ(α))(X̃(α,β))T )

×Eβ{∆2h(W (α,β))I[|W (α,β) − µ| ≤ mδ]}
)
ν(dβ)ν(dα) + η5

=

∫
Γ

∫
Dα

Tr
(
Eβ((µ(α))(X̃(α,β))T )

×E{∆2h(W (α,β))I[|W (α,β) − µ| ≤ mδ]}
)
ν(dβ)ν(dα) + η5 + η6.

One can bound η3 and η5 by

|η3|+ |η5| ≤ m‖∆2h‖mδ,∞ d3χ′2, (5.48)

and each of η4 and η6 by

max{|η4|, |η6|} ≤ 2d2m‖∆2h‖mδ,∞H ′1ε′′W . (5.49)

Since, from (2.15), for any 1 ≤ l,m ≤ d, we have

|E{∆2
lmh(W )I[|W − µ| ≤ mδ]} − E{∆2

lmh(W (α,β))I[|W (α,β) − µ| ≤ mδ]}|
≤ ‖∆2h‖mδ,∞(E|Z(α,β)|1 + E|Z(α)|1)ε′W , (5.50)
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we can replace E{∆2h(W (α,β))I[|W (α,β) − µ| ≤ mδ]} by E{∆2h(W )I[|W − µ| ≤ mδ]}
in (5.46) and (5.47), introducing further errors of at most∫

Γ

∫
Dα

d∑
i=1

d∑
l=1

|Eαβ{X(α)
i X̃

(α,β)
l }|(E|Z(α,β)|1 + E|Z(α)|1)ν2(dα, dβ)‖∆2h‖mδ,∞ε′W

≤ ‖∆2h‖mδ,∞ε′W
∫

Γ

∫
Dα

Eαβ{|X(α)|1 |X̃(α,β)|1}(E|Z(α,β)|1 + E|Z(α)|1)ν2(dα, dβ)

≤ d3m‖∆2h‖mδ,∞(H ′23 +H ′24)ε′W , (5.51)

and∫
Γ

∫
Dα

d∑
i=1

d∑
l=1

|Eβ{µ(α)
i X̃

(α,β)
l }|(E|Z(α,β)|1 + E|Z(α)|1)ν(dβ)ν(dα)‖∆2h‖mδ,∞ε′W

≤ ‖∆2h‖mδ,∞ε′W
∫

Γ

∫
Dα

|µ(α)|1Eβ{|X̃(α,β)|1}(E|Z(α,β)|1 + E|Z(α)|1)ν(dβ)ν(dα)

≤ d3m‖∆2h‖mδ,∞(H ′23 +H ′24)ε′W , (5.52)

and leaving the principal term of

E{Tr(V̂∆2h(W )) I[|W − µ| ≤ mδ]}, (5.53)

where

V̂ :=

∫
Γ

∫
Dα

Eαβ
(
X(α)(X̃(α,β))T

)
ν2(dα, dβ)−

∫
Γ

∫
Dα

Eβ
(
µ(α)(X̃(α,β))T

)
ν(dβ)ν(dα)

= E

∫
Γ

∫
Dα

X(α)(X̃(α,β))TΞ(dβ)Ξ(dα)− E
∫

Γ

∫
Dα

µ(α)(X̃(α,β))TΞ(dβ)ν(dα)

= E

∫
Γ

X(α)(Z(α))TΞ(dα)− E
∫

Γ

µ(α)(Z(α))T ν(dα). (5.54)

We now recall the first term in E{Ãmh(W )I[|W − µ| ≤ mδ]}, which is

E{Tr(V∆2h(W ))I[|W − µ| ≤ mδ]}, (5.55)

differing from that in (5.53) only because the matrix V = Cov(W ) replaces V̂ . If
approximation by DNd(µ, V̂ ) is required, it is now enough to collect the various errors. If
not, we can write

V = Cov(W ) = E

∫
Γ

{X(α)WT }Ξ(dα)− E
∫

Γ

{µ(α)WT }ν(dα),

so that, recalling W = W (α) + Z(α), we have

V − V̂ = E

∫
Γ

{X(α)(W (α))T }Ξ(dα)− E
∫

Γ

{µ(α)(W (α))T }ν(dα)

= E

∫
Γ

{X(α)(W (α) − µ)T }Ξ(dα)− E
∫

Γ

{µ(α)(W (α) − µ)T }ν(dα).

Defining

V ′ :=

∫
Γ

Eα
{

(Eα(X(α) |W (α))− µ(α))(W (α) − µ)T
}
ν(dα),

V ′′ :=

∫
Γ

µ(α)
{
Eα

(
(W (α))T

)
− E

(
(W (α))T

)}
ν(dα),
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we thus have

V − V̂ = V ′ + V ′′.

Hence the difference between (5.53) and (5.55) can be bounded by

‖∆2h‖mδ,∞
d∑
i=1

d∑
l=1

(|V ′il|+ |V ′′il |)

≤ ‖∆2h‖mδ,∞
∫

Γ

Eα{|Eα(X(α) |W (α))− µ(α)|1 |W (α) − µ|1}ν(dα)

+‖∆2h‖mδ,∞
∫

Γ

|µ(α)|1
∣∣Eα ((W (α))T

)
− E

(
(W (α))T

)∣∣
1
ν(dα)

≤ d2m‖∆2h‖mδ,∞χ′3 + d3/2m‖∆2h‖mδ,∞H ′0ε′′′W , (5.56)

where the second element in (5.56) is from (2.17).
Adding the error bounds in (5.3), (5.6), (5.9), (5.10), (5.19), (5.20), (5.25), (5.26)

(5.27), (5.30), (5.31), (5.40), (5.45), (5.48), (5.49), (5.51), (5.52) and (5.56), using (5.2)
and with

√
m ≥ 2/δ, gives

|E{Ãmh(W )I[|W − µ| ≤ mδ]}|
≤ C1(δ){m−1/2d3/2(1 +H ′0 +H ′2) + d1/2χ′1 + (dm)1/2H ′0ε

′′
W }m1/2‖∆h‖mδ0,∞

+ C2(δ)
{
ε′W d

3H ′2 + d3m−1H ′1 +m−1/2d5/2(H ′0 +H ′2)

+ d3/2χ′1 + d3χ′2 + d2χ′3 + d2H ′1ε
′′
W + d3/2H ′0ε

′′′
W

}
m‖∆2h‖3mδ/2,∞.

Recalling Theorem 1.1, Theorem 2.2 follows.
Theorem 2.1 can be deduced from Theorem 2.2 directly by taking Γ = {1, . . . , n}, Ξ

as the counting measure on Γ so that Ξ({i}) = ν({i}) = 1 for all i ∈ Γ and ν2({i}, {j}) = 1

for all i, j ∈ Γ; replacing
∫

with
∑

; α with j, β with k; Eα, Eβ, Eαβ with E; Pα, Pβ, Pαβ
with P so that ε′′W = ε′′′W = 0; χ′, H ′, ε′W with χ, H, εW .
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