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Edge universality of correlated Gaussians

Arka Adhikari* Ziliang Che†

Abstract

We consider a Gaussian random matrix with correlated entries that have a power law
decay of order d > 2 and prove universality for the extreme eigenvalues. A local law is
proved using the self-consistent equation combined with a decomposition of the matrix.
This local law along with concentration of eigenvalues around the edge allows us to
get a bound for extreme eigenvalues. Using a recent result of the Dyson-Brownian
motion, we prove universality of extreme eigenvalues.
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1 Introduction

The Wigner-Dyson-Mehta conjecture asserts that the local eigenvalue statistics of large
random matrices are universal in the sense that they depend only on the symmetry class
of the model - real symmetric or complex Hermitian - but are otherwise independent
of the underlying details of the model. There are two types of universality results.
Bulk universality involves the spacing distribution eigenvalues that lie well within the
support of the limiting spectral distribution, while edge universality involves the extreme
eigenvalues.

There has recently been a lot of progress made in proving the Wigner-Dyson-Mehta
conjecture in a increasingly large class of models. In [7, 8, 10, 11, 14, 13], universality
was proved for Wigner matrices whose entries are independent and have identical
variance; parallel results are obtained independently in various cases in [18, 17]. In
[3, 1], this type of result was extended to more general variance patterns, while still
maintaining the independence of matrix entries.

Most of the previous works rely heavily on the independence between matrix entries,
and deal with bulk universality. Only recently have people proved results on models with
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Edge universality of correlated Gaussians

general correlation structure. In [6, 4, 5], bulk universality is proved for matrices where
the correlation decays fast enough, e.g., faster than polynomial decay. In a recent paper
[9], Erdös et al. consider a model where the correlation between matrix entries has a
power law decay of order d ≥ 12 in the long range and d ≥ 2 in the short range. They use
a combinatorial expansion to get optimal local law, then prove bulk universality. They
remark in Example 2.12 that in the Gaussian case, d ≥ 2 for both long range and short
range correlation is sufficient to satisfy the assumptions of their main theorem.

In this paper, we prove edge universality for Gaussian matrices with a correlation
structure that decays as a power law of order d > 2, namely |E [hijhkl] | ≤ 1

|i−l|d+|j−k|d
where hij are the entries of the random matrix H.

By a standard rule of thumb, it is much easier to prove universality when the matrix
being considered is closer to one such that all elements are independent. When we
have stronger correlations it becomes significantly more difficult to apply the few known
algebraic techniques to derive a local law. When one applies row removal to get a
self-consistent equation, the correlations make it significantly more difficult to bound the
error term. When applying the loop equation, one would also derive poor concentration
bounds through naive choices of the integrating region. It is believed that d > 2 is the
optimal region where one might still be able to get universality estimates. It becomes
most difficult to prove the local law in this regime and one has to be very careful with
controlling errors.

In order to deal with the difficulty involved in deriving some of these error estimates, it
becomes necessary to expand the matrix to large orders and perform a sophisticated
combinatorial expansion of the matrix entries of the Green’s function. We give a proof of
this result that does not require this expansion or a corresponding fluctuation averaging
type 1 result, instead we rely on a decomposition of Gaussian random variable.

Correlated matrices regularly occur in various statistical applications. A population
researcher may seek to determine the existence of various subpopulations, where the
correlations within one subpopulation are greater than those between different subpopu-
lations. Biological researchers studying genetic history of species or protein structure
and gene expression use these sorts of correlations to determine the genealogical re-
lationship of species or to construct a map between parts of DNA and the protein it
encodes. Since the decay d > 2 is optimal, proving universality in this regime would get
a statement that would be robust for all possible applications.

We follow a three step strategy to prove universality:

1. Prove a local law for the empirical eigenvalue distribution at small scales.
2. Study the convergence of the DBM (Dyson-Brownian motion) in short time scales

to local equilibrium.
3. Prove that the eigenvalue spacing distribution does not change too much during

the short time evolution of DBM.

Step 1, finding the local law, is generally the most difficult and model dependent. The
strategy in proving this local law is deriving a self-consistent equation for the Green’s
function G = (H − z)−1.

One can heuristically derive a self consistent equation by taking expectation and per-
forming integration by parts on G(H − z) = I. One notices that there is a linear operator

1Fluctation Averaging is a central limit theorem type result on the diagonal elements of the Green’s function.
Since these elements are correlated, a proof of this averaging requires analyzing higher order terms in a
combinatorial expansion of the Green’s function. See [12] Ch 10.
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Edge universality of correlated Gaussians

S such that E [G(−S(G)− z)] = 1. Removing the expectation creates some error term.
The goal is to show that a small error exists with high probability on our matrix ensemble,
as is done in [4, 6].

From [6], it is known that the self-consistent equation for correlated matrix entries is of
the form G(−S(G)− z) = I. This can be transformed into the following vector equation
via local Fourier transform.

g(x)(−Ψ(g)(x)− z) = 1, x ∈ [0, 1]2. (1.1)

where Ψ : L∞([0, 1]2) → L∞([0, 1]2) is an integral operator, which is the continuous
version of S. There are two difficulties in our case: getting a small error for our
self-consistent equation and proving the stability of the equation near the edge.

In order to get a small error for the self-consistent equation, we avoid the procedure
of removing blocks of elements, which requires combinatorial expansion, but instead
applied integration by parts and concentration results along a careful decomposition
of the probability space. This gives us a weak local law which can be bootstrapped to
give an even better bound for the expected value of the Green’s function. Once we
have bounds on the expected value, we use the concentration of eigenvalues about its
mean value in order to show a version of upper bound for the top eigenvalue along the
edge.

In order to prove the stability, we first embed the matrix space into the continuous
space C∞([0, 1]2), up to small errors. However, entry-wise error is not small enough to
allow this embedding. We noticed the fact that the operator S has a smoothing effect
and will reduce the error. The smoothing effect of S is due to the fact that it acts as a
convolution with a decaying function; this convolution effectively regularizes the error.
A double iteration of the operator F (G) = (−S(G)− z)−1 created a matrix F (F (G)) that
satisfies

F (F (G)) = F (F (F (G))) +R, (1.2)

where R has sufficiently fast decay on off-diagonal entries. A similar strategy based on
the smoothing effect of F is also used in [5]. Then we can embed and apply stability of
the continuous solution. In order to prove the decay properties of the double iteration,
we applied a perturbation around a fixed matrix that is known to have decay of matrix
entries.

With sufficiently strong upper bounds on the top eigenvalue and lower bounds on the
bottom eigenvalue, we are able to use the result of [16] to get universality for the
extreme eigenvalues conditioned on a sub-σ-field, where the scaling factors and edge
locations vary. Then we prove the existence of a scaling factor uniform for all matrices
in the model, which gives us the final universality statement.

The main novelties in this paper are: the usage of a Gaussian random variable decompo-
sition, which allows us to get better concentration estimates for the Green’s function
about its expected value; the extension of the result of [16] via uniformization of scal-
ing factors; improving the analysis of stability of the self-consistent equations in the
slow-decay regime where d > 2.

The structure of this paper is as follows. The second section is devoted to proving a
self-consistent equation with sufficiently small error. The third section of this paper
involves proving stability of the self-consistent equation to get a local law to prove an
upper bound on eigenvalues. The final section uses this upper bound in order to prove
universality.
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2 Derivation of self-consistent equation

2.1 The model and assumptions

Before we start defining our model, we will start with some preliminary notation. As
is standard, the GOE is a matrix (Zij + Zji) where the Zij are i.i.d. copies of an i.i.d.
random variable N(0, 1

2N ).

We need a notion of toroidal distance in order to later define correlation decay. In the
sequel, we will use letters i, j, k, l as indices for the matrix entries; for an N by N matrix,
we view these indices as elements in ZN = Z/NZ. On Z/NZ we define the natural
distance distZ/NZ(i, j) := min{|i − j + kN ||k ∈ Z}, which for simplicity of notation we
still denote by |i− j| unless there is danger of confusion.

Definition 2.1 (Correlated Gaussian Ensembles). For N ∈ N, we consider a symmetric
matrix H = (h

(N)
ij )1≤i,j≤N whose entries are centered Gaussian random variables with

correlation ξ
(N)
ijkl := NE

[
h

(N)
ij h

(N)
kl

]
. For simplicity of notation we omit superscript (N)

notation.

We need the following assumptions on the behavior of the ξijkl

1. We have a limiting profile for the covariances. Assume there is a Lipschitz function
φ : T2 ×Z2 → R such that

ξijkl = φ(i/N, j/N, k − i, l − j) +O(N−1),∀i ≤ k, j ≤ l. (2.1)

2. There is correlation decay

|ξijkl| ≤ c2
1 max

{
1

(|i− k|+ |j − l|+ 1)d
,

1

(|i− l|+ |j − k|+ 1)d

}
. (2.2)

for some d > 2.
3. We have a nonsingularity condition. We assume that the covariance matrix ξijkl is

strictly positive semidefinite.
[ξ]ijkl > 0 (2.3)

Since we are dealing with Gaussian matrices, this is equivalent to c2 > 0, such that
H allows a decomposition

H = c2X + Y, (2.4)

where X is a GOE matrix independent from Y .

Remark 2.2. The third nonsingularity condition was used used to gain control of an
inverse operation during our study of the loop equation.

There are examples of Gaussian ensembles with correlation decay that do not satisfy
universality. As a simple counterexample, consider the following ensemble matrix

H = G⊗X (2.5)

where G is a GOE matrix and X can be the 2 by 2 identity matrix or the 2 x 2 matrix
with all 1s. If X were the identity, all eigenvalues appear with double multiplicity and
universality cannot hold. If X was the all 1 matrix, then it would have half rank. The
small GOE component causes sufficient spreading of the eigenvalues to get universality.

Remark 2.3. Though writing our ensemble in the form H = c2X + Y where X and Y

are independent would suggest that we use results from free probability to prove a local
law, we would need to have local law results on the matrix Y . However,here, Y is a
Gaussian matrix of a similar type as H and we do not know a priori good local laws for
Y . Our method here avoids this issue of infinite regress.
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We fix as a control parameter an arbitary α ∈ (2, d). We say that a constant is universal if
it only depends on c1, c2, d, α and φ. In this paper, we denote a . b if there is a universal
constant c > 0 such that a ≤ cb. We also denote a ∼ 1 if a . 1 and 1 . a.

For β > 0 and any matrix A (finite square or infinite) we define the following norms,

‖A‖β := sup
i,j

(
|Aij |(1 + |i− j|)β

)
, |A|∞ := max

i,j
|Aij |. (2.6)

Our main result is the following.

Theorem 2.4. Let H be a Correlated Gaussian Ensemble as in Definition 2.1.

Let λ1 ≤ · · · ≤ λN be the eigenvalues of H. Let λ̂1 ≤ · · · ≤ λ̂N be the eigenvalues of an
N by N GOE matrix.

There exists a universal constant γ such that for any f ∈ C1(Rk−1), the following
inequality holds for N large enough for some small c > 0.

|E[f(γN2/3(λ2 − λ1), ...γN2/3(λk − λ1))]−

E[f(N2/3(λ̂2 − λ̂1), ...N2/3(λ̂k − λ̂1))] ≤ N−c
(2.7)

2.2 The loop equation

The following lemma is one of the building blocks of the loop equation.

Lemma 2.5. Let Z = (Zk)pk=1 be a centered Gaussian random vector in Rp with covari-
ance matrix Σ ∈ Rp×p. Let f ∈ C1(Rp).Then,

E [f(Z)Zl] =

p∑
k=1

E [∂kf(Z)] Σkl,∀1 ≤ l ≤ p.

Proof. This directly follows from an identity known as Stein’s lemma, which says that if
X ∼ N(0, 1) and h ∈ C1(R), then E [h(X)X] = E [h′(X)].

We also use the following decomposition lemma, which allows us to construct a special
sigma algebra. We then derive the loop equation by taking the conditional expecta-
tion with respect to this sigma algebra. As we will see later, this sigma algebra has
the benefit that we can get strong concentration bounds upon removing conditional
expectation.

Lemma 2.6. Let Z = (Zk)pk=1 be a centered Gaussian random vector. Let 1 ≤ q < p.
Then, there is a constant matrix (akl)1≤l≤q,q+1≤k≤p such that

Zk =

q∑
l=1

aklZl + Z̃k,

where the collection (Zl)
q
l=1 ∪ (Z̃k)pk=q+1 forms a Gaussian random vector such that the

latter (Z̃k)pk=q+1 are independent from the former (Zl)
q
l=1

Proof. This can be done by a carefully chosen linear transform.

We start with the trivial matrix identity G(H − z) = I, which can be written as fol-
lows ∑

k

Gikhkj − zGij = δij , i, j ∈ Z/NZ. (2.8)
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Without loss of generality, fix j = 1. According to Lemma 2.6 we may write,

hab =

N∑
k=1

γabk1hk1 + h̃ab, (2.9)

where h̃ab is a Gaussian random variable that is independent from (hk1)1≤k≤N . In
particular, γa1k1 = δak, h̃a1 = 0, ∀a ∈ Z/NZ. In order to apply Lemma 2.5 on (2.8),
let F1 be the σ-algebra generated by (h̃ab)a6=1,b 6=1. Define the conditional expectation
operator

E1[·] := E [·|F1] .

We will then be able to apply Lemma 2.5 to get the following

δi1 =
∑
k

E1[Gikhk1]− zE1[Gi1] = − 1

N

∑
k,a,b

E1[GiaGbk]ξabk1 − zE1[Gi1]. (2.10)

For technical reasons, we define the cut-off version of ξ as follows,

ξ̃iklj = min{max{ξiklj ,−c2
1|i− j|−d}, c2

1|i− j|−d} (2.11)

, so that ξ̃iklj has a power-law decay as i and j gets farther. Define a linear map
S : RN×N → RN×N by.

(S(M))pq :=
1

N

∑
α,β

ξ̃pαβqMαβ . (2.12)

Therefore, (2.10) is equivalent to

− E1 [[GS(G)]i1]− zE1 [Gi1] = δi1 +O(N−1 max
k,l
|Gkl|2). (2.13)

Notice that the expectation operator E1 is equivalent to integrating over N weakly
dependent Gaussian random variables, we may remove the expectation up to the cost
of some small error terms, after which, we would get a self-consistent equation in the
following form.

G(−S(G)− z) = I + error. (2.14)

Define a map F : RN×N → RN×N via

F (M) = (−z − S(M))−1. (2.15)

Then the above equation can be written as the perturbation of a fixed point equa-
tion

G = F (G) + error. (2.16)

Here the error is entry-wise bounded by roughly O((Nη)−
1
2 ). However, this entry-wise

bound is not strong enough to use the stability of the equation G = F (G). Therefore, we
iterate the map F on G to get

F (F (G)) = F (F (F (G))) + new error. (2.17)

The new error term has a power-law decay on the off-diagonal entries; this comes from
two facts that will be established in detail later. The first is the fact that the S(G)

operator acts like a convolution operator with ξijkl which allows us to get decay on the
entries of S(G). Secondly, we use the fact that the inverse of a matrix whose entries
have decay will also have decay of such order. Hence, two applications of F will give us
an error that is much smaller than the original error and we can get a good estimate
on F (F (G)). Using F (F (G)) we can recover G and get a bound on |G−G0| where G0 is
some deterministic matrix.
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2.3 Limiting version of self-consistent equation

In order to define a local law, we need a space in which we can define our limiting self-
consistent equation. This limiting equation is best described as the space of convolution
operators on the torus.

Consider K := C(T2) and K+ := {g ∈ K| Im g(s, u) > 0,∀s, u ∈ T}. Recall the function φ
in (2.1). Define

ϕ(s, t, u, v) :=
∑
k,l

φ(s, t, k, l)e−2πi(uk−vl). (2.18)

The argument in Lemma 4.15 of [6] can be modified to show that ϕ ∼ 1. We give a brief
summary of that argument as follows. One can write, by the definition of profile,∫ ∫

ϕ(θ, φ, s, t)g(θ, φ)2dθdφ = lim
N→∞

VarYN (2.19)

where YN := 1
N

∑
i,j hijg(i/N, j/N)e2πi(si−tj). VarYN can be controlled via the decay

assumptions on ξijkl. Choosing g carefully gives pointwise bounds on ϕ. This is the only
place where the argument differs from Lemma 4.15 in [6] which used the finite range of
correlations.

The decay condition (2.2) guarantees that ϕ is Lipschitz. Define Ψ : K+ → K+ via
Ψ(h)(s, u) :=

∫∫
T2 ϕ(s, t, u, v)h(t, v)dtdv and Φ : K+ → K+ via Φ(h) := (−Ψ(h) − z)−1.

Consider the fixed point equation g = Φ(g), or equivalently,

g(−Ψ(g)− z) = 1. (2.20)

This will be the infinite limit of our earlier matrix equation

G(−S(G)− z) = I. (2.21)

With a proper embedding of the infinite solution g in a finite matrix space, the equation
(2.20) can be understood as a small perturbation of (2.21)

Equations like (2.20) are studied in detail in [2]. Since the function ϕ is bounded above
and below away from 0, the function Φ satisfies conditions A1-A3 and the block fully
indecomposable 2 condition of Definition 2.9 of [2]. Also, since ϕ is Lipschitz, it satisfies
(2.22) in that article. Therefore, their Theorem 2.6 says that the above equation has a
unique solution g ∈ K+, and there is a universal constant c3 < +∞ such that

sup
z∈C+

‖g‖∞ ≤ c3. (2.22)

Let m(z) :=
∫∫
T2 g(s, u)dsdu. Then m is the Stieltjes transform of a compactly supported

probability measure ν on R, i.e.,

m(z) =

∫
R

ν(dx)

x− z
, ∀z ∈ C+. (2.23)

Then Theorem 2.6 in [2] says that ν has a 1
3 -Hölder continuous density ρ ∈ Cc(R) such

that it has square-root behavior at the left and right edges, i.e., let

EL := inf supp ν, ER := sup supp ν. (2.24)

2This is a condition relating to the positivity of the coefficients of ψ. This allows for some regularity of the
solution and is easily checked for ψ

EJP 24 (2019), paper 44.
Page 7/25

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP273
http://www.imstat.org/ejp/


Edge universality of correlated Gaussians

Then, there are cL, cR > 0 s.t.

ρ(EL + t) = cL
√
t+O(t), ρ(ER − t) = cR

√
t+O(t), as t→ 0+. (2.25)

For h ∈ K, define the Fourier coefficients ĥ(s, k) :=
∫
T
h(s, u)e−2πikudu. On K we may

define a norm ‖·‖β for β ≥ 0:

‖h‖β := sup
s∈T,k∈Z

|ĥ(s, k)|(1 + |k|)β . (2.26)

In view of Theorem 3.2 of this work, it is easy to see that ‖g‖α ∨ ‖g−1‖α . 1 on any
bounded subdomain of C+. For any N ∈ N, define a discretization operator D(N) : K →
CN×N by

D(h)ij := ĥ(i/N, j − i). (2.27)

We have the following lemma concerning the discretization D(g):

Lemma 2.7. Let a, b ∈ K. Assume that b is Lipschitz in the first variable in the sense
that |b(s, u)− b(s′, u)| ≤ L|s− s′|,∀s, s′ ∈ T, u ∈ T. Then, ‖D(a)D(b)−D(ab)‖ . N−

1
2 (L+

‖b‖α)‖a‖α, also, ‖D(a)D(b)∗ −D(ab̄)‖ . N−
1
2 (L+ ‖b‖α)‖a‖α where we specifically need

α > 2

Proof. By definition, (D(a)D(b)−D(ab))ij =
∑
k â(i/N, k− i)(b̂(k/N, j−k)− b̂(i/N, j−k)),

therefore, using the decay of â and the Lipschitz continuity of b̂, we have

|(D(a)D(b)−D(ab))ij | ≤
∑
k

‖a‖α
|k − i|α

L|k − i|
N

. N−1L‖a‖α. (2.28)

On the other hand, ‖D(a)D(b)−D(ab)‖α . ‖a‖α‖b‖α, hence

|(D(a)D(b)−D(ab))ij | ≤ ‖a‖α‖b‖α(1 + |i− j|)−α. (2.29)

Therefore ‖D(a)D(b) − D(ab)‖l∞→l∞ . (L + ‖b‖α)‖a‖α
∑
k(N−1 ∧ |k|−2) . N−

1
2 (L +

‖b‖α)‖a‖α. Here we used the fact that α > 2 to get decay. Similarly, the l1 → l1 norm
is bounded by the same quantity, hence the operator norm has the same bound by
interpolation. The second estimate follows from a similar argument.

Fix z; in the following, we will let g(s, t) be the solution of (2.20) at this point z. We now
define Z(z) := {|g(s, t)||s, t ∈ T}. Equation (2.20) gives us that Z is bounded away from
0 and +∞. For K > 0 let DK = {z ∈ C+||z| ≤ K}.
Corollary 2.8. There is an N(K) > 0 such that for any N > N(K) and z ∈ DK , the
singular spectrum of D(g) is in the N−

1
6 (logN)−1-neighborhood of Z(z).

Proof. Let θ � 1 be some parameter to be chosen. Let x ∈ R+ s.t. dist(x, Z(z)) ≥ θ. Let
h := 1

|g|2−x2 . Then

‖(D(g)D(g)∗ − x2)D(h)− I‖ ≤‖D(g)D(g)∗ −D(|g|2)‖‖D(h)‖
+ ‖D(|g|2 − x2)D(h)−D(1)‖.

According to Lemma 2.7, we have ‖(D(g)D(g)∗ − x2)D(h)− I‖ . N−
1
2 [‖h‖2 + L], where

L is the Lipschitz constant of h with respect to the first variable. By chain rule we
know that ‖h′′‖∞ . θ−3 and L . θ−2. Therefore, ‖h‖2 . θ−3 and hence ‖(D(g)D(g)∗ −
x2)D(h)− I‖ . N−

1
2 θ−3. Choose θ = N−

1
6 (logN)−1. Then D(g)D(g)∗ − x2 is invertible

for N large enough. That means x is not in the singular spectrum of D(g).
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Corollary 2.9. Let R := D(g)(−S(D(g))− z)− I. Then, for any z ∈ DK ,

|Rij | ≤ C(K)N−1 ∧ |i− j|−2. (2.30)

In particular, ‖R‖ ≤ C(K)N−
1
2 .

Proof. According to Lemma 2.7 and equation (2.20), we know

|(D(g)(−D(Ψ(g))− z)− I)ij | . N−1 ∧ |i− j|−2.

By definition, (D(Ψ(g)))kl =
∑
p

∫
T
φ(k/N, t, l − k, p)ĝ(t, p)dt,

(S(D(g)))kl = 1
N

∑
p,q φ(k/N, q/N, l − k, p)ĝ(q/N, p). Using the Lipschitz-ness of φ and g,

we have |(D(Ψ(g))kl − (S(D(g)))kl)| . N−1 ∧ |k − l|−2. Therefore,

|(D(g)(−S(D(g))− z)− I)ij | . N−1 ∧ |i− j|−2,

as desired.

Corollary 2.10. Recall the definition (2.15) of F . For all sufficiently large N, there
exists a constant c > 0 such that ‖F (D(g))−D(g)‖ ∨ ‖F (F (D(g)))−D(g)‖ ≤ cN−

1
2 . In

particular, the singular spectrum of F (D(g)) and F (F (D(g))) are contained in a compact
subset of R+.

Proof. Using the notation from the previous corollary, if D(g)(−S(D(g)) − z) − I = R,
then

F (D(g)) = (I +R)−1D(g).

Since ‖R‖ . N−
1
2 and ‖D(g)‖ . 1, we know ‖(I + R)−1D(g) − D(g)‖ . N−

1
2 . From

perturbation theory we know that the singular spectrum of F (D(g)) is within N−
1
2 of that

of D(g), therefore it is a compact subset of R+. On the other hand, a simple algebraic
calculation yields

F (F (D(g))) = (I + F (D(g))S(F (D(g))R))
−1
F (D(g)).

Note that ‖F (D(g))S(F (D(g))R)‖ . N−
1
2 , so the singular spectrum of F (F (D(g))) is

within the O(N−
1
2 ) neighborhood of that of F (F (D)), hence is a compact subset of

R+.

For z ∈ C+, define

κ(z) := dist(z, supp ν), ρ(z) := ρ(Re z), ω(z) := κ(z)
2
3 + ρ(z)2. (2.31)

Theorem 2.8 in [2] implies the following stability result:

Lemma 2.11. There is a universal constant c6 such that if g̃ ∈ K satisfies

g̃(−Ψ(g̃)− z) = 1 + r (2.32)

and ‖g̃ − g‖∞ ≤ c6(κ
2
3 + ρ), then ‖g̃ − g‖∞ ≤ c−1

6 ω−1.
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2.4 Concentration lemmas

The following lemma says that a Lipschitz function of weakly dependent Gaussian random
variables concentrates around its expectation.

Lemma 2.12. Let X = (X1, · · · , Xn) be an array of centered Gaussian random variables
with covariance matrix Σ. Let f : RN → R be a Lipschitz function, such that |f(x) −
f(y)| ≤ L|x− y|,∀x, y ∈ RN . Then

P [|f(X)− Ef(X)| ≥ t] ≤ 2e
− t2

2L2‖Σ‖ , ∀t > 0.

Proof. Let Y = Σ−1/2X so that Y is an n-dimensional random vector with independent
N(0, 1) components. In [19],

P
[∣∣∣f(Σ

1
2Y )− Ef(Σ

1
2Y )

∣∣∣ ≥ t] ≤ 2e
− t2

2L2
1 for all t > 0.

Here L1 is the Lipschitz constant for the function y 7→ f(Σ
1
2 y). It is easy to see that

L1 ≤ L‖Σ‖
1
2 , which concludes the proof.

In the future, we will frequently use the following lemma.

Lemma 2.13. Let A ∈ CN×N . Assume that there are β > 0, θ > 1, s.t.

|Aij | ≤ β((|i− j|+ 1)
−θ

+N−1).∀1 ≤ i, j ≤ n. Then ‖A‖ ≤ βθ
θ−1 . More generally, for any

p ∈ [1,+∞], we have ‖A‖lp→lp ≤ βθ
θ−1 .

Proof. Without loss of generality let β = 1. For any vector v ∈ Rn,

‖Av‖∞ = max
k
|
∑
i

Akivi|

≤ ‖v‖∞max
k

(∑
i

((|i− k|+ 1)−θ +N−1)

)

≤ ‖v‖∞
(∫ +∞

1

x−θdx+ 1

)
.

Therefore, ‖A‖l∞→l∞ ≤ βθ
θ−1 . Similarly, ‖A‖l1→l1 = ‖A∗‖l∞→l∞ ≤ βθ

θ−1 . By interpolation,

‖A‖lp→lp ≤ ‖A‖
1
p

l∞→l∞‖A‖
1− 1

p

l1→l1 ≤
βθ

θ − 1
, ∀p ∈ [1,+∞].

Recall that in Section 2.2 we defined a map S (see (2.12)). Thanks to the decay condition
(2.2), the operator S is a bounded operator, as will be seen in the following lemma.

Lemma 2.14. Let A ∈ CN×N . Then there is a universal constant c > 0 such that the
following inequalities hold.

1. ‖S(A)‖d−1 ≤ c|A|∞.

2. ‖S(A)‖lp→lp ≤ c|A|∞,∀p ∈ [1,+∞].

3. ‖S(A)‖d ≤ c‖A‖d−1.

4. ‖S(A)‖d− 1
2
≤ c‖A‖.
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Proof. By definition |S(A)ij | = | 1
N

∑
k,l ξikljAkl| ≤

|A|∞
N

∑
k,l |ξiklj |. According to (2.2),

1
N

∑
k,l |ξiklj | .

1
(1+|i−j|)d−1 . Hence |S(A)ij | . |A|∞

(1+|i−j|)d−1 , which implies the first inequal-

ity. Setting θ = d − 1 in Lemma 2.13, we see that ‖S(A)‖lp→lp . |A|∞,∀p ∈ [1,+∞],
which implies the second inequality. If ‖A‖d−1 < +∞, then |S(A)ij | = | 1

N

∑
k,l ξikljAkl| ≤

(1 + |i − j|)−d 1
N

∑
k,l |Akl| . (1 + |i − j|)−d. This proves the third inequality. As for the

fourth inequality, we use Cauchy-Schwarz inequality to see that

|S(A)ij | ≤ 1
N

(∑
k,l |ξiklj |2

) 1
2
(∑

k,l |Akl|2
) 1

2

. (1 + |i− j|) 1
2−d‖A‖.

2.5 Error estimate

Recall the decomposition (2.9)

hab =

N∑
k=1

γabk1hk1 + h̃ab, ∀a, b ∈ Z/NZ. (2.33)

Taking the co-variance with hl1 for any l ∈ Z/NZ, we see that

ξabl1 =

N∑
k=1

γabk1ξl1k1, ∀l ∈ Z/NZ.

Note that by assumption (2.2) the matrix Σ1 := (ξl1k1)l,k∈Z/NZ satisfies |ξl1k1| . 1
(1+|l−k|)α

and by (2.4), ‖Σ−1
1 ‖ ≤ c−1

2 . Therefore Lemma 3.2 implies that |(Σ−1
1 )ij | . (1 + |i− j|)−α

and hence by Lemma 2.13 we have ‖Σ−1
1 ‖ ≤ c. Let ∇1 denote the partial gradient with

respect to the first column (hk1)1≤k≤N . Use the fact that ∂Gij
∂hab

= −GiaGbj and the chain
rule, we have

‖∇1Gij‖2 ≤
∑
k

| −
∑
a,b

GiaGbjγabk1|2 .
∑
k

| −
∑
a,b

GiaGbjξabk1|2.

In the second inequality above we have used the boundedness of ‖Σ−1
1 ‖. Let

Γ = max
i,j
|Gij | ∨ 1, γ := max

i
ImGii ∨ η. (2.34)

Use the decay rate (2.2),

‖∇1Gij‖2 ≤ CΓ2
∑
k

(∑
a

|Gia|2

(|a− k|+ 1)α−1
+
∑
b

|Gbj |2

(|b− k|+ 1)α−1

)2

. (2.35)

Since α − 1 > 1, the operator norm of the matrix
(

1
(|a−k|+1)α−1

)
1≤a,k≤N

is bounded by

C(α− 2)−1, according to Lemma 2.13. Therefore,

‖∇1Gij‖2 ≤ CΓ2

(∑
a

|Gia|2 +
∑
b

|Gbj |2
)
≤ CΓ2γη−1. (2.36)

In the second inequality we used Ward Identity. Similarly,

‖∇1(GS(G))ij‖ ≤ ‖
∑
p

∇1Gip(S(G))pj‖+ ‖
∑
p

Gip∇1(S(G))pj‖. (2.37)
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Define a short-hand notation Qkl := ‖∇1Gkl‖. By (2.36) we have |Q|2∞ ≤ CΓ2γη−1.
Then

‖∇1(GS(G))ij‖ ≤
∑
p

Qip|(S(G))pj |+
∑
p

|Gip|
1

N

∑
k,l

|ξpklj |Qkl

≤ |Q|∞‖S(G)‖l∞→l∞ + |Q|∞
Γ

N

∑
k,l,p

|ξpklj |.
(2.38)

Now we use the bound (2.36), and use the decay (2.2) as well as Lemma 2.14 to
see,

‖∇1(GS(G))ij‖2 ≤ CΓ4γη−1. (2.39)

The observation above yields the following lemma.

Lemma 2.15. Let z = E + iη ∈ C+ and K ≥ 1, then there is a universal constant c > 0

such that
−GS(G)−Gz = I +R,

where P
[
|R|∞ ≥ t

√
K4γ
Nη ,Γ ≤ K

]
≤ 2N2e−ct

2

,∀t ≥ 1.

Proof. For any K > 0 let χ : R → [0, 1] be a smooth function s.t. |χ′| ≤ 1 and χ = 1 on
[−K,K] and χ = 0 outside [−3K, 3K]. Define

G̃ = χ(Γ)G.

Then ‖∇G̃ij‖2 . K2γη−1. According to Lemma 2.12,

P

[
|G̃ij − EjG̃ij | ≥ t

√
K2γ

Nη

]
≤ 2e−ct

2

.

Note that G̃ = G on the event {Γ ≤ K}. Therefore,

P

[
max
i,j
|Gij − EjGij | ≥ t

√
K2γ

Nη
,Γ ≤ K

]
≤ 2N2e−ct

2

.

On the other hand, in view of (2.39), a similar argument yields,

P

[
max
i,j
|(GS(G))ij − Ej(GS(G))ij | ≥ t

√
K4γ

Nη
,Γ ≤ K

]
≤ 2N2e−ct

2

.

Now we go back to the identity (2.13), removing E1 at the cost of some error term, and
replacing 1 with a generic j, to see

−GS(G)−Gz = I +R,

where P
[
|R|∞ ≥ t

√
K4γ
Nη ,Γ ≤ K

]
≤ 2N2e−ct

2

.

In particular, for a crude bound, we may take t = logN and take K = 2/η so that
P [Γ > K] = 0. The lemma above yields,

Corollary 2.16. Let R satisfy

G(−S(G)− z) = I +R.

Then |R|∞ ≤ 8 logN√
Nη6

with probability 1−N−c logN .
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3 The local law for correlated Gaussian ensembles

3.1 Power law decay of inverse matrices

Lemma 3.1. Let A,B ∈ CN×N , β1,2 > 1, then

‖AB‖min{β1,β2} ≤ Cmin β1,β2
‖A‖β1

‖B‖β2
.

Proof. Note that by definition, ‖A‖min{β1,β2}‖B‖min{β1,β2} ≤ ‖A‖β1‖B‖β2 , so it is suf-
ficient to prove the case where β1 = β2 = β. Without loss of generality assume
‖A‖β = ‖B‖β = 1, then,

|(AB)ik| ≤
∑
j

1

(1 + |i− j|)β
1

(1 + |j − k|)β
.

Since either |i− j| or |j − k| is ≥ |i− k|/2, the above quantity is bounded by

|(AB)ik| ≤ 2
∑
l∈Z

1

(1 + |i−k|
2 )β

1

(1 + |l|)β
≤ 2

(1 + |i−k|
2 )β

(
1 + 2

∫ +∞

1

dx

xβ

)
,

which is bounded by 2β+1 β+1
β−1 (1 + |i− k|)−β .

The following argument is based off a similar argument of Jaffard [15].

Theorem 3.2. Let d > 3
2 and assume that a matrix A = I +B (finite or infinite) satisfies

‖B‖ < 1 and ‖A‖d < +∞. Then, for any δ > 0, there exists a polynomial dependent on d
and δ ≥ 0 such that ‖A−1‖d−1/2−δ ≤ Pd,δ(‖A‖d, 1

1−‖B‖ ).

If d > 1 and there exists an ε > 0 such that ‖B‖ ≤ 1− ε, then ‖A−1‖d−δ ≤ C(δ, ε, ‖A‖d).

We will show matrix element decay of the solution to the self-consistent equation. Though
we will only really apply this to the solution of the limiting equation (2.21), the following
theorem will phrase the result in terms of Matrices for convenience of notation.

Proposition 3.3. Let M be the solution to the following equation

M(−z − S(M)) = I.

where S is defined by (2.12) for a covariance structure ξijkl with decay d > 2. If there
exists a constant c > 0 such that ‖M‖, ‖M−1‖ ≤ c, then we have that ‖M‖α ≤ C(c, α).

Proof. Notice that we are able to write

M = ((M−1)∗M−1)−1(M−1)∗ (3.1)

By the equation of M , we have M−1 = −z−S(M). Let us first estimate the decay of M−1.
By Lemma 2.14 we have ‖M−1‖d− 1

2
= ‖−z − S(M)‖d− 1

2
. ‖M‖. By Lemma 3.1 we have

‖M−1(M−1)∗‖d− 1
2
. ‖M‖2. We would now like to apply theorem 3.2 to (M−1(M−1)∗)−1.

For any general positive semi-definite matrix, A, we will be able to write it as A =
λ1+λn

2 [I +B] where λ1 and λn are respectively the largest and smallest eigenvalues of A.

Theorem 3.2 is applied to the matrix I +B. The operator norm bound on B will be λ1−λn
λ1+λn

.

The important factor r = 1− ‖B‖ will be 2λn
λ1+λn

. Theorem 3.2 now shows that the matrix
decay of A−1 will be the same matrix decay of A.
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Applying this logic to the positive semidefinite matrix (−z − S(M))(−z − S(M))∗, one
will obtain that λ1 and λn are both of some bounded constant order. Thus, we see we
have matrix decay of order d− 1

2 .

Finally, we apply Lemma 3.1 to the equation (3.1). Notice that the two terms (M−1)∗

and ((M−1)M−1)−1 both have decay d− 1
2 . Thus, we see the product, and thus M , will

have a decay of order d− 1
2 .

One we know M has decay d− 1
2 , we can show that S(M) has even better decay; it will

have decay of order α. We can repeat the same argument, but with this better decay
estimate, to show that M has matrix decay of order α.

Now we define J : CN×N → K, such that for any A ∈ CN×N and i ∈ Z/NZ, u ∈ T,

J(A)(i/N, u) :=

i+bN/2c∑
k=i−bN/2c

Ai,i+ke2πiku. (3.2)

and J(A)(s, u) is linear in s for s ∈ [i/N, (i+ 1)/N ]. It is easy to check that

D(J(A)) = A, ∀A ∈ CN×N . (3.3)

Proposition 3.4. Consider a fixed bounded subset U ⊂ C+. There are constants ε, C > 0

such that if |J(M)− g|∞ ≤ ε , then ‖F (M)−F (D(g))‖α−1 ∨‖F (F (M))−F (F (D(g)))‖α ≤
C|J(M)−g|∞ and |F (M)−D(g)|∞∨|F (F (M))−D(g)|∞ ≤ C(|J(M)−g|∞+N−

1
2 ),∀z ∈ U .

Proof. Let A := F (D(g)) and R := S(M −D(g)). Then

F (M)−A =

∞∑
k=1

A(RA)k.

Hence ‖F (M)−A‖α−1 ≤
∑∞
k=1‖A(RA)k‖α−1. It is easy to see that ‖R‖α−1 ≤ c|J(M)−g|∞

for some universal constant c > 0. By Lemma 3.1 we have ‖A(RA)k‖α−1 . (c|J(M) −
g|∞)k. Therefore, taking ε small enough, we have ‖F (M)−F (D(g))‖α−1 ≤ C|J(M)−g|∞.

Next, we define R′ = S(F (M)− F (D(g))), A′ = F (F (D(g))). Then ‖R′‖α ≤ c′ε according
to the above argument. We have

F (F (M))−A′ =

∞∑
k=1

A′(R′A′)k.

By Lemma 3.1 we have ‖A′(R′A′)k‖α . (c|J(M) − g|∞)k. Therefore, taking ε small
enough, we have ‖F (F (M))− F (F (D(g)))‖α ≤ C|J(M)− g|∞.

The last claim follows from the estimates above and Corollary 2.10.

3.2 Local law

Recall definition (2.31) and (2.34), for a constant T > 0 to be chosen, define

D := {z ∈ C+||z| ≤ T, Im z ≥ (logN)10N−1ω−4}. (3.4)

Theorem 3.5 (Local law). Define Λ(z) := |D(g)−G|∞. For N large enough, we have

sup
z∈D

Λ(z) ≤ (logN)4

(√
γ

Nη

)
ω−1,
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with probability 1− e−a3(logN)2

. If κ > ρ,

sup
z∈DθN

Λ(z) ≤ (logN)8

(√
Imm

Nη
ω−1 + (Nη)−1ω−2

)
,

with probability 1− e−a3(logN)2

.

Proof. Take K := logN , and let {zk} be an N−4-net of D. Define

Ω :=

N10⋃
k=1

{Λ(z) ∈ (K4√γ(Nη)−
1
2ω−1,K−1ω)}.

Then by Proposition 3.4, on Ω we have

F (F (G))(−S(F (F (G))− z) = I + R̃,

where R̃ . |R|∞. Then J(F (F (G))(−Ψ(J(F (F (G)))) − z) = 1 + O(|R|∞ + N−1). By
Proposition 3.4, on Ω we have |F (F (G))−D(g)|∞ . K−1ω +N−

1
2 , which is� ω.

We can then apply stability Lemma 2.11 to J(F (F (G))) which approximately satisfies
the self-consistent equation. This would then imply that ‖J(F (F (G)))− g‖∞ . (|R|∞ +

N−1)ω−1. Discretizing this would give the inequality ‖F (F (G)) − D(g)‖∞ . (|R|∞ +

N−1)ω−1. Due to the closeness of G and F (G) and F (G) to F (F (G)) from the self-
consistent equation, this inequality would imply that λ(z) = |G − D(g)|∞ . (|R|∞ +

N−1)ω−1.

Therefore, on Ω we have |R|∞ & K4√γ(Nη)−
1
2 . By Lemma 2.15 we know P [Ω] ≤

2N12e−c(logN)2

. On Ωc, we either have infz∈D |G − D(g)|∞ ≥ K−1ω/2 or supz∈D |G −
D(g)| ≤ 2K4√γ(Nη)−

1
2 . The latter is true with probability 1− e−c(logN)2

, since if we take
the T in the definition of D to be a large enough constant, then the former case holds
with O(e−c(logN)2

) probability.

Corollary 3.6. Let a > 0 be a small constant. Then on

D′ := {z ∈ D|κ ≥ N−a}.

we have

|E [G]−D(g)|∞ . (logN)16

(
1

Nκω3
+

1

(Nη)2ω5

)
.

Proof. By integration by parts,

−E [GS(G)]− E [G] z = I.

Let R = (|Gij −D(g)ij |)1≤i,j≤N .

−E [G]S(E [G])− E [G] z = I + E [(R)S(R)] = I + E
[
O(|D(g)−G|2∞)

]
.

Repeating the argument in the proof of Theorem 3.5 on E [G] instead of G, we have

|E [G]−D(g)|∞ . E
[
O(|D(g)−G|2∞)

]
ω−1.

We use Theorem 3.5 and the crude bound Imm ≤ ηκ−2 to get the conclusion.

Remark 3.7. When we proved this local law, the only error estimates that depended
strongly on the particular model we are considering are the stability results for the
limiting vector equation. When considering the case of sample covariance matrices,
though they are not exactly considered in the context of our proof, the stability results
and the square root behavior at the right edge hold. Thus, we will be able to prove a
local law for sample covariance matrices.
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3.3 Upper bound of top eigenvalue

In the previous section, we have established optimal term-wise estimates on the entries
of the Green’s function. Estimates of the trace of the trace of the Green’s function,
however, are generally better due to Central Limit Theorem type cancellations.

One way to see this is to prove a Fluctuating Averaging Lemma [12], which would involve
combinatorial expansions. In the Gaussian case, we can implicitly see the same effect
by using a general result of the concentration of the largest eigenvalue along with our
optimal term-wise estimates for the Green’s function. The following lemma makes this
intuition rigorous.

Lemma 3.8. For N ∈ N, consider a family of random measures µN = 1
N

∑N
k=1 δλk where

λ1 ≥ · · · ≥ λN such that there is a deterministic λ̂1 satisfying λ1 = λ̂1 + o(N−
1
2 +ε) for

any ε > 0. Assume that there exists a deterministic measure ν whose Green’s function
satisfies

Im[mν ](x+ iη) ≤ C η√
κ+ η

. (3.5)

where κ := dist(supp(ν), x) and that

|E [mµN (z)]−mν(z)| = o(N−
1
2−γ). (3.6)

for some γ > 0 and all z = E + iη with dist(E, supp(ν)) ≥ N−ε and η ≥ N−δ− 1
2 for some

δ, ε > 0.

Then, dist(λ1, supp(ν)) ≤ N−ε′ for some ε′ > 0.

Proof. Assume for contradiction that λ1 lies outside a distance N−ε
′

of supp(ν) for some
ε′ smaller than the ε such that condition (3.6) holds for z = E+ iη with dist(E, supp(ν)) ≥
N−ε. The exact value of ε′ will be specified later. By our concentration result of λ1

around λ̂1, this is equivalent to assuming that λ̂1 will be a distance N−ε
′

away from
supp(ν)

We know that λ1 will always be in a N−1/2+ε neighborhood of λ̂1, we will be able to prove
that the integral of the Green’s function in a neighborhood around λ̂1 will always be
bounded below by a constant times N−1.

More specifically, we would have that

1

N
≤ C

∫
I

1

N

η

(λ1 − E)2 + η2
dE ≤ C

∫
I

Im[mµN ](E + iη)dE, (3.7)

letting I = [λ̂1− Nγ
′

√
N
, λ̂1 + Nγ

′
√
N

] with γ′ < γ ∧ δ/2 and η to be N−1/2−δ. One should realize

that with the above conditions, η will always be less than N−1/2−γ′ . The term in the
middle of the above inequality is 1

N Im[ 1
λ1−z ]; noting that 1

N Im[ 1
λi−z ] is positive in general

and using the definition of the Green’s function, we get the second inequality.

To see why the first inequality is true, one should first realize that a one sided η

neighborhood of λ1 will always lie in the interval I for sufficiently large N ; this is our
concentration assumption λ1 = λ̂1 + o(N−

1
2 +ε) where we can choose ε less than γ′.

Without loss of generality, we may assume that Ĩ := [λ1 − η, λ1] is in I.

For E ∈ Ĩ, one would be able to bound the function η
(E−z)2+η2 below by 1

2η . The integral

of this function over Ĩ would then clearly be bounded below by 1
2 . We see that we can

set C = 2 for example.
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Edge universality of correlated Gaussians

We now take the expectation of (3.7) to get,

1

N
≤ C

∫
I

Im[E [mµN ]](E + iη)dE (3.8)

≤ C ′
∫
I

o(1)

N
1
2 +γ

+ C ′
∫
I

Im[mν ](E + iη)dE (3.9)

≤ C ′ o(1)

N
+ C ′′

∫
I

η√
dist(E, supp ν)

≤ C ′ o(1)

N
+ C ′′

ηNγ′

√
N
√
λ̂1

. (3.10)

In (3.8) we used the assumption (3.6) while in (3.10), we used the fact that ν satisfies
(3.5). In the final line, we used the assumption that λ̂1 lies at a distance of N−ε

′
from the

support of ν, which is at a much greater scale than the length of I.

Notice that we have set η = N−1/2−δ for δ positive and can now choose N−ε
′

:=

N−min (ε,δ/4) and see that the error of (3.10) will be o(1)
N . This contradiction implies

that for large N , λ̂1 must necessarily be of distance less than N−ε
′

from the support of
supp ν. By concentration of λ1 around λ̂1, we would know that all λ1 will be less than
N−ε

′
from the support of ν.

Theorem 3.9. For random matrix ensembles satisfying the conditions of Definition 2.1,
there exists an ε > 0 such that all eigenvalues lie within distance N−ε from the edge of
the ensemble.

Proof. We would like to apply Lemma 3.8. First notice that by Gaussian concentration,

we are able to prove that the distance of |λ1 − E [λ1] | ≤ (logN)2

√
N

with probability 1 −
O(N−c logN ). We thus put λ̂1 = E [λ1] in the assumption of Lemma 3.8.

Then we check that the error bounds in Corollary 3.6 are sufficient for our purposes.
The error that appears there is

|E [G]−D(g)|∞ . (logN)16

(
1

Nκω3
+

1

(Nη)2ω5

)
.

By the definition of D and the Lipschitz continuity of g, we have |E
[

1
NTrG

]
−mν | =

O(N−
1
2−γ) for some γ > 0 as long as we have η � N−3/4+δ and κ ∼ N−ε for ε very small

and δ > 0. Since δ can be arbitrarily small, we may choose η such that N−3/4+δ � η �
N−1/2 and we can apply Lemma 3.8.

4 Universality

In the previous section, we proved a local law for mN as well as an improved local law
for E [mN ], and combining it with the concentration of the top eigenvalue to prove an
upper bound on the top eigenvalue. According to a recent result by Landon and Yau
[16] below, the local law with upper bound on the top eigenvalue is sufficient to prove
universality near the edge.

Theorem 4.1. Let η∗ = N−φ
∗

for some 0 < φ∗ < 2
3 . We call a deterministic matrix V

η∗-regular if it satisfies the following properties.

1. There exists a constant CV ≥ 0 such that for −1 ≤ E ≤ 0, η∗ ≤ η ≤ 10,

1

CV

η√
|E|+ η

≤ Im[mV (E + iη)] ≤ CV
η√
|E|+ η
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and for 0 ≤ E ≤ 1, (η∗)1/2|E|+ η∗ ≤ η ≤ 10,

1

CV

√
|E|+ η ≤ Im[mV (E + iη)] ≤ CV

√
|E|+ η.

2. There exists no eigenvalue of V in the region [−η∗, 0].
3. We have ‖V ‖ ≤ NCV for some CV > 0.

Consider the ensemble Vt = V +
√
tG. Where G is an independent GOE ensemble. Let t

satisfy N−ε ≥ t ≥ N εη∗ and let F : Rk+1 → R be a test function such that ‖F‖∞ ≤ C and
‖F‖∞ ≤ C. Then there are deterministic parameters γ0 ∼ 1 and E− such that

|E[F (γ0N
2/3(λi0 − E−), ...γ0N

2/3(λik − E−))]

−EGOE [F (N2/3(λ̂1 + 2), ...N2/3(λ̂k + 2))]| ≤ N−c.

The first expectation is with respect to the eigenvalues of the ensemble Vt with λ1 <

λ2 < ... < λN . The latter expectation is taken with respect to the eigenvalues λ̂i of a
GOE which are ordered λ̂1 < λ̂2 < ... < λ̂N . i0 is the first index i such that ith smallest
eigenvalue of V is greater than − 1

2 .

Call H the ensemble with correlation structure ξijkl. Theorem 3.9 combined with 3.5
shows that there exists a parameter Φ > 0 such that with high probability a matrix M
produced by H would be η∗ regular for any N−φ such that φ < Φ. We choose some
φ < Φ sufficiently small and set t = N−φ. We will use this t whenever referenced in
the following sections. It will be important to choose φ sufficiently small in the coming
sections.

In order to apply the theorem, we would like to write our matrix ensemble in the
from H = H ′ +

√
tG, where G is a standard GOE matrix and H ′ is a matrix ensemble

independent from G.

Recall the notation ξijkl from equation (2.1). We can let H ′ = (h′ij) be the auxiliary
Gaussian ensemble whose correlation structure is given by

ξ′ijkl = ξijkl − tδij=kl (4.1)

We see that when N is large enough, H ′ has positive semidefinite correlation matrix and
so we can construct the ensemble H ′. Since H ′ is a correlated Gaussian ensemble, we
have a local law as in Theorem 3.5 well as bounds for the extremal eigenvalues as in
Theorem 3.9.

We will apply (4.1) as follows. H from our original Gaussian ensemble can be written
as H ′ +

√
tG where H ′ is produced from our auxiliary ensemble and G is a GOE matrix

independent from H ′. Let U be a unitary matrix such that V := U∗H ′U is a diagonal
matrix. Notice that U∗HU has the same eigenvalues as H and can be written as
U∗HU = V +

√
tĜ where Ĝ is a GOE matrix. This is possible as the GOE is invariant

under unitary transformations.

We can condition on the matrix H ′ and apply the Theorem 4.1. The ensemble H ′ +
√
tG

with fixed H ′ and G a GOE has eigenvalue density near the left edge described by

ρtH′(E) =
√
E − E′−(t)(γ′(t))−1/2(1 + t2O(|E − E′−(t)|)) (4.2)

for ct2 ≥ E ≥ E′−(t). E′−(t) will be called the edge of this ensemble and γ′(t) will be
called the scaling factor. This is the content of lemma 2.3 of [16]. The universality result
coming from applying Thorem 4.1 is:
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|EH′ [F (γ0N
2/3(λ1 − E−), ...γ0N

2/3(λk − E−))] (4.3)

−EGOE [F (N2/3(λ̂1 + 2), ...N2/3(λ̂k + 2))] ≤ N−c.

where λ1 < λ2 < ... < λN are the eigenvalues of the considered matrix H ′ +
√
tG with

H ′ fixed and λ̂1 < λ̂2 < ..λ̂N are the eigenvalues of a GOE matrix.

We used for N large enough, the smallest eigenvalue of H ′ is of distance less than 1/2

from the edge, so the index i0 is 1. The only issue with (4.3) is that γ0 is a function of the
initial data, we will make this a universal constant in the next section.

4.1 Changing the scaling factor

A priori, the scaling factor γ appearing in (4.3) is only known to be a function of the
initial matrix H ′ used as an input to Theorem 4.1. However, we have explicit complex
analytic equations determining the scaling factors depending on the initial data. By using
Rouche’s Theorem, the local law, and the Lipschitz continuity of the Green function, we
can show that these equations are stable to small perturbations of the initial data. This
allows us to show with high probability that the scaling factor will not change too much
for two different initial data points and we can choose a common scaling factor γ for the
entire ensemble.

Theorem 4.2. Recall the auxiliary model H ′ with correlation structure as given in (4.1)
which has regularity η∗ = N−Φ. Let t = N−φ with 0 ≤ φ ≤ Φ being chosen sufficiently
small.

Consider two distinct matrices H ′1 and H ′2 coming from the Gaussian ensemble with
correlation structure ξ′ijkl. Write the measure of the ensemble H ′i +

√
sG as ρi(E) with

edges Ei−(s),scaling factors γi(s) and Stietljes transforms mi
s. We have the relation

γ1(t)− γ2(t) = O(t) (4.4)

The above theorem will show that any two matrices produced from H ′ will asymptotically
have the same scaling factor.

Proof. Define zi as follows where κ is a parameter dependent on t to be specified later.

zi − tmi
0(zi) = Ei−(t) + κ (4.5)

The importance of the point zi is contained in the following relation.

mi
0(zi) = mi

t(E
i
−(t) + κ) (4.6)

This is a standard property of the free convolution, one can refer to equation to equations
(7.2) and (7.3) of [16] for a proof.

We can determine scaling factors using the following relation.

π[ρ′1(E1
−(t) + κ)− ρ′2(E2

−(t) + κ)] = Im[m1
0[z1]]− Im[m2

0[z2]] (4.7)

= Im[m1
0[z1]]− Im[m2

0[z1]] + Im[m2
0[z1]]− Im[m2

0[z2]]. (4.8)

In (4.8), the first term can be bounded by a sufficiently good local law. The second term
can be bounded by a Lipschitz condition provided |z1 − z2| are sufficiently close to each
other.

We will now attempt to bound the quantity |z1 − z2|.
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Lemma 4.3. Recall all the definitions from the previous Theorem 4.2. Choose κ in (4.5)
to be t2+ε for ε > 0 very small. Then there exists a small parameter δ > ε such that for N
large enough we have

|z1 − z2| ≤ t2+δ (4.9)

Proof. We have that

z1 − tm1
t (z1)− (z2 − tm2

t (z2)) = (E1
−(t)− E2

−(t)). (4.10)

(z1 − z2)− t(m1
t (z1)−m1

t (z2)) = (E1
−(t)− E2

−(t)) + t(m1
t (z2)−m2

t (z2)). (4.11)

We will try to prove that |z1 − z2| is sufficiently small. We will do this by appealing to
Rouche’s Theorem and a Local Law bound to the second term on the RHS of (4.11).

We will now address the Local Law portion of the above estimate. We have

Im[z1] = tIm[m1
t (E

1
−(t) + κ)] (4.12)

by taking imaginary parts of (4.5) and (4.6).

Using the fact that the imaginary part of the Stieltjes transform along the real axis will
be the density, we have that for κ ≤ ct2

Im[m1
t (E

1
−(t) + κ)] = O(

√
κ) (4.13)

We use the expansion (4.2) and use the fact that γt � 1. The latter fact is again an
explicit calculation of the free convolution as can be seen in Lemma 2.3 of [16].

The last two equations show that Im[z1] � t
√
κ. If we take κ � t2+ε, we get Im[z1] � t2+ε/2.

Recalling that we set t of the order N−φ for φ very small, we see that under our choice
of κ we have Im[z1] � N−2φ(1+ε/4) and we should be in a region we can apply the local
law 3.5.

To confirm this carefully, note that dist(z1, supp ν) ≥ Im[z1] so the following should hold

Im[z1] = N−2φ(1+ε/4) ≥ (logN)10N−1(N2/3(−2φ)(1+ε))−4 � (logN)log logNN−1/2.

The point z1 is in the region D when when we have that φ is sufficiently small. Clearly,
we would also have that a circle of radius t2+δ around z1 for δ > ε/2 would also lie in the
region D . This choice of δ will be important later when we apply Rouche’s theorem in a
circle around z1. Notice that we can apply the same logic to z2

Applying Theorem 3.5, we get

|m1
t (z2)−m2

t (z2)| ≤ 2(logN)4(
√

1/(N Im(z)))(Im(z))−2/3

with exponentially high probability. The fact that we have a factor of
√
N in the denomi-

nator in the right hand side of the last line shows that

|m1
t (z2)−m2

t (z2)| � t3 (4.14)

provided φ is sufficiently small.

Recall that the auxiliary ensemble that producedH ′ is η∗ regular for η∗ = N−Φ. Using the
bound on extreme eigenvalues from Theorem 3.9 we know that there is a deterministic
E− such that with high probability both

|Ei−(t)− E−| ≤ N−Φ
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We may set φ ≤ Φ
3 to get the bound

|E1
−(t)− E2

−(t)| ≤ t3. (4.15)

Using the local law on m1
t and the Lipschitz continuity of the limiting distribution, we

know that there is a constant K such that for all pairs (a, b) in a circle of radius O(t2+δ)

around the point z1 we have

|m1
t (a)−m1

t (b)| ≤ K|a− b| (4.16)

for a finite constant K. Choosing δ > ε
2 ensures that since Im[z1] � t2+ ε

2 this circle is
indeed in a region where we can apply the local law.

On this circle of radius R we see that the left hand side of (4.11) has lower bound

|z1 − z2| − t|m1
t (z1)−m1

t (z2)| ≥ |z1 − z2|(1−Kt) ≥ O(t2+δ) (4.17)

where Kt will decay to 0 for N large enough. Here we used the Lipschitz continuity of
(4.16) to bound the terms involving the Stieltjes transforms.

Combining estimates (4.14) and (4.15) we can get an upper bound on the left hand side
of (4.11) as

|E1
−(t)− E2

−(t)|+ t|m1
t (z2)−m2

t (z2)| ≤ t3 (4.18)

Thus, on this circle of radius R, we see that the right hand side of (4.11) will be less than
the left hand side of (4.11) in absolute value on the boundary.

If the right hand side of (4.11) were 0, then we would clearly have the unique solution
z2 = z1. Rouche’s theorem then shows that there is a solution such that |z2 − z1| ≤ R =

t2+δ.

Putting the estimate (4.9) back into (4.8) with κ = t2+ε.

(γ1(t))−1/2t1+ε/2(1 + t−2O(t2+ε))− (γ2(t))−1/2t1+ε(1 + t−2O(t2+ε) (4.19)

≤ π−1[Im[m1
0[z1]]− Im[m2

0[z1]] + Im[m2
0[z1]]− Im[m2

0[z2]]] ≤ t3 +Kt2+δ.

For the first term in the second line, we used the local law around z1 to bound the
quantity by t3 for the second quantity we used Lipschitz continuity of m2

0 combined with
the estimate on |z1 − z2| coming from (4.3).

Notice that if we now have that

|γ1(t)−1/2 − γ2(t)−1/2| ≥ t (4.20)

then it would clearly be impossible for the inequality in (4.19) to hold.

We can turn this into an o(1) bound on |γ1(t)− γ2(t)| using the facts that γ1(t) are O(1)
quantities.

One should note that this argument will also work to show that γ1(t) is of O(t) distance
from the scaling factor corresponding to the empirical spectral distribution of the
ensemble H.

4.2 Final universality result

Using the scaling results coming from the previous section we can translate (4.3) as
follows.
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Theorem 4.4. Let H be the Gaussian ensemble with correlation structure ξijkl satisfying
the assumptions of Section 2.1. There exists a deterministic scaling factor γ depending
on the ensemble H such that the following inequality holds for functions F : Rk → R

such that ‖F‖∞, ‖∇F‖∞ ≤ C,

|EH [F(γN2/3(λ2 − λ1), ...γN2/3(λk − λ1))] (4.21)

−EGOE[F(N2/3(λ̂2 − λ̂1), ...N2/3(λ̂k − λ̂1))] ≤ N−c.

where λ1 < λ2

Proof. First, notice that we can find a function F : Rk+1 → R such that ‖F‖∞ and
‖∇F‖∞ are bounded and

F (x1, ..xk+1) = G(x1 − x2, ...x1 − xk+1).

Recall from earlier discussion that we can write any matrix from the ensemble H as
H ′ +

√
tG where H ′ is Gaussian with correlation structure with correlation structure

ξabcd − tδab=cd and G is an independent GOE matrix.

Let Ω be the set in which we know that H ′ has sufficiently good regularity so that (4.3)
holds for the function F. On Ω, we would like to change the scaling factor γ0 to γ, which
is the scaling factor at the edge for the spectral density corresponding to H.

From Theorem 4.2, we know that the difference between the γ0 appearing in (4.3) and
the γ appearing here is of the order t = N−φ. Finally, one can use F is Lipschitz as well
as the fact that the N2/3(λik − E−) are bounded to say that

|F (γN2/3(λ1 − E−), ...γN2/3(λk − E−))−

F (γ0N
2/3(λ1 − E−), ...γ0N

2/3(λk − E−))| ≤ CkN−φ/2.

We can take expectation of the above quantity in the ensemble H ′ +
√
tG with G an

independent GOE and apply the triangle inequality with (4.3) to prove

|EH′ [F (γN2/3(λ1 − EM− ), ..., γN2/3(λk − EM− )]

−EGOE[F (N2/3(λ̂1 + 2), ...N2/3(λ̂k + 2))]| ≤ N−c.

Translating this statement to G, we get on the set Ω we have

|EH′ [G(γN2/3(λ1 − λ2), ..., γN2/3(λ1 − λk)] (4.22)

−EGOE[G(N2/3(λ̂1 − λ̂2), ...N2/3(λ̂1 − λ̂k))]| ≤ N−c.

One would now like to remove the conditional expectation in the above expression.
Namely, we would like to integrate (4.22) in Ω while using the trivial bound that |EH′ [G]−
EGOE [G]| is bounded by a constant on the complement of Ω. We thus get the full
universality statement

|EH [G(γN2/3(λ1 − λ2), ..., γN2/3(λ1 − λk))] (4.23)

−EGOE[G(N2/3(λ̂1 − λ̂2), ...N2/3(λ̂1 − λ̂k))]| ≤ N−c.

as desired.

Remark 4.5. As long as we know that a version of the Dyson-Brownian Motion result
holds for sample covariance matrices, then we will be able prove edge universality using
the local law and edge upper bound for the top eigenvalue results from the previous
section.
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A Decay of inverse matrices

In this section we prove Theorem 3.2. Let B = I − A. Since ‖B‖ < 1, We can expand
A−1 =

∑∞
k=0B

k. We need the following lemma to bound each term. For simplicity, we
will prove the statement of polynomial decay of inverse of order 1 for matrix decay of
order 2 + δ. The following proof can readily be generalized to show decay of inverse of
order d− 1− δ, δ > 0, given matrix decay of order d for d > 2.

Lemma A.1. We have that

‖Bn‖α ≤ Enx(
1 + ‖B‖

2
)n. (A.1)

where E is a function that, upon fixing δ is only polynomially dependent on ‖B‖2+δ and
1− ‖B‖ while x is dependent only on δ.

Proof. We want to compute the entries of [Bn]jk. We will now define two auxiliary
matrices [B̃]xy = Bxyχ[|x− y| ≤ j−k

n ] and [B̂]xy = j−k
n Bxyχ[|x− y| ≥ j−k

n ].

Notice that we have the following identity

|j − k|[Bn]jk = n

n−1∑
i=0

(B̃)iB̂Bn−i−1. (A.2)

We now use the following interpolation identity which appears in [15].

Lemma A.2. If ‖M‖l2 ≤ ∞ and ‖N‖l2 ≤ ∞, then we have that

|(MB̂N)xy| ≤ ‖M‖l2‖B‖2+δ‖N‖l2 . (A.3)

Proof. Notice that the decay of B̂ is order 1 + δ with coefficient ‖B‖2+δ. Thus we can
say that B̂ exists in lq for q ≥ 1

1+δ . More specifically we have

‖B̂‖ ≤ E‖B‖2+δ (A.4)

where E is a constant that depends on δ.

Also see that |(MB̃N)xy| = | < Mex, B̃Ney > | where ex is the canonical basis of our
matrix space. By Young’s inequality, we can say that

‖B̂Ney‖l2 ≤ E‖B‖2+δ‖Ney‖l2 ≤ E‖B‖2+δ‖N‖l2 . (A.5)

The above equation is the result of Young’s convolution inequality

||f ∗ g||r ≤ ||f ||p||g||q

with 1+r−1 = p−1 +q−1. Here we use r = p = 1
2 and q = 1 with the q norm begin taken on

the B̂ term and the p norm taken on the Ney term. We finally apply the Cauchy-Schwarz
inequality to | < Mex, B̃Ney > | ≤ E‖M‖l2‖B‖2+δ‖N‖l2 .

Applying the above lemma to each term of the form B̃iB̂Bn−i−1, we will be able to say
that [B̃iB̂Bn−i−1]ij ≤ ‖B̃‖i‖B‖2+δ‖B‖n−i−1. Finally, we would like to relate ‖B̃‖ back to
‖B‖. By triangle inequality, this would amount to estimating n

|j−i|‖B̂‖. Notice that we

have that ‖B̂‖ ≤ E‖B‖2+δ.
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Thus, to get that ‖B̂‖ is sufficiently close to ‖B‖, we would need to assume a few

conditions on |i − j|. If we assume that |j − i| > n 2E‖B‖2+δ

1−‖B‖ , then we would know that

‖B̃‖ ≤ ‖B‖+ 1−‖B‖
2 = 1+‖B‖

2 .

Assuming this condition on |j − i|, we find that

[B̃iB̂Bn−i−1]ij ≤ (
1 + ‖B‖

2
)n−1‖B‖2+δ.

Thus, we find that in (A.2) we have a bound of n( 1+‖B‖
2 )n−1‖B‖2+δ In the case that |j − i|

is less than n 2E‖B‖2+δ

1−‖B‖ , we find that we have |j − i|[Bn]ij ≤ n 2E‖B‖2+δ

1−‖B‖ . A trivial bound for

|i− j|[Bn]ij would be a sum of the two quantities that we have derived above.

With the lemma in hand, we are able to say that

‖A‖1 ≤
∞∑
n=1

‖Bn‖1 ≤ E
2x+1

(1− ‖B‖)x+1
. (A.6)

and we are done.

Remark A.3. If we want to show decay of inverse of order d > α > d− 1
2 with coefficient

of decay dependent only polynomially on ‖A‖d and ‖I −B‖, then we would need a better
interpolation result as appears in [15].

The main issue is that we are no longer able to estimate quantities like < Mei|B̃Nej >
in (A.2) using the l2 norms of M and N and instead one must use the lp norms of M and
N for p between 1 and 2.

One must then interpolate the lp norm ofM andN of with the l2 norm and the appropriate
α norm like

‖B‖lp ≤ cp‖B‖
2
p−1

1 ‖B‖2−
2
p

l2 . (A.7)

The bounding of |j − k|α[Bn]jk then becomes a recurrence relation.

‖B‖α ≤C‖B‖α[‖Bn−1‖
2
p−1
α ‖B‖(n−1)(2− 2

p ) (A.8)

+

n−1∑
i=1

(‖Bi‖α‖Bn−i−1‖α)2− 2
p ‖B‖(n−1)(2− 2

p )].

If one would want to prove inductively the bound that ‖Bn‖α ≤ nkRn , then placing this
estimate inside the double product ‖Bi‖‖Bn−i−1‖ and applying the trivial bound that

ik(n − i − 1)k ≤ n2k we would want n2k(2− 2
p ) ≤ nk. One notices now that this is only

possible if we have that 2 − 2
p ≤

1
2 or p ≤ 4

3 . We could only choose p < 4
3 if we choose

α < d− 1
2 .

If one has the comfort that ‖I −A‖ is bounded away from 0, then one can analyze the
recursion at any order α < d but the growth of the alpha norm in the recursion will no
longer be ‖I −A‖ but some parameter r > ‖I −A‖.
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[7] László Erdős, Antti Knowles, Horng Tzer Yau, and Jun Yin, Spectral Statistics of Erdős-
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[9] László Erdős, Torbin Kruger, and Dominik Schroder, Random Matrices with Slow Correlation
Decay, preprint, arXiv:1705.10661v2 (2017).
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