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Abstract

We provide a uniform upper bound on the minimal drift so that the one-per-site frog
model on a d-ary tree is recurrent. To do this, we introduce a subprocess that couples
across trees with different degrees. Finding couplings for frog models on nested
sequences of graphs is known to be difficult. The upper bound comes from combining
the coupling with a new, simpler proof that the frog model on a binary tree is recurrent
when the drift is sufficiently strong. Additionally, we describe a coupling between frog
models on trees for which the degree of the smaller tree divides that of the larger
one. This implies that the critical drift has a limit as d tends to infinity along certain
subsequences.
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1 Introduction

We study the one-per-site frog model with drift on the rooted d-ary tree T. Initially
there is a single awake frog at the root and one sleeping frog at each non-root vertex.
Awake frogs move towards the root with probability p, and otherwise move away from the
root to a uniformly sampled child vertex. Frogs at the root always move to a uniformly
sampled child vertex. Whenever an awake frog visits a site with a sleeping frog, the
sleeping frog wakes up and begins its own independent p-biased random walk. Denote
this process by FM(d, p) and the total number of visits to the root by V(d, p). The process
is recurrent if V(d, p) is infinite almost surely, and is otherwise transient.

There is a history of investigating recurrence for the frog model with drift. It
was first studied by Gantert and Schmidt with i.i.d n frogs per site and a drift in the
ey direction on Z [GS09]. They showed that the process is recurrent if and only if
Elog, n = oo regardless of the drift. Here log, is defined to be 0 at negative values of
log. A follow-up work by Ghosh, Noren, and Roitershtein studied the range of the frog
model in the transient case [GNR17]. Similar observations were made by Rosenberg
when the frog paths are Brownian motions in R [Ros17a] and for inhomogenous drift
on Z [Ros17b]. The question is more subtle and challenging in higher dimensions.
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The frog model on trees with drift

Débler and Pfeifroth showed that the frog model is recurrent on Z¢ for d > 2 so long
as Elogf“)/2 n = oo [DP14]. It was open for some time whether, unlike the d = 1 case,
there is a phase transition as the drift is varied. This was recently answered by Dobler,
Gantert, Hofelsauer, Popov, and Weidner in [DGH*17]. With one sleeping frog at each
site of Z?, they found that recurrence depends on the strength of the drift with notably
different behavior in d = 2 and d > 3. We study here how transience and recurrence of
FM(d, p) depend on the drift.

Trees are a natural setting to study the frog model with drift, because the graph
structure already induces one. Indeed, FM,; = FM(d,1/(d + 1)) is the frog model with
simple random walk paths. Hoffman, Johnson, and Junge proved that FMs is recurrent,
but that FMy is transient for d > 5 [H]J17b]. What happens when d = 3 and d = 4 for the
one-per-site frog model is not currently known. However, follow-up work by Hoffman,
Johnson, and Junge showed that the frog model with unbiased random walks is recurrent
for any d so long as Q(d) sleeping frogs are placed at each site [H]J16, JJ16a, JJ16b]. So,
there is a phase transition as we change the degree of the tree, or the initial density of
asleep frogs.

Since FM, is known to be transient for d > 5, it is natural to ask what is the minimal
drift

pa = inf{p: FM(d, p) is recurrent}

that makes the process recurrent. In general, we know that p; < 1/2, because the
initially awake frog will return to the root infinitely often when p > 1/2. A simple
argument shows that if p < 1/(d + 1) then, even with all frogs initially awake, there
are only finitely many expected visits to the root. This immediately gives the bounds
1/(d+ 1) < pa < 3. The theorem from [H]J17b] that FM, is recurrent can be stated as
p2 < 1/3. This result together with the lower bound imply that p; = %

It is not much more difficult to establish a non-vanishing lower bound on p4. The frog
model is dominated by the branching random walk (BRW) on T, in which particles do
not branch when moving towards the root (with probability p), but split in two when
moving away. This corresponds to FM(co, p). This BRW is a common tool for analyzing
the frog model. By replacing 1/(d+ 1) with p in the calculation at [H]JJ16, Proposition 15]
it follows that the BRW, and thus FM(d, p), is transient for p < ¢* = (2 — v/2)/4 ~ .1464.
Thus, pg > ¢*. Our main contribution is an upper bound.

Theorem 1.1. p; < .4155 for all d > 2.

Proof. This follows from Lemma 2.1 combined with Proposition 1.3 and Proposition 1.4.
O

It is interesting to ask how the frog model relates to the dominating BRW. The extra
drift the frog model needs to be recurrent, p; — ¢*, is one way to measure the difference.
By using a BRW that approximates two steps of the frog model, it is not overly taxing to
show that p; — ¢* > 0 for all d (see [H]J17b, Proposition 19] for an example of a more
refined BRW). Since the dominating BRW corresponds in a sense to d = oo, it is natural
to ask if p; — ¢, and, if so, at what rate? The answer is not obvious, because, as time
elapses, the frog model branches less. The region with less branching may grow quickly.
Hoffman, Johnson, and Junge proved in [H]J17a] that, when the density of frogs is (d?),
the set of activated sites on the d-ary tree contains a linearly expanding ball. Awake frogs
in this region cause no branching. We are not sure if this prevents p; from converging to
q*. In fact, we are not sure whether p; converges at all. This question of convergence is
the second reason we are interested in FM(d, p).

Coupling frog models on different graphs is known to be difficult. Past work by
Fontes, Machado, and Sarkar established that the critical probability for the frog model
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The frog model on trees with drift

with death is not monotonic in the graph [FMS04]. However, Lebensztayn, Machado,
and Popove in [LMPO5] conjectured that monotonicity holds on regular trees. Before our
modest advancement in Proposition 1.2, no coupling had ever been exhibited between
the process on different degree trees. A more robust coupling would be nice, because it
might help understand how the frog model behaves on random trees and help investigate
the convergence of p;. Note that a coupling that projects the location of a frog in Z%+!
into Z% is used by Ramirez and Sidoravicius in [RS04] in their argument that establishes
the set of visited sites satisfies a shape theorem.

It ought to hold that V(d 4+ 1,p) = V(d,p); here ‘=’ denotes stochastic domination.
This is because the drift is the same, but there are significantly more frogs in the higher
degree tree. Despite considerable effort, we were unable to construct a coupling to
this effect. It remains an open problem to prove that p;.+1 < pg, and thus that p; has a
limit. Additionally, there is no obvious coupling so that FM(d, p) visits the root less than
FM(d, p') does when p < p’. Although it would be preposterous, we cannot rule out the
possibility FM(d, p) switches between being transient and recurrent multiple times as
we increase p.

The obvious coupling to try between FM(d,p) and FM(d + 1,p) is to have paired
frogs mimic one anothers’ displacement from the root, but to move to uniformly chosen
vertices when moving away. One can readily find realizations where the frog on Ty
wakes a new frog, while the coupled frog on T;;; does not. This breaks the coupling.
We tried several more sophisticated couplings with no luck. However, a special case in
which a coupling works is for trees in which the degree of the smaller tree divides that
of the larger tree.

Proposition 1.2. V(d,p) < V(kd,p) forall k > 1.

The argument relies on a natural way to map rays from the root in T to embedded k-ary
trees in T}4. It does not appear to generalize to any other degrees. The monotonicity
proved in Proposition 1.2 implies that any subsequence (pg,);2; in which d; divides
d;4+1 for each ¢ converges to some limit. However, it is unclear if the limits of these
subsequences are the same, or equal to ¢*. Furthermore, since p» = 1/3, Proposition 1.2
implies that p; < 1/3 for all even d.

We make more substantial progress coupling across different graphs with a sub-
process of FM(d, p) that we call the recursive frog model RFM(d, p). It is obtained by
trimming and halting the random walk paths of awake frogs. This ensures that RFM(d, p)
visits the root less than FM(d, p). See Section 2 for the formal definition. A related, but
slightly different process known as the self-similar frog model has been a useful tool for
studying recurrence [H]J16, JJ16a, H]JJ18, HJJ17a, Ros17c].

Let p/, = inf{p: RFM(d, p) is recurrent} be the critical drift for the recursive frog
model on Ty. It follows from the dominance relation in Lemma 2.1 that pg < p/,. As
mentioned above, the usual frog model is difficult to couple on two trees of different
degrees. Finding a coupling for the self-similar frog model also appears challenging.
This is because, even with p fixed, the non-backtracking paths used in the self-similar
frog model have different laws on different degree trees. It is both useful for our
main theorem and of independent interest that there is a coupling where RFM(d, p) is
dominated by RFM(d + 1, p). We use this to show that p/, is decreasing.

Proposition 1.3. p);, | <p/, foralld > 2.

The recursive frog model is useful because a coupling is possible across trees of
different degrees. However, the coupling comes at the cost of removing a lot of awake
frogs. Because so many frogs are removed, it is not obvious whether RFM(d, p) is ever
recurrent. Old techniques do not apply easily here. We provide a new, simpler argument
for recurrence for large enough p.
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Proposition 1.4. p}, < .4155.

All previous results that establish recurrence for the frog model on trees rely on
bootstrapping a recursive distributional equation involving V(d,1/(d + 1)). See (3.3)
for the equation. The recursive frog model is intuitively less recurrent than the self-
similar frog model because more frogs are being removed. So, it is not clear that the
bootstrapping approach will work. Fortunately, we find a simpler way to proceed. It
starts with the usual recursive distributional equation, but uses the second moment
method to finish. This is similar to an argument used to prove that the parking process
visits the origin infinitely often [DG]JT17]. To finish we prove a 0-1 law for the recursive
frog model. This is necessary because the recursive frog model is not covered by the
frog model 0-1 laws in [KZ17] and [H]J17b].

2 The recursive frog model and proof of Proposition 1.3

In the recursive frog model RFM(d, p), awake frogs move towards the root at each
step with probability p = p/(1 — p) when p < 1/2, and with probability 1 for p > 1/2. If a
frog reaches the root, it is removed. Once a frog moves away from the root, it moves
to a uniformly sampled child vertex (possibly the vertex from which it just came) and
will thereafter continue to move away from the root to a uniformly sampled child. Frogs
are removed if they move away from the root to an already visited site. The process
starts with the frog at the root taking a uniform step away from its starting location. At
each subsequent step all awake frogs move. If, at one step, several frogs at a vertex
are moving away from the root, we arbitrarily select an order for them to move one at a
time. This way we can decide which ones, if any, to remove. We say that RFM(d, p) is
recurrent if the root is visited infinitely often almost surely.

Lemma 2.1. If RFM(d, p) is recurrent, then so is FM(d, p). Hence, pq < p/;.

Proof. If p > 1/2 then both processes are recurrent. Suppose for the remainder of the
argument that p < 1/2. We couple these two models in the following way. Let f, denote
a frog in FM(d, p) originally placed at vertex v € T, and f/ denote the corresponding
frog in RFM(d, p). Write |v| as the graph distance from v to the root. If it gets woken
up, the frog f, follows an independent p-biased random walk path ~,. We can use 7, to
generate the random walk path v, for f; in RFM(d, p).

Let D, be the smallest graph distance from the root among all the vertices on ~, and
let v* be the first vertex on ~, that is at distance D,. Make the first |v| — D,, steps of (v.)
the path that goes directly from v to v*. For a p-biased random walk started at 0, the
probability of hitting —1 eventually is exactly p = 1, and thus P(D, = k) = plVI=k (1~ p)
for k > 0 and P(D,, = 0) = pl*l. This matches the law of the frog paths in RFM(d, p); in
fact, these are just the probabilities that the vertex closest to the root on v/, is at distance
k from the root. This takes care of the upward steps in v,. Since p < % 7, contains a
unique uniformly random ray from v* to infinity. Have the subsequent steps in v, follow
this ray from v* to infinity. We have now generated paths for frogs in REM(d, p), which
comply with the rules of frog movement, and frogs will follow these paths until they are
removed according to the removal rule of RFM(d, p).

Our construction ensures that v/, C =, for every vertex v. It follows that if a frog
originally placed at v has ever been woken up in RFM(d, p), the corresponding frog in
FM(d, p) would also be woken up (see also [KZ17, Equation (4)] and [H]J17b, Proposition
71). Thus, RFM(d, p) visits the root no more frequently than FM(d, p). O

To deduce Proposition 1.3 we will prove that if RFM(d, p) is recurrent, then so is
RFM(d + 1, p). Hence p};, , < p).
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Proof of Proposition 1.3. We introduce a modified process RFM'(d + 1, p) which is ob-
tained by running RFM(d+1, p) with an additional procedure for removing frogs. Suppose
that a frog f is at a vertex with 0 < i < d child vertices already visited. If f moves away
from the root to a new vertex, then we remove f with probability

(d=1)(d+1)
dd+1—-1i)

Otherwise, f moves to an unvisited child vertex. This ensures that the probability f visits
a new site when moving away from the root at a vertex with ¢ already visited children is
equal to . .
(17%)d+172 _ d—1
d+1 d

Notice this probability is 0 when ¢ = d. This makes it so at most d children of a given
vertex can be woken. Thus, all activity in RFM’(d+1, p) takes place on an embedded copy
of T,. Additionally, frogs move with the same law as in RFM(d, p), since jumps towards
the root occur with probability p, and jumps away from the root are to an unvisited child
vertex with probability (d — ¢)/d (when there are i already visited children). It follows
that RFM'(d + 1, p) restricted to the embedded d-ary tree has the same law as RFM(d, p).
So, if RFM(d, p) is recurrent, then so is REM'(d + 1, p).

It remains to show that recurrence of RFM’(d + 1, p) implies that of RFM(d+1,p). We
will refer to these as F’ and F, respectively and couple them as follows. First, we have
the frog at v in each model use the same upward path ~, towards the root as defined
in the proof of Lemma 2.1. We further couple the two models so that child vertices of
each vertex of I’ are woken in the same order as what occurs in I — this is possible if
at any time and for any vertex v, the number of visits from v to its child vertices in F'is
at least as many as that in F’/, and we will prove this claim by induction. If additional
children of v are visited in F', then they are chosen uniformly. Recall that F” is defined to
occasionally remove frogs that would have visited new child vertices. It follows that

(x) if more frogs attempt to move from vertex v to its child vertices in F’, then there are
more visited child vertices of v in F' than in F'.

Now a little bit of notation. Under this coupling let A} and .A; be the set of vertices
visited in F’ and F up to time ¢. We will show that A} C A; for all ¢ > 0 and use this to
deduce Proposition 1.3. Clearly, A = Ay. Now suppose that for 0 < s < ¢ we have

AL C A (2.1)

Thus at each v € A, the frog at v in F' wakes up before or at the same time as its
counterpart at v in F’ and possibly the frog at v in F’ never is woken up. Note that under
the coupling, the upward paths 7/ are the same in both models. It follows that by the
next time step every vertex in F' has had at least as many visits to it from frogs moving
towards the root as what occurs in F’. We can represent this notationally as

i1 (u) < Uppa(u)  YVue Ty, (2.2)

where U/ (u) are the number of frogs that have moved from a child vertex of u to u up
to time ¢ + 1, and similarly for U1 (u).

Since the frogs started at v are also coupled to turn away from the root at the same
terminal vertex of v* of v/ (see Lemma 2.1), it follows from (2.2) that for all u € T, at
least as many frogs in F have turned away from the root at v by time ¢ + 1 as in F’. That
is

£+1(U) S St+1(u) Yu € Td. (23)
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Here 57, (u) and Syy1(u) are the counts of how many frogs that have reached u by time
t + 1 and u was the vertex at which the frogs turn away from the root (v* = u in the
notation of Lemma 2.1). Note we adopt the convention that S; and S; are both zero at
the root, since all frogs are removed after visiting the root in both processes.

Now consider the total number of frogs that have attempted to move from « to one of
its child vertices by time ¢ + 1. Denote the number by D; () in F’ and by D;11(u) in F.
Note that all visits that have made to v and then attempted to move to one of its child
vertices consist of one visit from the parent of vertex u (to wake up the sleeping frog at
u) and all others from the frogs using u as the terminal vertex of their upward paths.

If u € A4, then necessarily the first visit to u came from a frog that moved from the
parent vertex of u. It follows that

Diyy(u) = H{u e A }(1 + Si,(u))
and similarly for D;;4(u). Using (2.1) and (2.3) and the above formula we have

D1/£+1(u) < Diiq(u) Yu € Ty. (2.4)

It follows from (2.4) and the observation at (x) that every vertex in F' has at least
as many children visited as in F’ at time ¢ + 1, which ensures A}, ; C A;;1 by choosing
child vertices of each vertex to be waken up in the same order. It follows from induction
that this containment holds for all ¢. In particular, (2.2) holds for all ¢ with « taken to be

the root. Hence, recurrence of F’ implies that of F. O

3 Proof of Proposition 1.4

An advantage of RFM(2, p) is that the number of visits to the root satisfies a recursive
distributional equation. See Figure 1 for a visual representation of the following notation.
Let & be the root of Ts. The frog initially awake at the root will move to one of the two
children of the root and then it, or the frog it wakes there, will move down another level.
Call these sites @ and z, respectively. Let y be the sibling vertex of x.

Let V; be the number of visits to the root in RFM(2, p) with frogs placed at all sites
up to distance t from the root and the rest of the sites empty. Similar reasoning as the
inductive argument with 4; in Proposition 1.3, gives that V; < V;;; (in the usual sense
of stochastic dominance), and thus there is a distributional limit V' := V. Let V¥ and
VY be the number of visits to @ from frogs initially in the subtrees rooted at = and y,
respectively. We will further be interested in the event A; that a frog ever enters the
subtree rooted at y.

Although the law for paths in RFM(2, p) is different than in the self-similar frog model
from [H]J17b], it enjoys the same recursive properties. This is because both processes
(RFM(d, p) and the self-similar frog model) have frogs follow non-backtracking paths
and get removed when moving away from the root to already visited sites. The first
observation is that

Ve LV (3.1)

This is because, by definition, a frog enters the subtree rooted at x. The resulting
subprocess in the subtree rooted at @ can then be coupled to a independent version of
RFM(2, p) on a tree with sleeping frogs up to distance ¢t — 1 from the root. Additionally,
since at most one frog will enter the subtree rooted at y, we can use the same reasoning
to write

VYL 1{A)V) (3.2)
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with V/_; an independent copy of V;_; that is also independent of 1{A4,}.
Let Bin(X,p) denote a sum of X independent Bernoulli(p) random variables. We
claim that V;,; satisfies the following analogue of [H]J17b, (2)]:

Vigr = Bin(VﬁH +1,p) + Bin(‘/;?il,p).

The first binomial term in (3.3) counts how many frogs move from z to &. This is
distributed like Bin(V;% ; + 1, p) since each frog that visits & from x will move to & with
probability p, and subsequently be removed. The ‘41’ term comes from the frog initially
sleeping at &. The second binomial term counts how many frogs will move from y to &,
and then to @. The identities at (3.1) and (3.2) then give

Vir1 = Bin(V; + 1, p) + 1{A;} Bin(V/, p). (3.3)

Analyzing the first and second moments of this recursive distributional equation is
sufficient to deduce V' is infinite for p large enough.

Figure 1: V41 is the total number of visits to @ in RFM(d, p) with sleeping frogs placed
up to distance t + 1 from the root. It can be expressed as a binomial thinning of the
number of visits to @. These quantities are i.i.d. and distributed like V;.

Proof of Proposition 1.4. Consider RFM(2, p) and let z; = EV;?/(EV;)?. We will prove
that sup, z; = C' < oo. It follows from the Paley-Zygmund inequality that

P(V, > EV;/2) > (4zy)"* > (4C)""  forallt > 1. (3.4)

We will also show that EV; — oo as t — oo, and the above line implies P(V = oo) > 0.
Taking expectation in (3.3) and using independence between 1{A;,,} and ijrl gives

EVii1 = p(1+ P(Ap1))EVE + p. (3.5)

It is easy to show that P(A;y1) > 1 — Hfzo(l — p*(1 — p)/2). This is because there always
exists a line segment L;,, from & to a vertex at distance ¢ + 1 from the root along which
all the frogs have been woken up. For the frog on this line segment at distance 7 + 1
from the root to visit y, it must take ¢ steps toward the root, then move to y from &. This
occurs with probability p*(1 — p)/2. Since there are t frogs along this line segment, we
obtain the claimed bound on P(A;1) by only considering these frogs guaranteed to be
awake.

A computer can easily verify that p(1 + P(A51)) > 1 for p > .7107. Converting from
p = p/(1 — p) back to p implies that this holds for p > .4155. Using (3.5), for such p we
have ¢ > 0 so that EV;11 > (1 + ¢)EV, + p for t > 50. It follows that EV; diverges as
t — oo. This alone is not enough to conclude that the root is visited infinitely often almost
surely. To establish this, we need to control the second moment.
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Let X; = Bin(V{%, + 1,p) and Y; = Bin(V}¥,,p) so that Vi1 = X; + 1{4;;1}Y; and
thus

‘/til = XtQ + 1{At+1}}/;2 + 21{At+1}XtY—t. (36)
Taking expectations and using independence as well as the bound 1{A;} < 1 we have
EVZ, < EX] + P(Ai1)EY + 2EX,EY;. (3.7)

Using the formula for the second moment of a random sum of i.i.d. Z; = Ber(p) random
variables

N 2
E (Z Zi> =p(1 = p)EN + p?EN?,
=1

we have EX? = p(1—p)E(V;+1)+p?E(V; +1)?, and similarly EY;? = p(1—p)EV;+p*EV2.
Plugging these expressions into (3.7) and gathering smaller order terms yields

EVZ, = 21+ P(Ay1)) EVE + 20 (BVi)? + O(EV;). (3.8)
Squaring (3.5) gives
(EVir)? = (p(1 + P(Ars1) EV:)® + O(EV)). (3.9)
Recall that x;, = EV,?/(EV;)?. Dividing (3.8) by (3.9) gives

1
Tip1 = mxt + O(1).
Since 1+ P(A;41) > 1+ € > 1 for all ¢, the leading coefficient is less than 1. This ensures
that sup, ; = C' < oo which gives (3.4).

There is a quick way to go from P(V = oc0) > 0to P(V = o0) = 1. Recall the definition
of L,y from just below (3.5). We can extend this to obtain a ray L from the root to co
with an awake frog at each site. Let &; be the site at distance ¢ on this ray. The awake
frog at @; moves to the child y; ¢ L beneath it with probability (1 — p)/2. When this
occurs, an independent V-distributed number of frogs will visit @;. If this quantity is
infinite, then @ is visited infinitely often. Since P(V = co) > 0 and there are infinitely
many independent trials along L, we must have V' is infinite almost surely. O

4 Proof of Proposition 1.2

Proof. We impose coordinates on T; by writing a vertex v at distance n from the root
as v = xy---x, with x; € {1,2,...,d}. For 1 < i < d define the set-valued function
G(i) = {k(i — 1)+ 1,...,ki}. Let L, be the line segment that consists of vertices
& = vg,v1,...,V, = v on the shortest path from the root to v. For each L, we define a
subgraph of Tyg4:
Te(Lo) = [ Glar) x -+ x G(y).
1T, €Ly

See Figure 2 for a depiction. If v has distance n from the root, then Ty(L,) is a k-ary
tree of height n. Call vertices {v' € Ty(L,): |[v'| = n} the leaves. The embedding is such
that for v,v" € T; we have

Ty(Lo) N Ty(Ly) = Te(Ly N Ly). (4.1)

We will define a modified version of FM(kd, p) that sometimes removes frogs early.
Awake frogs f’ in the modified version will be coupled to a unique frog f in FM(d, p).
Frogs move according to the random paths in FM(kd, p). The rules for the coupling are
that:
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(i) If f moves towards the root, then f/ moves towards the root.

(ii) Suppose that f isat ;- -z, and f’ is at 2} ---2/. If f moves away from the root to
X1+ TpTpe1, then f/ moves to a uniformly random vertex in z - - -z}, X G(zp41).

(iii) f’ only wakes a frog when f does. Upon doing so these newly awakened frogs (one
from each process) are also coupled. If f' moves to a site with a sleeping frog, but
f does not, then that sleeping frog is removed from the process

We conclude by explaining why the coupling is well-defined and gives the claimed
dominance. These rules ensure that f and f/ have the same displacement from the root
so Rule (ii) always holds. Moreover, Rule (ii) combined with (4.1) ensure that the first
visit to v € T4 corresponds to the first visit to a leaf of Ty (L,). So, when the frog at v
is woken by f, then there will be a sleeping frog at whatever leaf vertex of Ty (L, ) that
/' moves to. It follows that Rule (iii) holds for all steps in the coupling. The resulting
process is a restricted version of FM(kd, p) that visits each distance from the root the
same number of times as in FM(d, p). This gives the claimed result. O

Figure 2: Each segment L, is associated to a k-ary tree in Tj4. The bolded line L1505 C Ty
above corresponds to the binary tree in T4, shown beneath. The color coding represents
the coordinate entries of v.

References

[DGJ™17] Micheal Damron, Janko Gravner, Matthew Junge, Hanbaek Lyu, and David Sivakoff,
Parking on transitive unimodular graphs, arXiv preprint arXiv:1710.10529 (2017).

[DGH'17] Christian Débler, Nina Gantert, Thomas Héfelsauer, Serguei Popov, and Felizitas
Weidner, Recurrence and Transience of Frogs with Drift on Z, available at arXiv:1709.00038,
2017. MR-3858916

[DP14] Christian Dobler and Lorenz Pfeifroth, Recurrence for the frog model with drift on YAl
Electronic Communications in Probability 19 (2014), 1-13. MR-3283610

[FMS04] L. R. Fontes, F. P. Machado, and A. Sarkar, The critical probability for the frog model
is not a monotonic function of the graph, Journal of Applied Probability 41 (2004), no. 1,
292-298. MR-2036292

[GS09] Nina Gantert and Philipp Schmidt, Recurrence for the frog model with drift on Z, Markov
Process. Related Fields 15 (2009), no. 1, 51-58. MR-2509423

[GNR17] Arka Ghosh, Steven Noren, and Alexander Roitershtein, On the range of the transient
frog model on Z, Adv. in Appl. Probab. 49 (2017), no. 2, 327-343. MR-3668379

ECP 24 (2019), paper 26. http://www.imstat.org/ecp/
Page 9/10


http://arXiv.org/abs/1710.10529
http://arXiv.org/abs/1709.00038
http://www.ams.org/mathscinet-getitem?mr=3858916
http://www.ams.org/mathscinet-getitem?mr=3283610
http://www.ams.org/mathscinet-getitem?mr=2036292
http://www.ams.org/mathscinet-getitem?mr=2509423
http://www.ams.org/mathscinet-getitem?mr=3668379
https://doi.org/10.1214/19-ECP235
http://www.imstat.org/ecp/

The frog model on trees with drift

[H]J16] Christopher Hoffman, Tobias Johnson, and Matthew Junge, From transience to recurrence
with Poisson tree frogs, Ann. Appl. Probab. 26 (2016), no. 3, 1620-1635. MR-3513600
[H]JJ17a] Christopher Hoffman, Tobias Johnson, and Matthew Junge, Infection spread for the frog
model on trees, available at arXiv:1710.05884, 2017.

[H]JJ17b] Christopher Hoffman, Tobias Johnson, and Matthew Junge, Recurrence and transience
for the frog model on trees, Ann. Probab. 45 (2017), no. 5, 2826-2854. MR-3706732

[H]J18] Christopher Hoffman, Tobias Johnson, and Matthew Junge, Cover time for the frog model
on trees, available at arXiv:1802.03428, 2018.

[JJ16a] Tobias Johnson and Matthew Junge, The critical density for the frog model is the degree of
the tree, Electron. Commun. Probab. 21 (2016), Paper No. 82, 12. MR-3580451

[JJ16b] Tobias Johnson and Matthew Junge, Stochastic orders and the frog model, to appear in
Annales de I'Institut Henri Poincaré, available at arXiv:1602.04411, 2016. MR-3795075

[KZ17] Elena Kosygina and Martin P. W. Zerner, A zero-one law for recurrence and transience
of frog processes, Probability Theory and Related Fields 168 (2017), no. 1, 317-346. MR-
3651054

[LMPO5] Elcio Lebensztayn, Fabio P Machado, and Serguei Popov, An improved upper bound for
the critical probability of the frog model on homogeneous trees, Journal of statistical physics
119 (2005), no. 1-2, 331-345. MR-2144514

[RS04] Alejandro F. Ramirez and Vladas Sidoravicius, Asymptotic behavior of a stochastic combus-
tion growth process, ]J. Eur. Math. Soc. (JEMS) 6 (2004), no. 3, 293-334. MR-2060478

[Ros17a] Josh Rosenberg, The frog model with drift on R, Electron. Commun. Probab. 22 (2017),
Paper No. 30, 14. MR-3663101

[Ros17b] Josh Rosenberg, The nonhomogeneous frog model on Z, Journal of Applied Probability
55 (2017). MR-3899930

[Ros17c] Josh Rosenberg, Recurrence of the frog model on the 3,2-alternating tree, Latin American
Journal of Probability and Mathematical Statistics 15 (2017). MR-3840739

Acknowledgments. We thank Mina Ossiander for raising this question at the Oregon
State University Probability Seminar. Yufeng Jiang was partially supported by the Duke
Opportunities in Math program at Duke University. We greatly appreciate the comments
and suggestions from the anonymous referees.

ECP 24 (2019), paper 26. http://www.imstat.org/ecp/
Page 10/10


http://www.ams.org/mathscinet-getitem?mr=3513600
http://arXiv.org/abs/1710.05884
http://www.ams.org/mathscinet-getitem?mr=3706732
http://arXiv.org/abs/1802.03428
http://www.ams.org/mathscinet-getitem?mr=3580451
http://arXiv.org/abs/1602.04411
http://www.ams.org/mathscinet-getitem?mr=3795075
http://www.ams.org/mathscinet-getitem?mr=3651054
http://www.ams.org/mathscinet-getitem?mr=3651054
http://www.ams.org/mathscinet-getitem?mr=2144514
http://www.ams.org/mathscinet-getitem?mr=2060478
http://www.ams.org/mathscinet-getitem?mr=3663101
http://www.ams.org/mathscinet-getitem?mr=3899930
http://www.ams.org/mathscinet-getitem?mr=3840739
https://doi.org/10.1214/19-ECP235
http://www.imstat.org/ecp/

	Introduction
	The recursive frog model and proof of Proposition 1.3
	Proof of Proposition 1.4
	Proof of Proposition 1.2
	References

