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1 Introduction

Loops and related measures are useful tools in the analysis of random walks. They
have come under study in [9] as a discrete analogue of the Brownian loop soup introduced
in [10], which itself was motivated by the study of the Schramm-Loewner evolution [8].
Loop measures were explored by Le Jan in a continuous setting [4], where he established
a connection (isomorphism) between the Gaussian free field and the occupation field
of a Poissonian ensemble of Markov loops. Le Jan’s isomorphism can be viewed as
an extension of the Dynkin’s isomorphism theorem [1]. Le Jan also extended this
isomorphism to relate certain non-symmetric Markov processes and complex Gaussian
fields in [3].

In [7] and [5] the authors proved a version of the isomorphism theorem using the
discrete time loop soup without introducing a Markov chain to analyze loop measures.
They observed that a random walk on a finite graph can be fully described by a sub-
stochastic transition matrix Q. Any event is essentially a union of chain trajectories, and
its probability is additive on sets of trajectories. Even if Q takes complex values, we can
still build objects with probabilistic analogues, such as loop soups, by putting potentially
complex weights on paths.

The complex Gaussian free field is introduced in [7] as a pair of real Gaussian free
fields with potentially negative correlations between fields and within each field. A
version of the isomorphism theorem is formulated and proved there by comparing the
Laplace transforms of a complex Gaussian field squared and a continuous occupation
field of a complex loop soup. There is a combinatorial proof of the isomorphism in [5],
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Weighted graphs and complex Gaussian free fields

which is discussed under the assumption that weights correspond to a certain probability
space.

This note continues the work of [7] and [5]. We extend some of the results of [7] to a
wider range of weights and adapt the arguments from [5] to the complex setting. We
derive the exact distribution on directed currents, induced by the random walk loop soup
at intensity 1 (Proposition 3.3), and we also prove the isomorphism theorem (Theorem
3.2), which connects the continuous occupation field of the loop soup and the absolute
value of a complex Gaussian free field squared. The theorem that we prove is a special
case of the Theorem 7.6 of [2], but our approach is combinatorial in nature and does not
involve the calculation of Laplace transforms. The isomorphism theorems from [7] and
[5] are special cases of Theorem 3.2.

This note is structured as follows. We introduce the setup and basic notations in
section 2. In section 3 we state the main results. The proofs are postponed till section 4.

2 Basic definitions

Consider a finite complete digraph (V,E) with N = |V | vertices. We pick any order
on the set of vertices: V = (vj)

N
j=1 = (v1, v2, . . . , vN ). (We use (·), [·] and {·} to denote

sequences, matrices and unordered sets, respectively.) Directed edges E ∼= V × V are
identified with ordered pairs of vertices; note that we allow self-edges.

Fix U ⊆ V . A path ω of length |ω| = k in U is a sequence of k + 1 vertices in U :

ω = (ω0, ω1, . . . , ωk) = (ωj)kj=0, {ωj}kj=0 ⊆ U.

If {x, y} ⊆ U , we let PU (x, y) denote the set of paths in U starting at x and ending at y.
Paths PU (x) := PU (x, x) are called loops rooted at x in U . We call paths of zero length
trivial loops. We use P to denote all paths ∪x,y∈V PV (x, y).

Suppose that Q = [Qxy]x,y∈V is a weight on edges, that is, any complex-valued
function on E. We assume that edge weights are integrable, that is, ρ(|Q|) < 1, where
ρ denotes the spectral radius operator, and |Q| :=

[
|Qxy|

]
x,y∈V . We associate Q with a

function q : P 7→ C as follows:

q(ω) :=

|ω|∏
j=1

Qωj−1ωj for |ω| ≥ 1, q(ω) = 1 for trivial loops ω; ω ∈ P.

Note that q is a (complex) measure on P, because Q is integrable.
We define the vertex local time n(ω) =

(
nx(ω)

)
x∈V and the (directed) edge local time

c(ω) = [cxy(ω)]x,y∈V as integer-valued functions on paths ω ∈ P, where

nx(ω) :=

|ω|∑
j=1

1{ωj = x} and cxy(ω) :=

|ω|∑
j=1

1{ωj−1 = x, ωj = y}.

We call C = [Cxy]x,y∈V with entries in N = {0, 1, 2, . . .} a (directed) current, if∑
x∈V

Cxy =
∑
x∈V

Cyx, ∀y ∈ V.

If U ⊆ V , we use CU to denote the set of currents restricted to U , that is, such that
Cxy = 0 if either x or y is in V \ U . If ω is a rooted loop, then c(ω) ∈ CV and

nx(ω) =
1

2

∑
y∈V

[
cxy(ω) + cyx(ω)

]
, ∀x ∈ V. (2.1)
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Weighted graphs and complex Gaussian free fields

We extend the definition of q to CV . Let q(C) = q(ω), where ω ∈ P is any loop with

c(ω) = C ∈ CV . Equivalently, we can set q(C) =
∏
x,y∈V Q

Cxy
xy .

An (oriented) unrooted loop is an equivalence class of rooted nontrivial loops under
cyclic permutations:

(ω0, ω1, . . . , ωk = ω0) ∼ (ω1, . . . ωk−1, ω0, ω1) ∼ · · · ∼ (ωk−1, ω0, ω1, . . . , ωk−1).

The set of unrooted loops is denoted by L. If a rooted loop ω represents a class l ∈ L, we
will write ω ∈ l. We extend the definitions of q, n and c from P to L by taking any rooted
representative:

q(l) := q(ω), n(l) := n(ω), c(l) := c(ω), if ω ∈ l; ∀l ∈ L.

If X is any countable set, we let NXfin stand for finite multisets of elements from X ,
that is, the set of functions from X to N, which are supported on a finite set. Local times
n and currents c can be viewed as functions on NLfin:

n(s) :=
∑
l∈L

n(l) sl, c(s) :=
∑
l∈L

c(l) sl; s ∈ NLfin.

3 Main results

In this section we define the loop soup occupation field, the complex Gaussian free
field, state our isomorphism theorem and introduce some constructions that help to
prove it. Since some of the constructions might seem ad hoc, we also discuss how
the presented definitions and statements work in a more familiar setting, when Q is
nonnegative and serves as a transition matrix of a certain submarkovian chain.

3.1 Loop soup, Gaussian field and the isomorphism

Suppose that Q is integrable. We define the unrooted loop measure m as

m(l) :=
∑
ω∈l

q(ω)

|ω|
=
q(l)

d(l)
, (3.1)

where d(l) is the largest integer d such that every ω ∈ l is a concatenation of d identical
rooted loops. Let the (random walk) loop soup (at intensity 1) be the following measure
on finite multisets of unrooted loops

νm{s} :=
∏
l∈L

e−m(l)m(l)sl

sl!
= e−m(L)

∏
l∈L

m(l)sl

sl!
, ∀s ∈ NLfin. (3.2)

Remark 3.1. Note that e−m(L) = det(I −Q); e.g., see Lemma 3.1 in [7].

We define the (continuous) occupation field νn as a measure with the following density
with respect to Lebesgue measure on RN+ = (0,∞)N ,

dνn :=
∑

s∈NLfin

[
νm{s}

∏
x∈V

r
nx(s)
x e−rx drx

nx(s)!

]
, r ∈ RN+ . (3.3)

Now suppose that Q is Hermitian and ρ(Q) < 1, which holds for integrable Q. We
associate it with a Green’s function G := (I−Q)−1 (which is a positive definite Hermitian
matrix) and a (discrete centered) complex Gaussian free field Φ = (Φx)x∈V on V . The
latter is a circularly-symmetric complex normal distribution with covariance G, that is, a
random complex vector in CN with density

fΦ(z) :=
exp
{
−〈z,G−1z〉

}
πN detG

, z ∈ CN (3.4)
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with respect to the Lebesgue measure on CN ; here 〈·, ·〉 denotes the dot product.
We can decompose the Green’s function into real and imaginary parts: G = GR+ iGI .

Since G is Hermitian, GR is symmetric and GI is antisymmetric. The field Φ can be
viewed as a pair of identically distributed, correlated distributions on RN . Indeed, let

(ΦR,ΦI) := (ΦRx )x∈V ⊕ (ΦIx)x∈V ∼ N
(
0,

[
GR −GI

GI GR

])
, (3.5)

where ⊕ concatenates sequences. We have the following decomposition then (see, for
example, Proposition 4.5 in [7]):

Φ
law
= (ΦR + iΦI)/

√
2, (3.6)

that is, the probability distributions of these complex random vectors are the same.
Thanks to the remark at the end of Section 4 in [7], we expect the occupation field at

intensity 1 to have the same density with respect to Lebesgue measure on RN+ as the
square of the absolute value of a complex Gaussian free field squared. The following
generalizes the isomorphism theorems as stated in [7] and [5].

Theorem 3.2 (Isomorphism). If Q is integrable and Hermitian, then the associated
occupation field νn is a probability distribution, identical to that of |Φ|2 := (Φ̄xΦx)x∈V ,
where Φ is the complex Gaussian free field associated with Q.

We can interpret this differently in view of (3.6). If ΦR and ΦI are two correlated
Gaussian fields as in (3.5), then νn has the same distribution as (|ΦR|2 + |ΦI |2)/2.

3.2 Distribution on currents and the bubble soup

According to (2.1), the vertex local time induced by a loop soup is determined by the
currents induced by this loop soup. We define the (directed) current field νc on CV as a
pushforward of νm under c:

νc{C} :=
∑

s∈NLfin:c(s)=C

νm{s}, C ∈ CV .

It turns out, we can write an explicit formula for νc.

Proposition 3.3 (Current distribution). For any C ∈ CV and Q ∈ CN×N ,

νc{C} = det(I −Q) q(C)
∏
x∈V

(
nx(C)

{Cxy}y∈V

)
. (3.7)

The proof of this fact is combinatorial in nature and revolves around the identity
(4.7), which can be viewed as a useful result on its own. Thanks to this result, we can
rewrite the density of the occupation field from (3.3):

dνn =
∑

C∈CV

[
νc{C}

∏
x∈V

r
nx(C)
x e−rxdrx
nx(C)!

]

= det(I −Q)
∑

C∈CV

[
q(C)

∏
x∈V

r
nx(C)
x e−rxdrx∏

y∈V Cxy!

]
, r ∈ RN+ . (3.8)

To prove Proposition 3.3, we introduce a certain auxiliary measure which induces
the same measure on currents as the loop soup. We let Vk := (vj)

N
j=k for k ∈ [N ] :=

{1, 2, . . . , N} (in particular, V1 = V ) and define the bubble soup νb as a measure on
N -tuples of loops, which we refer to as bubbles (for a given order on V ):

νb{ω} := det(I −Q)

N∏
j=1

q(ωj), ω = (ωj)
N
j=1, where ωj ∈ PVj

(vj) ∀j ∈ [N ]. (3.9)
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We let ν̃c denote the pushforward of νb under c:

ν̃c{C} =
∑
ω→C

νb{ω}, C ∈ CV ,

where the sum is over all bubbles ω = (ωj)
N
j=1 such that

∑N
j=1 c(ωj) = C.

Lemma 3.4 (Bubble representation). For any ordering of V and any C ∈ CV , we have
ν̃c{C} = νc{C}.

This follows immediately from the Proposition 5.8 of [5], when Q is a strictly sub-
stochastic matrix. A similar result was established for intensity one and positive weights
combinatorially in the Proposition 9.4.1 of [6]. Unfortunately, there was a misstatement
in Exercise 9.1, which was part of the proof, which is why we redo that part of the proof
here.

3.3 Probability setting

We now turn our attention to a special class of edge weights with a natural proba-
bilistic interpretation. Suppose that

Q ∈ RN×N+ is a symmetric matrix such that ρ(Q) < 1. (3.10)

We construct discrete-time Markov chain (Xj)j≥0 on a state space V ∪ {0}:

Px{X1 = y} := Qxy, Px{X1 = 0} := 1−
∑
y∈V

Qxy, P0{X1 = 0} := 1,

where x, y ∈ V , and Px is the distribution of the chain started at x. Here state 0 can be
interpreted as a sink: once the chain reaches 0, it stays at 0 forever. The probability that
the trajectory of the chain starts with ω ∈ P is equal to q(ω).

The assumption (3.10) implies that (Xj)j≥0 is a symmetric Markov chain and, if τ is
the lifespan of the chain, that is, τ := min{j ≥ 0 : Xj = 0}, then Px{τ <∞} = 1 for any
x ∈ V . We can define the Green’s function of the chain (Xj)j≥0 and see that it coincides
with the definition from subsection 3.1:

G(x, y) =
∑
j≥0

Px{Xj = y; τ > j} =
∑

ω∈P(x,y)

q(ω) =

∑
j≥0

Qj


x,y

=
[
(I −Q)−1

]
x,y

.

The loop soup νm from (3.2) is in fact a collection of countably many independent Poisson
random variables, where the variable with index l ∈ L has mean m(l). If we sample
a finite multiset of loops from νm and count how often it visits each vertex, we get
a random integer-valued vector N = (Nx)x∈V . Finally, we replace Nx with a gamma
random variable with rate 1 and mean Nx + 1 independently at each vertex x ∈ V to get
the occupation field νn defined in (3.3).

Note that νn is the same probability measure as the occupation field of the Markovian
loop soup introduced in [4] for a continuous-time Markov chain. We introduce a standard
exponential random variable to each vertex (in addition to the ones that come with visits
from the loop soup) to account for the trivial loops that are present in Le Jan’s setup, but
are not present in ours.

If ΦR and ΦI are the real fields defined in (3.5), then for real edge weights the
Green’s function has no imaginary part, and ΦR and ΦI are two independent identically
distributed fields with covariance G. In this case Theorem 3.2 implies that (ΦR)2/2 has
the same distribution as the occupation field at intensity 1/2, even if G has negative
entries. In this setting the result of Theorem 3.2 is equivalent to Le Jan’s isomorphism
(e.g., see Theorem 2 in [4]).
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4 Proofs

4.1 Proof of Lemma 3.4

The goal is to prove that

∑
ω→C

 N∏
j=1

q(ωj)

 =
∑

s∈NLfin:c(s)=C

[∏
l∈L

m(l)sl

sl!

]
, (4.1)

where the first sum is over all such bubbles ω = (ωj)
N
j=1, that ωj ∈ PVj

(vj) for j ∈ [N ],

and
∑N
j=1 c(ωj) = C.

We let Lj be the set of unrooted loops that go through vj and stay in Vj for every
j ∈ [N ]. Since L = tNj=1Lj , any multiset s ∈ NLfin can be uniquely decomposed into a sum

of multisets {sj}Nj=1, where sj ∈ NLj

fin for each j ∈ [N ]. Using (3.1), we rewrite (4.1) as

∑
ω→C

 N∏
j=1

q(ωj)

 =
∑

s∈NLfin:c(s)=C

 N∏
j=1

∏
l∈Lj

q(l)sl

sl! d(l)sl

 . (4.2)

The terms involving q can be factored out as q(C) on both sides, so either q(C) = 0 and
(4.2) holds trivially, or all the terms involving q can be removed from the expression.

In the second case we fix j ∈ [N ], let x = vj , L = Lj and P = PVj
(vj) for brevity. We

take any s ∈ NLfin and order the unrooted loops in it arbitrarily. For each unordered loop,
we choose a representative loop in P uniformly at random from all the possibilities. We
then concatenate all the rooted loops in the order they were produced into a rooted loop
ω. If o is the combination of ordering and choice of rooted loops, then we define ψ(s,o)

to be the resulting loop ω ∈ P . Let O(s) denote the set of all the possible choices o for
the multiset s. According to this definition,

|O(s)| = Ss!∏
l∈L sl!

∏
l∈L

(
nx(l)

d(l)

)sl
= Ss!

∏
l∈L

nx(l)sl

sl! d(l)sl
, (4.3)

where Ss =
∑
l∈L sl. We now see from (4.2) and (4.3), that it is sufficient to prove that

for any ω ∈ P with n0 := nx(ω) ≥ 1,

1 =
∑

(s,o)→ω

1

Ss!
∏
l∈L nx(l)sl

, (4.4)

where the sum is over all pairs (s,o) with o ∈ O(s) and ψ(s,o) = ω.

There is a natural bijection between ψ and finite sequences of positive integers
(nj)

k
j=1 with

∑k
j=1 nj = n0, which we call seq(k, n0). Now (4.4) can be rewritten as

follows:

1 =

∞∑
k=1

∑
seq(k,n0)

1

k!
∏k
j=1 nj

. (4.5)

To see that the goal expression (4.5) holds, note that for all c ∈ (−1, 1),

∞∑
j=0

cj = (1− c)−1 = exp{− log(1− c)} = exp


∞∑
j=1

cj

j

 =

∞∑
k=1

 1

k!

( ∞∑
j=1

cj

j

)k .
By comparing the coefficients in front of cn0 on both sides, we finally establish (4.5).
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4.2 Proof of Proposition 3.3

First note, that if q(C) = 0, then there must be x, y ∈ V such that Cxy 6= 0 and
Qxy = 0, but then the loop soup measure of loops that induce C is also zero. For the rest
of the proof we assume that q(C) 6= 0. In view of Lemma 3.4, the goal is then to prove
the following combinatorial identity:∣∣{bubbles ω such that c(ω) = C}

∣∣ =
∏
x∈V

(
nx(C)

{Cxy}y∈V

)
. (4.6)

We prove (4.6) by induction on the number of vertices N = |V |. If V = {x} is a singleton,
then nx(C) = Cxx and (4.6) holds trivially.

Now suppose that we have N ≥ 2 vertices. Note that if c(ω) = C for some bubble
ω = (ωj)

N
j=1, then C = C0 +C+ with C0 =

∑N
j=2 c(ωj) ∈ CV2

and C+ = c(ω1). We define

L(C) :=
{
ω ∈ PV (v1) : c(ω) = C

}
, P (C) :=

{
(C+,C0) : C0 ∈ CV2

, C0 +C+ = C
}
.

To pick a bubble ω that induces C, we can first choose ω1 ∈ L(C) so that C0 :=

C−c(ω1) ∈ CV2
, and then choose ωj ∈ PVj

(vj) for j ∈ {2, . . . , N} so that
∑N
j=2 c(ωj) = C0.

The induction assumption is that the number of ways to do the latter for a fixed C0 is
given by (4.6) with V replaced by V2, so what we really want to prove is the following:

∏
x∈V

(
nx(C)

{Cxy}y∈V

)
=

∑
(C+,C0)∈P (C)

[∣∣L(C+)
∣∣ ∏
x∈V2

(
nx(C0)

{C0
xy}y∈V2

)]
, C ∈ CV . (4.7)

For every x ∈ V , we let Nx = nx(C), and define Ax(C) as the set of Nx-tuples
ax = (ax1 , . . . , a

x
Nx

) in V Nx that contain Cxy elements y for every y ∈ V . Let A(C) :=(
Ax(C)

)
x∈V be the collection of such sequences.

Note that the left-hand side of (4.7) is equal to |A(C)| =
∏
x∈V |Ax(C)|. To show that

we have the same quantity on the right-hand side of (4.7), let

A′(C) :=
⋃

(C+,C0)∈PC

[
L(C+)×A(C0)

]
,

and note that it suffices to give a bijection between A(C) and A′(C) to finish the proof.
Suppose (ax)x∈V ∈ A(C) are given. To map A(C) to A′(C), we define ω ∈ PV (v1) by

means of an algorithm.
• Set ω = (x). If Nx = 0, stop and output the trivial loop.

• Otherwise, let ω = (x, ax1), remove ax1 from ax and reset Nx → Nx − 1.
For j = 1, 2, . . ., we do the following.

• If ωj = x and Nx = 0, stop and output ω = (ω0, . . . , ωj) and (ay)y∈V2
.

• Otherwise, if ωj = y 6= x, let ωj+1 equal ay1, remove ay1 from ay, and reset Ny →
Ny − 1.

The correctness of the algorithm follows from the current property of C ∈ CV : we cannot
encounter a situation where ωj = y 6= x and Ny = 0, because it would imply that

∑
z∈V

Cyz = |ay| <
∑
z∈V

|az|∑
k=1

1{y = azk} =
∑
z∈V

Czy.

Once the algorithm terminates, we have ω ∈ L(C+) for C+ = c(ω), also C0 := C −C+ ∈
CV2 and (ax)x∈V ∈ A(C0).

There is a natural inverse mapping from A′(C) to A(C), because this algorithm can
be run in reverse. Instead of “reading” a loop ω ∈ L(C+) from a tuple (ax)x∈V , we can
“record” it, and then concatenate resulting tuple it with an element of A(C0).
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4.3 Proof of Theorem 3.2

To avoid cumbersome notation, we identify vertices with integers: V = (1, 2, . . . , N).
We take the density from (3.4) and switch to “polar” coordinates z = z(r,θ) by letting
zj =

√
rje

iθj for j ∈ [N ]. We then calculate the Jacobian:

z = x+ iy with x,y ∈ RN ⇒ det

[
∂(x,y)

∂(r,θ)

]
=

N∏
j=1

det

[ cos θj
2
√
rj
−√rj sin θj

sin θj
2
√
rj

√
rj cos θj

]
= 2−N .

To get the marginal density f|Φ|2(r) for r ∈ RN+ , we apply the change of variables to fΦ(z)

and integrate it over θ ∈ T := [0, 2π)N :

f|Φ|2(r) = g(r)

∫
T

dθ exp


N∑

j,k=1

√
rjrkQjk e

i(θk−θj)

 , (4.8)

where

g(r) := exp

−
N∑
j=1

rj

 det(I −Q)

(2π)N
, r ∈ RN+ .

Next we find the density of the occupation field using its current representation (3.8).
Suppose that we have a matrix C ∈ NN×N . Then

C ∈ CV ⇐⇒
N∑
j=1

(Cjk − Ckj) = 0 ∀k ∈ [N ].

Since the right-hand side is always an integer for C ∈ NN×N , we see that

1{C ∈ CV } =

N∏
j=1

∫ 2π

0

dθj
2π

exp

{
iθj

N∑
k=1

(Ckj − Cjk)

}

=

∫
T

dθ

(2π)N

 N∏
j,k=1

eiCjk(θk−θj)

 (4.9)

We rewrite the density of νn using (2.1) and (3.8):

dνn
dr

= g(r) (2π)N
∑

C∈CV

 N∏
j,k=1

(rjrk)Cjk/2Q
Cjk

jk

Cjk!

 .
ECP 24 (2019), paper 38.

Page 8/9
http://www.imstat.org/ecp/

https://doi.org/10.1214/19-ECP225
http://www.imstat.org/ecp/


Weighted graphs and complex Gaussian free fields

To see that this density is equal to (4.8) and finish the proof, we use (4.9):

(2π)N
∑

C∈CV

 N∏
j,k=1

(rjrk)Cjk/2Q
Cjk

jk

Cjk!


=

∑
C∈NN×N

∫
T

dθ

 N∏
l,m=1

eiClm(θm−θl)

  N∏
j,k=1

(
√
rjrkQjk)Cjk

Cjk!


=

∫
T

dθ
∑

C∈NN×N

 N∏
l,m=1

eiClm(θm−θl)

  N∏
j,k=1

(
√
rjrkQjk)Cjk

Cjk!


=

∫
T

dθ

 N∏
j,k=1

∑
Cjk≥0

(√
rjrkQjk exp{i(θk − θj)}

)Cjk

Cjk!


=

∫
T

dθ

 N∏
j,k=1

exp
{√

rjrkQjk e
i(θk−θj)

} .
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