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Calibrating Expert Assessments Using
Hierarchical Gaussian Process Models

Tommi Perälä∗, Jarno Vanhatalo†, and Anna Chrysafi‡

Abstract. Expert assessments are routinely used to inform management and
other decision making. However, often these assessments contain considerable bi-
ases and uncertainties for which reason they should be calibrated if possible. More-
over, coherently combining multiple expert assessments into one estimate poses a
long-standing problem in statistics since modeling expert knowledge is often dif-
ficult. Here, we present a hierarchical Bayesian model for expert calibration in a
task of estimating a continuous univariate parameter. The model allows experts’
biases to vary as a function of the true value of the parameter and according
to the expert’s background. We follow the fully Bayesian approach (the so-called
supra-Bayesian approach) and model experts’ bias functions explicitly using hi-
erarchical Gaussian processes. We show how to use calibration data to infer the
experts’ observation models with the use of bias functions and to calculate the
bias corrected posterior distributions for an unknown system parameter of inter-
est. We demonstrate and test our model and methods with simulated data and a
real case study on data-limited fisheries stock assessment. The case study results
show that experts’ biases vary with respect to the true system parameter value and
that the calibration of the expert assessments improves the inference compared
to using uncalibrated expert assessments or a vague uniform guess. Moreover, the
bias functions in the real case study show important differences between the reli-
ability of alternative experts. The model and methods presented here can be also
straightforwardly applied to other applications than our case study.

Keywords: expert elicitation, bias correction, Gaussian process, Supra Bayes,
fisheries science, environmental management.

MSC2020 subject classifications: Primary 62F15, 62P12; secondary 60G15.

1 Introduction

Expert elicitation is an important part of statistical analyses in various fields of research
and decision making (O’Hagan et al., 2006; Dias et al., 2018; Albert et al., 2012). In
a typical situation where expert knowledge is used, data are lacking or the time and
resources to collect the data are limited (Burgman et al., 2011; Morgan, 2014) and
thus, the available information is insufficient to make meaningful inference about the
phenomenon of interest (Burgman, 2005; Roman et al., 2008; Zickfeld et al., 2010;
Wilson et al., 2018). Expert opinions can be valuable, for example, within the context
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tommi.a.perala@jyu.fi

†Department of Mathematics and Statistics and Organismal and Evolutionary Biology Research
Program, University of Helsinki, Finland, jarno.vanhatalo@helsinki.fi

‡Water & Development Research Group, Aalto University, Finland, anna.chrysafi@aalto.fi

c© 2020 International Society for Bayesian Analysis https://doi.org/10.1214/19-BA1180

https://bayesian.org/resources/bayesian-analysis/
https://mathscinet.ams.org/mathscinet/msc/msc2020.html
mailto:tommi.a.perala@jyu.fi
mailto:jarno.vanhatalo@helsinki.fi
mailto:anna.chrysafi@aalto.fi
https://doi.org/10.1214/19-BA1180


1252 Expert Calibration

of Bayesian inference (Garthwaite et al., 2005; Uusitalo et al., 2005; Low-Choy et al.,
2009) or in decision and risk analysis (Usher and Strachan, 2013; Landquiste et al.,
2017; Nevalainen et al., 2018) as a means for specifying informative prior distributions
for unknown parameters. Although expert knowledge is often a valuable, and sometimes
even the only available source of information, its successful utilization in decision making
immediately raises at least two practical questions. The first question is related to
the optimal design of the expert elicitation process itself. What kind of a procedure
would best utilize the expertise and capture the possibly informal knowledge of the
expert? The second question concerns the proper usage of the assessments in statistical
decision making. How the assessments of multiple experts should be utilized in statistical
inference and decision making so that the uncertainties and possible systematic errors
or biases in the assessments are properly accounted for (Tversky and Kahneman, 1974;
Lindley et al., 1979; O’Hagan et al., 2006; Burgman et al., 2011; Dias et al., 2018)? Even
though these issues are intertwined, here we focus on the latter paying special attention
to considering the biases, or in other words, to the calibration of experts’ assessments.

More specifically, we want to infer an unknown system parameter using experts’
assessments of it in a setting where the experts’ assessments may be contaminated
by systematic errors or biases. We call this assessed parameter a system parameter to
help distinguish it from the other parameters in our model. We assume that instead of
being constant, the biases in the expert assessments may vary depending on the true
value of the system parameter. We also assume that we have access to calibration data
containing the experts’ previous assessments of system parameters whose true value is
known. We build a formal statistical model which utilizes this information about the
experts’ past performance to learn about the experts’ biases, and, more importantly, to
correct for them in their future assessments in similar situations. In order to establish
the utility of our work, to elucidate the applicability of the proposed method, and to
further clarify our approach, we next discuss some potential example applications for
it.

In ecology, plant coverage data is commonly used, for example, in species distribu-
tion models. The plant coverage data is often expressed as a percentage describing the
fraction of a survey plot the plant inhabits. Typically, these data are based on expert as-
sessments where an expert (researcher working on the field) visually estimates the plant
coverage of the survey plot. In practice, the accuracy of the expert’s assessment varies
depending on the true coverage since assessing very small or large percentage coverages
is (relatively) harder than assessing intermediate values. In environmental management
applications, expert assessment is used to estimate, for example, the vulnerability of a
species to contaminants such as oil (Nevalainen et al., 2018). The assessment, and thus
its accuracy and value in decision making, may depend on the true value of the vulner-
ability parameter because of the experts’ (unconsciously) precautionary attitude, which
encourages the experts to overestimate the vulnerability. Moreover, in general, experts
tend to underestimate probabilities (Lindley and Singpurwalla, 1986). Often the word
expert is also used to refer to a (deterministic) computer model. In their seminal work
(Kennedy and O’Hagan, 2001) modelled the bias of a computer model as a function
of covariates (computer model inputs). However, these covariates may not be available,
or the computer model can be biased within certain output range regardless of the co-
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variates. For example, due to numerical approximations, environmental simulators may
overestimate concentrations near zero. The case study for this work is motivated by the
dire need for improved methods for data-limited fisheries stock assessment. Here, the
unknown system parameter is stock status, which is defined as the ratio of the current
and virgin biomasses of a fish stock (Section 2 and Chrysafi et al., 2019). We use cali-
bration data and fisheries expert assessments to infer the stock status for a set of fish
stocks. In all these examples we could, at least in principle, collect calibration data to
enable learning of the experts’ biases. For example, in the plant coverage estimation, the
calibration data would be easy to collect as a small number of plots could be accurately
measured and the measurements compared with the experts’ assessments. The potential
biases could then be accounted and corrected for when using the experts’ assessments
in plant coverage estimation in the future.

Tversky and Kahneman (1974) demonstrated that experts (or humans in general)
are sensitive to a host of psychological idiosyncrasies and subjective biases. There are
four main heuristics that experts unconsciously use when making their assessments. The
first one is called representativeness, and it often occurs when assessing the probability
of events such as “A belongs to B” or “C originates from D”. The second one is called
availability, and it occurs when the expert (“she” hereafter) assesses the probability of
an event by trying to recall the number of past occurrences of that event. The third
one is called adjustment and anchoring, and it affects the expert assessments when the
expert starts from an initial value (the anchor) and then makes incremental adjustments
to it in order to arrive at her final assessment. Incremental adjustments around the
anchor are typically inefficient (Tversky and Kahneman, 1974). The fourth heuristic is
called overconfidence (Kynn, 2008; Speris-Bridge et al., 2010), which means the expert
systematically overestimates the accuracy of or underestimates the uncertainty in her
assessment. These heuristics can lead to very narrow and biased probability distributions
(Griffiths et al., 2007; Kuhnert et al., 2009, 2010). If the biases are systematic, they can
be inferred from calibration data, and corrected for; that is, the experts can be calibrated
(Lindley, 1982, 1983; Burgman et al., 2011; Morgan, 2014; Hartley and French, 2018).

Methods for expert elicitation have been extensively studied, and comprehensive
reviews and detailed treatments of the subject are provided by O’Hagan et al. (2006)
and Dias et al. (2018). Here, we assume that during the elicitation process, each ex-
pert’s knowledge has been formulated as a probability distribution. There are two main
approaches for conducting statistical inference using expert assessments: a) the fully
Bayesian approach (also called “supra-Bayesian”) (French, 1980) and b) opinion pool-
ing. In the former approach, expert assessments are used as “observations” to update the
analyst’s beliefs about the phenomena under study using the Bayes’ theorem (Morris,
1974; Lindley and Singpurwalla, 1986; Gelfand et al., 1995; French, 2011; Albert et al.,
2012; Hartley and French, 2018). The information provided by the experts is linked to
the unknown system parameters through a conditional probability distribution (like-
lihood function). However, it can be challenging to formulate the likelihood function
(Genest and Schervish, 1985; O’Hagan et al., 2006), which is probably why the latter
approach, the opinion pooling, has gained more popularity (Dias et al., 2018). Opinion
pooling, which also forms the basis of the classical models (Cooke and Goossens, 2008),
is based on combining the probability distributions provided by the experts either by
weighted arithmetic or logarithmic averaging (McConway, 1981; O’Hagan et al., 2006;
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Dietrich and List, 2014; Farr et al., 2018). The weights can be used to give more in-
fluence on those experts that have performed better in a validation test (Cooke and
Goossens, 2008; de Little et al., 2018).

In this work, we are interested in three questions: 1) how to combine several experts’
assessments in a theoretically coherent manner, 2) how to conduct statistical inference
on the biases in these assessments, and 3) how to account and correct for the biases
when using the same experts as a source of information later in similar situations to
estimate an unknown system parameter. All these questions can be answered within
the framework of hierarchical Bayesian statistics (Hartley and French, 2018). Hence, we
follow the fully Bayesian approach where we act as the analyst who builds an explicit
statistical model for the experts’ biases and their relationships to the unknown system
parameters and uses the model to update his beliefs about the system under study
using the Bayes’ rule. Lindley (1982) presents an early approach for calibrating experts
by comparing the experts’ assessments of certain events with the realizations of those
events (e.g. weather forecasting). In his application, the experts’ assessments consisted
of estimates of probabilities for binary events. Lindley (1983) and Lindley and Singpur-
walla (1986) apply and extend the approach to continuous variables. Later applications
of Bayesian calibration and updating are provided, for example, by Clemen and Lichten-
dahl (2002) and Albert et al. (2012). Here, we further extend these approaches making
them suitable for problems where the experts’ biases are not necessarily constant, but
instead may vary depending on the true value of the unknown system parameter being
assessed. We use hierarchical Gaussian processes to model the experts’ biases as con-
tinuous functions of the unknown system parameter value. We infer the bias functions
from the calibration data and use them to correct for the bias in experts’ assessments in
new situations. We evaluate and demonstrate our model performance with simulations
and apply it to a real case study.

The rest of the article is organized as follows. In Section 2, we describe the motivat-
ing case study that will be analyzed in the experiments. In Section 3, we present our
statistical model and inference methods, and in Section 4, we present the simulation
and case study results. We end with discussion and conclusions in Section 5.

2 Expert assessments in data-limited fisheries
management

Currently, approximately 80% of the world’s exploited fish stocks are unassessed
(Costello et al., 2012), which is a major concern both to ocean sustainability and food
security since appropriate management decisions should be based on the status of the
fish stock (Food and Agriculture Organization of the United Nations, 1995). However,
assessing data-limited stocks can be challenging as the traditional stock assessment
methods require large amounts of fishery dependent and independent data, (Magnusson
and Hilborn, 2007; Methot and Wetzel, 2013) which are typically lacking for small-scale
fisheries and in developing countries (Salas et al., 2007; Meissa et al., 2013). The list of
data-limited stock assessment methods is, thus, extensive (Geromont and Butterworth,
2015; Chrysafi and Kuparinen, 2015) and the use of expert knowledge is often recom-
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mended in the data-limited fisheries literature (Berkson and Thorson, 2014; Newman
et al., 2015). Expert assessment is motivated by the fact that fisheries data are not
straightforward to link to the underlying stock (Daan et al., 2011). Experts possess
experiential knowledge on fishing methods, data collection, reporting behavior of fish-
ermen as well as on biology and behavior of fish stocks that help them interpret data.
Such tacit information is especially important in data-limited stock assessment.

Our case study, is motivated by data-limited stock assessment methods that require
information of the so-called stock status system parameter, expressed as xt = Bt/B0 ∈
[0, 1], where Bt is the fish stock’s biomass at time t and B0 is the virgin biomass (Dick
and MacCall, 2011; Cope, 2013; Froese et al., 2017). Recently, Chrysafi et al. (2019)
conducted an expert elicitation experiment where simulated and data-rich stocks with
known stock statuses were used to construct a data-limited stock assessment test. For
each stock, six fisheries experts with varying levels of experience in stock assessment
were provided with data that imitated the typical data available in data-limited stock
assessment. The experts were then asked to provide their estimates for the stock statuses
together with estimates of their own uncertainty in their ability to estimate the system
parameters as Beta distributions. The main objectives of Chrysafi et al. (2019) were
to quantify the degree of the bias in the experts’ assessments for the stock status xt

and to explore the ways in which the fisheries expert knowledge may help to inform
management decisions in a data-limited case. Their main findings, which also inspired
the methods developed in this work, can be summarized as follows. Firstly, the experts’
biases varied as a function of the true stock status. Experts tend to overestimate low
stock statuses and to underestimate high stock statuses. Secondly, the experts’ amount
of experience in stock assessment affected both their degree of bias as well as their
confidence in their estimates. Experienced experts’ opinions were better calibrated, and
they understood the concept of uncertainty better than the inexperienced ones. However,
Chrysafi et al. (2019) did not consider pooling the expert assessments nor correcting for
their bias, developing methodology that would be extensible to other expert elicitation
applications. These issues are treated in this work.

3 Materials and methods

3.1 Expert assessment model

We consider ourselves as an analyst poised with the task of estimating an unknown
system parameter x̃ ∈ [0, 1]1 using expert assessments of the system parameter. We as-
sume that each expert j ∈ {1, . . . , J} has previously assessed a similar system parameter
xi, i ∈ {1, . . . , n} for n different systems. The vector containing the previously assessed
system parameters is denoted by x = [x1, . . . , xn]

T . We assume that the system param-
eter has the same interpretation in each system, and that the systems and the experts’
knowledge about them are similar enough so that we can anticipate consistency in the
experts’ assessments of xi for each i ∈ {1, . . . , n}. In our case study, the system param-
eter represents the ratio of the current biomass and the virgin biomass of a fish stock

1Since any interval can be mapped to the unit interval, we focus here without loss of generality on
the unit interval pointing out that the approach can be generalized to any interval.
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and the different systems represent different fish stocks. Earlier similar expert elicita-
tion examples are provided by, e.g., Lindley and Singpurwalla (1986) who considered the
failure rates of machine components, Gelfand et al. (1995) who considered the number
of points NBA teams would score in a series game and Albert et al. (2012) who consider
dose-response for Listeria contamination and assessment of length of PhD studies.

In general, it is advisable to ask the experts, in addition to their best guess, to
also report their own uncertainty about their assessment in the form of a probability
density function (O’Hagan et al., 2006). Here, we restrict our treatment to parametric
distributions and thus our first two assumptions are:

(A1) Each expert j ∈ {1, . . . , J} has expressed her beliefs about the system parameters
xi, i ∈ {1, . . . , n} and the uncertainty about her beliefs as parametric probability
distributions and provided us with the summary statistics Dji that fully describe
the distributions.

(A1∗) These distributions are Beta distributions,2 Beta(mjisji, (1 −mji)sji), and the
summary statistics, Dji = (mji, sji), consist of the mean (mji) and dispersion
(sji) parameters of the Beta distribution. The mean parameter is interpreted as
the expert’s point estimate (or measurement) of xi, whereas the dispersion pa-
rameter (more commonly known as sample size) quantifies the expert’s own per-
ception of the uncertainty in her point estimate (accuracy of the measurement).

For notational simplicity, we assume without loss of generality that each expert assesses
the same set of systems3 and denote by Dj = {Dji, i ∈ {1, . . . , n}} the set of assessments
for all systems by expert j ∈ {1, . . . , J}.

We formulate our prior beliefs about the system parameters x = [x1, . . . , xn]
T in the

study systems as a probability distribution p(x). In order to update our prior beliefs
with the expert assessments, we need a model describing what kind of assessments the
experts produce for given system parameter values. More formally, we have to specify
the observation model as a conditional probability distribution for all expert assessments
conditioned on the unknown system parameters p(D|x), where D = {Dj , j = 1, . . . , J}.
Our updated beliefs are then represented by the posterior distribution obtained using
the Bayes’ theorem

p(x|D) ∝ p(D|x)p(x). (3.1)

This update rule provides a theoretically coherent method for updating analyst’s beliefs
about the systems under study and it is sometimes called the supra-Bayesian approach
to distinguish it from various (non-coherent) pooling and averaging methods (Hartley
and French, 2018). However, the challenge with the fully Bayesian approach is the for-
mulation of the conditional model for the expert assessments (Lindley and Singpurwalla,
1986; Gelfand et al., 1995; Hartley and French, 2018).

2Naturally, other distributions could be used as well (see e.g., Lindley and Singpurwalla, 1986).
However, the Beta distribution is a reasonable choice here since the system parameter is defined in the
unit interval.

3Our model can be generalized to situations where each expert assesses a different set of systems.



T. Perälä, J. Vanhatalo, and A. Chrysafi 1257

Because of the possibility of bias and overconfidence in the experts’ assessment due
to the psychological reasons discussed earlier and further supported by the findings of
the expert elicitation experiment of Chrysafi et al. (2019), we do not fully trust the
experts’ ability to estimate the unknown system parameters. However, we do believe
that the experts’ assessments contain valuable information that we want to utilize to
estimate the unknown system parameter. We treat the experts as faulty or uncali-
brated measurement devices that produce measurements that can be biased, and the
reported measurement accuracy may be wrong. We model this using an observation
model, where the possible bias is explicitly accounted for. We do not have, however,
a priori knowledge of the bias, and thus we use calibration data to learn about the
biases.

We build the conditional model for the expert assessments hierarchically and first
define a parametric joint observation model for the expert assessments, p(D|x, θ). Here
θ denotes the parameters of the observation model. The conditional model for the expert
assessments can be now written as p(D|x) =

∫
p(D|x, θ)p(θ|x)dθ where p(θ|x) is the

conditional probability density function of the observation model parameters given the
system parameters. The joint observation model can be further expanded as

p(D|x, θ) =
J∏

j=1

p(Dj |x, θj)

=
n∏

i=1

J∏
j=1

p(mji, sji|xi, θji), (3.2)

where θj = {θji}ni=1 denotes the set of the jth expert’s observation model parameters
for each system and θ = {θj}Jj=1 denotes the set of all experts’ observation model
parameter sets. Next, we write the jth expert’s observation model for the system i as
p(mji, sji|xi, θji) = p(mji|sji, xi, θji)p(sji|xi, θji), and make the following assumptions.

(A2) The expert’s assessment of her own uncertainty, sji, does not contain information
about xi in itself, implying that p(sji|xi, θji) = p(sji|θji).

(A3) The observation model for the jth expert’s point estimate mji for the ith sys-
tem parameter xi is a Beta distribution p(mji|sji, xi, θji) = Beta(mji|μjiηji,
(1− μji)ηji), parameterized using the mean μji = μj(xi) ∈ (0, 1) and the disper-
sion parameter ηji = ηj(sji) ∈ �+, where and μj(·) and ηj(·) are the jth expert’s
mean and dispersion functions. Hence, the parameters in (3.2) are θji = {μji, ηji}.
These parameters are related to the natural parameters of the beta-distribution
as αji = μjiηji and βji = (1 − μji)ηji, and the variance of the beta-distribution
is μji(1− μji)/(ηji + 1) (Gelman et al., 2013).

Assumption (A2) is the same that was used already by Lindley (1983) and Lind-
ley and Singpurwalla (1986) with log-Gaussian observation model. Similarly, assuming
independence between μji and sji means that the expert’s uncertainty estimate does
not contain information about her point estimate or the “best guess”, which is encoded
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by the mean parameter. These assumptions are convenient at minimum but may not
be realistic in all applications. We make them here, since in our case study, there is no
reason to assume that the experts’ estimates of their uncertainty about their assessment
would depend on the true value of the system parameter xi being assessed. The Beta
distribution in Assumption (A3) is a natural choice here since the support of the Beta
distribution is the unit interval which also happens to be the interval containing all the
possible values of the expert’s point estimate mji.

By letting the dispersion parameter ηji depend on sji, we assume that the experts
can provide us with useful information on how much we should trust their assessment.
If we fixed ηi(sji) = sji we would fully trust the expert’s estimate of the uncertainty
about her assessment. In this case, at the limit sji = 0 expert’s assessment would not be
used to update our prior belief p(xi). Similarly, at the limit sji = ∞ our prior would be
replaced by point mass one at μj(xi). In order to learn about the goodness of expert’s
uncertainty estimate, we let ηj(sji) = sjiρj , where ρj is a reliability parameter. It
corrects for possible errors in the expert’s estimate of the accuracy of her assessment. For
example, expert’s overconfidence would be described by a reliability parameter value less
than one. The reliability parameter is an unknown parameter of the observation model
and must be inferred from the calibration data (see Section 3.2). We formulate our prior
beliefs about the reliability parameter as ρj ∼ Gamma(2, 0.5). This prior distribution
is centered around one and assigns 60% probability for reliability parameter values that
are between 0.5 and 2, thus encoding a weak preference for moderate deviations from the
expert’s own uncertainty assessment. We also consider an alternative more restrictive
assumption

(A4∗) The expert’s estimate of the accuracy in her assessment, sji, does not contain
information about the assessed system parameter xi implying that p(mji|sji, xi,
θj) = p(mji|xi, θj), and the dispersion parameter in the observation model is
ηji = ηj(sji) = ηj .

Under Assumption (A4∗), the Beta distribution’s dispersion parameter, ηji, is inde-
pendent from the experts’ own uncertainty assessment, which means that the analyst
does not trust the expert’s ability to estimate her own accuracy, and rather infers the
accuracy from the calibration data. In this case, we give the dispersion parameter a
wide Gamma prior distribution, ηj ∼ Gamma(1, 10).

We expect that the experts can give systematically biased assessments, that is, their
point estimatesmji deviate from the true system parameter values xi in a consistent and
predictable manner. Hence, we explicitly model this systemic deviation or bias for each
expert defining a bias function βj(x) = μj(x)−x as the difference between the expert’s
point estimate and the true system parameter value. We do not want to impose strong
prior assumptions about the functional form of the bias and give weakly informative
priors for μj(x) defined directly in the function space. This is achieved using Gaussian
processes (GP, Williams and Rasmussen, 2006). We define the prior distributions for
the mean functions in the expert’s observation models by first introducing a latent GP
bj(x) with a mean function hj(x) = E[bj(x)] and a covariance function kj(x, x

′) =
Cov

(
bj(x), bj(x

′); lj , σ
2
j

)
where lj is the correlation length-scale and σ2

j is the variance



T. Perälä, J. Vanhatalo, and A. Chrysafi 1259

parameter of the covariance function of the GP. In this work, we use the exponentiated
square (i.e., Gaussian) covariance function kj(x, x

′) = σ2
j exp

(
−(x− x′)2/l2j

)
and a zero

mean function hj(x) = 0. We will consider three different models for the mean of the
observation model, μj(x) in x ∈ [0, 1]:

Model 1 (additive): μj = [x+ bj(x)](0,1) (3.3)

Model 2 (logit additive): logit(μj) = logit(x) + bj(x) (3.4)

Model 3 (marginally uniform predictive prior): μj = Φ
(
bj(x)/

√
σ2
j

)
(3.5)

The shrinkage operator [·](0,1) in (3.3) is required to assure that the mean is in the
unit interval. In (3.5), Φ(·) denotes the cumulative distribution function of the standard
Gaussian random variable. The prior distributions induced for the mean function and
the rationale behind these models are discussed next.

Model 1, the additive bias model, assumes a priori that the experts are biased
towards the center of the interval (Figure 1). In other words, the experts are reluctant
to believe that the system parameter value is close to either end of the interval but
instead tend to favor intermediate values. Even though bj(x) is assigned a zero-mean
GP prior, the shrinkage operator in (3.3) causes the prior for the bias function, βj(x),
to be a “truncated” GP resulting in an asymmetrical distribution of the probability
mass around zero everywhere except in the middle of the interval. The asymmetry of
the prior is most apparent near the endpoints of the interval (Figure 1).

Model 2, the logit additive bias model, aims to encode a prior assumption that the
bias is close to zero (Figure 1). This could be justified if we assume that the experts
can provide unbiased estimates and have no prior information to suggest otherwise.
The logit transformation in (3.4) forces the prior expectation of the bias function to
be close to zero even at the endpoints of the interval. Moreover, even though the prior
expectation of the bias is zero only at the center of the interval, its prior median is zero
everywhere.

Model 3, the marginally uniform prior predictive model, encodes analyst’s total prior
ignorance by making no assumptions about the relationship between the true system pa-
rameter value and the expert’s point estimate, stating that the expert’s assessment can
be anything ranging from a random guess to a very informed and accurate assessment
of any value of the system parameter x (Figure 1). This assumption could be justified in
a situation where expert assessment has never been used before. A zero-mean GP prior
for bj(x) implies a Gaussian marginal distribution for each bj(x) ∼ N(0, σ2

j ). Hence, the

transformation of bj/σ
2
j through the cumulative distribution function of the standard

normal random variable in (3.5) induces a uniform prior predictive distribution for the
expert’s point estimate mj for all system parameter values.

We end the construction of the models for the expert means and biases with two al-
ternative assumptions for the joint distribution of the experts’ biases bj(x), j = 1, . . . , J

(A5) The biases of the individual experts are mutually independent. Hence, the pro-
cesses bj(·) are mutually independent zero-mean GP.
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Figure 1: The prior predictive density of the bias β(x) and the prior predictive density
of the expert’s mean estimate as a function of the true parameter. The solid black line
is the median, the dashed black line is the mean, and the shaded areas represent the
90%, 75% and 50% central probability intervals.

(A5∗) The experts are assigned to K groups based on their similarity determined for
example by their educational backgrounds. The expert biases are assumed mu-
tually dependent of the biases of experts in the same group and independent of
the biases of experts in a different group. This hierarchical dependence structure
is encoded by setting hj(x) = b̄k(x) if expert j belongs to group k, where b̄k(·)
is the groupwise mean function for all bj(x) in group k. The groupwise mean
functions are modeled by mutually independent zero-mean GPs with covariance
functions kk(x, x

′; lk, σ
2
k), k = 1, . . . ,K.

Assumption (A5∗) is an extension of the hierarchical model of Albert et al. (2012)
where experts were assigned to homogeneity groups that shared common hyperparam-
eters. Here, instead of the groupwise hyperparameters, we use GPs that are shared
by the experts in the same homogeneity group. These homogeneity groups may re-
sult, for example, from similar education and historic frames of reference among the
experts (Albert et al., 2012; Hartley and French, 2018). For example, in our case
study, the experts form three groups according to their education and experience and
we can assume the experts to be exchangeable within each group. For the covari-
ance function parameters, we used prior distributions that give more weight for slowly
varying bias functions with small magnitude: p(σ2

j ) ∝ Cauchy(σ2
j ; 0, 5)I[0,50](σ

2
j ) and

p(l−1
j ) ∝ Cauchy(l−1

j ; 0, 10)I[0.2,3](l
−1
j ) where I[·,·](·) is the indicator function used to
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Figure 2: Graphical representation of the model. Gray circles denote the observed nodes,
and white circles denote the unknown variables and functions. The variable x̃ denotes
the parameter of interest in system for which we do not know the true system parameter
value and variables x with gray background correspond to the calibration systems. The
thick black lines denote GP with undirected links between all pairs of latent variables
where b̄ki denotes the ith groupwise latent variable of group k and bjki is the ith latent
variable of expert j in group k. The inner panel includes the expert wise GP and
the outer panel includes the groupwise GPs (Assumption A5 ). Under assumption A5*
(prior independence between experts) the outer panel is removed from the model.

truncate the probability distributions thus restricting the parameter values to a closed
interval. A graphical representation of the models is shown in Figure 2.

Before proceeding to the description of posterior inference in Section 3.2, we first
elaborate some of the model assumptions. Naturally, the bias function β(x) does not
need to depend on the true system parameter value, x, directly. The plant coverage
estimation is an example where the direct dependence on x is a justified assumption.
An expert can, in principle, observe the value of the system parameter (plant coverage),
and thus the observation model p(Dji|xi) describes how well she is able to translate
her visual observation into quantitative estimate for xi. When an expert cannot observe
the true value but bases her assessment on indirect information on xi we can denote
by Iji the background information expert j has about system i and by pj(xi|Iji) her
belief on xi conditional on Iji. She then summarizes this belief with Dji so that we
can denote by p(Dji|Iji) the model for her belief on the parameter value conditional on
her background information. If p(Iji|xi) denotes the dependence between an expert’s
background information and the true parameter value, the marginal distribution for
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expert assessment can be written as p(Dji|xi) =
∫
p(Dji|Iji)p(Iji|xi)dIji. Hence, if we

do not know Iji and p(Iji|xi) the model reduces to the original one. An example where
an expert’s bias could be directly related to her (true) belief is an application where an
expert is (implicitly) biased through her precautionary attitude. Let Dji again denote
the summary statistics of her true belief and letDr

ji denote the values she reports to us. A
model p(Dr

ji|Dji) then summarizes how she reports (either consciously or unconsciously)
her belief with different Dji. The marginal distribution for expert assessment can now
be written as p(Dr

ji|xi) =
∫
p(Dr

ji|Dji)p(Dji|Iji)p(Iji|xi)dDjidIji so if we do not know
Dji or p(Dji|xi) the model reduces again to the original one. The difficulty of eliciting
the expert’s true belief is discussed in more detail by, e.g., O’Hagan and Oakley (2004)
and O’Hagan et al. (2006).

Naturally, the bias can also be independent of the true value x. In that case, if an
expert can provide useful information about x, the bias function would be a constant
whereas if the expert cannot provide any information about x the bias function would
be such that p(Dji|xi) ∝ 1. Note that in the absence of direct dependence between x and
the bias function, the smoothness and continuity assumptions for the bias function in
models 1-3 imply that p(Iji|xi) should also vary smoothly and continuously with respect
to x. That is, the experts should have qualitatively “similar” background information
from all systems. If this cannot be assumed, for example due to qualitatively different
systems, it would be natural to define own bias function for these systems leading to
hierarchical bias over systems similarly as the hierarchical structure over experts in
assumption (A5* ). Alternatively, we could add into the model covariates that distin-
guish the systems. In an extreme case, when the systems are so different that expert
assessments for them should be treated independent, we could not learn between the
systems.

If available, we should add into model covariates, z, that describe experts and the
systems. In this case the update rule (3.1) is revised to

p(x|D, z) ∝ p(D|x, z)p(x |z). (3.6)

The observation model p(D|x, z) is as in (A4) with μj(x) replaced by μj(x, z) and the
bias function β(x, z) would be a function of the covariates as well. For example, in our
case study, the covariates could describe experts experience (e.g., years in fisheries stock
assessment work) or quality and amount of data on an individual fish stock available
to the experts. In plant percentage cover estimates, an informative covariate could be
the size of the plot which governs whether an expert can survey it thoroughly or only
partially. As done in the case study (Section 4.2), in the absence of covariates we can use
random effects to explain heterogeneity in the bias function that cannot be explained by
x alone. In (3.6), the original prior p(x) is updated to p(x |z) ∝ p(z|x)p(x), that is, our
posterior distribution for x in the light of the covariates. Hence, if covariates themselves
are informative on x, that is p(x |z) �= p(x) and not only on bias function, we can
first update our understanding based on the covariates and after that use the expert
assessment to provide us more information through p(D|x, z). If we assumed that the
covariates contain all the background information of experts, z = I, the model for expert
assessment would be p(D|x, z) = p(D|z) and our posterior distribution would reduce to
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p(x|D, z) ∝ p(x |z). That is, we would not gain anything from experts’ opinions. This
illustrates also that expert elicitation is reasonable only if experts are assumed to have
information about x that can be obtained only through their assessment for it.

3.2 Posterior inference

In order to learn about the parameters of the experts’ observation models, we collect
calibration data

C = {(mji, sji, xi), i = 1, . . . , n, j = 1, . . . , J} ,
which consists of 3-tuples of expert’s means, measures of uncertainty and known param-
eter values. Each calibration system is chosen so that we know the real parameter value
corresponding to that system. Furthermore, we will denote by x̃ the unknown system
parameter value which we want to estimate based on the expert assessments. Similarly,
D̃ = {(m̃j , s̃j), j = 1, . . . , J} denotes the J expert assessments for that system.

In our first task, we are interested in studying the expert bias. In order to visualize
the bias, we define a vector x̃ = [x̃1, . . . , x̃p] of fixed parameter values at p regularly

spaced intervals and denote by b̃j = [bj(x̃1), . . . , bj(x̃p)] the corresponding vector of
latent bias variables of jth expert at those values. Now we can calculate the posterior
distribution

p(b̃j |C, x̃) ∝
∫

p(b̃j ,b|ϑ,x, x̃)p(η|ϑ)p(ϑ)
J∏

j=1

n∏
i=1

p(mji, sji|xi, bji, ηji)dηdϑdb, (3.7)

where b = [bji]
n,J
i,j=1 is a vector of latent bias parameters bji = bj(xi) + b̄kj (xi) for each

expert at calibration data points and ϑ collects all the covariance function parameters
and the scaling parameters. Due to GP priors p(b̃j ,b|ϑ) is a multivariate Gaussian which

allows the information flow between the calibration data and b̃j (See also Figure 2).

Once we have solved p(b̃j |C, x̃) we can calculate the posterior distribution of expert

biases β̃j = [βj(x̃1), . . . , βj(x̃p)]. The (3.7) generalizes also to joint distribution of all
experts’ bias functions.

In our second task, we want to calculate the posterior distribution for x̃ in a new
system for which we do not know x̃. In this case, we calculate the posterior distribution

p(x̃|C, D̃) ∝
∫

p(x̃)p(b̃1, . . . b̃J ,b|ϑ,x, x̃)p(η|ϑ)p(ϑ)

J∏
j=1

(
p(m̃j , s̃j |x̃, b̃j , η̃j)

n∏
i=1

p(mji, sji|xi, bji, ηji)

)
dηdϑdbdb̃1, . . . db̃J ,

(3.8)

where p(x̃) is our prior distribution for x̃. In this work, we used x̃ ∼ Uniform(0, 1).

The posterior inference was conducted using Markov chain Monte Carlo sampling
with probabilistic programming language Stan version 2.9.0 (Stan Development Team,
2016; Hoffman and Gelman, 2014). We used a warmup period of 1000 samples after
which the next 10000 samples were recorded. To speed up the inference, we sampled
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standardized latent variables ḃ ∼ N(0, I) as a model parameter in the code. The original
latent variables were then obtained by b = Lḃ where L is the Cholesky decomposition
of the covariance matrix of b (Vanhatalo and Vehtari, 2007). With this reparameteriza-
tion of the model there were no significant problems with the convergence of the Markov
chain Monte Carlo (MCMC) chains. We fitted approximately 300 models (see experi-
ments) and only 5 of them had not converged nor mixed well at the first attempt. The
MATLAB and Stan codes for the posterior inference are available in GitHub (https://
github.com/Tommipe/expert_calibration)

3.3 Model assessment and comparison

We examined our models’ performance in estimating the experts’ bias functions β(x)
using simulated data with varying levels of bias and uncertainty. The models’ perfor-
mance in inferring an unknown system parameter x̃ was tested using both the simulated
data and a real case study. In the real case study, we used leave-one-out cross validation,
whereas in the simulation studies, the tests were done at 10 equally spaced values for
x̃ in the interval [0.001, 0.999]. The simulations are described in Section 4 and the real
case study in Section 4.2.

In both the simulated and the real case study, we compared the models’ performance
using the log point-wise posterior density statistics (LPD, Vehtari and Ojanen (2012)),
i.e., we calculate the value of the log posterior density function at the true parameter
values. Since the posterior inference was conducted with MCMC, we approximated the
posterior densities for β(x) and x̃ with a kernel density estimator. In the simulation
studies, we also calculated the root mean squared error (RMSE) between the median of
the posterior distribution of the parameter and the true parameter value. Log posterior
density statistics is a proper scoring rule for comparing competing models (Vehtari
and Ojanen, 2012). However, it is often useful to examine in more detail the model’s
posterior distributions from the calibration perspective. Calibration refers to statistical
consistency between the posterior distributions and observations; that is in the long
term, the frequency of events with probability p should be p (Gneiting et al., 2007). We
examined the calibration of the posterior distributions by calculating the coverage of
the 50%, 75% and 90% central probability intervals (CPI). That is, we calculated the
frequency of how often the true value was inside these posterior probability intervals.
In the simulation study, we calculated this for both the posterior distributions of the
bias function and the unknown x̃. In the real case study, only the true parameter value
was known, and thus we calculated this only for the latter case.

4 Experiments

4.1 Simulation experiments

Simulation set up

We generated simulation data sets for scenarios with one expert who has different levels
of bias and uncertainty in her assessments. We used a sigmoid function to model the

https://github.com/Tommipe/expert_calibration
https://github.com/Tommipe/expert_calibration
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Figure 3: The simulated bias function (4.1) with q = 1.1, and the corresponding mean of
the Beta distribution, μ(x) = x+ b(x). On the right hand also an example of simulated
data, shown by crosses, with η = 15, n = 20 and β0 = 0.30.

bias function

β(x) = β0q

⎛
⎜⎝1−

(
q+1
q−1

)2x−1

1 +
(

q+1
q−1

)2x−1

⎞
⎟⎠ , (4.1)

where the parameter β0 = β(0) is the maximum bias obtained at the lower bound of the
interval at x = 0, and the parameter q > 1 controls how close to the asymptotic values
the sigmoid function gets at the boundaries x = 0 and x = 1. The function β(x) is a
monotonically decreasing function which is motivated by the fact that the bias cannot
be negative at zero nor positive at one. See Figure 3.

For the calibration data, we first generated true parameter values xi ∼ Uniform(0, 1)
for i = 1, . . . , n systems. Then we drew the corresponding expert mean estimates mi

from a Beta-distributionmi ∼ Beta (μ(xi)η, (1− μ(xi)) η) where μ(xi) = x+β(xi) is the
biased expert mean. We tested three different levels of maximum bias β0 ∈ {0, 0.15, 0.3}
and generated data sets with different number of expert assessments n ∈ {5, 10, 20}.
Furthermore, to test the effect of the level of noise in the data, we tested three different
values of the dispersion parameter, η ∈ {5, 15, 80}. We generated 10 data sets with each
combination of n, β0 and η resulting with 270 data sets. For each calibration data set
we generated also expert assessments for 100 test values of x whose real values were not
included into inference. We then evaluated the models’ ability to infer these test values.

As a second set of test data we generated otherwise similar data sets but drew the
dispersion parameter η from Gamma(shape = 1.3437, scale = 11.1208), for which the
90% CPI is [1.4463, 40.3983]. Each simulated dispersion parameter was then used as
an expert’s uncertainty assessment, that is sji = ηji. The parameters of the Gamma
distribution were obtained by fitting a Gamma distribution to the experts’ uncertainty
estimates in the case study data (see Section 4.2) using maximum likelihood estimation.
Here, we also varied the number of data points n ∈ {5, 10, 20} and the value of maximum
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Figure 4: Results of simulation experiment on the bias inference when using only expert’s
mean estimates as data (assumption A4∗). Colors denote models as shown in the legend.
The maximum bias used in the simulations, β0 is shown on the x-axis. Each group of
three bars includes three dispersion parameters increasing from left to right. The number
of calibration systems, n, increases from the left column to the right.

bias β0 = {0, 0.15, 0.3}. Again, we generated 10 data sets with each combination of
n and β0 ending up with total of 90 data sets. For each calibration data set we also
generated expert assessment for 100 test values of x whose real values were not included
in calibration data. We then calculated the models’ ability to infer these test values.

Results

Figure 4 summarizes the results for the bias function inference when experts’ uncertainty
estimates were not used as data. The figure shows only RMSE and posterior probability
interval tests. The log posterior density results were qualitatively similar to the RMSE
results. In terms of RMSE, all models perform better as the number of calibration
systems and the dispersion parameter used in simulations increase. This is reasonable
since both lead to more informative data. Hence, the more calibration systems we have,
and the more accurate experts are, in terms of ηji, the better we can infer the bias
function. However, there are clear differences between models’ relative performances
with different levels of bias. The performances of Model 1 and Model 2 decrease as the
bias increases whereas the performance of Model 3 remains rather stable. Moreover,
Model 1 and Model 2 are practically equally good when there is no bias (b0 = 0);
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with the intermediate bias (b0 = 0.15), Model 1 is the best and Model 2 and Model 3
have approximately equal RMSE; and when bias is largest (b0 = 0.3), Model 2 is the
worst and Model 1 and Model 3 perform practically equally well. These differences are
reasonable since models 1 and 2 have most of the prior probability mass near zero bias
whereas Model 3 has most of the prior probability mass for non-zero biases. Hence, if
there is strong a priori information for bias models 1 and 3 should be preferred. We
also examined visually individual bias function estimates (not shown here). In all cases
the posterior of the bias function was able to track the simulated bias and the match
was the better the more informative the data was.

All models performed the better the more data and the less uncertainty in the expert
assessments there was also in terms of coverage of the central posterior probability
intervals. In the absence of bias, Model 1 and Model 2 have on average too wide 50%
and 75% CPIs and very accurate 90% CPIs whereas Model 3 has on average too narrow
CPIs in all these cases. This is again reasonable since Model 3 has the smallest prior
probability for small biases. With larger biases Model 3 has the most accurate 50% CPI
whereas the other intervals are approximately equally good among the models. However,
the statistics in Figure 4 are averages over ten equally spaced values in (0, 1) and only
over 10 replicates so there is considerable amount of noise in these values. Thus, this
test mostly shows that the models work as envisaged but their long-term performance
would need to be further tested for the specific problem at hand.

Figure 5a shows the RMSE and LPD for simulation experiment for inferring x when
the expert’s uncertainty estimates were not used as data. As the bias function inference,
the system parameter inference performs the better the more calibration data there is
and the smaller the expert’s uncertainties, sji, are. Again, Models 1 and 2 performed
better than Model 3 in absence of bias, and once bias increases the difference between
Model 1 and Model 3 vanishes whereas Model 2 has slightly worse RMSE and LPD
statistics. However, the differences between models are smaller than in the bias function
inference. The reason for this is that the posterior distributions for x̃ are much more
skewed than those for the bias functions. Similarly, the posterior densities evaluated at
true values of x̃ are smaller than those for the biases for which reason the differences
between LPDs are also smaller.

The between model differences are also similar when the experts’ uncertainty es-
timates are included in the calibration data but the absolute differences between the
models are smaller than when using only the mean estimate. This is illustrated in Fig-
ure 5b, which shows the RMSE and LPD tests for the task of inferring the unknown
system parameter x̃. In the bias function inference the differences in LPD were similar
to the differences between the models when only the experts’ mean estimates were used.
However, CPIs better reflected the true (simulated) distribution of the biases.

4.2 Real data case study on data-limited fisheries

As shortly described in Section 2, Chrysafi et al. (2019) tested fisheries experts’ per-
formance in a simulated elicitation experiment. The authors used 18 data-rich stocks
and two simulated stocks (total of n = 20 systems) with known (model derived) stock
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Figure 5: Results of the simulation experiments on inferring the unknown system param-
eter x. Colors denote different models. The groups of three same colored bars have the
same maximum bias and the level of noise decreases (dispersion parameter increases)
from left to right within the groups. The maximum bias is shown on the x-axis. The
number of calibration points increases from the left column to the right.

status system parameter, xi, to build the study. The elicitation included six experts
(two inexperienced, two novice and two experienced) to account for the differences in
the degree of bias and uncertainty associated with the different levels of experience in
stock assessment. The authors provided the experts with data on catch history, limited
entries of commercial length compositions, life history and the starting year of manage-
ment actions, aiming to imitate the amount of information available to experts in real
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data-limited situations. With the data provided and their prior knowledge attributed
to their education and experience, the experts formulated their beliefs about the stock
status system parameters as beta distributions with the aid of quantiles, which are typ-
ically easier for experts to estimate than means or variances (Garthwaite et al., 2005;
O’Hagan et al., 2006; Dias et al., 2018). Here, we will compare the elicited distributions
to (point) estimates of the stock status from the corresponding data-rich fisheries stock
assessment models or simulated stocks. Even though the data-rich stock assessment es-
timates are not the true stock status, they represent the best available estimate and for
the purposes of this work they are treated as the true values of the system parameter,
xi. In the case of simulated stocks, the true stock status is known.

It is important to note that in this application, the experts make inferences about the
stock status, utilizing not only the provided data, but also their experiential knowledge
about the fish population dynamics and the fisheries targeting those populations. Hence,
they possess relevant information about the stock status that the fisheries manager
(the analyst in this work) does not. With this tacit information, the experts provide
additional relevant information that would not otherwise be available to the analyst.

When analyzing the data, we noticed that there was a significant amount of vari-
ability between the experts’ assessments. Hence, we added a system and expert specific
random effect, εji ∼ N(0, σ2

ε ), σ
2
ε ∼ Cauchy(0, 0.1)I[0,1] to the latent bias variables bj(x).

This random effect accounts for the occasional non-typical errors in the expert assess-
ments. We validated the performance of this extended model with similar simulation
studies as detailed in Section 4.1. The model validation showed that these extended
models performed otherwise similarly to the original models (Section 4.1) but, as ex-
pected, the posterior distributions were just wider.

We compared the models presented above to a simple “random guess” and to each
expert’s own assessments. In the former, the stock status was given a uniform distribu-
tion, p(x) ∝ δ[0,1](x), which represents total ignorance. In our framework, the random
guess corresponds to the analyst’s prior and, hence, to a situation with no expert as-
sessments. For the expert elicitation to be useful the performance of our models should
improve when conditioned on the experts’ assessments as opposed to only using the
analyst’s prior distribution. Moreover, since various pooling methods are the most com-
mon approach to combine probabilistic expert assessments, we compared our method
also to simple linear and logarithmic pooling with equal weights (O’Hagan et al., 2006).

Results

Tables 1 and 2 show the model comparison with leave-one-out cross-validation LPD and
frequency of the true system parameter being captured by 50%, 75% and 90% posterior
CPIs. Model 3 performed the best with each combination of the calibration data and
both the hierarchical and the non-hierarchical prior structure for b(x) in terms of both
LPDs and the posterior CPIs. In general, when only the experts’ mean estimates were
used, the hierarchical models performed better than their non-hierarchical counterparts.
When both the mean and the uncertainty estimates were used the non-hierarchical mod-
els performed better. In terms of LPD, none of the individual experts performed better
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Data, Dji Model 1 Model 2 Model 3
Non-hierarchical mji 0.0303 -0.0327 0.0592
Non-hierarchical (mji, sji) -1.3607 0.1036 0.1375
Hierarchical mji 0.0552 0.0165 0.1683
Hierarchical (mji, sji) 0.0483 0.0711 0.0946
Individual expert assessment -0.8050 -2.4819 -5.4086
only -0.0067 -0.0966 -6.8062
Uniform prior only 0
Linear pooling, equal weights 0.0345
Logarithmic pooling, equal weights -1.3274

Table 1: The average leave-one-out cross-validation LPDs of x̃ evaluated at the true
system parameter value. The first four rows summarize the models presented in this
work. The fifth and sixth rows summarize the performance of the individual experts,
and the seventh row corresponds to the random guess. The last two rows show the
performance of the traditional linear and logarithmic pooling with equal weights.

50% interval 75% interval 90% interval
Data, Dji M 1 M 2 M 3 M 1 M 2 M 3 M 1 M 2 M 3

Non-hierarchical mji 0.50 0.35 0.45 0.65 0.55 0.65 0.70 0.70 0.80
Non-hierarchical (mji, sji) 0.50 0.45 0.50 0.70 0.70 0.65 0.75 0.75 0.85
Hierarchical mji 0.35 0.35 0.50 0.65 0.60 0.75 0.70 0.70 0.80
Hierarchical (mji, sji) 0.40 0.45 0.50 0.65 0.60 0.65 0.75 0.75 0.85
Individual expert assessment 0.15 0.25 0.10 0.35 0.40 0.25 0.50 0.50 0.35
only 0.70 0.20 0.20 0.90 0.65 0.30 1.00 0.75 0.35
Uniform prior only 0.60 0.80 0.95
Linear pooling, eq. weights 0.40 0.70 0.95
Logarithmic pooling, eq. weights 0.05 0.25 0.40

Table 2: The average leave-one-out cross-validation frequency of true parameter being
inside p% posterior CPIs. The first four rows summarize the models presented in this
work. The fifth and sixth rows summarize the performance of the individual experts,
and the seventh row corresponds to the random guess. The last two rows show the
performance of the traditional linear and logarithmic pooling with equal weights.

than the uniform prior. Linear pooling with equal weights outperformed the uniform
prior whereas the logarithmic pooling with equal weights performed worse than the uni-
form prior. However, linear pooling outperformed two versions of Model 1 and Model 2
and the uniform prior outperformed one version of Model 1 and Model 2. When look-
ing at the individual expert assessments the best uncalibrated expert performed better
than the worst performing calibration model. When we examined the distribution of the
cross-validation LPDs there was one system where these two models performed consid-
erably worse than at the other systems. This poor performance in this system resulted
from a single expert giving a very bad assessment. A single expert assessment does not
have as big of an effect in the hierarchical models for which reason the hierarchical prior
for b(x) seems to offer more robustness against “outlying” assessments.
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Figure 6: Examples of leave-one-out posterior densities when the true system parameter
value lies far from the mode (a) and near the model (b) of the posterior distribution.

Figure 7: A simulated example of a posterior predictive distribution of the expert’s mean
function (black line denoting the posterior median and gray shadings 50%, 75% and 90%
CPIs) and a bimodal posterior distribution of x̃. Here, the model does not include the
expert and system specific random effect for which reason an outlying observation near
x = 0.5 pulls the posterior predictive distribution of m(x) down so that when the expert
gives an assessment m = 0.3455 (shown by the dashed horizontal line) the resulting
posterior has two modes: a higher one near the true value (shown by the dashed vertical
line) and a lower one far from the true value.

The LPDs are rather close to zero. As an example, the value of the posterior den-
sity function evaluated at the true system parameter value of the best model is on
average only exp(0.17) = 1.18 times that of the uniform prior. However, this is in the
same order of magnitude as the LPDs in the simulation studies with the largest bias,
β0 = 0.3 and n = 20 and approximately equal to the case with the largest simulated
expert uncertainty, η = 5. Hence, the performance of the best model is comparable to
simulation studies. Moreover, in most cases the expert assessments inform the poste-
rior distribution of x̃ considerably well as illustrated in Figure 6b, and the minor on
average improvement in the performance compared to the uniform prior results from
complete failure in one or two cases as illustrated in Figure 6a. These “random out-
lier assessments” decrease the average performance of all models. This emphasizes also
the importance of having the system and expert specific random effects in the model.
These random effects increase the uncertainty related to estimates of x̃ which reflects
the fact that there is significantly non-zero chance that experts might give occasionally
very bad assessments even if they are skillful in general. Without the random effects the
occasional large errors in the expert’s assessment could lead to multimodal posterior
distributions as illustrated in Figure 7.
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Figure 8: Posterior predictive distribution of the experts’ mean estimates m(x) as a
function of x together with their actual assessments. The experts’ point estimates are
shown by crosses and the posterior predictive distributions by black line solid lines
(posterior median) and gray shading (50%, 75% and 90% CPIs).

η l σ2

5% mean 95% 5%, mean 95% 5% mean 95%
Expert 1 10.7 24.2 44.9 0.35 1.15 3.52 0.26 7.1 27.1
Expert 2 8.3 19.2 37.9 0.36 0.98 2.85 0.31 6.6 24.2
Expert 3 6.2 15.0 31.9 0.36 1.08 3.12 0.24 6.2 22.8
Expert 4 10.7 23.6 44.7 0.37 1.13 3.15 0.23 6.1 22.5
Expert 5 4.1 11.2 25.3 0.36 1.19 3.55 0.22 6.3 23.3
Expert 6 5.1 13.8 31.0 0.36 1.12 3.31 0.22 6.0 22.5

Table 3: Summary of posterior marginal distributions of the expert observation model
parameters.

There was considerable variation between the quality of the expert assessments as
illustrated in Figure 8 and summarized in Table 1. Four of the experts (Experts 1-4)
gave consistently good assessments and their biases were “coherent” in the sense that
the posterior predictive distribution of m(x) was monotonically increasing. The remain-
ing two experts (Experts 5 and 6) were not able to give useful assessments which is
reflected by large uncertainty in their posterior predictive distributions of m(x). More-
over, the posterior distributions of ηji for Experts 5 and 6 are concentrated to smaller
values than the corresponding posterior distributions of experts 1-4 (Table 3) implying
partial down-weighting of them. It should be also noted, that in Figure 8 expert’s mean
assessment corresponds to the expected stock status which in case of the true data-rich
stocks is compared to the estimate from a “golden standard” model that uses all avail-
able data. Hence, some of the variability between expert assessments and true system
parameter value in Figure 8 might result from the stochasticity and uncertainty in this
“golden standard” stock status. With simulated data the true stock status was known
exactly.
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5 Discussion and conclusions

We have presented a hierarchical Bayesian model for calibrating and combining multiple
experts’ assessments. We proposed three different Gaussian process priors for the expert
bias functions and showed in simulation studies that these models can be used to infer
the expert biases and thus to calibrate the expert assessments in a real case study.

As the size of the calibration data and the accuracy of the experts’ assessments
increase the models’ performances improve. Moreover, the prior assumptions in the
different bias models are also reflected in our models’ performances. Model 1 and Model 3
seem to be the most appropriate choices, especially if the expert assessments are assumed
to be biased a priori. Model 2 seems to contain too little prior probability for the bias at
the ends of the parameter interval, which decreases its performance. When designing our
models, we began with the assumption that the expert’s true beliefs can be expressed
as a parametric probability density function as in Albert et al. (2012), in the form of
a beta distribution. Unlike Albert et al. (2012), however, we assumed that the expert
data D fully described their beliefs about x although eliciting experts’ true beliefs is
challenging (O’Hagan and Oakley, 2004). We used the mean and dispersion parameters
of the elicited distribution for building the experts’ observation models.

In the case study, all the alternative models improved the inference of the stock sta-
tus compared to the uncalibrated expert assessments. Overall, the Bayesian approach
taken here performed better than the most common pooling methods (the linear and
logarithmic with equal weights) and the uncalibrated individual expert assessments.
Moreover, our models allowed inference about experts’ reliability in terms of the bias
functions and ηji parameters as expected. If an expert consistently gives accurate assess-
ments the model allows her assessments to improve estimates concerning the unknown
system parameter x̃. On the other hand, if an expert never gives useful assessments,
the model effectively ignores her assessments. The confusion resulting from occasional
outlier assessments are modeled by the expert and system specific random effects in the
description of b(x) which increase the uncertainty on posterior of system parameter.
Our assumption that the mean of the expert’s observation model, μji, does not depend
on sji could be relaxed if the experts were assumed to be risk averse in the sense that
they would prefer to give smaller mean estimates mji the more uncertain they were. In
real fisheries stock assessment this could be reasonable. Fisheries scientists that work
with stock assessment are trained to follow the precautionary approach recommended
in fisheries management (Hilborn et al., 2001; Consalez-Laxe, 2005), and hence they
could prefer giving assessments leading to yield loss over assessments that might lead
to overfishing and even stock collapse (Chrysafi et al., 2019).

One could argue that the expert bias in the fisheries case study could be eliminated
by posing the problem as a regression analysis. However, interpreting and making sta-
tistical inference from fisheries data requires knowledge and experience on fishing and
data collection methods, reporting behavior of fishermen as well as on biology and be-
havior of fish stock. There is strong evidence that naive regression analysis based on,
for example, catch and effort data is not typically applicable to fisheries stock assess-
ment as such (Kuparinen et al., 2012). Through past experiences, fisheries experts have
such knowledge which they transfer to their assessment on the system parameter when
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analyzing the available data in light of their experience. However, the rationale behind
expert judgments should be documented as carefully as possible during the expert elic-
itation. As discussed around equation (3.6) expert’s background knowledge could be
encoded into covariates z that could then be used to inform the analysis through p(x |z)
and p(D|x, z). If experts’ background knowledge could be elicited fully, we would not
expect expert assessment D to contain any extra information compared to z. In that
case p(x |D, z) = p(x |z). In fisheries studies, experts’ background knowledge would typ-
ically correspond to different hypotheses behind the data generating process in which
case an alternative modeling option would be Bayesian model averaging over the al-
ternative models suggested by experts (Mäntyniemi et al., 2013). However, typically in
cases where expert judgments are combined it is infeasible to elicit experts’ background
knowledge fully (the situation assumed here). Moreover, even if it was feasible, the prob-
lem of constructing model for p(D|x) would just be redefined to problem of modeling
p(Dz|z) where Dz denotes experts assessment of the true underlying covariates; that is
we would need to model our trust on how well experts’ are able to describe their true
background knowledge (O’Hagan and Oakley, 2004; Albert et al., 2012) and how well
that resembles the true state of world.

By far the most commonly used method of combining elicited expert knowledge has
been the classical model with linear pooling (Cooke and Goossens, 2008; Dias et al.,
2018), whereas Bayesian methods have rarely been used. Here, we decided to keep
the comparison to linear pooling simple and to exclude more sophisticated weighting
schemes for two reasons. Firstly, pooling with equal weights is probably the most com-
monly used method (O’Hagan et al., 2006). Secondly, the classical model with unequal
weights would have required many choices concerning the scoring function and its pa-
rameterization, which is out of the scope of this work. Nevertheless, the included pooling
methods were used to verify that our method is at least comparable to the most stan-
dard expert assessment combination methods. Pooling methods have been argued to be
easier and more straightforward to apply than the Bayesian approach (O’Hagan et al.,
2006; Hartley and French, 2018). However, pooling does not represent the actual beliefs
of any individual and hence, does not behave as one would expect a probability distribu-
tion to behave. For example, when expert assessment is used as a complementary source
of information to available observational data, pooling can be performed either for ex-
perts’ prior or posterior distributions. However, the result will be different depending
on the process stage where the pooling occurs, leading to incoherent inference (O’Hagan
et al., 2006; Farr et al., 2018). Moreover, none of the pooling methods allows for bias
correction as such, but the bias needs to be corrected with a statistical model, whereas
our model explicitly models the bias thus providing the bias correction naturally.

Our case study was based on simulated expert assessment study where the true
system parameter value was known. However, an evident challenge in the expert bias
inference and correction in general is how to collect the calibration data. In some cases,
such as in the plant coverage estimation, calibration data could be collected from a
subset of systems. In some applications, for example in assessments of failure rates of
machine components, it would be possible to first collect expert assessments and then
calibrate them sequentially as data from the assessed systems is collected. This is also
similar to the traditional use of the classical model (Cooke and Goossens, 2008). In
addition to the challenge of collecting calibration data common challenges with any
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(human) expert assessment calibration method are also that experts may themselves
already know some of the calibration data, experts may themselves apply corrections to
future judgments if they observed errors in their past judgments (O’Hagan et al., 2006)
and that experts may not answer truthfully if they know their responses are going to be
adjusted (O’Hagan et al., 2006, Section 4.5.4). In the first two cases we could, at least in
principle, build the model to account for whether or not an expert has seen calibration
data or assessment of her performance. The challenge of getting experts to answer
truthfully should be communicated with the experts. Also with pooling methods an
expert’s assessment gets different weight depending how well she is believed to perform.
One interesting future research direction could be also to extend the methods presented
here for multivariate variables. This could in principle be done by extending the GP
models to multinormal or multivariate Gaussian processes.

Even when there is available observational data, ecological questions pertinent to
formal decision-making are characterized by uncertainty and paucity of empirical data
(Kuhnert et al., 2010). At the same time, as also shown by our case study example,
the degree of bias in the expert opinions can vary between experts and even within the
assessments of single expert (Burgman et al., 2011; Cooke and Goossens, 2008; Kynn,
2008; de Little et al., 2018). Hence, our work is not limited to fisheries stock assessment,
but it can also have applications in other fields. The plant coverage estimation was
described as another example in this work and we mentioned few other examples in the
Introduction. Other applications can be also found from medicine; e.g. Wilson et al.
(2018) elicited expert opinions in the probability of disease progression in patients with
undetected melanoma and Albert et al. (2012) assessed dose response in a contamination
study. Moreover, even though our main objective was in unknown system parameter
inference, our model could be used to specifically study the experts’ biases.
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