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Higher criticism (HC) is a popular method for large-scale inference prob-
lems based on identifying unusually high proportions of small p-values. It
has been shown to enjoy a lower-order optimality property in a simple nor-
mal location mixture model which is shared by the ‘tailor-made’ parametric
generalised likelihood ratio test (GLRT) for the same model; however, HC
has also been shown to perform well outside this ‘narrow’ model.

We develop a higher-order framework for analysing the power of these and
similar procedures, which reveals the perhaps unsurprising fact that the GLRT
enjoys an edge in power over HC for the normal location mixture model. We
also identify a similar parametric mixture model to which HC is similarly
‘tailor-made’ and show that the situation is (at least partly) reversed there.
We also show that in the normal location mixture model a procedure based
on the empirical moment-generating function enjoys the same local power
properties as the GLRT and may be recommended as an easy to implement
(and interpret), complementary procedure to HC. Some other practical advice
regarding the implementation of these procedures is provided. Finally, we
provide some simulation results to help interpret our theoretical findings.

1. Introduction. With the ‘data flood’ of recent times, methods to handle high-
dimensional data have become increasingly important. Higher criticism, introduced in
Donoho and Jin (2004) has become a widely used method for multiple testing and variable
selection. It was motivated originally as an alternative to parametric methods for a simple
sparse normal location mixture detection problem and involves null-standardising the empir-
ical cumulative distribution function (CDF) and rejecting for large values of the supremum of
this one-dimensional empirical process. It has since been extended and generalised to many
settings including sparse covariance matrix estimation; see the survey papers Donoho and
Jin (2015), Jin and Ke (2016). In particular, it has been shown to perform well in contexts
far beyond the simple mixture model it was originally motivated by; see, for example, Cai,
Jeng and Jin (2011) and Cai and Wu (2014). One of its stated advantages at its inception was
that it was not ‘tied to the narrowly specified model’ in the way the corresponding parametric
methods were suggested to be.

The purpose of this article is to make the case that we should also consider the paramet-
ric methods referred to above, including the generalised likelihood ratio test (GLRT) and
a related method involving the empirical moment-generating function (EMGF), as comple-
mentary methods to HC and that indeed they are closer to HC in nature than might appear at
first glance. In particular, we show that there is another similar ‘narrow’ model to which HC
is ‘tied’ in precisely the same way as the GLRT and EMGF are ‘tied’ to the normal location
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mixture model. Our intention is not to discredit HC; it is rather to point out that this notion of
being ‘tied to a narrowly specified model’ is a misplaced criticism for statistics of this type.

The framework under which the theoretical properties of HC were originally developed
was not detailed enough to discern any difference in performance between HC and the GLRT
under the normal location mixture model. The main technical contribution of this article is to
provide a framework for higher-order power comparisons between these and related statistics
which reveals that each statistic has an edge in power under the model to which it is ‘tied’,
which is perhaps unsurprising. What is useful is to see the degree to which this occurs and
also to see the scales balanced in a certain sense: each statistic has benefits and drawbacks in
different situations, none is ‘uniformly better’ across all scenarios.

Our technical results only hold in the restricted setting of simple mixture models. However,
there is nothing to suggest that the EMGF and GLRT procedures cannot at least partly match
HC’s broader usefulness. While the GLRT is more complicated to implement than HC, the
EMGF is much simpler than and potentially as useful as HC itself. We do not explore the
case of correlated test statistics here, although a modification analogous to the innovated HC
of Hall and Jin (2010) represents a very interesting avenue of further research. A similar
comment holds for extensions to variable selection settings as in Donoho and Jin (2008);
see also the discussion in Donoho (2017). Adapting either the GLRT or EMGF as tools for
identifying as well as detecting significant effects ought to be possible, indeed estimating
underlying optimal thresholds may be facilitated by plugging parameter estimates provided
by, for example, the GLRT into certain theoretical expressions for the thresholds.

The remainder of the article is organised as follows: Section 2 introduces our contami-
nation model, explains how it relates to multiple testing and defines the various procedures
being compared. Section 3 presents the two main examples we wish to compare and contrast
as well as our main theoretical results. Section 4 gives detailed technical arguments that are
used to prove the main results in Section 3. Section 5 presents a summary of some simulation
experiments used to illustrate the theoretical results. Section 6 concludes the paper with a
brief discussion. Further technical details and a more complete set of simulation results are
provided in the Supplementary Material (Porter and Stewart (2020)).

2. Contamination models and procedures for multiple testing.

2.1. Generalisation of Donoho and Jin’s contamination model. We present a generalisa-
tion of the contamination model used in Donoho and Jin (2004) for modelling test statistics in
a simple multiple testing framework. We have n independent and identically distributed (IID)
random variables X1, . . . ,Xn and interpret Xi as the test statistic for the ith ‘sub-hypothesis’.
The Xi ’s have common cumulative distribution function (CDF)

(1) P(X1 ≤ x) = (1 − p)F0(x) + pFθ(x).

Here, F0 represents the common null distribution of the test statistics and is embedded in a
1-parameter family {Fθ } of CDFs, each of which possess a density with respect to Lebesgue
measure and is absolutely continuous with respect to F0. The mixing proportion p represents
the proportion of false null sub-hypotheses and is typically ‘small’, reflecting ‘sparseness’.
The connection to sparse regression models is that each Xi could be a test statistic for as-
sessing the significance of the ith regression coefficient in a regression model with a large
number of independent, random predictors as is assumed, for example, in so-called naïve
Bayes classification (see, e.g., Bickel and Levina (2004)). We are interested in power under
sparse local alternatives, so that (p, θ) = (pn, θn) depend on the sample size n, in particular,
we define pn = pn(β) = n−β for fixed β ∈ (1

2 ,1). We then focus on which sequences {θn}
are or are not detectable for each β .



2232 T. PORTER AND M. STEWART

We suppose for simplicity that large Xi provides evidence against the ith null sub-
hypothesis. In this case it also makes sense to only consider families {Fθ } within which each
Fθ is stochastically larger than F0, so that

(2) Fθ(x) ≤ F0(x) for each x and each θ.

It also makes sense to then define p-values via Vi = 1 − F0(Xi). The model (1) for the Xi’s
induces a similar model on the Vi’s where F0 is replaced by the U(0,1) CDF: for 0 < v < 1,

(3) P(V1 ≤ v) = (1 − p)v + pGθ(v),

where

(4) Gθ(v) = 1 − Fθ

[
F−1

0 (1 − v)
]

represents the assumed common distribution of the p-values corresponding to false null sub-
hypotheses. While (3) resembles (1), there is a different stochastic ordering: due to (2),

(5) Gθ(v) ≥ v for each 0 < v < 1 and each θ .

2.2. The global hypothesis test. The first stage in a multiple testing procedure is to test
whether any null sub-hypotheses are false. If not then, the Xi’s are IID F0. The ‘global’
hypothesis test we are interested in is

(6) H0 : P(X1 ≤ x) = F0(x)

for all x. We shall first identify two test statistics in cases where the parameter θ is known,
and then consider generalisations of these to the case where θ is unknown and follow these
with some examples.

2.3. Test statistics for known θ . It is useful to first consider standard test statistics for the
restrictive case where the distribution of each test statistic under its alternative sub-hypothesis
is Fθ for some known θ �= 0 which we can interpret as a ‘common effect size’ across those
tests where the null sub-hypothesis is false. The global hypothesis (6) then reduces directly
to H0 : p = 0.

2.3.1. (Generalised) log-likelihood ratio. The (generalised) log-likelihood ratio test
(GLRT) statistic is given by

(7) Ln = Ln(θ) = sup
0≤p≤1

n∑
i=1

log
{

1 + p

[
dFθ

dF0
(Xi) − 1

]}
.

We use the qualifier ‘generalised’ to indicate that we have maximised over the parameter p.
Some authors reserve the term ‘(log-)likelihood ratio test’ for the Neyman–Pearson (NP) test
of simple null hypothesis versus simple alternative, a distinction which proves convenient
below.

2.3.2. Rao score statistic. The Rao score statistic is the standardised gradient of the log-
likelihood ratio at p = 0:

(8) Un = Un(θ) = (nvθ )
−1/2

n∑
i=1

[
dFθ

dF0
(Xi) − 1

]
,

where

(9) vθ =
∫ (

dFθ

dF0

)2
dF0 − 1,

assumed to be finite (for each θ ).
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The hypothesised value p = 0 lies on the boundary of the parameter space, a violation
of the classical regularity condition for asymptotic likelihood theory. The first asymptotic
analysis for problems of this type is Chernoff (1954). An elementary Taylor series argument
can be used to show that under suitable regularity conditions,

(10) 2Ln = max(0,Un)
2 + op(1).

The max(0, ·) appears because if the gradient of the log-likelihood ratio at p = 0 is negative,
due to concavity the maximum over p in (7) occurs on the boundary giving Ln = 0. Impor-
tantly, only large positive values of Un provide evidence against H0, not large absolute values
as in the regular (nonboundary) case.

2.4. Test statistics for unknown θ . Now we relax the restriction that the distribution un-
der each alternative sub-hypothesis is known, letting θ now denote an unknown (but still
common) effect size across those tests where the null sub-hypothesis is false. However, since
F0 is included in the family {Fθ } we have an identifiability issue: the global null hypothesis

H0 : P(X1 ≤ x) = F0(x)

now corresponds parametrically to either p = 0 or θ = 0 (or both). There is no unique pair
of parameter values (p, θ) corresponding to H0.

2.4.1. GLRT. For θ unknown, the quantity Ln(θ) becomes a profile log-likelihood ratio
and a natural statistic is the full GLRT statistic

(11) sup
θ

Ln(θ).

2.4.2. Maximal score. The generalisation of the Rao score statistic is not straightforward
due to the nonidentifiability problem: at which ‘true’ parameter value do we evaluate the
gradient of the log-likelihood?

Instead, we can appeal to the approximation (10) and, as with (11) above, simply maximise
over θ , giving the maximal score statistic:

(12) sup
θ

Un(θ).

It is important to realise that the op(1) term in (10) is not necessarily uniform in θ , so an
analogous approximation linking (11) and (12) is not available immediately. We refer to
{Un(θ)} as the score process.

2.5. Other statistics. We introduce two other statistics at this point; others will be intro-
duced later in Section 4.1.

2.5.1. Higher criticism. As stated in the Introduction, the higher criticism statistic is

(13) HCn = HCn(In) = sup
x∈Jn

n−1/2
n∑

i=1

1{Xi ≤ x} − F0(x)√
F0(x)[1 − F0(x)] ,

where Jn = {x : 1 − F0(x) ∈ In}. If In = (an, bn), [an, bn), etc. we write HCn(an, bn),
HCn[an, bn), etc. The interval In can be chosen in various ways, and leads to various versions
each of which has its own strengths and weaknesses. Henceforth we denote the unrestricted
version, where In = (0,1), as HCn unless stated otherwise; other variants are introduced and
discussed below in Section 4.1.1.
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There are alternate ways this statistic can be expressed. In particular, writing Fn(v) for the
empirical CDF of the p-values Vi = 1 − F0(Xi), we have

(14) HCn(In) = sup
v∈In

Zn(v),

where

(15) Zn(v) = n1/2[Fn(v) − v]√
v(1 − v)

.

Since the supremum is attained at one of the jump points of Fn(·), that is, (15) with v = V(j)

for some j , we may further restrict the maximisation:

(16) HCn(In) = max{j : V(j)∈In}
n−1/2[ j

n
− V(j)]√

V(j)(1 − V(j))
.

2.5.2. Berk–Jones statistic. Another related statistic we consider is one of those origi-
nally proposed in Berk and Jones (1979), motivated by large deviation theory:

(17) R+
n = sup

t∈(0,1)
Fn(t)≥t

{[
1 − Fn(t)

]
log

(
1 − Fn(t)

1 − t

)
+ Fn(t) log

(
Fn(t)

t

)}
.

We discuss R+
n and other related statistics in Section 4.1.2.

3. Examples and main results. In this section, we present our main technical results on
power under sparse local alternatives under the two important examples of the contamination
models from the previous section. Both have F0 = � as the standard normal CDF but each
has it embedded within a different 1-parameter family {Fθ }. The first is the model originally
studied in Hartigan (1985) and also used to motivate HC in Donoho and Jin (2004).

3.1. Normal location mixture model. Let Fθ(x) = �(x − θ) be the N(θ,1) CDF. Since
large Xi’s are considered significant we restrict the class {Fθ : θ ≥ 0}. Then

dFθ

dF0
(x) = eθx−θ2/2 and the variance at (9) becomes vθ = eθ2 − 1.

Denote the full GLRT statistic for this model as

�n = sup
0≤p≤1

θ≥0

n∑
i=1

log
{
1 + p

[
eθXi−θ2/2 − 1

]}
.

The score process is given by

Un(θ) = n−1/2
n∑

i=1

eθXi−θ2/2 − 1√
eθ2 − 1

;

write the maximal score statistic for this model as

Tn = sup
θ≥0

Un(θ).

Note that the score process {Un(θ)} in this example is the null-standardised EMGF of the
Xi’s. The two statistics �n and Tn are, in the sense of Donoho and Jin (2004), ‘tied’ to this
normal location mixture model and might be expected to perform better than other statistics
like HCn and R+

n .
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FIG. 1. The detection boundary phase diagram with r on the y-axis, β on the x-axis. The detection boundary
for the NP test ρ∗

NP(β) (see (18)) is the solid black line, and the detection boundary for the Bonferroni test,

(1 − √
1 − β)2 is the dashed black line. The Berk and Jones (1979) and HC statistics share the NP detection

boundary, whereas the Bonferroni test does not.

Adapting the work of Ingster (1997, 2001, 2002), they introduced the detection boundary
(see Figure 1):

(18) ρ∗
NP(β) =

⎧⎨⎩β − 1/2 if β ∈ (1/2,3/4),

(1 −
√

1 − β)2 if β ∈ [3/4,1).

In Donoho and Jin (2004) for β ∈ (1
2 ,1), the parametrisation θn = √

2r logn was used.
The first proposition below contains results from various papers already cited.

PROPOSITION 3.1. Under the local alternative (pn = n−β, θn = √
2r logn):

1. if r < ρ∗
NP(β), all level-α tests have limiting power α (Ingster (1997));

2. if r > ρ∗
NP(β), level-α tests based on HCn (or any of its variants described in Sec-

tion 4.1.1) or R+
n have limiting power 1 (Donoho and Jin (2004)).

Thus in a sense HCn is optimal in that it ‘attains’ this detection boundary. Furthermore,
Donoho and Jin ((2004), page 965) states ‘it is not clear that [the test based on �n above]
can be relied on to detect subtle departures from H0’. These, together with the fact that
HCn is not ‘tied’ to the model gives an impression that HCn is ‘uniformly better’ than �n:
it has this particular optimality property but is perhaps less sensitive to model assumptions.
Analogous remarks apply when replacing HCn with R+

n . Our second proposition provides a
more detailed and balanced picture of the situation.

PROPOSITION 3.2. Under the local alternative,(
pn = n−β, θn =

√
2ρ∗

NP(β) logn + εn

)
,

there exist a constant Cβ and sequences εn0 ≤ εn1, εn2 ≤ εn3 ≤ εn4 satisfying:

• εnj ∼ log log logn for j = 0,1;
• εnj ∼ Cβ log logn for j = 2,3,4
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such that:

1. for β ∈ (1/2,3/4) and εn = εn0, the limiting power of all level-α tests is α;
2. for β ∈ (1/2,3/4) and εn = εn1, the limiting power of the level-α test based on �n

tends to 1;
3. for β ∈ (3/4,1) and εn = εn2 the limiting power of all level-α tests is α;
4. for β ∈ (3/4,1) and εn = εn3, the limiting power of the level-α test based on �n tends

to 1;
5. for β ∈ (1/2,1) and:

(a) εn = εn3 the limiting power of the level-α test based on HCn tends to α;
(b) εn = εn4 the limiting power of the level-α test based on HCn tends to 1.

Strictly speaking, we should say ‘all adaptive level-α tests’ in statements 1 and 3; power
could be improved by incorporating knowledge of the alternative parameter values. However,
the parameters p and θ are unknown so all tests under consideration are ‘adaptive’ in the
sense of Ingster (2001, 2002); see Section 4.3 below for further explanation.

Including the higher-order term εn has allowed us to see a difference in performance be-
tween �n and HCn here in the model to which it is ‘tied’. Statements 1 and 3 follow from
Ingster (2001), the remaining statements follow from results in Section 4.3. Note that �n

achieves the best possible rates in both cases. There is a gap in rates for β ∈ (1
2 , 3

4) between
�n and HCn but not for β ∈ (3

4 ,1); however, note also that statements 4 and 5(a) are under
the same sequence εn3 so we can still distinguish between the two tests in this case. We see
in Section 4.3 that Tn also achieves the same rates as �n.

Thus �n has a slight edge in performance in this, the model for which we would expect it
to do better. We see an interesting reversal in the next example.

3.1.1. Implementation and minor modifications. We can modify Tn, while retaining all
of the asymptotic and empirical results in this paper, by maximising over a sieve 	n ⊆ 	

that is growing at a sufficient rate. One such example is 	n ≡ [0,X(n)/2], or alternatively we
can replace X(n)/2 with its expectation under H0 given by 0.5�−1(1 − γ /n), where γ is the
Euler–Mascheroni constant and �−1 is the standard normal quantile function. We justify this
by considering the following approximation to Un(θ) provided by

(
1 − e−θ2)1/2

Un(θ) = e− θ2
2√
n

n∑
i=1

(
eθXi−θ2/2 − 1

)
= Un(θ)

{
1 + o

[
(log logn)−1]}

uniformly in θ ≥ log log logn. Bickel and Chernoff (1993) determined that the limiting dis-
tribution for the supremum of the approximating process is the same as that for Tn. Moreover,
Bickel and Chernoff (1993) showed that the maximiser of the approximating process occurs
in the range θ ∈ [0,X(n)/2] with probability tending to one. There is no asymptotic loss of
power (to the degree required for our results to be unchanged) by maximising Un(θ) over
	n ≡ [0,X(n)/2].

A further simplification is to restrict the maximisation over only values of θ equal to Xi-
values. That is, writing Un(θ) = Un(θ;X1, . . . ,Xn), consider the statistic

T̃n = max
i=1,...,n

Un(Xi;X1, . . . ,Xn).

While avoiding the need to use numerical optimisation, this can be slower to evaluate that
Tn, but also still possesses all the relevant theoretical properties enjoyed by Tn. First, the
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behaviour under the null hypothesis is controlled, as the Bickel and Chernoff (1993) sequence
of critical values is an upper bound on the sequence of critical values for T̃n. Second, it
suffices for the higher-order power analysis to show that there exists a sequence dn diverging
to infinity slowly enough—of order log log log(n) or log log(n) in this paper—so that the
arguments that maximise Tn and T̃n, respectively, differ by op(dn).

3.2. Truncated normal mixture model. Let

Fθ(x) = (1 − θ)−1�(x)1
{
x ≥ �−1(θ)

}
denote the standard normal CDF truncated below the θ -quantile (see Figure 2 for an example
of the general mixture model (1) for this choice of Fθ ).

Then

dFθ

dF0
(x) = (1 − θ)−11

{
x ≥ �−1(θ)

} = (1 − θ)−11
{
�(x) ≥ θ

}
,

the variance at (9) becomes

vθ = (1 − θ)−1θ,

the full GLRT statistic takes the form

sup
θ,0≤p≤1

n∑
i=1

log
{
1 + p

[
(1 − θ)−11

{
�(Xi) ≥ θ

} − 1
]}

and the score process is given by

Un(θ) = n−1/2
n∑

i=1

1{�(Xi) ≥ θ} − (1 − θ)√
θ(1 − θ)

.

FIG. 2. The solid curve is the normal location mixture density with parameters p = 0.1 and θ = 4. The dashed
curve is the truncated normal mixture density with parameters p = 0.0623 and θ = 3.6869 and is the closest such
density to the curve (in Kullback–Liebler divergence).
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Note that {Un(θ)} is the null-standardised empirical CDF of the p-values evaluated at 1 − θ .
In particular, for this model the maximal score statistic is the HC statistic

sup
θ

Un(θ) = HCn.

Furthermore, we show below in Theorem 4.14 that the full GLRT statistic here is nR+
n , n

times the Berk–Jones statistic.
Thus the statistics R+

n and HCn are ‘tied’ to the truncated normal mixture model in exactly
the same way that �n and Tn are tied to the normal location mixture model. Our observation
is not a criticism of any of these statistics; instead, it is more a statement that one should be
wary of finding any fo these statistics less desirable by association to a parametric model.

Note, too, that expressed in terms of the p-values, the general model (3) reduces to

(19) P(V1 ≤ v) = (1 − p)v + pv(1 − θ)−11{0 < v ≤ 1 − θ},
that is a uniform scale mixture; the distribution Gθ in (4) of p-values corresponding to false
hypotheses is U(0,1 − θ).

We have an analogous proposition outlining the detection boundary for this model. We
express it in terms of all 4 statistics: HCn, R+

n above, as well as the statistics �n and Tn

motivated by the previous example.

PROPOSITION 3.3. Under the local alternative (pn = n−β, θn = 1 − n−r ), for some
(r, β) ∈ (0,1) × (1

2 ,1):

1. any level-α test has limiting power α if r < 2β − 1;
2. level-α tests based on any of the statistics HCn, R+

n , �n and Tn all have limiting power
1 if r > 2β − 1.

Again, this detection boundary result does not provide enough detail to distinguish be-
tween these tests. We might suspect that since HCn and R+

n are ‘tied’ to this model, they
might do better than �n and Tn. This is suggested by the next proposition.

PROPOSITION 3.4. Let p = pn = o(n−1/2) and np → ∞. There is a sequence cn ∼√
2 log logn and a constant K > 0 such that if:

1.
√

np
√

(1 − θ)−1 − 1 − cn → ∞, the limiting power of the level-α test based on HCn

is 1;
2.

√
np

√
(1 − θ)−1 − 1 − cn = o(1/cn), the limiting power of the level-α test based on

HCn is α;
3. if

√
np

√
(1 − θ)−1 − 1 ≥ K(logn)1/4√log logn, the limiting powers of the level-α

tests based on �n and Tn are both 1.

Statements 1 and 2 follow from Proposition 4.18 (with cn given by cHC
n there) and state-

ment 3 follows from Remark 4.19.

4. Detailed technical arguments. In this section, we provide a series of theoretical re-
sults which include derivations of the main results in Section 3. We present additional statis-
tics, derive all limiting null distributions and then provide results on power under the two
mixture alternatives introduced in Section 3.

The proofs of these results appear in the Supplementary Material. Some key features of
the methods used are very delicate approximation of the Gaussian tail using the Birnbaum–
Sampford inequality, careful extreme-value expansions of upper order statistics and delicate
asymptotic analysis of the mean and variance functions of certain empirical processes.
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4.1. Other statistics.

4.1.1. Variants of higher criticism. According to Donoho and Jin (2004, 2015), Tukey
(1976, 1989, 1994) suggested that a ‘second-level significance’ test based on standardising
Fn(α) (the proportion of p-values below α) and comparing to a standard normal quantile is
one way to assess the significance of a large body of independent p-values, and can be used
to test our global hypothesis. Donoho and Jin (2004) extended this idea by regarding α as a
parameter, considering the whole empirical process one obtains by allowing α to vary and
then taking the supremum as in (14).

As foreshadowed above in Section 2.5.1, there is a whole class of higher criticism statistics,
based on restricting the interval In over which the supremum is taken in (13), (14) or (16).
While the primary focus of our theoretical analysis is HCn = HCn(0,1), we also describe two
other variants (introduced in Donoho and Jin (2004)) which we consider in our simulations
in Section 5. Our theoretical results for HCn extend to these variants with little difficulty.

Following Donoho and Jin (2004), for a fixed 0 < α0 < 1 we define the two variants

HC∗
n(α0) = HCn(0, α0)

and

HC+
n (α0) = HCn

(
n−1, α0

)
.

REMARK 4.1 (Choice of α0). We note that Donoho and Jin (2004, 2015) set α0 to 1/2.
There are good reasons for doing so (see Section 5.2.5), as there is the potential for a loss
of power if the true alternative is a normal location under the dense β regime (β < 1/2) for
α0  1/2.

We henceforth use HC∗
n and HC+

n to denote these variants with α0 = 1
2 .

4.1.2. Jager–Wellner statistics. Donoho and Jin (2015) refer to several ‘statistics with
higher criticism-like construction’ that also attain the detection boundary of Proposition 3.1.
We will examine two such statistics in more detail, namely the Berk and Jones (1979) statis-
tic R+

n (see (17)) and the Jager and Wellner (2007) family of supremum-type ϕ-divergence
statistics S+

n (s) for some s ∈ [−1,2]. The latter family of statistics includes (upon re-scaling)
R+

n and the HC statistics (see Jager and Wellner (2007)).
The maximisation in (17) is restricted to Fn(t) > t for obvious reasons: we are only inter-

ested in one-sided alternatives, where we observe more p-values than expected under H0. It
is perhaps not surprising (given its similarity in construction to HCn) that R+

n also attains the
NP detection boundary under the normal location mixture alternative (see Donoho and Jin
(2004)).

There are otherways to ‘standardise’ Fn(α). We can observe that R+
n is derived from a

KL divergence from one Bernoulli random variable to another. Similarly HCn is derived
from a divergence between two Bernoulli random variables, as we can interpret Z2

n(α) as
a re-scaled χ2 divergence from one Bernoulli to another. Jager and Wellner (2007) recog-
nised this, and introduced a family of statistics constructed with different divergences from a
Bernoulli(Fn(α)) random variable to a Bernoulli(α) random variable.

DEFINITION 4.2 (Jager and Wellner (2007)). The S+
n (s) statistic is given by

S+
n (s) =

⎧⎪⎪⎨⎪⎪⎩
sup

t∈[0,1]
K+

s

(
Fn(t), t

)
if s ∈ [1,2],

sup
t∈[V(1),V(n)]

K+
s

(
Fn(t), t

)
if s ∈ [−1,1),
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where K+
s (u, v) = vϕs(u/v)+ (1−v)ϕs((1−u)/(1−v)) when u ≥ v, but is zero otherwise,

and

ϕs(x) =

⎧⎪⎪⎨⎪⎪⎩
(
1 − s + sx − xs)/[

s(1 − s)
]

if s �= 0,1,

x
[
log(x) − 1

] + 1 if s = 1,

log(1/x) + x − 1 if s = 0.

Note that ϕs is not the Gaussian density function φ.

REMARK 4.3 (Relation to HCn and R+
n ). The statistics HCn and R+

n are recovered from

S+
n (s) by the transformations HCn =

√
2nS+

n (2) and R+
n = S+

n (1).

This family of statistics is intimately tied to HCn. We note that Jager and Wellner (2007)
used several connections to HCn to derive the limiting behaviour of Sn(s) (which is a two-
sided variant of S+

n (s) without the restriction u ≥ v on K+
s (u, v) in Definition 4.2) under

H0 and its respective power, where they show that it also attains the detection boundary of
Proposition 3.1 under the normal location mixture alternative. We will ultimately use this link
to derive our results for S+

n (s).
It is worth mentioning that there are several other statistics that also attain the detection

boundary of Proposition 3.1. They include: the other Berk and Jones (1979) statistic M+
n in

Gontscharuk and Finner (2017) and Moscovich, Nadler and Spiegelman (2016); the Csörgő
et al. (1986) standardisation of HCn in Stepanova and Pavlenko (2018); the average likelihood
ratio test in Walther (2013), which is a compromise between HCn and R+

n ; the cumulative
sum test in Arias-Castro and Wang (2017); and the order statistic test in Laurent, Marteau
and Maugis-Rabusseau (2016). Determining higher-order behaviour for these statistics in a
similar vein to our work is an interesting avenue of future research, and is beyond the scope
of this paper.

4.2. Limiting null distributions. Under both examples in Section 3, the null distribution
is N(0,1). The nonregular limiting null behaviour of �n was first pointed out in Hartigan
(1985) where an approximation like (10) was established between the profile log likelihood
Ln(θ) and a self-normalised version of the process {Un(θ)} implying that for any finite set
{θ1, . . . , θk},

max
1≤j≤k

Un(θj )

is an asymptotic lower bound for
√

2�n. Furthermore, he conjectured that �n =
Op(log logn). The results in Bickel and Chernoff (1993) imply that under the null hypothesis
the limiting distribution of Tn = supθ Un(θ) is of Gumbel type:

lim
n→∞P

(
Tn ≤

√
log log(n) + x − log(

√
2π)√

log log(n)

)
= exp

(−e−x)
.

Liu and Shao (2004) went on to show that the approximation (10) is suitably accurate where
both the score process {Un(θ)} and profile log-likelihood Ln(θ) are maximised, so that �n =
T 2

n /2 + op(1), implying that

lim
n→∞P

(
�n ≤ log log(n)

2
+ x − log(

√
2π)

)
= exp

(−e−x)
,

which confirmed Hartigan’s conjecture.
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4.2.1. Higher criticism. Jaeschke (1979) showed that the limiting null distribution of
HCn is

lim
n→∞P

(
HCn ≤

√
2 log log(n) + 2x + log log log(n) − log(4π) + o(1)√

8 log log(n)

)
= exp

(−e−x)
,

which is of Gumbel type. Its derivation involves several key steps which we outline in Sec-
tion 4.2.3 below.

REMARK 4.4 (The HCn variants). The HC+
n and HC∗

n variants both share the same dis-
tribution as HCn. (see Shorack and Wellner (1986), Donoho and Jin (2004), Stepanova and
Pavlenko (2018)).

4.2.2. The other statistics. Berk and Jones (1979) argued that a two-sided variant of
nR+

n , where the restriction Fn(t) ≥ t is dropped, is well approximated (see Wellner and
Koltchinskii (2003), who correct an error in the Berk and Jones (1979) proof) by (HCts

n )2/2,
where HCts

n = supt |Zn(t)| (see (15)) is a two-sided variant of higher criticism. The limiting
distribution (also of Gumbel type) would then follow from results in Jaeschke (1979). One
benefit of R+

n over HCn is better finite-sample properties (Walther (2013), Li and Siegmund
(2015)).

REMARK 4.5 (Limiting distribution of HCts
n , see Jaeschke (1979)). The limiting distri-

bution of HCts
n is given by

lim
n→∞P

(
HCts

n ≤
√

2 log log(n) + 2x + log log log(n) − log(π) + o(1)√
8 log log(n)

)
= exp

(−e−x)
.

This result was generalised by Jager and Wellner (2007), who argued that a two-sided variant
of nS+

n (s), where the restriction K+
s (u, v) = 0 for u < v in Definition 4.2 is dropped, shares

the same limiting distribution as (HCts
n )2/2.

4.2.3. Slow convergence of HC in finite samples. The slow convergence of HCn in finite-
samples is frequently highlighted (see Donoho and Jin (2004), Jager and Wellner (2007),
Walther (2013), Gontscharuk, Landwehr and Finner (2015), Li and Siegmund (2015)).

It is helpful to explain some theoretical reasons for why this is the case, which in-
volves consideration of the key steps required to derive the limiting distribution. First,
we approximate Zn(t) (a standardised empirical process) with a Gaussian process for
t ∈ [dn/n,1 − dn/n], where dn diverges to infinity at a sufficiently fast rate. The maxi-
mum of this Gaussian process is known to have a limiting distribution of Gumbel type (see
Darling and Erdös (1956) or Leadbetter and Rootzén (1988)). Jaeschke (1979) showed that
asymptotically the maximum of this Gaussian process dominates the maximiser of Zn(t) for
t /∈ [dn/n,1 − dn/n], so HCn shares the same limiting distribution.

The derivation involves several approximations and asymptotic results. First, the rate of
convergence for the maximum of the approximating Gaussian process to converge to its lim-
iting distribution is no faster than log log(n)−1 (see Hall (1991), Theorem 2.1). The sec-
ond asymptotic result, where the maximiser for t ∈ [dn/n,1 − dn/n] dominates that for
t /∈ [dn/n,1 − dn/n], is more problematic. We borrow an argument from Donoho and Jin
(2004) to show this. Let V(1) denote as the smallest p-value, then we can show that

P
(
Zn(V(1)) > x

) d→ 1 − exp
(−(√

4 + x2 − x
)2

/4
)
,
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FIG. 3. The ratio P(Zn(V(1)) > cHC
n (α))/α, where cHC

n (α) is the Jaeschke (1979) sequence of α-level critical
values, is plotted against log log(n). The line represents where the ratio is one. The curves from top to bottom
correspond to α = 0.002,0.005,0.01,0.05 and 0.10, respectively. The α = 0.05 curve crosses the curve when
log log(n) ≈ 5.9, so n ≈ 3.4 × 10158 (this is a very large number).

which behaves like x−2[1+o(1)] for large x. The effect of this algebraic tail can be observed
in Figure 3, where we plot the probability that Zn(V(1)) exceeds the Jaeschke (1979) α-level
sequence of critical values. We can see that the probability exceeds α in a more dramatic
fashion as α gets smaller. This means that the behaviour of Zn(t) for t /∈ [dn/n,1 − dn/n] is
still a prominent factor in determining finite-sample Monte Carlo critical values for HCn.

The motivation behind the HC+
n variant is clear; it seeks to avoid such problems for small

t under H0. However, as we shall see in Section 5, there is a trade-off in power when the now
‘ignored’ V(1) largely determines the power.

4.3. Power under the normal location mixture alternative. As part of a wider study on
certain signal detection problems Ingster (1997, 2001, 2002) studied a ‘symmetrised’ version
of our normal location mixture model:

(1 − p)F0(x) + p

2
Fθ(x) + p

2
F−θ (x),

for 0 ≤ p ≤ 1, θ ≥ 0 and Fθ the N(θ,1) CDF. All relevant results in this work can be re-
formulated with minor changes to apply to our ‘un-symmetrised’ normal location mixture
model given by

(1 − p)F0(x) + pFθ(x),

where Fθ(x) = �(x − θ), θ ≥ 0, which we assume to be the true distribution of the Xi’s for
the rest of this section.

Ingster (1997) studied the large-sample properties of the nonadaptive Neyman–Pearson
(NP) test under sparse local alternatives formulated as in Proposition 3.1, whence we obtain
Statement 1. Statement 2 is taken directly from Donoho and Jin (2004).

In Ingster (2001) adaptive tests, applicable when p and θ are both unknown, were con-
sidered and an upper bound to power was derived providing statements 1 and 3 of Proposi-
tion 3.2 (see Ingster (2001), Theorem 3.1). The following theorem provides Statements 2 and
4 of Proposition 3.2.
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THEOREM 4.6. There exists a sequence un that satisfies

un ∼

⎧⎪⎪⎨⎪⎪⎩
log log log(n) if β ∈ (1/2,3/4),

(1 − √
1 − β)2

√
1 − β

log log(n) if β ∈ [3/4,1)

so that the limiting power of the test based on �n is one when εn ≥ un.

The next theorem provides analogous results for the maximal score statistic Tn.

THEOREM 4.7. There exists a sequence un that satisfies

un ∼

⎧⎪⎪⎨⎪⎪⎩
log log log(n) if β ∈ (1/2,3/4),

2
(1 − √

1 − β)2
√

1 − β
log log(n) if β ∈ [3/4,1)

so that the limiting power of the test based on Tn is one when εn ≥ un.

The finite-sample simulations (to appear in Section 5) lead us to conjecture that the con-
stant 2 under β ∈ [3/4,1) in Theorem 4.7 can be relaxed to match Theorem 4.6.

The following two theorems give us statements 5(a) and 5(b) of Proposition 3.2, respec-
tively.

THEOREM 4.8. There exists a sequence qn that satisfies

qn ∼ max
(

(1 − √
1 − β)2

√
1 − β

; 1

2

)
log log(n)

so that the limiting power of HCn tends to α if εn ≤ qn.

THEOREM 4.9. There exists a sequence un that satisfies

un ∼ max
(

(1 − √
1 − β)2

√
1 − β

; 1

2

)
log log(n)

so that the limiting power of HCn tends to one if εn ≥ un.

COROLLARY 4.10 (Corollary to Theorems 4.8 and 4.9). The results in Theorems 4.8
and 4.9 also apply to HC+

n and HC∗
n for any fixed α0.

REMARK 4.11. Note that 1/2 ≥ (1 − √
1 − β)2/

√
1 − β if and only if β ≤ 3/4, which

corresponds to ρ∗
NP(β) = β − 1/2.

An interesting question is whether any member of the ϕ-divergence statistics can improve
on HCn when β ∈ (1/2,3/4), as it is stated in Jager and Wellner ((2007), pages 2030–2031)
that ‘the different Poisson boundary behaviours for s < 0 and s ≥ 1 suggest that the [two-
sided variant of S+

n (s)] with s ≥ 1 are geared toward heavy tails, while the statistics with
s ≤ 0 are geared more toward light tails’. There are also simulation studies (see Walther
(2013), Li and Siegmund (2015) and Moscovich, Nadler and Spiegelman (2016)) that suggest
statistics such as R+

n , which recall is a particular member of S+
n (s), has greater power than

HCn when β < 3/4.
The following theorem shows that this is not possible, and despite the additional flexibility

in selecting the s, all of the S+
n (s) statistics suffer a loss of power relative to the GLRT and

score test when β ∈ (1/2,3/4).
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THEOREM 4.12. There exists a sequence qn that satisfies

qn ∼ max
(

(1 − √
1 − β)2

√
1 − β

; 1

2

)
log log(n)

so that the limiting power of a modified version of S+
n (s), where the underlying process is

maximised with the added restriction Fn(t) ≥ 1/2, is α if εn ≤ qn.

The power deficiency of HCn is shared by S+
n (s) at the level of detail that we have anal-

ysed, and can be summarised by the following corollary.

COROLLARY 4.13 (Corollary to Theorem 4.12). Suppose that β ∈ (1/2,3/4) and α =
αn tends to zero slowly enough. There are choices of θn so that:

1. the power of the homoscedastic normal GLRT and maximal score test tend to one;
2. the power of the modified S+

n (s) with the restriction detailed in Theorem 4.12 tends to
zero for each s ∈ [−1,2].

4.4. Power under the truncated normal mixture alternative. We now provide analogous
theoretical results which imply Propositions 3.3 and 3.4. It is convenient to change notation
slightly. We assume for the rest of this section that the p-values Vi have common uniform
scale mixture distribution

(20) (1 − q)U(0,1) + qU(0, ν)

for 0 < q , ν < 1. Thus we replace p and θ at (19) in Section 3.2 with q and 1−ν, respectively.
This will facilitate our theoretical developments below. Our first theorem below is proved in
the Supplementary Material.

THEOREM 4.14. The full GLRT statistic for testing H0 : Vi
d= U(0,1) against H1 : Vi

d=
(1 − q)U(0,1)+ qU(0, ν) where (q, ν) ∈ (0,1)2 is the Berk and Jones (1979) statistic nR+

n .

Our next theorem relates to the NP test between the U(0,1) global null hypothesis and
the uniform scale mixture alternative (20) above. It requires knowledge of the alternative
parameters but is the most powerful test. It provides analogues of the key results from Ingster
(1997) for the normal location mixture.

THEOREM 4.15 (NP test). Suppose that q = o(n−1/2) and q = o(ν), then the NP test
has limiting power α if nq2ν−1 = o(1) and limiting power one if nq2ν−1 diverges to ∞.

COROLLARY 4.16 (The NP detection boundary). Let q = n−β and ν = n−r for some
(r, β) ∈ (0,1) × (1/2,1). The NP test has limiting power α if r is a fixed point satisfying
r < 2β − 1, and has limiting power one if r is a fixed point satisfying r > 2β − 1.

We provide the following result analogous to Donoho and Jin ((2004), Theorem 1.4) which
we use to illustrate an interesting property of higher criticism in this context.

PROPOSITION 4.17. Let q = o(n−1/2) and nq → ∞. If qν−1 = o(1), then the limiting
powers of the minimum p-value test (Bonferroni test) and the Benjamini and Hochberg (1995)
FDR procedure are both α. If qν−1 diverges to ∞, then the limiting powers of the minimum
p-value test (Bonferroni test) and the Benjamini and Hochberg (1995) procedure are both
one.
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PROPOSITION 4.18. Let q = o(n−1/2) and nq → ∞. The limiting power of HCn is one
if

√
nq

√
ν−1 − 1 − cHC

n diverges, and is α if
√

nq
√

ν−1 − 1 − cHC
n = o(1/cHC

n ), where cHC
n

is a sequence of critical values for HCn.

It follows from Proposition 4.17 that a Donoho and Jin (2004)-style detection boundary for
the Bonferroni test is β , so that the limiting power is one (α, resp.) if r > β (r < β , resp.) for
any fixed r . The Bonferroni (and FDR procedures) do not ‘attain’ the NP detection boundary
for any β ∈ (1/2,1); for each β ∈ (1/2,1) we can find r ∈ (2β − 1, β) such that the limiting
power of the NP test is one, whereas the limiting power of the Bonferroni test is α.

The same is not true for HC, which does ‘attain’ the NP detection boundary (see Propo-
sition 4.18). The implication of both Propositions 4.17 and 4.18 is that power is not largely
determined by the minimum p-value V(1). Finally, the following remark gives us Statement
3 in Proposition 3.4.

REMARK 4.19. The (normal location mixture) maximal score test based on Tn and full
GLRT based on �n share the NP detection boundary. It is possible to modify the proof of
Theorem 4.7 to show that a sufficient condition for the limiting power of both tests to be one
is

√
nq

√
1

ν
− 1 ≥ K log(n)1/4

√
log log(n),

for some K > 0. A proof of this appears in the Supplementary Material.

5. Simulations.

Outline. We explore finite-sample empirical behaviour of �n, Tn, R+
n , HC∗

n (with α0 =
1/2) and HC+

n (with α0 = 1/2), but note that HCn has almost identical behaviour to HC∗
n in

all cases.
In the following sections, the test statistics are each sampled 104 times for each sample

size (102, 103, 104 and 105) under the null hypothesis in Section 5.1, normal location mix-
ture alternative in Section 5.2.1, and truncated normal mixture alternative in Section 5.2.2.
We calculate the empirical power of a test as the proportion of times the sampled statistics
exceeded their respective Monte Carlo calibrated critical value under the null.

We represent the results graphically using receiver operator characteristic (ROC) curves,
which plot the power as a function the level, but we restrict the level to the range (0,0.1).
Below we highlight the main patterns using a small selection of ROC curves; the full set can
be found in the Supplementary Material.

5.1. Behaviour under the null hypothesis. Consider the following Monte Carlo calibrated
critical values for each statistic in Table 1 at the 5% and 1% significance levels.

REMARK 5.1 (Decreasing critical values for Tn). The asymptotic critical values for Tn

appear to be decreasing as n increases at the 1% significance level, which despite its paradox-
ical nature is not a mistake. The asymptotic critical values can be plotted against n to observe
that the asymptotic critical values only start to increase for some n � 109.

Main observation. At least for the sample sizes that we analysed, it seems that the asymp-
totic critical values can generally be used instead of the Monte Carlo critical values for �n.
The resultant procedure is conservative, so that if H0 is rejected at the α-level using the
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TABLE 1
The Monte Carlo critical values with the asymptotic Gumbel distribution critical values in parentheses. The

asymptotic results for HC+
n are excluded, which are the same as that for HC∗

n

Sample size R+
n HC∗

n HC+
n �n Tn

5% significance level

100,000 5.65 (4.59) 4.44 (3.18) 3.29 2.23 (2.70) 2.19 (2.51)
10,000 5.29 (4.32) 4.69 (3.11) 3.20 2.09 (2.59) 2.16 (2.48)

1000 5.03 (3.97) 4.92 (3.00) 3.17 2.08 (2.45) 2.20 (2.45)
100 4.61 (3.44) 4.77 (2.84) 3.01 1.95 (2.24) 2.22 (2.43)

1% significance level

100,000 7.33 (6.22) 9.13 (3.92) 3.93 3.79 (4.33) 3.17 (3.55)
10,000 7.01 (5.95) 9.53 (3.88) 3.93 3.62 (4.22) 3.28 (3.58)

1000 6.86 (5.60) 10.44 (3.83) 3.97 3.57 (4.08) 3.39 (3.63)
100 6.25 (5.07) 10.48 (3.78) 3.86 3.42 (3.87) 3.55 (3.75)

asymptotic critical values, then it will also be rejected at the α-level if the Monte Carlo crit-
ical values were used instead. If �n with the α-level asymptotic critical values fail to reject
H0, then the Monte Carlo critical values are perhaps needed to verify this.

This is a major benefit over the HC and Berk and Jones (1979) statistics, which are typ-
ically anti-conservative. Our results reaffirm existing results (see Donoho and Jin (2004),
Walther (2013) and Li and Siegmund (2015)) on the empirical heavy tail of HC∗

n. We de-
scribed this theoretically in Section 4.2.3; however, the influence of the heavy tail is unmis-
takable for the smaller significance levels, where the critical values of HC∗

n are dispropor-
tionately larger than say that of HC+

n , which possesses attenuated tails.

REMARK 5.2 (A similar observation for Tn). We can also use the asymptotic critical
values instead of the Monte Carlo ones for Tn with the caveat that the resulting procedure may
be anti-conservative for small α-levels. In particular, when α is smaller than 0.0072 when n =
102 or n = 103, and 0.005 when n = 104 or n = 105. This can be seen in the Supplementary
Material. However, a larger simulation study is required to assess this properly.

5.2. Behaviour under mixture alternatives. We simulated statistics for three alternatives
104 times for each different parametrisation.

5.2.1. The normal location mixture. We simulated the normal location mixture alterna-
tive over a grid β ∈ {0.55,0.60, . . . ,0.95},

(21)
θ2 = θ2

C = 2ρ∗
NP(β) log(n) + εn

with εn = C max
(
1/2;ρ∗

NP(β)(1 − β)−1/2)
log log(n)

and n = 100,1000,104,105. We set C = 2 to provide HC with near ‘ideal’ asymptotic
power (cf. Theorems 4.8 and 4.9, where C = 1 + o(1)). See Figure 4 for ROC curves for
β = 0.6,0.7,0.8,0.9 and n = 105; the remaining curves can be found in the Supplementary
Material.

5.2.2. The uniform scale mixture. We simulated the uniform scale mixture alternative
over a grid of q = n−β for β ∈ {0.55,0.60, . . . ,0.95} with ν = n1−2β/(8 log log(n)) and
n = 100,1000,104,105. We transformed the statistics from the p-value scale to the z-score
scale using �−1(1 − ·) (giving the truncated normal mixture) to simulate �n and Tn. See
Figure 5 for ROC curves for β = 0.6,0.7,0.8,0.9 and n = 105; the remaining curves can be
found in the Supplementary Material.
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FIG. 4. The graphs above plot power against level, for levels 0 < α < 0.1 for each test, with data simulated from
a normal location mixture alternative. The solid curve is the maximal EMGF statistic Tn, the cyan double-dashed
is the full GLRT statistic for the normal location mixture model �n, the shorter-dashed is the Berk–Jones statistic
R+

n , the long-dashed is the unrestricted HC statistic HC∗
n and the dot-dashed is the restricted HC statistic HC+

n .

5.2.3. The uniform-prior normal location mixture. Following a suggestion of a referee
we also examined a third mixture alternative scenario where the contaminating normal loca-
tion shift changes from observation to observation. Thus θ1, . . . , θn are i.i.d. U [θC, θD] dis-
tribution, where θ2

C is as defined at (21) in Section 5.2.1 above; I1, . . . , In are iid B(1, n−β);
conditionally, Xi |(θi, Ii) ∼ N(Iiθi,1). Unconditionally, the Xi’s are i.i.d. with density

(
1 − n−β)

φ(x) + n−β

θD − θC

∫ θD

θC

φ(x − θ) dθ.

We set C = 2 and D = 3 so that the contaminating means were at least as large as under the
normal location mixture alternatives in Section 5.2.1. The general patterns of behaviour were
mostly the same as in that case. See Figure 6.

REMARK 5.3. We observed that a test that rejects H0 when the sample maximum X(n)

is large (Bonferroni test) has near identical power to HC∗
n, and is excluded from the plot for

clarity.

5.2.4. Observations. The empirical performance of HC+
n and HC∗

n is contingent on the
influence of the maximal extreme-order statistics on the power. The maximal extreme-order
statistics are highly influential when β > 3/4, but less so when β < 3/4. The attenuation of
these extreme-order statistics in the definition of HC+

n , also attenuates the power of HC+
n

when these extreme-order statistics are influential; for example, when β > 3/4 under the
normal location mixture alternative.
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FIG. 5. The graphs above are the same as for Figure 4 except the data are simulated from a uniform
scale/truncated normal mixture alternative.

FIG. 6. The graphs above are the same as for Figure 4 except the data are simulated from a uniform
scale/truncated normal mixture alternative.
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However, the attenuation of the same extreme-order statistics can improve the power if
these statistics do not largely determine the power. This is the case for all β ∈ (1/2,1) under
the uniform scale mixture alternative, and for all β ∈ (1/2,3/4) under the normal location
mixture alternative. Under these conditions with small α-levels, the extreme-order statistics
largely determine the behaviour of HC∗

n. The asymptotics for HC have not come into effect,
and we found that it is not clear that HC∗

n is empirically better than the Bonferroni test.
The implication of the differing powers of HC+

n and HC∗
n presents a dilemma. We do not

know β and do not know whether the extreme-order statistics determine the power, but if we
use the wrong variant of HC then the power can be very poor compared to other methods.

Key messages. The culmination of our simulation studies leads us to the following rec-
ommendations for using HC:

1. If you decide to use HC, then you should use the attenuated variant HC+
n (or something

similar).
2. If the underlying process for HC+

n is maximised near 1/n, then other more sophisticated
methods, such as the normal location mixture score and GLRTs, should be considered instead.

In the case of the second point above, there has to be some care taken when using multiple
procedures as the α-levels for the procedures will need to be adjusted.

5.2.5. The dense regime. A higher-order analysis of HC when β < 1/2 is currently un-
known, but we hope to provide some insight. The variance of Zn(t) is 1 + op(1), and so its
expected value largely determines the power, which is maximised in some neighbourhood of
t = 1/2. Therefore, the power of HCn is approximately

P

(
nFn(1/2) >

n

2
+

√
n log log(n)[1 + o(1)]

2

)
,

which tends to α (or one) when θn
(>)
<

√
π

√
log log(n)nβ− 1

2 . There would be a loss of power,
which would also apply to R+

n and S+
n (s) by an extension of Theorem 4.12, when compared

to the correctly specified parametric tests.
The definitions of HC+

n and HC∗
n require a choice of α0. We refer the reader to Remark 4.1

and note that unlike the sparse regime with β > 1/2, the choice of α0 is important under the
dense regime. The HC process seems to be maximised in some neighbourhood of t = α0 if
α0  1/2. This suggests that there may be a potential loss of power if α0 is too small, which
perhaps offsets a potential gain in power under the sparse regime for small α0.

6. Discussion. HC has been recommended and used in a large variety of situations, al-
most all motivated by an underlying need to detect a sparse normal mixture.

In the original paper (Donoho and Jin (2004)), it was suggested that HC was preferable
to the parametric ‘tailor-made’ procedure (normal location mixture GLRT) for three reasons,
namely:

1. it was not clear that the GLRT works well;
2. the procedure in Ingster (2002) has good power, but is delicate and complex; and
3. HC is simple, intuitive, and not tied to a ‘narrow’ model.

Our results show that the GLRT possesses many of the desirable properties of Ingster’s
delicate complex procedure, but is simpler to implement. Ingster’s optimal procedure involves
constructing a Bonferroni test using approximate p-values based on values of a score process
evaluated over a progressively finer grid as n diverges to infinity. This construction suggests
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also considering the maximiser of the score process Tn as a test statistic, which shares many
of the desirable properties of the GLRT; the version T̃n which restricts the maximisation to
Xi-values seems particularly appealing due to its ease of implementation. These statistics are
natural parametric procedures under the normal location mixture, so it is not surprising that
they do well.

The HC and Berk and Jones (1979) statistics (HCn and R+
n , resp.) may also be interpreted

as natural parametric procedures for a different mixture model. In this sense, they may be
considered as ‘tied’ to a ‘narrow’ uniform scale mixture model in the same way that the
normal �n and Tn are tied to the normal location mixture model. In light of this, it is perhaps
not surprising that each pair of statistics may have superior performance under the model for
which they are ‘tailor-made’.

Other statistics such as the Jager and Wellner (2007) supremum-type ϕ-divergence statis-
tics, the Berk and Jones (1979) statistic M+

n , the average likelihood ratio test in Walther
(2013) and the Csörgő et al. (1986) standardisation of HCn in Stepanova and Pavlenko (2018)
may all be viewed as re-weighted likelihood ratio tests for the uniform-scale mixture model.
In this sense, they are all tied to the uniform scale mixture model. We showed that the ϕ-
divergence statistics suffered a theoretical loss of power under the normal location mixture
model, and it would not be surprising if the others also do.

Our simulations may have several practical implications in finite-sample applications. We
found that the asymptotic critical values for �n and Tn can be used instead of the Monte
Carlo ones to produce conservative procedures—we remark that it is unknown whether this
is true for Tn if α is small. However, the same is not true for HC and R+

n .
There are practical problems with HC due to the heavy tail of the underlying process. The

choice between HC∗
n and HC+

n depends on the nature of the alternative, which is not ideal.
We agree with the recommendation (see Donoho and Jin (2004)) to use HC+

n over HC∗
n, but

we also highlighted that HC+
n should be viewed more cautiously when the underlying process

is maximised near 1/n. We find that �n and Tn can address several of these problems with
greater power under the normal location mixture alternative. This suggests that Tn is worth
considering in practice.

We finish by remarking that although both the normal location and uniform scale mixture
models are toy models, this should not prohibit their application to more complex problems.
We need only consider the wide-range of problems that HC has had some success to illustrate
that simple models often work. And in cases where they do not, it begs the question, ‘why not
use a different simple model instead’.

Acknowledgements. We would like to thank the Associate Editor and three referees for
their constructive feedback, which has helped to vastly improve the presentation and several
thematic elements of this paper.

SUPPLEMENTARY MATERIAL

Supplement to ‘Beyond HC: More sensitive tests for rare/weak alternatives’ (DOI:
10.1214/19-AOS1885SUPP; .pdf). We prove the main theorems, and provide additional sup-
porting plots that show performance of the maximal score test in several examples.

REFERENCES

ARIAS-CASTRO, E. and WANG, M. (2017). Distribution-free tests for sparse heterogeneous mixtures. TEST 26
71–94. MR3613606 https://doi.org/10.1007/s11749-016-0499-x

BENJAMINI, Y. and HOCHBERG, Y. (1995). Controlling the false discovery rate: A practical and powerful ap-
proach to multiple testing. J. Roy. Statist. Soc. Ser. B 57 289–300. MR1325392

https://doi.org/10.1214/19-AOS1885SUPP
http://www.ams.org/mathscinet-getitem?mr=3613606
https://doi.org/10.1007/s11749-016-0499-x
http://www.ams.org/mathscinet-getitem?mr=1325392


BEYOND HC 2251

BERK, R. H. and JONES, D. H. (1979). Goodness-of-fit test statistics that dominate the Kolmogorov statistics.
Z. Wahrsch. Verw. Gebiete 47 47–59. MR0521531 https://doi.org/10.1007/BF00533250

BICKEL, P. and CHERNOFF, H. (1993). Asymptotic distribution of the likelihood ratio statistic in a prototypical
non regular problem. In Statistics and Probability: A Raghu Raj Bahadur Festschrift 83–96. Wiley, New York.

BICKEL, P. J. and LEVINA, E. (2004). Some theory of Fisher’s linear discriminant function, ‘naive Bayes’, and
some alternatives when there are many more variables than observations. Bernoulli 10 989–1010. MR2108040
https://doi.org/10.3150/bj/1106314847

CAI, T. T., JENG, X. J. and JIN, J. (2011). Optimal detection of heterogeneous and heteroscedastic mixtures. J. R.
Stat. Soc. Ser. B. Stat. Methodol. 73 629–662. MR2867452 https://doi.org/10.1111/j.1467-9868.2011.00778.x

CAI, T. T. and WU, Y. (2014). Optimal detection of sparse mixtures against a given null distribution. IEEE Trans.
Inform. Theory 60 2217–2232. MR3181520 https://doi.org/10.1109/TIT.2014.2304295

CHERNOFF, H. (1954). On the distribution of the likelihood ratio. Ann. Math. Stat. 25 573–578. MR0065087
https://doi.org/10.1214/aoms/1177728725
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