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The methodologies of sufficient dimension reduction have undergone ex-
tensive developments in the past three decades. However, there has been a
lack of systematic and rigorous development of post dimension reduction in-
ference, which has seriously hindered its applications. The current common
practice is to treat the estimated sufficient predictors as the true predictors
and use them as the starting point of the downstream statistical inference.
However, this naive inference approach would grossly overestimate the con-
fidence level of an interval, or the power of a test, leading to the distorted
results. In this paper, we develop a general and comprehensive framework of
post dimension reduction inference, which can accommodate any dimension
reduction method and model building method, as long as their corresponding
influence functions are available. Within this general framework, we derive
the influence functions and present the explicit post reduction formulas for the
combinations of numerous dimension reduction and model building methods.
We then develop post reduction inference methods for both confidence inter-
val and hypothesis testing. We investigate the finite-sample performance of
our procedures by simulations and a real data analysis.

1. Introduction. Sufficient dimension reduction (SDR) embodies a family of methods
that, in a regression setup, seek reduction of dimensionality without loss of regression in-
formation. It has proven to be a powerful tool to extract useful information from high-
dimensional data, and has found wide applications in high-dimensional data analysis and
regression graphics (Cook [4], Li [15] and Li [24]). For a response variable Y and the p-
dimensional predictor vector X, SDR seeks the q-dimensional sufficient predictor ηTX, such
that

(1.1) Y ⊥⊥ X|ηTX,

where ⊥⊥ denotes statistical independence, and η is a p × q matrix, with q ≤ p. It is straight-
forward to see that η always exists, as it can trivially take the form of the identify matrix. But
it is not unique, as one can rotate or amend η so that (1.1) still holds. As such, SDR turns to
the subspace spanned by the columns of η. It is called a dimension reduction subspace, and
under very minor conditions (Yin, Li and Cook [41]), the intersection of all such subspaces
is itself a dimension reduction subspace. Such an intersection, by definition, is a unique and
parsimonious population parameter that captures full regression information of Y given X.
It is called the central subspace, is denoted as SY |X , and is the main object of interest in the
SDR inquiry. Since the pioneering work of sliced inverse regression (Li [21]), the research
in SDR has been flourishing, and numerous SDR methods have been proposed, including
sliced average variance estimation (Cook and Weisberg [7]), principal hessian directions (Li
[22]), minimum average variance estimation (Xia et al. [40]) and directional regression (Li
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and Wang [18]), among many others. There have also been developments of SDR based vari-
able selection and screening (Bondell and Li [2], Zhu et al. [42]), semiparametric SDR (Ma
and Zhu [26, 27]) and nonlinear SDR (Li, Artemiou and Li [16], Li and Song [17]). For a
comprehensive review, see Li [15].

Despite the rapid advances of sufficient dimension reduction methodologies, however,
there has been a lack of development on post dimension reduction inference. The outcome of
SDR is a vector of sufficient predictors, but this is not the end of a typical data analysis. In
most applications, the end product is an estimated statistical model, furnished with confidence
intervals and p-values for statistical significance. Currently, the common practice is to feed
the sufficient predictors obtained from SDR to the subsequent modeling as if they were the
true predictors. It then proceeds with the usual model estimation and inference procedures,
which completely ignores the estimation error incurred in the dimension reduction step, and
thus tends to produce overly optimistic confidence intervals and p-values. More specifically,
sufficient dimension reduction produces an estimate η̂ of the η in (1.1), which, under mild
regularity conditions, converges to η at the n−1/2 rate. A subsequent modeling step builds a
parametric probability model, say fθ (η̂

TX,Y ), which treats η̂TX as the new predictor, and
from which an estimate θ̂ of θ is derived. In this process, the error in η̂ contributes to the
error in θ̂ , and the contribution is in the same order of magnitude, that is, OP (n−1/2), as the
error in θ̂ when η is known. If we ignore the error propagated from η̂, as the current solutions
do, then the confidence interval for θ will be significantly narrower than the true confidence
interval, and the p-value for testing θ will be significantly smaller than the true p-value. In-
deed, our data example in Section 7 shows that in some cases an inference method ignoring
the error in η̂ leads to a statistically significant conclusion, whereas an inference method that
takes into account of the error in η̂ leads to a statistically insignificant one. This lack of for-
mal and rigorous post dimension reduction inference has seriously hindered the applications
of sufficient dimension reduction.

In this article, we fill this gap by developing a general and comprehensive framework for
post dimension reduction inference. The central issue for post reduction inference is to track
how the error induced by dimension reduction propagates into the subsequent model estima-
tion. To do so, we face the challenges that there are a large variety of dimension reduction
methods, and as many different methods of estimating a statistical model. A useful post di-
mension reduction inference framework should be an open system that is capable of adapting
to different dimension reduction and model estimation methods. Our idea is to use the in-
fluence functions of statistical functionals as a vehicle to achieve this generality. Many SDR
methods can be expressed as eigenvectors of matrix-valued statistical functionals. As such,
they can be expanded as asymptotic linear forms under mild regularity conditions (Bickel et
al. [1]). Likewise, many estimation methods can also be expressed as vector-valued statistical
functionals, which again can be expanded as asymptotic linear forms. These two asymptotic
linear forms are uniquely determined by the influence functions of the statistical function-
als for dimension reduction and estimation, and together would uniquely determine the post
dimension reduction asymptotic distribution. Our post reduction framework is designed in
such a way that one can input the influence functions of any dimension reduction method and
any estimation method to produce the post reduction asymptotic distribution that takes both
processes into account.

Within this general framework, we derive explicitly the influence functions for five pop-
ular SDR methods and three commonly used model estimation methods. The SDR methods
include sliced inverse regression (SIR, Li [21]), sliced average variance estimation (SAVE,
Cook and Weisberg [7]), two forms of principal Hessian directions (y-PHD and r-PHD, Li
[22], Cook [5]) and directional regression (DR, Li and Wang [18]). The model estimation
methods include differentiable estimating equations, nondifferentiable estimating equations
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and generalized method of moments (GMM). We note that differentiable estimating equations
include generalized linear model (McCullagh and Nelder [29]) as a special case, whereas non-
differentiable estimating equations include median and quantile regression as special cases.
Moreover, generalized method of moments (Hansen [9], Hansen, Heaton and Yaron [10])
have been widely used in econometrics. These 5 × 3 combinations of SDR and estimation
methods cover a wide range of statistical modeling and applications. They also serve as an
illustration on how to derive the influence functions and how to plug them into our post
dimension reduction inference framework to obtain the desired post reduction asymptotic
distribution. As such, more SDR and estimation methods can be incorporated into this frame-
work.

Based on the derived post dimension reduction asymptotic distribution, we proceed fur-
ther to develop specific methods for conducting statistical inference: constructing confidence
intervals and test statistics, and computing the asymptotic null and local alternative distribu-
tions of the test statistics. It is our hope that the materials developed in this paper can serve as
a first step toward incorporating sufficient dimension reduction and post reduction inference
into a systematic and comprehensive statistical method.

The rest of the paper is organized as follows. We develop the general post dimension reduc-
tion framework and the post reduction asymptotic distribution under a given pair of influence
functions, one from a SDR method and the other from an estimation method, in Section 2. We
next derive the explicit influence functions for three estimation methods in Sections 3, and the
influence functions for five SDR methods in Section 4. We then develop the post dimension
reduction statistical inference, confidence interval and hypothesis testing, in Section 5. We
conduct simulations and compare with the naive inference method in Section 6, and illustrate
our method with a real data analysis in Section 7. We conclude the paper with a discussion in
Section 8. We report some additional simulation results in the online supplementary material
[13].

2. General framework for post reduction inference. We begin with an introduction
of two statistical functionals: one for sufficient dimension reduction, which we call the re-
duction functional, and one for model estimation, which we call the estimation functional.
We then define the composite functional and derive its influence function, from which we
obtain the post dimension reduction asymptotic distribution. Finally, we explicitly compare
the asymptotic covariances of the estimated parameter with and without taking into account
the error induced by dimension reduction.

2.1. Reduction, estimation and composite functionals. Let (X,Y ) be random vectors in
R

p × R that take values in the measurable space (�XY , FXY ). Let P be the class of all
probability distributions of (X,Y ). Let S be a metric space, which in our context is taken as
a space of matrices. A statistical functional is a mapping R from P to S . Let F0 be the true
distribution of (X,Y ), let (x, y) be a fixed point in �XY , and let δxy be the Dirac measure at
(x, y). The influence function of the functional R is defined as

R�(x, y) = ∂

∂ε
R

[
(1 − ε)F0 + εδxy

]∣∣
ε=0.

For more details about influence functions, see Bickel et al. [1]. Throughout this paper, we
assume that R� satisfies the following conditions.

ASSUMPTION 1. (1) E[R�(X,Y )] = 0.
(2) R�(X,Y ) has finite variance; if R�(X,Y ) is a random vector or a random matrix, then

its entries have finite variances.
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These assumptions are mild and hold for all the SDR and estimation methods considered in
this paper. For a set of sufficient conditions for these assumptions, see Bickel et al. [1], page
19. When there is no ambiguity, we abbreviate R�(X,Y ) by R�. In the following, an asterisk
on a symbol always indicates the influence function of a statistical functional represented by
that symbol. For example, for the statistical functionals 	(F,η) and 
(F) discussed below,
	� and 
� represent their respective influence functions.

Let (X1, Y1), . . . , (Xn,Yn) be i.i.d. samples of (X,Y ). Let Fn be the empirical distribution
based on this sample. It is well known that, if R is Hadamard differentiable, then R(Fn) has
the following expansion:

(2.1) R(Fn) = R(F0) + En

(
R�) + op

(
n− 1

2
)
,

where En(R
�) denotes the sample average n−1 ∑n

i=1 R�(Xi, Yi). Consequently, by the central
limit theorem,

(2.2)
√

n
[
R(Fn) − R(F0)

] D−→ N
(
0,var

(
R�)).

Thus, the influence function R� uniquely determines the asymptotic distribution of R(Fn).
Conventionally, R(Fn) represents a statistic, and R(F0) the parameter it estimates. For more
information about statistical functionals and influence functions, see, for example, Fernholz
[8], Bickel et al. [1] and Li [15].

We first define the reduction functional. Most SDR methods can be written in the form of
a generalized eigendecomposition problem. That is, there is a statistical functional 
 : P →
R

p×p satisfying that

(2.3) �(F0)
−1 span

[

(F0)

] ⊆ SY |X,

where �(F0) denotes the covariance matrix of X. The relation (2.3) implies that the central
subspace SY |X can be recovered by solving the generalized eigenvalue problem

(2.4) 
(F0)v = λ�(F0)v.

Let η = (η1, . . . , ηr) denote its first r eigenvectors, where r is the rank of 
(F0) and r ≤ q .
For many SDR methods, the equality in (2.3) holds, and correspondingly, r = q . In this
case, we say the SDR method is exhaustive. See Li, Zha and Chiaromonte [19] and Li and
Wang [18] for sufficient conditions for exhaustiveness. For simplicity, we assume the SDR
method is exhaustive in this article; that is, SY |X can be fully recovered by span(η01, . . . , η0r ).
We also note that, the generalized eigenvalue problem in (2.4) can be solved by transform-
ing it into a standard eigenvalue problem. That is, if {β0i}ri=1 are the first r eigenvectors of

�(F0)
−1/2
(F0)�(F0)

−1/2, then η0i = �(F0)
− 1

2 β0i , i = 1, . . . , r , are the first r eigenvec-
tors of the generalized eigenvalue problem (2.4). Given i.i.d. samples of (X,Y ), the corre-
sponding sample version of (2.4) is 
(Fn)v = λ�(Fn)v, where �(Fn) is the sample covari-
ance matrix of X. We define {η̂i}ri=1 and {β̂i}ri=1 accordingly.

We call the functional 
(F) the reduction functional, and assume it is Hadamard differ-
entiable with the influence function 
�. Correspondingly, we use η(F ) to denote the R

p×q -
valued statistical functional of the first q eigenvectors of 
(F).

We next define the estimation functional. We start with a set of fixed eigenvectors
(η1, . . . , ηq) that form an orthonormal set in R

p . Suppose we replace the original p-
dimensional predictor vector X with the q-dimensional sufficient predictor ηT X, then fit
some parametric regression model with the model parameter θ . Assume, for a fixed η, the
estimate of θ takes the following general form of a statistical functional

	 :P ×R
p×q → � ⊆ R

s,
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where � is the parameter space for the parametric regression model. We call the functional
	 the estimation functional, and assume that, for each fixed η, the mapping F �→ 	(F,η)

is Hadamard differentiable with the influence function 	�. Since we treat η as fixed, this
functional corresponds to the naive estimator as if η is known.

Now we replace the fixed η with the estimate η̂ = η(Fn) from a given SDR method, which
leads to an estimate of θ , T (Fn) = 	[Fn,η(Fn)], and the functional

T : P → �, F �→ 	
[
F,η(F )

]
.

We call it the composite functional, as it is a composition of the reduction functional 
(F),
which is implicitly contained in η(F ), and the estimation functional 	(F,η). The functional
T accounts for the variations in both dimension reduction and estimation, and its influence
function determines the post dimension reduction asymptotic distribution. It corresponds to
the inference procedure that does not pretend η is known.

2.2. Influence function and asymptotic distribution. Next we derive the influence func-
tion of T (F ) given the influence functions 
� and 	�. We derive the influence functions 
�

and 	� for a variety of dimension reduction and estimation methods in Sections 3 and 4,
respectively. In the following, we use ⊗ to denote the Kronecker product. We denote �(Fn),
�(F0), �(F) by �̂, �0, �, and denote 
(Fn), 
(F0), 
(F) by 
̂, 
0, 
, respectively. We
first need the following lemma, whose proof can be found in Li [15].

LEMMA 1. Suppose all moments involved are finite. Then

(1) vec(��) = X ⊗ X − E(X ⊗ X) − [X − E(X)] ⊗ E(X) − E{X ⊗ [X − E(X)]};
(2) vec[(�− 1

2 )�] = −(�
1/2
0 ⊗ �0 + �0 ⊗ �

1/2
0 )−1 vec(��);

(3) (�−1)� = −�−1���−1

THEOREM 1. Suppose the following conditions are satisfied:

(C1) The statistical functionals F �→ 
(F) and F �→ 	(F,η) are Hadamard differen-
tiable with influence functions 
�(X,Y ) and 	�(X,Y,η). Both 
� and 	� satisfy Assump-
tion 1.

(C2) The function η �→ 	(F0, η) is differentiable.
(C3) All the nonzero eigenvalues of �

−1/2
0 
0�

−1/2
0 are distinct.

Then the influence function of T (F ) is

T �(X,Y ) = 	�(X,Y,η0) + DC

(
vec

[
��(X,Y )

]
vec

[

�(X,Y )

]) ,

where D = ∂	(F0, η0)/∂ vec(η)T and C = (A,B), in which

A = −[
βT

0 ⊗ Ip + (
Iq ⊗ �

−1/2
0

)
H

(
�

−1/2
0 
0 ⊗ Ip + Ip ⊗ 
0�

−1/2
0

)]
× (

�0 ⊗ �
1
2
0 + �

1
2
0 ⊗ �0

)−1
,

B = (
Iq ⊗ �

−1/2
0

)
H

(
�

−1/2
0 ⊗ �

−1/2
0

)
,

H = (
H T

1 , . . . ,H T
q

)T
,

Hi = βT
0i ⊗

[ p∑
j=1,j 	=i

(λ0i − λ0j )
−1(

β0jβ
T
0j

)]
, i = 1, . . . , q.
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PROOF. Recall that the sample estimator of η0i is η̂i = �̂−1/2β̂i , where β̂i is ith eigen-
vector of �̂−1/2
̂�̂−1/2, i = 1, . . . , q . Thus the influence function of η̂i is

η�
i = (

�−1/2)�
β0i + �

−1/2
0 β�

i .

Furthermore, by Zhu and Fang [43], the influence function of β̂i is

(2.5) β�
i =

p∑
j=1,j 	=i

β0jβ
T
0j (�

−1/2
�−1/2)�β0i

λ0i − λ0j

= Hi vec
[(

�−1/2
�−1/2)�]
,

where

Hi = βT
0i ⊗

[ p∑
j=1,j 	=i

(λ0i − λ0j )
−1(

β0jβ
T
0j

)]
.

By Lemma 1 and some simple calculation,

vec
[(

�−1/2
�−1/2)�]
= −(

�
−1/2
0 
0 ⊗ Ip + Ip ⊗ 
0�

−1/2
0

)(
�

1/2
0 ⊗ �0 + �0 ⊗ �

1/2
0

)−1 vec
(
��)

+ (
�

−1/2
0 ⊗ �

−1/2
0

)
vec

(

�).

Combination of (2.5) and the above equality yields

vec
(
β�)

= −H
(
�

−1/2
0 
0 ⊗ Ip + Ip ⊗ 
0�

−1/2
0

)(
�

1/2
0 ⊗ �0 + �0 ⊗ �1/2)−1 vec

(
��)

+ H
(
�

−1/2
0 ⊗ �

−1/2
0

)
vec

(

�),

where H = (H T
1 , . . . ,H T

q )T. Hence

vec
(
η�) = vec

[(
�− 1

2
)�

β0 + �
− 1

2
0 β�]

= −(
βT

0 ⊗ Ip

)(
�

1
2
0 ⊗ �0 + �0 ⊗ �

1
2
0

)−1 vec
(
��) + (

Iq ⊗ �
− 1

2
0

)
vec

(
β�)

= C

(
vec

(
��)

vec
(

�)) ,

where C is as defined in the theorem. By condition (C2) and the chain rule for differentiation,
we have

T �(X,Y ) = 	�(X,Y,η0) + D vec
[
η�(X,Y )

]
,

which completes the proof. �

Condition (C1) of Theorem 1 is mild as most 
 matrices in SDR are functions of sample
moments, which are Hadamard differentiable if the moments of X and Y up to a certain order
are finite. Condition (C2) is also mild and is easy to verify. As we will see in Section 2.4,
Condition (C3) is also satisfied by numerous SDR methods and statistical models. Based on
Theorem 1, we next derive the asymptotic distribution of θ̂ = 	(Fn, η̂).

COROLLARY 1. Suppose the conditions in Theorem 1 are satisfied. Then

√
n(θ̂ − θ0)

D−→ N(0,�),
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where � = (Ip,DC)B(Ip,DC)T and

B =
⎛⎜⎝ E

(
	�	�T)

E
[
	� vec

(
��)T]

E
[
	� vec

(

�)T]

E
[
vec

(
��)	�T]

E
[
vec

(
��) vec

(
��)T]

E
[
vec

(
��) vec

(

�)T]

E
[
vec

(

�)	�T]

E
[
vec

(

�) vec

(
��)T]

E
[
vec

(

�) vec

(

�)T]

⎞⎟⎠ .

PROOF. By Theorem 1 and the relation (2.1) between the influence function and its
asymptotic linear form, we have

θ̂ = θ0 + (
Ip,DC

)
E

⎛⎜⎝ 	�(X,Y,η0)

vec
[
��(X,Y )

]
vec

[

�(X,Y )

]
⎞⎟⎠ + op

(
n−1/2)

.

Then applying (2.2) completes the proof. �

At the sample level, �0, λ0i , β0 in the matrix C are estimated by �̂, λ̂i and β̂ . The matrix
D is estimated by ∂	(Fn, η0)/∂ vec(η)T. This is justified by

∂	(Fn, η0)

∂ vec(η)T

P−→ D,

which holds under mild regularity conditions.

2.3. Asymptotic comparison of naive and objective inference. We compare the asymp-
totic covariance of the parameter estimate θ̂ = T (Fn) = 	(Fn,η(Fn)) that takes into ac-
count the estimation error induced by dimension reduction, and that of the naive estimate
θ̃ (η0) = 	(Fn,η0) that does not. We denote their corresponding asymptotic covariance ma-
trices by �(η0, θ0) and �̃(η0, θ0), respectively. Given the data, �(η0, θ0) and �̃(η0, θ0) are
estimated by �(η̂, θ̂) and �̃(η̂, θ̂ ). Since η̂ and θ̂ are root-n consistent and � and �̃ are differ-
entiable, the differences, �(η̂, θ̂) − �(η0, θ0) and �̃(η̂, θ̂ ) − �̃(η0, θ0), are both of the order
OP (n−1/2). Thus it suffices to compare �(η0, θ0) with �̃(η0, θ0). The next theorem charac-
terizes the amount of the asymptotic variance increase after taking the dimension reduction
error into account.

THEOREM 2. Suppose the conditions in Theorem 1 are satisfied. Moreover, suppose
when η0 is known, θ̃ (η0) is an efficient estimator of θ0. Then

�(η0, θ0) − �̃(η0, θ0)

= DC

(
E

[
vec

(
��) vec

(
��)T]

E
[
vec

(
��) vec

(

�)T]

E
[
vec

(

�) vec

(
��)T]

E
[
vec

(

�) vec

(

�)T])CTDT.

PROOF. The proof echoes the Hajek–LeCam convolution theorem of regular estimators
(Bickel et al. [1]). Since, when η0 is given, both θ̂ and θ̃ (η0) are regular estimators of θ0,
and θ̃ (η0) is efficient, by the LeCam–Hajek convolution theorem,

√
n(θ̂(η0) − θ0) can be

decomposed into the sum of two asymptotically independent terms
√

n
(
θ̃ (η0) − θ0

) + [√
n(θ̂ − θ0) − √

n
(
θ̃ (η0) − θ0

)]
= √

nE
(
	�) + √

nE
(
T � − 	�) + oP (1),

which implies that E[	�(T � − 	�)T] = 0. Hence

var
[
T �(X,Y )

] = var
[
	�(X,Y,η0)

] + D var
{
vec

[
η�(X,Y )

]}
DT.

Substituting the form of vec(η�) into this equation completes the proof. �



1574 KIM, LI, YU AND LI

2.4. Identifiability of reduction parameter. Here, we briefly discuss the subtle issue of
the identifiability for the reduction parameters. In the framework of SDR with the structural
dimension q > 1, the basis (γ1, . . . , γq) of SY |X is not identifiable. However, in practice, we
always use a specific SDR method, say SIR, to estimate SY |X . A specific SDR method, when
applied to a specific statistical model, almost always yields a fixed set of eigenvectors in
SY |X up to a sign. Thus, if we agree to take, for example, the first nonzero component of the
relevant eigenvectors to be positive, then we have a well-identified set of reduction dimension
parameters. As an example, for Model III and Model IV in Section 6, the structural dimension
q = 2 and the first two eigenvalues of �

−1/2
0 
0�

−1/2
0 for DR are, respectively, 1.30, 1.25 and

1.54, 1.35. These distinct population-level eigenvalues give rise to well-identified reduction
parameters β1 and β2. A parametric statistical model can then be imposed upon the predictors
βT

1 X and βT
2 X without ambiguity.

3. Influence functions for estimation functionals. The asymptotic distribution of√
n(θ̂ − θ0) relies on the reduction influence function 
�(X,Y ), the estimation influence

function 	�(X,Y,η), and the form of D = ∂	(F0, η0)/∂ vec(η)T. In this section, we derive
the explicit forms of the influence function 	�(X,Y,η) and the derivative D for three es-
timation methods: the differentiable estimating equations, the non-differentiable estimating
equations and the generalized method of moments. They cover a wide variety of regression
methods, including generalized linear model, nonlinear mean regression and nonlinear me-
dian and quantile regression, among others.

3.1. Differentiable estimating equations. Many commonly used parametric models can
be formulated as special cases of a general class of estimators of θ , each of which is defined
as the solution to the estimating equation

(3.1) E
[
g(θ,X,Y )

] = 0,

where Eθ [g(θ,X,Y )] = 0, varθ [g(θ,X,Y )] is a matrix with finite entries, and the dimension
of g is the same as the dimension of θ . One example is generalized linear model, which can
be expressed as the solution to the estimating equation

E

{
∂μ(θTX)

∂θT
V −1(

θTX
)[

Y − μ
(
θTX

)]} = 0,

where μ(θTX) = E(Y |θTX), and V (θTX) = var(Y |θTX). See, for example, McCullagh and
Nelder [29] and Li [14]. Another example is the parametric nonlinear regression, where
we minimize the objective function E[Y − h(θTX)]2, and h can take a polynomial form,
h(u1, . . . , uk) = ∑k

i=1 θiui + ∑k
i,j=1 θijuiuj . Correspondingly, the parameter θ can be ex-

pressed as the solution to the estimating equation

E

{
2
∂h(θTX)

∂θ

[
Y − h

(
θTX

)]} = 0.

In our context of SDR based parametric modeling, the predictor vector X is replaced by
the sufficient predictor ηTX. The statistical functional of the estimator θ in (3.1) is 	(F,η),
which is implicitly defined by the equation

∫
g[	(F,η), ηTX,Y ]dF = 0. We next derive the

explicit forms of the corresponding influence function 	� and the derivative D, and summa-
rize the results in the next proposition.

PROPOSITION 1. For the estimating equations (3.1), we have

	�(X,Y,η) = −
{
E

[
∂g(θ0, η

TX,Y )

∂θT

]}−1
g
(
θ0, η

TX,Y
)
,

D = −
{
E

[
∂g(θ0, η

T
0X,Y )

∂θT

]}−1
E

[
∂g(θ0, η

T
0X,Y )

∂u

(
Iq ⊗ XT)]

.
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PROOF. Let Fε = (1−ε)F0 +εδXY . Then, for all ε ∈ [0,1], we have
∫

g[	(Fε, η), ηTX,

Y ]dFε = 0. Differentiating (3.1) with respect to ε, and evaluating the derivatives at ε = 0,
we have

∂

∂ε

∫
g
(
	(Fε, η), ηTX,Y

)
dFε

∣∣∣∣
ε=0

=
[∫

∂g(θ0, η
TX,Y )

∂θT
dF0

]
	� +

∫
g
(
θ0, η

TX,Y
)
d(δXY − F0) = 0.

Since Eg(θ0, η
TX,Y ) = 0, the second term on the right-hand side is simply g(θ0, η

TX,Y ),
which leads to the desired form for 	�(X,Y,η).

Next, we note that 	(F0, η) satisfies E[g(	(F0, η), ηTX,Y )] = 0. Differentiating this
equation with respect to vec(η), we have[∫

∂

∂θT
g
(
θ0, η

TX,Y
)
dF0

]
∂	(F0, η)

∂ vec(η)T
+

∫
∂

∂u
g
(
θ0, η

TX,Y
) ∂(ηTX)

∂ vec(η)T
dF0 = 0,

where ∂g/∂u denotes the partial derivative with respect to the second argument of
g, which is ηTX. Since ηTX = vec(XTη) = vec(XTηIq) = (Iq ⊗ XT)vec(η), we have
∂(ηTX)/∂ vec(η)T = Iq ⊗ XT. Hence,

E

[
∂g(θ0, η

T
0X,Y )

∂θT

]
D + E

[
∂g(θ0, η

T
0X,Y )

∂u

(
Iq ⊗ XT)] = 0.

Solving this equation yields the desired form for D. �

3.2. Nondifferentiable estimating equations. Another family of popular models can be
formulated as solving a set of nondifferentiable estimating equations. Examples include non-
linear quantile regression (He, Fu and Fung [11], Wang and Wang [37]) and support vector
regression (Smola and Scholkopt [35]). In this section, we use nonlinear quantile regression
as an illustration. The derivation of the estimation functional for other models follow in a
similar fashion.

For a number τ ∈ [0,1], define the function ρ :R→R
+ as ρτ (u) = τu if u > 0, and −(1−

τ)u if u < 0. Let m(ηTX,θ) be a function such that, for the true value (η0, θ0) of (η, θ), it is
the τ th conditional quantile, P [Y ≤ m(ηT

0X,θ0)|X] = τ . At the population level, nonlinear
quantile regression is defined as minimizing the objective function E{ρτ [Y − m(ηTX,θ)]}
over θ ∈ R

d , which amounts to solving the estimating equations

(3.2) E

{
ρ̇τ

[
Y − m

(
ηTX,θ

)]∂m(ηTX,θ)

∂θ

}
= 0,

where ρ̇τ (u) = τI (u > 0) − (1 − τ)I (u ≤ 0) = τ − I (u ≤ 0). Rigorously speaking, ρ̇τ is not
defined at u = 0. But since u = 0 has measure 0, we can assign any value to ρ̇(0); in our case,
we set ρ̇(0) equal to −(1 − τ).

Next, we write the first argument ηTX of m(ηTX,θ) as u, and use the following notation
for partial derivatives, ṁu = ∂m/∂u, ṁθ = ∂m/∂θ , m̈uu = ∂2m/∂u∂uT, m̈uθ = ∂2m/∂u∂θT

and m̈θθ = ∂2m/∂θ∂θT. We derive the influence function 	� and the derivative D in the next
proposition.

PROPOSITION 2. For the estimating equations (3.2), we have

	�(X,Y,η) = (
E

{
fY |X

[
m

(
ηT

0X,θ0
)|X]

ṁθ

(
ηT

0X,θ0
)
ṁT

θ

(
ηT

0X,θ0
)})−1

× {
τ − I

[
Y ≤ m

(
ηT

0X,θ0
)]}

ṁθ

(
ηT

0X,θ0
)
,

D = −(
E

{
ṁθ

(
ηT

0X,θ0
)
ṁT

θ

(
ηT

0X,θ0
)
fY |X

[
m

(
ηT

0, θ0
)|x]})−1

× E
{
ṁθ

(
ηT

0X,θ0
)
ṁT

u

(
ηT

0X,θ0
)(

Iq ⊗ XT)
fY |X

[
m

(
ηT

0X,θ0
)|x]}

.
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PROOF. Denote A(F,η0) = ∫
ρ̇τ {Y − m[ηT

0X,	(F,η0)]}ṁθ [ηT
0X,	(F,η0)]dF . The

influence function 	�(X,Y,η0) can be obtained from the equation

∂

∂ε
A(Fε, η0)

∣∣∣∣
ε=0

= 0.

In the following, we abbreviate ∂f (ε)/∂ε|ε=0 by ∂f (ε)/∂ε. By the chain rule, we decompose
the above derivative into three terms:

(3.3)
∂

∂ε
A(Fε, η0) = ∂

∂ε
A1(Fε, η0) + ∂

∂ε
A2(Fε, η0) + ∂

∂ε
A3(Fε, η0),

where

A1(Fε, η0) =
∫

ρ̇τ

{
Y − m

[
ηT

0X,	(Fε, η0)
]}

ṁθ

[
ηT

0X,	(F0, η0)
]
dF0,

A2(Fε, η0) =
∫

ρ̇τ

{
Y − m

[
ηT

0X,	(F0, η0)
]}

ṁθ

[
ηT

0X,	(Fε, η0)
]
dF0,

A3(Fε, η0) =
∫

ρ̇τ

{
Y − m

[
ηT

0X,	(F0, η0)
]}

ṁθ

[
ηT

0X,	(F0, η0)
]
dFε.

The term ∂A1(Fε, η0)/∂ε can be written as

(3.4)

∂

∂ε
A1(Fε, η0)

= ∂

∂ε

∫ (
τ − I

{
Y ≤ m

[
ηT

0X,	(Fε, η0)
]})

ṁθ

[
ηT

0X,	(F0, η0)
]
dF0

= − ∂

∂ε

∫
I
{
Y ≤ m

[
ηT

0X,	(Fε, η0)
]}

ṁθ

[
ηT

0X,	(F0, η0)
]
dF0

= −
∫
�X

∂

∂ε

∫ m[ηT
0 X,	(Fε,η0)]

−∞
fY |X(y|x)dy ṁθ

[
ηT

0X,	(F0, η0)
]

× fX(x) dx

= −
{∫

�X

fY |X
[
m

(
ηT

0X,θ0
)|x]

ṁθ

(
ηT

0X,θ0
)
ṁT

θ

(
ηT

0X,θ0
)
fX(x) dx

}
	�

= −E
{
fY |X

[
m

(
ηT

0X,θ0
)|x]

ṁθ

(
ηT

0X,θ0
)
ṁT

θ

(
ηT

0X,θ0
)}

	�,

where the first equality is by the definition of ρ̇τ (u), the second equality is because
τ

∫
ṁθ (η

T
0X,	(F0, η0)) dF0 does not depend on ε, and the fourth equality is because

	(F0, η0) = θ0.
The term ∂A2(ε, η)/∂ε can be written as

(3.5)

∂

∂ε
A2(ε, η) =

∫
ρ̇τ

[
Y − m

(
ηT

0X,θ0
)]

m̈θθ

(
ηT

0X,θ0
)
dF0	

�

= E
[
E

{
ρ̇τ

[
Y − m

(
ηT

0X,θ0
)]|X}

m̈θθ

(
ηT

0X,θ0
)]

	�

= 0,

where the last equality is due to that, since m(ηT
0X,θ0) is the τ th conditional quantile,

E
{
ρ̇τ

[
Y − m

(
ηT

0X,θ0
)]|X} = E

{
τ − I

[
Y ≤ m

(
ηT

0X,θ0
)]|X} = 0.

The term ∂A3(Fε, η)/∂ε can be written as

∂

∂ε
A3(ε, η)

= ρ̇τ

[
Y − m

(
ηT

0X,θ0
)]

ṁθ

(
ηT

0X,θ0
) − E

{
ρ̇τ

[
Y − m

(
ηT

0X,θ0
)]

ṁθ

(
ηT

0X,θ0
)}

.
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By the fact that A(F,η0) = 0, the second term above is 0, leading to

(3.6) ∂A3(Fε, η0)/∂ε = ρ̇τ

[
Y − m

(
ηT

0X,θ0
)]

ṁθ

(
ηT

0X,θ0
)
.

Substituting (3.4), (3.5) and (3.6) into (3.3), we obtain

−E
{
fY |X

[
m

(
ηT

0X,θ0
)|X]

ṁθ

(
ηT

0X,θ0
)
ṁT

θ

(
ηT

0X,θ0
)}

	�

+ ρ̇τ

[
Y − m

(
ηT

0X,θ0
)]

ṁθ

(
ηT

0X,θ0
) = 0.

This yields the desired form for 	�.
Next, we note that η �→ 	(F0, η) is defined by the equation∫

ρ̇τ

{
Y − m

[
ηTX,	(F0, η)

]}
ṁθ

[
ηTX,	(F0, η)

]
dF0 = 0.

Denote the left-hand side by B(η), we have

∂

∂ vec(η)T
B(η0) = ∂

∂ vec(η)T
B1(η0) + ∂

∂ vec(η)T
B2(η0),

where

B1(η) =
∫

ρ̇τ

{
Y − m

[
ηTX,	(F0, η)

]}
ṁ

[
ηT

0X,	(F0, η0)
]
dF0

B2(η) =
∫

ρ̇τ

{
Y − m

[
ηT

0X,	(F0, η0)
]}

ṁ
[
ηTX,	(F0, η)

]
dF0.

Since E[ρ̇τ (Y − m(ηT
0X,θ0))|X] = 0, we have

∂

∂ vec(η)T
B2(η0) =

∫
ρ̇τ

(
Y − m

(
ηT

0X,θ0
))∂ṁ(ηT

0X,	(F0, η0))

∂ vec(η)T
dF0 = 0.

The term ∂B1(η)/∂ vec(η)T can be written as

∂

∂ vec(η)T

∫
�X

∫ m[ηTX,	(F0,η)]
−∞

fY |X(y|x)dy ṁ
[
ηT

0X,	(F0, η0)
]
fX(x) dx

=
∫
�X

ṁθ

(
ηT

0X,θ0
)
fY |X

[
m

(
ηT

0X,θ0
)|x]

×
[
ṁT

u

(
ηT

0X,θ0
) ∂ηTX

∂ vec(η)T
+ ṁθ

(
ηT

0X,θ0
)
D

]
fX(x) dx.

Recall that ∂(ηTX)/∂ vec(η)T = Iq ⊗ XT. So the above term can be written as

E
{
ṁθ

(
ηT

0X,θ0
)
fY |X

(
m

(
ηT

0X,θ0
)|x)[

ṁT
u

(
ηT

0X,θ0
)(

Iq ⊗ XT) + ṁT
θ

(
ηT

0X,θ0
)
D

]}
.

Equating it to 0 and solving for D lead to the desired form for D. �

3.3. Generalized method of moments. Generalized method of moments [9], GMM, is
a popular parametric method in both econometrics and statistics. For instance, it is used
to construct optimal estimation and inference procedures based on generalized estimating
equations (Qu, Lindsay and Li [33]), or to combine efficient and robust estimators (Park and
Lindsay [32]). We next derive the influence function 	�(X,Y,η0) and D for this approach.

In GMM, we have more estimating equations than parameters. That is, we estimate the p-
dimensional parameter vector θ by k > p estimating equations En[g(θ, ηTX,Y )] = 0, where

g
(
θ, ηTX,Y

) = [
g1

(
θ, ηTX,Y

)
, . . . , gk

(
θ, ηTX,Y

)]T
,
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and again we assume Eθ,η[g(θ, ηTX,Y )] = 0 and varθ,η[g(θ, ηTX,Y )] < ∞. For a given η,
θ̃ (η) = 	(Fn,η) in the optimal version of GMM is defined as the minimizer of the function

L(Fn, θ, η)

= Eng
(
θ, ηTX,Y

)T[
Eng

(
θ, ηTX,Y

)
gT(

θ, ηTX,Y
)]−1

Eng
(
θ, ηTX,Y

)
.

Thus, the functional 	(F,η) is the minimizer of

L(F, θ, η) = V (F, θ, η)TW(F, θ, η)V (F, θ, η),

where V (F, θ, η) = ∫
g(θ, ηTX,Y )dF , and

W(F, θ, η) =
(∫

g
(
θ, ηTX,Y

)
gT(

θ, ηTX,Y
)
dF

)−1
.

PROPOSITION 3. For the generalized method of moments, we have

	�(X,Y,η) = −
{
E

(
∂gT

∂θ

)[
E

(
ggT)]−1

E

(
∂g

∂θT

)}−1
E

(
∂gT

∂θ

)[
E

(
ggT)]−1

g,

D = −
{
E

(
∂gT

∂θ

)[
E

(
ggT)]−1

E

(
∂g

∂θT

)}−1
E

(
∂gT

∂θ

)[
E

(
ggT)−1]

× E

(
∂g

∂uT

)(
Iq ⊗ XT)

,

where g = g(θ0, η
T
0X,Y ).

PROOF. Let H(F, θ, η0) = ∂L(F, θ, η0)/∂θ . Then 	(F,η0) satisfies

H
(
F,	(F,η0), η0

) = 0.

Hence the influence function 	�(X,Y,η0) can be solved from the equation

∂

∂ε
H

(
Fε,	(Fε, η0), η0

) = 0,

which, by the chain rule, yields

	� = −
[

∂

∂θT
H(F0, θ0, η0)

]−1 ∂

∂ε
H

[
F0,	(Fε, η0), η0

]∣∣∣∣
ε=0

.

We now express the above derivatives in terms of V (F, θ, η) and W(F, θ, η). By definition,

(3.7)

∂L(F, θ, η0)

∂θ
= ∂V T(F, θ, η0)

∂θ
W(F, θ, η0)V (F, θ, η0)

+ V T(F, θ, η0)
∂W(F, θ, η0)

∂θ
V (F, θ, η0)

+ V T(F, θ, η0)W(F, θ, η0)
∂V (F, θ, η0)

∂θ
,

Differentiating (3.7) with respect to θ , and evaluating the derivative at θ0, we obtain

(3.8)

∂H

∂θT
= ∂2V

∂θ∂θT
WV + ∂V T

∂θ

∂W

∂θT
V + ∂V T

∂θ
W

∂V

∂θT

+ ∂V T

∂θT

∂W

∂θ
V + V T ∂2W

∂θ∂θT
V + V T ∂W

∂θ

∂V

∂θT

+ ∂V T

∂θT
W

∂V

∂θ
+ V T ∂W

∂θT

∂V

∂θ
+ V TW

∂2V

∂θ∂θT
.
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Since, by construction, V (F0, θ0, η0) = ∫
g(θ0, η

T
0X,Y )dF0 = 0, all the terms in (3.8) that

involve V vanish, resulting in

(3.9)
∂H

∂θT
= 2

∂V T

∂θT
W

∂V

∂θT
.

Similarly, we have

∂H

∂ε
= ∂V T

∂θ
W

∂V

∂ε
+ ∂V T

∂ε
W

∂V

∂θ
= 2

∂V T

∂ε
W

∂V

∂θ
.

Using the fact that

∂V T

∂θ
= ∂

∂θ

∫
gT(

θ0, η
T
0X,Y

)
dF0 = E

[
∂

∂θ
gT(

θ0, η
T
0X,Y

)]
,

we obtain the desired form for 	�(X,Y,η0).
Next, we note that H [F0,	(F0, η), η] = 0 for all η. Hence,

∂

∂θT
H(F0, θ0, η)

∂	(F0, η)

∂ vec(η)T
+ ∂H(F0, θ0, η)

∂ vec(η)T
= 0.

Solving this equation, we have

(3.10) D = −
(

∂H

∂θT

)−1 ∂H

∂ vec(η)T
.

The computation of ∂H/∂ vec(η)T is similar to that of ∂H/∂θT: there are 9 terms in total,
and all the terms that involve V vanish, resulting in

(3.11)

∂H(F0, θ0, η0)

∂ vec(η)T
= ∂V T

∂θ
W

∂V

∂ vec(η)T
+ ∂V T

∂ vec(η)T
W

∂V

∂θ

= 2
∂V T

∂θ
W

∂V

∂ vec(η)T
.

Furthermore,

(3.12)

∂V

vec(η)T
= E

[
∂

∂uT
g
(
θ0, η

T
0X,Y

)]∂ vec(ηTX)

∂ vec(η)T

= E

[
∂

∂uT
g
(
θ0, η

T
0X,Y

)](
Iq ⊗ XT)

.

Substituting (3.9), (3.11), (3.12) into (3.10), we obtain the desired form of D. �

4. Influence functions for reduction functionals. In this section, we derive the influ-
ence function 
�(X,Y ) for some popular SDR methods, including SIR, SAVE, DR and two
forms of PHD. Although some forms of asymptotic expansions exist in the SDR literature
(Li [21, 22], Li and Wang [18], Shao, Cook and Weisberg [34], Li [15]), they have all been
developed for sequential tests, and none was in the form suitable for post reduction infer-
ence. Also, the development here can be extended to other regression-based SDR methods,
for example, the minimal discrepancy method (Cook and Ni [6]), in a similar fashion.

Many SDR methods begin with slicing the range of the response to a fixed number of
nonoverlapping intervals; let {Jk : k = 1, . . . ,H } be a set of intervals that partition �Y . Let
Dk = I (Y ∈ Jk), pk = E(Dk), μk = E(X|Y ∈ Jk), and �k = var(X|Y ∈ Jk). Let μ = E(X),
ν = E(Y ). The specific form of 
 for the above SDR methods are as follows:

(1) For SIR (Li [21]), 
SIR(F ) = ∑H
k=1 pk(μk − μ)(μk − μ)T.
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(2) For SAVE (Cook and Weisberg [7]),


SAVE(F ) =
H∑

k=1

pk(� − �k)�
−1(� − �k)

T.

(3) For DR (Li and Wang [18]), 
DR(F ) = 2
DR,1(F )+2
DR,2(F )+2
DR,3(F ), where


DR,1(F )

= E
{
E

[
(X − μ)(X − μ)T − �|Ỹ ]

�−1E
[
(X − μ)(X − μ)T − �|Ỹ ]}

,


DR,2(F )

= E
[
E(X − μ|Ỹ )E

(
(X − μ)T|Ỹ )]

�−1E
[
E(X − μ|Ỹ )E

(
(X − μ)T|Ỹ )]

,


DR,3(F )

= E
[
E

(
(X − μ)T|Ỹ )

�−1E(X − μ|Ỹ )
]
E

[
E(X − μ|Ỹ )E

(
(X − μ)T|Ỹ )]

,

with Ỹ being the discretized Y according to the partition (J1, . . . , Jh); that is, Ỹ =∑h
k=1 kI (Y ∈ Jk).
(4) For y-based PHD (Li [22]), 
y-PHD(F ) = �YXX�−1�YXX , where

�YXX = E
(
(Y − ν)(X − μ)(X − μ)T)

.

(5) For r-based PHD (Li [22], Cook [5]), 
r-PHD(F ) = �RXX�−1�RXX , where

�RXX = E
{[

(Y − ν) − βT(X − μ)
]
(X − μ)(X − μ)T}

,

and β is the regression coefficient vector �−1�XY , with �XY = cov(X,Y ).

The next proposition gives the explicit forms of vec(
�) for these SDR methods. The
derivations are tedious but straightforward; the details are omitted here. We first write down
some simple influence functions:

p�
k = Dk − pk, μ� = X − μ, and ν� = Y − E(Y ),

μ�
k = −p−2

k p�
kE(XDk) + p−1

k

[
XDk − E(XDk)

]
,

��
k = −p−2

k p�
kE

(
XXTDk

) − p−1
k

[
XXTDk − E

(
XXTDk

)] − μ�
kμ

T
k − μk

(
μ�

k

)T
.

The influence function of β is

β� = (
�−1)�

�XY + (
�−1)

��
XY ,

where ��
XY = XY − E(XY) − (X − μ)ν − μ(Y − ν).

PROPOSITION 4. The influence functions for the above five reduction functionals are
given by the following formulas:

(1) For SIR,

vec
(

�

SIR
) =

H∑
k=1

(μk − μ) ⊗ (μk − μ)p�
k

+ [
pk(μk − μ) ⊗ Ip + Ip ⊗ pk(μk − μ)

](
μ�

k − μ�).
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(2) For SAVE,

vec
(

�

SAVE
) =

H∑
k=1

[
(� − �k) ⊗ (� − �k)

]
vec

(
�−1)

p�
k

+ pk

[
(� − �k) ⊗ (� − �k)

]
vec

[(
�−1)�]

+ pk

[
(� − �k)�

−1 ⊗ Ip + Ip ⊗ (� − �k)�
−1]

vec
(
�� − ��

k

)
,

where �� and (�−1)� are as given in Lemma 1.
(3) For DR,

vec
(

�

DR
) = 2 vec

(

�

DR,1
) + 2 vec

(

�

DR,2
) + 2 vec

(

�

DR,3
)
,

where

vec
(

�

DR,1
) =

H∑
k=1

(Ak ⊗ Ak)vec
(
�−1)

p�
k + pk(Ak ⊗ Ak)vec

[(
�−1)�]

+ pk

(
Ak�

−1 ⊗ Ip + Ip ⊗ Ak�
−1)

vec
(
A�

k

)
,

vec
(

�

DR,2
) = (

B�−1 ⊗ Ip + Ip ⊗ B�−1)
vec

(
B�) + (B ⊗ B)vec

((
�−1)�)

,

vec
(

�

DR,3
) = C� vec(B) + C vec

(
B�),

in which Ak = E[(X − μ)(X − μ)T − �|Y ∈ Jk], B = ∑H
k=1 pk(μk − μ), and C =∑H

k=1 pk(μk − μ)T�−1(μk − μ), with the influence functions

A�
k = −p−2

k p�
kE

(
XXTDk

) + p−1
k

[
XXTDk − E

(
XXTDk

)]
− μ�

kμ
T − μkμ

∗T + μ�μT + μμ∗T − ��,

B� =
H∑

k=1

p�
k(μk − μ)(μk − μ)T + pk

(
μ�

k − μ�)(μk − μ)T

+ pk(μk − μ)
(
μ�

k − μ�)T
,

C� =
H∑

k=1

p�
k(μk − μ)T�−1(μk − μ) + pk

(
μ�

k − μ�)T
�−1(μk − μ)

+ pk(μk − μ)T�−1∗(μk − μ) + pk(μk − μ)T�−1(
μ�

k − μ�).
(4) For y-based PHD,

vec
(

�

y-PHD
) = (

�YXX�−1 ⊗ Ip + IP ⊗ �YXX�−1)
vec

(
��

YXX

)
+ (�YXX ⊗ �YXX)vec

(
�−1∗)

,

where

�YXX = E
[
(Y − ν)(X − μ)(X − μ)T]

,

��
YXX = YXXT − E

(
YXXT) − ν�E

(
XXT) − ν

[
XXT − E

(
XXT)]

− μ�E
(
YXT) − μ

[
YXT − E

(
YXT)] − [

YX − E(YX)
]
μT

− E(YX)μ∗T + ν�μμT + νμ�μT + νμμ∗T.
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(5) For r-based PHD,

vec
(

�

r-PHD
) = (

�RXX�−1 ⊗ Ip + Ip ⊗ �RXX�−1)
vec

(
��

RXX

)
+ (�RXX ⊗ �RXX)vec

(
�−1∗)

,

where the matrix �RXX is defined as �YXX − R, and

R = E
(
XXTβXT) − E

(
XXT)

βμT

− μβTE
(
XXT) − E

(
XμTβXT) + 2E

(
XμTβμT)

.

The influence function of �RXX is

vec
(
��

RXX

) = vec
(
��

YXX

) − vec
(
R�),

vec
(
R�) = R�

1 − R�
2 − R�

3 − R�
4 + R�

5,

where

R�
1 = {

X ⊗ (
XXT) − E

[
X ⊗ (

XXT)]}
β + E

(
X ⊗ XXT)

β�,

R�
2 = {

Ip ⊗ [
XXT − E

(
XXT)]}

(μ ⊗ β) + [
Ip ⊗ E

(
XXT)]

μ� ⊗ β

+ [
Ip ⊗ E

(
XXT)]

μ ⊗ β�,

R�
3 = {[

XXT − E
(
XXT)] ⊗ Ip

}
(β ⊗ μ) + {[

E
(
XXT)] ⊗ Ip

}(
β� ⊗ μ

)
+ {[

E
(
XXT)] ⊗ Ip

}(
β ⊗ μ�),

R�
4 = [

X ⊗ X − E(X ⊗ X)
]
μTβ + E(X ⊗ X)μ∗Tβ + E(X ⊗ X)μTβ�,

R�
5 = 2

[(
μβT ⊗ Ip

)
vec

(
μ�μT) + (

μβT ⊗ Ip

)
vec

(
μμ∗T)

+ (
Ip ⊗ μμT)

vec
(
β�μT) + (

Ip ⊗ μμT)
vec

(
βμ∗T)]

.

The five influence functions in Proposition 4 can be easily estimated by replacing, when-
ever applicable, the expectation E(·) with the sample average En(·). We can then substitute
into the formulas for B and � in Corollary 1 to obtain the estimated asymptotic distribution
of

√
n(θ̂ − θ0).

5. Post dimension reduction inference. In this section, we develop the formal statistical
inference procedures for θ based on the asymptotic distribution of θ̂ = 	(Fn, η̂) derived
in Sections 2 through 4. First, we consider the confidence interval for an arbitrary linear
combination of θ . Let c ∈R

s be a vector and let zα be the (1−α)th percentile of the standard

normal distribution. Because
√

n(θ̂ − θ)
D→ N(0,�), the interval (cTθ̂ − zα/2

√
cT�c, cTθ̂ +

zα/2
√

cT�c) covers the true parameter θ0 with probability tending to 1 − α. Therefore, by
Slutsky’s theorem, the asymptotic (1 − α)-level confidence interval for θ is(

cTθ̂ − zα
2

√
cT�̂c, cTθ̂ + zα

2

√
cT�̂c

)
,

where �̂ = �(η̂, θ̂) is an estimate of � as defined in Corollary 1.
Next, we consider testing the null hypothesis

H0 : h(θ) = h(θ0),

where h : Rs → R
k is a differentiable function. We use the function h to accommodate the

situation where only part of the parameter θ , for example, the first component of θ , is of
interest. For power assessment, we consider the local alternative hypothesis

H1,n(λ) : h(θ) = h

(
θ0 + λ√

n

)
,
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where λ is a fixed vector in R
s . Let H(θ) = ∂hT(θ)/∂θ ∈ R

s×k be the gradient matrix of h

at θ , θn = θ0 + λ/
√

n, Ĥ = H(θ̂), and H = H(θ0). We propose the following Wald-type test
statistic

T = √
n
[
h(θ̂) − h(θ0)

](
Ĥ T�̂Ĥ

)−1√
n
[
h(θ̂) − h(θ0)

]
.

The next theorem gives the asymptotic distributions of T under the null and the local alter-
native distribution. In the following, convergence in distribution under the null hypothesis

is written as
D→
θ0

, while convergence in distribution under the local alternative hypothesis is

written as
D→
θn

.

THEOREM 3. Suppose the conditions in Theorem 1 are satisfied and the matrices � and
H are nonsingular, then

(5.1) T
D−→
θ0

χ2
k .

Suppose, moreover, that θ̂ is a regular estimator, then

(5.2) T
D−→
θn

χ2
k

(
λTH�H Tλ

)
.

PROOF. By Corollary 1 and the delta method, we have

√
n
[
h(θ̂) − h(θ0)

] D−→
θ0

N
(
0,H T�H

)
,

which implies (5.1).
Since θ̂ is a regular estimator and h is differentiable, the asymptotic distribution of√
n[h(θ̂) − h(θn)] under H1,n(λ) is the same as the asymptotic distribution of

√
n[h(θ̂) −

h(θ0)] under H0. Next, we decompose
√

n[h(θ̂) − h(θ0)] as
√

n
[
h(θ̂) − h(θ0)

] = √
n
[
h(θ̂) − h(θn)

] + √
n
[
h(θn) − h(θ0)

]
= √

n
[
h(θ̂) − h(θn)

] + H Tλ + o
(
n−1/2)

.

By Slutsky’s theorem,

√
n
[
h(θ̂) − h(θ0)

] D−→
θn

N
(
H Tλ,H T�H

)
,

which implies

√
n
[
H T�H

]− 1
2
[
h(θ̂) − h(θ0)

] D−→
θn

N
((

H T�H
)− 1

2 H Tλ, Ik

)
.

Together we have

√
n
[
h(θ̂) − h(θ0)

][
H T�H

]−1[
h(θ̂) − h(θ0)

] D−→
θn

χ2
k

[
λTH

(
H T�H

)−1
H Tλ

]
.

Applying Slutsky’s theorem again, we obtain (5.2). �

We briefly comment that the requirement θ̂ is a regular estimator is rather mild, and is
satisfied by most estimators. See Bickel et al. [1] and Van der Vaart [36].



1584 KIM, LI, YU AND LI

6. Simulations. We next investigate the finite-sample performance of our post dimen-
sion reduction inference method, and compare it with the naive inference method that pre-
tends η̂TX were the true predictor. As discussed in Section 2.3, the asymptotic covariances
of the two methods are �(η0, θ0) and �̃(η0, θ0), respectively. Given the data, �(η0, θ0) and
�̃(η0, θ0) are estimated by �(η̂, θ̂) and �̃(η̂, θ̂ ). We consider five dimension reduction meth-
ods, SIR, SAVE, DR, y-PHD and r-PHD, and one estimation method, GMM. For GMM,
let m(ηTX,θ) denote the mean function, which is the same as the median function in our
simulations as a symmetric error distribution is employed, and we set

g1
(
θ, ηTX,Y

) = Y − m
(
ηTX,θ

)
, g2

(
θ, ηTX,Y

) = I
(
Y ≤ m

(
ηTX,θ

)) − 1/2.

That is, the GMM combines mean regression and median regression, which strikes a balance
between efficiency and robustness. We compare the performance in terms of the coverage
probability of confidence interval and the local power in hypothesis testing.

6.1. Comparison of confidence interval. For confidence interval comparison, we con-
sider two models. The first model is

Model I: Y = θ1
(
ηTX

) + θ2
(
ηTX

)2 + σε,

where X ∼ N(0, I5), ε ∼ N(0,1), X ⊥⊥ ε, θ1 = θ2 = 1, σ = 0.5,1, the predictor dimension
p = 5, and the sample size n = 300,400,800,1200. In this example, SY |X = span(η) with
η = (1,0,0,0,0)T. For the number of slices for SIR, SAVE and DR, the general rule of thumb
is to choose a larger value for SIR, and a smaller value for SAVE and DR (Li [15]). In our
simulations, we have chosen H = 20 for SIR, H = 2 for SAVE and H = 8 for DR. After
obtaining η̂ and θ̂ (η̂), we calculate the 95% confidence intervals for θ1 and θ2. We report the
coverage probabilities of the two methods based on 200 data replications in Table 1. We see
that the coverage probability from the naive method is considerably smaller than the nominal
value, whereas the coverage probability from our proposed method is much closer. Table 1

TABLE 1
Coverage probability of confidence interval for θ1 and θ2 in model I

SIR SAVE DR y-PHD r-PHD

n � σ 2 � �̃ � �̃ � �̃ � �̃ � �̃

300
θ1

0.5 0.96 0.82 0.96 0.81 0.96 0.83 0.95 0.81 0.96 0.82
1 0.95 0.79 0.95 0.78 0.94 0.81 0.96 0.80 0.93 0.79

θ2
0.5 0.93 0.80 0.94 0.80 0.94 0.79 0.96 0.81 0.96 0.81
1 0.94 0.78 0.93 0.80 0.94 0.80 0.94 0.79 0.96 0.79

400
θ1

0.5 0.95 0.85 0.96 0.85 0.95 0.85 0.96 0.84 0.95 0.85
1 0.96 0.81 0.94 0.83 0.93 0.82 0.93 0.81 0.93 0.83

θ2
0.5 0.95 0.83 0.94 0.85 0.94 0.84 0.96 0.84 0.96 0.84
1 0.95 0.82 0.94 0.81 0.94 0.81 0.94 0.82 0.94 0.81

800
θ1

0.5 0.96 0.88 0.96 0.89 0.94 0.89 0.96 0.88 0.95 0.88
1 0.96 0.88 0.95 0.87 0.93 0.87 0.95 0.86 0.93 0.86

θ2
0.5 0.96 0.87 0.94 0.88 0.96 0.87 0.95 0.86 0.95 0.87
1 0.93 0.86 0.96 0.85 0.94 0.86 0.93 0.85 0.94 0.85

1200
θ1

0.5 0.95 0.92 0.96 0.91 0.96 0.91 0.96 0.92 0.96 0.91
1 0.94 0.90 0.94 0.90 0.94 0.88 0.95 0.89 0.96 0.90

θ2
0.5 0.94 0.92 0.95 0.91 0.95 0.91 0.96 0.91 0.95 0.91
1 0.94 0.91 0.93 0.88 0.94 0.90 0.95 0.90 0.96 0.89
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TABLE 2
Coverage probability of confidence interval for θ1 in model II

SIR SAVE DR y-PHD r-PHD

n � σ 2 � �̃ � �̃ � �̃ � �̃ � �̃

300 θ1
0.5 0.94 0.85 0.93 0.83 0.95 0.82 0.93 0.83 0.96 0.83
1 0.93 0.84 0.94 0.80 0.94 0.81 0.95 0.80 0.93 0.81

400 θ1
0.5 0.95 0.86 0.95 0.87 0.95 0.86 0.93 0.86 0.95 0.85
1 0.94 0.84 0.95 0.84 0.94 0.87 0.94 0.84 0.94 0.85

800 θ1
0.5 0.95 0.90 0.94 0.88 0.96 0.89 0.96 0.90 0.95 0.90
1 0.94 0.87 0.93 0.86 0.93 0.90 0.95 0.88 0.94 0.89

1200 θ1
0.5 0.96 0.91 0.95 0.91 0.94 0.92 0.94 0.91 0.96 0.92
1 0.95 0.92 0.94 0.90 0.95 0.90 0.95 0.89 0.95 0.90

also shows that the coverage probability for the naive method becomes closer to the nominal
value as the sample size increases, but it does not converge to the nominal value.

The second model is

Model II: Y = θ1
ηTX

(ηTX + 2)2 + 0.1
+ σε,

where X ∼ N(0, I10), X ⊥⊥ ε, θ1 = 1, and η = (1,0, . . . ,0)T. The rest of the setup is the same
as model I. We report the coverage probabilities in Table 2. Again, the coverage probability
of our method is much closer to 95% than the naive method.

Since the true model is known in the simulation experiments, we can also estimate (η, θ)

and make inference about them directly using the maximum likelihood method without go-
ing through dimension reduction. It would be informative to compare this “oracle” inference
method with the naive and objective inference methods. We have carried out this comparison
using Model I, with n = 400. We read off the standard errors for θ̂MLE

1 , θ̂MLE
2 from the asymp-

totic variance matrix of (η̂MLE, θ̂MLE), which is the inverted Fisher information evaluated at
the MLE. We also compute the standard errors for the (θ̂1, θ̂2) obtained by SIR + GMM as
described above, using the naive and objective inference methods. We repeat the process 200
times to compute the average standard errors. The results are reported in Table 3.

In theory, we would expect the standard errors for θ̂MLE
1 and θ̂MLE

2 using the oracle infer-
ence method to be smaller than their counterparts for θ̂1 and θ̂2 using the objective method,
because MLE is asymptotically efficient. But this is not necessarily true in finite-sample, as
indicated by our results. Also, Table 3 shows that both the objective and oracle mean stan-
dard errors are substantially larger than their counterparts by the naive method, which is not
surprising because the naive method claims more information than it actually possesses.

TABLE 3
Standard errors for θ1 and θ2 in model I

and comparison to the oracle method

Parameter Naive Objective Oracle

θ1 0.03 0.06 0.09
θ2 0.02 0.04 0.03
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6.2. Comparison of local power. For power comparison, we again consider two models.
The first model is

Model III: Y = θ1
(
ηT

1X
)2 + θ2 exp

(
ηT

2X
) + σε,

where X ∼ N(0, I10), ε ∼ N(0,1), X ⊥⊥ ε, θ1 = θ2 = 1, σ = 0.5, p = 10, and n =
300,500,800,1200 with 50 replications. In this example, SY |X = span(η1, η2) with η1 =
(1,0, . . . ,0)T and η2 = (0,1,0, . . . ,0)T. We consider the pair of hypotheses

H0 : θ1 = 0 vs H1 : θ1 	= 0

which amounts to taking h(θ1, θ2) = θ1 in Section 5. The asymptotic power is computed
as in (5.2). Figure 1 reports this asymptotic power as a function of the local parameter λ

when the sample size is 500, with one panel corresponding to one of the five SDR meth-
ods. Figures A.1, A.2, A.3 in the online supplementary material present the results for
n = 300,800,1200, respectively. It is seen that the powers of the naive method, as shown by
the red curves, are higher than those by our proposed method, as shown by the blue curves.
This reflects that the naive method yields an overly optimistic power, as it does not take into
account the estimation error induced by the dimension reduction step. Furthermore, by com-
paring Figures 1, A.1, A.2 and A.3, we observe that the difference between the local powers
of the naive and the objective methods tends to be smaller as the sample size increases, which
echoes the pattern in the comparison of confidence intervals.

Our second model for the local power comparison is

Model IV: Y = θ1
ηT

1X

(ηT
2X + 1)2 + 0.5

+ σε,

where θ1 = 1, and the rest of the setup is the same as model III. Figure 2 reports the results
for n = 500. The same pattern is observed as in model III. Figures A.4, A.5 and A.6 in the
online supplementary material present the results for n = 300,800 and 1200, respectively.

FIG. 1. Local power of hypothesis testing in model III with sample size n = 500. The five panels, left to right,
top to bottom, correspond to the results from five SDR methods, SIR, SAVE, DR, y-PHD and r-PHD. The red curve
denotes the naive inference method, and the blue curve denotes our proposed inference method.
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FIG. 2. Local power of hypothesis testing in model IV with sample size n = 500. The five panels, left to right,
top to bottom, correspond to the results from five SDR methods, SIR, SAVE, DR, y-PHD and r-PHD. The red curve
denotes the naive inference method, and the blue curve denotes our proposed inference method.

7. Application. We use the BigMac dataset to illustrate our post dimension reduction
inference. The data concerns the relation between the minimum labor to buy a McDonald
BigMac and fries, which serves as the response variable, and p = 9 economic predictors:
minimum labor to buy one kilogram bread, lowest cost of 10k public transit, electrical en-
gineer annual salary, tax rate paid by engineer, annual cost of 19 services, primary teacher
salary, tax rate paid by primary teacher, average days of vacation per year and average hours
of work per year. The data is at http://www.stat.umn.edu/arc/software.html. Before the dimen-
sion reduction analysis, we applied the box-cox transformation to each individual predictor.

The sequential tests based on SIR yielded the p-values, 0.02, 0.20, 0.77, for the hypotheses
q = 0 versus q > 0, q = 1 versus q > 1 and q = 2 versus q > 2, respectively, suggesting that
the dimension of the central subspace is one and a single linear combination is sufficient to
fully capture the relationship between the response and the nine predictors. Figure 3 shows
the scatter plot of the response versus the estimated sufficient predictor based on SIR.

The scatter plot shows a clear nonlinear trend and a possible heteroscedastic pattern. For
this reason, we consider the following model:

Y = θ0 + θ1η
TX + θ2

(
ηTX

)2 + (
θ3 + θ4η

TX
)
ε,

FIG. 3. Response versus the first SIR predictor in BigMac data.

http://www.stat.umn.edu/arc/software.html
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where ε ∼ N(0,1). Based on this model, we aim to address two questions: First, is the non-
linear trend in Figure 3 significant? Second, is the heteroscedasticity in Figure 3 significant?
These lead to the following two pairs of hypotheses:

H
(1)
0 : θ2 = 0 vs H

(1)
1 : θ2 	= 0,

H
(2)
0 : θ4 = 0 vs H

(2)
1 : θ4 	= 0.

To test these hypotheses, we applied the naive method and the post dimension reduction
method to the five SDR methods combined with the differential estimation equations. We
use each method to construct confidence intervals for θ2 and θ4. The estimating equations
are 5-dimensional g(θ, ηTX,Y ) obtained by differentiating with respect to θ the objective
function [

Y − θ0 − θ1(η
TX) − θ2(η

TX)2

θ3 + θ4(ηTX)

]2
.

Figure 4 shows the confidence intervals for θ2 (the upper panel) and θ4 (the bottom panel)
obtained by different methods. In each plot, the left bar corresponds to the naive inference
method, and the right one our proposed inference method. It is seen that, for θ2, the con-
fidence intervals produced by both inference methods do not cover 0, a clear evidence for
the nonlinearity. For θ4, none of the confidence intervals covers 0, a strong evidence for the
heteroscedasticity. Moreover, the confidence intervals produced by the naive method are con-
sistently narrower than those by our objective inference method.

To compare the local powers of the naive method and the post dimension reduction
method, we applied them to the five SDR methods combined with the GMM estimation
method. The GMM is based on two 5-dimensional estimating equations, with the first one,

FIG. 4. Confidence intervals for θ2 (upper panel) and θ4 (lower panel) in the BigMac data analysis.
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FIG. 5. Local power for θ2 in the BigMac data analysis. The five panels, left to right, top to bottom, correspond
to the results from five SDR methods, SIR, SAVE, DR, y-PHD and r-PHD. The red curve denotes the naive inference
method, and the blue curve denotes our proposed inference method.

g1(θ, ηTX,Y ), being obtained by differentiating the objective function [Y − θ0 − θ1(η
TX) −

θ2(η
TX)2]2 with respect to θ , and the second one, g2(θ, ηTX,Y ), being the the function[

Y − θ0 − θ2
(
ηTX

) − θ2
(
ηTX

)2]2 − (
θ3 + θ4η

TX
)2

,

which is derived from the second moment assumption. Figure 5 shows the local powers of the
five SDR methods based on the GMM. To save space, we only report the results for θ2; the
results for θ4 exhibit a similar pattern. Again, the naive method yields an overly optimistic
power compared with the objective method, which agrees with what we have observed in the
simulations.

While the above analysis shows substantial differences in the confidence intervals by the
naive and the objective inference methods, none of them is large enough to make the param-
eter statistically significant by one method and insignificant by the other. This turns out to be
the case for the intercept parameter θ1 when DR is used for dimension reduction. Figure 6
shows the confidence interval for θ1 by the five SDR methods and the two inference methods.
For DR, the naive inference method produces a confidence interval that does not contain 0,
whereas the objective inference method produces a confidence interval that does. Thus θ1 is
statistically significant by the naive method but insignificant by the objective method.

FIG. 6. Confidence interval for θ1 in the BigMac data analysis.
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8. Conclusions. Despite the extensive development of sufficient dimension reduction in
the past three decades, the critical step of post dimension reduction inference has never been
taken—at least not in a systematic and rigorous manner. SDR is not complete without a proper
post reduction inference procedure that takes the estimation error induced in the dimension
reduction step into the subsequent model estimation step. We fill this gap by developing
a general post dimension reduction inference framework that is adaptive to a multitude of
dimension reduction and model estimation methods. We derive the inference procedures for
confidence interval and hypothesis testing based on a combination of commonly used SDR
and model building methods.

The framework laid out in this paper also opens the door for developing objective inference
procedures for a much broader class of dimension reduction problems than considered here.
Potential extensions include unsupervised dimension reduction methods such as principal
components analysis and independent components analysis (Hyvärinen, Karhunen and Oja
[12]), sparse sufficient dimension reduction methods (Li [23], Bondell and Li [2], Chen,
Zou and Cook [3], Wang and Yin [38]) and nonparametric sufficient dimension reduction
methods (Xia et al. [40], Xia [39]). A particularly promising direction of extension is to
the semiparametrically efficient SDR methods developed in Ma and Zhu [26–28] and Luo,
Li and Yin [25]. For these methods, the influence function can be readily developed from
the efficient score, and it is plausible that semiparametric efficiency for sufficient dimension
reduction can be inherited, to some degree at least, by the post dimension reduction inference
procedure.

Beyond the asymptotic normality-based procedures considered in this paper, it is also use-
ful to develop nonparametric inference procedures for post dimension reduction inference.
For example, it is possible to employ the empirical likelihood approach (Owen [30, 31]) to
conduct post dimension inference. In this direction, Li, Zhu and Zhu [20] proposed an empir-
ical likelihood inference procedure for the single-index model, and the ideas and techniques
there might be adaptable to the current setting. The full potential and scope of the general
framework of post dimension reduction inference will be explored in future research.
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